[PATCH] Proper fix for highmem kmap_atomic functions for VMI for 2.6.21
[linux-2.6] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         mutex_init(&isec->lock);
189         INIT_LIST_HEAD(&isec->list);
190         isec->inode = inode;
191         isec->sid = SECINITSID_UNLABELED;
192         isec->sclass = SECCLASS_FILE;
193         isec->task_sid = tsec->sid;
194         inode->i_security = isec;
195
196         return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec = inode->i_security;
202         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204         spin_lock(&sbsec->isec_lock);
205         if (!list_empty(&isec->list))
206                 list_del_init(&isec->list);
207         spin_unlock(&sbsec->isec_lock);
208
209         inode->i_security = NULL;
210         kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215         struct task_security_struct *tsec = current->security;
216         struct file_security_struct *fsec;
217
218         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219         if (!fsec)
220                 return -ENOMEM;
221
222         fsec->file = file;
223         fsec->sid = tsec->sid;
224         fsec->fown_sid = tsec->sid;
225         file->f_security = fsec;
226
227         return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232         struct file_security_struct *fsec = file->f_security;
233         file->f_security = NULL;
234         kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239         struct superblock_security_struct *sbsec;
240
241         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242         if (!sbsec)
243                 return -ENOMEM;
244
245         mutex_init(&sbsec->lock);
246         INIT_LIST_HEAD(&sbsec->list);
247         INIT_LIST_HEAD(&sbsec->isec_head);
248         spin_lock_init(&sbsec->isec_lock);
249         sbsec->sb = sb;
250         sbsec->sid = SECINITSID_UNLABELED;
251         sbsec->def_sid = SECINITSID_FILE;
252         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253         sb->s_security = sbsec;
254
255         return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec = sb->s_security;
261
262         spin_lock(&sb_security_lock);
263         if (!list_empty(&sbsec->list))
264                 list_del_init(&sbsec->list);
265         spin_unlock(&sb_security_lock);
266
267         sb->s_security = NULL;
268         kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273         struct sk_security_struct *ssec;
274
275         ssec = kzalloc(sizeof(*ssec), priority);
276         if (!ssec)
277                 return -ENOMEM;
278
279         ssec->sk = sk;
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_init(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_context = 1,
321         Opt_fscontext = 2,
322         Opt_defcontext = 4,
323         Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327         {Opt_context, "context=%s"},
328         {Opt_fscontext, "fscontext=%s"},
329         {Opt_defcontext, "defcontext=%s"},
330         {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336                         struct superblock_security_struct *sbsec,
337                         struct task_security_struct *tsec)
338 {
339         int rc;
340
341         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342                           FILESYSTEM__RELABELFROM, NULL);
343         if (rc)
344                 return rc;
345
346         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELTO, NULL);
348         return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352                         struct superblock_security_struct *sbsec,
353                         struct task_security_struct *tsec)
354 {
355         int rc;
356         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357                           FILESYSTEM__RELABELFROM, NULL);
358         if (rc)
359                 return rc;
360
361         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362                           FILESYSTEM__ASSOCIATE, NULL);
363         return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368         char *context = NULL, *defcontext = NULL;
369         char *fscontext = NULL, *rootcontext = NULL;
370         const char *name;
371         u32 sid;
372         int alloc = 0, rc = 0, seen = 0;
373         struct task_security_struct *tsec = current->security;
374         struct superblock_security_struct *sbsec = sb->s_security;
375
376         if (!data)
377                 goto out;
378
379         name = sb->s_type->name;
380
381         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383                 /* NFS we understand. */
384                 if (!strcmp(name, "nfs")) {
385                         struct nfs_mount_data *d = data;
386
387                         if (d->version <  NFS_MOUNT_VERSION)
388                                 goto out;
389
390                         if (d->context[0]) {
391                                 context = d->context;
392                                 seen |= Opt_context;
393                         }
394                 } else
395                         goto out;
396
397         } else {
398                 /* Standard string-based options. */
399                 char *p, *options = data;
400
401                 while ((p = strsep(&options, "|")) != NULL) {
402                         int token;
403                         substring_t args[MAX_OPT_ARGS];
404
405                         if (!*p)
406                                 continue;
407
408                         token = match_token(p, tokens, args);
409
410                         switch (token) {
411                         case Opt_context:
412                                 if (seen & (Opt_context|Opt_defcontext)) {
413                                         rc = -EINVAL;
414                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415                                         goto out_free;
416                                 }
417                                 context = match_strdup(&args[0]);
418                                 if (!context) {
419                                         rc = -ENOMEM;
420                                         goto out_free;
421                                 }
422                                 if (!alloc)
423                                         alloc = 1;
424                                 seen |= Opt_context;
425                                 break;
426
427                         case Opt_fscontext:
428                                 if (seen & Opt_fscontext) {
429                                         rc = -EINVAL;
430                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431                                         goto out_free;
432                                 }
433                                 fscontext = match_strdup(&args[0]);
434                                 if (!fscontext) {
435                                         rc = -ENOMEM;
436                                         goto out_free;
437                                 }
438                                 if (!alloc)
439                                         alloc = 1;
440                                 seen |= Opt_fscontext;
441                                 break;
442
443                         case Opt_rootcontext:
444                                 if (seen & Opt_rootcontext) {
445                                         rc = -EINVAL;
446                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447                                         goto out_free;
448                                 }
449                                 rootcontext = match_strdup(&args[0]);
450                                 if (!rootcontext) {
451                                         rc = -ENOMEM;
452                                         goto out_free;
453                                 }
454                                 if (!alloc)
455                                         alloc = 1;
456                                 seen |= Opt_rootcontext;
457                                 break;
458
459                         case Opt_defcontext:
460                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461                                         rc = -EINVAL;
462                                         printk(KERN_WARNING "SELinux:  "
463                                                "defcontext option is invalid "
464                                                "for this filesystem type\n");
465                                         goto out_free;
466                                 }
467                                 if (seen & (Opt_context|Opt_defcontext)) {
468                                         rc = -EINVAL;
469                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470                                         goto out_free;
471                                 }
472                                 defcontext = match_strdup(&args[0]);
473                                 if (!defcontext) {
474                                         rc = -ENOMEM;
475                                         goto out_free;
476                                 }
477                                 if (!alloc)
478                                         alloc = 1;
479                                 seen |= Opt_defcontext;
480                                 break;
481
482                         default:
483                                 rc = -EINVAL;
484                                 printk(KERN_WARNING "SELinux:  unknown mount "
485                                        "option\n");
486                                 goto out_free;
487
488                         }
489                 }
490         }
491
492         if (!seen)
493                 goto out;
494
495         /* sets the context of the superblock for the fs being mounted. */
496         if (fscontext) {
497                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498                 if (rc) {
499                         printk(KERN_WARNING "SELinux: security_context_to_sid"
500                                "(%s) failed for (dev %s, type %s) errno=%d\n",
501                                fscontext, sb->s_id, name, rc);
502                         goto out_free;
503                 }
504
505                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506                 if (rc)
507                         goto out_free;
508
509                 sbsec->sid = sid;
510         }
511
512         /*
513          * Switch to using mount point labeling behavior.
514          * sets the label used on all file below the mountpoint, and will set
515          * the superblock context if not already set.
516          */
517         if (context) {
518                 rc = security_context_to_sid(context, strlen(context), &sid);
519                 if (rc) {
520                         printk(KERN_WARNING "SELinux: security_context_to_sid"
521                                "(%s) failed for (dev %s, type %s) errno=%d\n",
522                                context, sb->s_id, name, rc);
523                         goto out_free;
524                 }
525
526                 if (!fscontext) {
527                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528                         if (rc)
529                                 goto out_free;
530                         sbsec->sid = sid;
531                 } else {
532                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533                         if (rc)
534                                 goto out_free;
535                 }
536                 sbsec->mntpoint_sid = sid;
537
538                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539         }
540
541         if (rootcontext) {
542                 struct inode *inode = sb->s_root->d_inode;
543                 struct inode_security_struct *isec = inode->i_security;
544                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545                 if (rc) {
546                         printk(KERN_WARNING "SELinux: security_context_to_sid"
547                                "(%s) failed for (dev %s, type %s) errno=%d\n",
548                                rootcontext, sb->s_id, name, rc);
549                         goto out_free;
550                 }
551
552                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553                 if (rc)
554                         goto out_free;
555
556                 isec->sid = sid;
557                 isec->initialized = 1;
558         }
559
560         if (defcontext) {
561                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562                 if (rc) {
563                         printk(KERN_WARNING "SELinux: security_context_to_sid"
564                                "(%s) failed for (dev %s, type %s) errno=%d\n",
565                                defcontext, sb->s_id, name, rc);
566                         goto out_free;
567                 }
568
569                 if (sid == sbsec->def_sid)
570                         goto out_free;
571
572                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573                 if (rc)
574                         goto out_free;
575
576                 sbsec->def_sid = sid;
577         }
578
579 out_free:
580         if (alloc) {
581                 kfree(context);
582                 kfree(defcontext);
583                 kfree(fscontext);
584                 kfree(rootcontext);
585         }
586 out:
587         return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592         struct superblock_security_struct *sbsec = sb->s_security;
593         struct dentry *root = sb->s_root;
594         struct inode *inode = root->d_inode;
595         int rc = 0;
596
597         mutex_lock(&sbsec->lock);
598         if (sbsec->initialized)
599                 goto out;
600
601         if (!ss_initialized) {
602                 /* Defer initialization until selinux_complete_init,
603                    after the initial policy is loaded and the security
604                    server is ready to handle calls. */
605                 spin_lock(&sb_security_lock);
606                 if (list_empty(&sbsec->list))
607                         list_add(&sbsec->list, &superblock_security_head);
608                 spin_unlock(&sb_security_lock);
609                 goto out;
610         }
611
612         /* Determine the labeling behavior to use for this filesystem type. */
613         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614         if (rc) {
615                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616                        __FUNCTION__, sb->s_type->name, rc);
617                 goto out;
618         }
619
620         rc = try_context_mount(sb, data);
621         if (rc)
622                 goto out;
623
624         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625                 /* Make sure that the xattr handler exists and that no
626                    error other than -ENODATA is returned by getxattr on
627                    the root directory.  -ENODATA is ok, as this may be
628                    the first boot of the SELinux kernel before we have
629                    assigned xattr values to the filesystem. */
630                 if (!inode->i_op->getxattr) {
631                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632                                "xattr support\n", sb->s_id, sb->s_type->name);
633                         rc = -EOPNOTSUPP;
634                         goto out;
635                 }
636                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637                 if (rc < 0 && rc != -ENODATA) {
638                         if (rc == -EOPNOTSUPP)
639                                 printk(KERN_WARNING "SELinux: (dev %s, type "
640                                        "%s) has no security xattr handler\n",
641                                        sb->s_id, sb->s_type->name);
642                         else
643                                 printk(KERN_WARNING "SELinux: (dev %s, type "
644                                        "%s) getxattr errno %d\n", sb->s_id,
645                                        sb->s_type->name, -rc);
646                         goto out;
647                 }
648         }
649
650         if (strcmp(sb->s_type->name, "proc") == 0)
651                 sbsec->proc = 1;
652
653         sbsec->initialized = 1;
654
655         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657                        sb->s_id, sb->s_type->name);
658         }
659         else {
660                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
661                        sb->s_id, sb->s_type->name,
662                        labeling_behaviors[sbsec->behavior-1]);
663         }
664
665         /* Initialize the root inode. */
666         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668         /* Initialize any other inodes associated with the superblock, e.g.
669            inodes created prior to initial policy load or inodes created
670            during get_sb by a pseudo filesystem that directly
671            populates itself. */
672         spin_lock(&sbsec->isec_lock);
673 next_inode:
674         if (!list_empty(&sbsec->isec_head)) {
675                 struct inode_security_struct *isec =
676                                 list_entry(sbsec->isec_head.next,
677                                            struct inode_security_struct, list);
678                 struct inode *inode = isec->inode;
679                 spin_unlock(&sbsec->isec_lock);
680                 inode = igrab(inode);
681                 if (inode) {
682                         if (!IS_PRIVATE (inode))
683                                 inode_doinit(inode);
684                         iput(inode);
685                 }
686                 spin_lock(&sbsec->isec_lock);
687                 list_del_init(&isec->list);
688                 goto next_inode;
689         }
690         spin_unlock(&sbsec->isec_lock);
691 out:
692         mutex_unlock(&sbsec->lock);
693         return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698         switch (mode & S_IFMT) {
699         case S_IFSOCK:
700                 return SECCLASS_SOCK_FILE;
701         case S_IFLNK:
702                 return SECCLASS_LNK_FILE;
703         case S_IFREG:
704                 return SECCLASS_FILE;
705         case S_IFBLK:
706                 return SECCLASS_BLK_FILE;
707         case S_IFDIR:
708                 return SECCLASS_DIR;
709         case S_IFCHR:
710                 return SECCLASS_CHR_FILE;
711         case S_IFIFO:
712                 return SECCLASS_FIFO_FILE;
713
714         }
715
716         return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731         switch (family) {
732         case PF_UNIX:
733                 switch (type) {
734                 case SOCK_STREAM:
735                 case SOCK_SEQPACKET:
736                         return SECCLASS_UNIX_STREAM_SOCKET;
737                 case SOCK_DGRAM:
738                         return SECCLASS_UNIX_DGRAM_SOCKET;
739                 }
740                 break;
741         case PF_INET:
742         case PF_INET6:
743                 switch (type) {
744                 case SOCK_STREAM:
745                         if (default_protocol_stream(protocol))
746                                 return SECCLASS_TCP_SOCKET;
747                         else
748                                 return SECCLASS_RAWIP_SOCKET;
749                 case SOCK_DGRAM:
750                         if (default_protocol_dgram(protocol))
751                                 return SECCLASS_UDP_SOCKET;
752                         else
753                                 return SECCLASS_RAWIP_SOCKET;
754                 case SOCK_DCCP:
755                         return SECCLASS_DCCP_SOCKET;
756                 default:
757                         return SECCLASS_RAWIP_SOCKET;
758                 }
759                 break;
760         case PF_NETLINK:
761                 switch (protocol) {
762                 case NETLINK_ROUTE:
763                         return SECCLASS_NETLINK_ROUTE_SOCKET;
764                 case NETLINK_FIREWALL:
765                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
766                 case NETLINK_INET_DIAG:
767                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
768                 case NETLINK_NFLOG:
769                         return SECCLASS_NETLINK_NFLOG_SOCKET;
770                 case NETLINK_XFRM:
771                         return SECCLASS_NETLINK_XFRM_SOCKET;
772                 case NETLINK_SELINUX:
773                         return SECCLASS_NETLINK_SELINUX_SOCKET;
774                 case NETLINK_AUDIT:
775                         return SECCLASS_NETLINK_AUDIT_SOCKET;
776                 case NETLINK_IP6_FW:
777                         return SECCLASS_NETLINK_IP6FW_SOCKET;
778                 case NETLINK_DNRTMSG:
779                         return SECCLASS_NETLINK_DNRT_SOCKET;
780                 case NETLINK_KOBJECT_UEVENT:
781                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
782                 default:
783                         return SECCLASS_NETLINK_SOCKET;
784                 }
785         case PF_PACKET:
786                 return SECCLASS_PACKET_SOCKET;
787         case PF_KEY:
788                 return SECCLASS_KEY_SOCKET;
789         case PF_APPLETALK:
790                 return SECCLASS_APPLETALK_SOCKET;
791         }
792
793         return SECCLASS_SOCKET;
794 }
795
796 #ifdef CONFIG_PROC_FS
797 static int selinux_proc_get_sid(struct proc_dir_entry *de,
798                                 u16 tclass,
799                                 u32 *sid)
800 {
801         int buflen, rc;
802         char *buffer, *path, *end;
803
804         buffer = (char*)__get_free_page(GFP_KERNEL);
805         if (!buffer)
806                 return -ENOMEM;
807
808         buflen = PAGE_SIZE;
809         end = buffer+buflen;
810         *--end = '\0';
811         buflen--;
812         path = end-1;
813         *path = '/';
814         while (de && de != de->parent) {
815                 buflen -= de->namelen + 1;
816                 if (buflen < 0)
817                         break;
818                 end -= de->namelen;
819                 memcpy(end, de->name, de->namelen);
820                 *--end = '/';
821                 path = end;
822                 de = de->parent;
823         }
824         rc = security_genfs_sid("proc", path, tclass, sid);
825         free_page((unsigned long)buffer);
826         return rc;
827 }
828 #else
829 static int selinux_proc_get_sid(struct proc_dir_entry *de,
830                                 u16 tclass,
831                                 u32 *sid)
832 {
833         return -EINVAL;
834 }
835 #endif
836
837 /* The inode's security attributes must be initialized before first use. */
838 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
839 {
840         struct superblock_security_struct *sbsec = NULL;
841         struct inode_security_struct *isec = inode->i_security;
842         u32 sid;
843         struct dentry *dentry;
844 #define INITCONTEXTLEN 255
845         char *context = NULL;
846         unsigned len = 0;
847         int rc = 0;
848
849         if (isec->initialized)
850                 goto out;
851
852         mutex_lock(&isec->lock);
853         if (isec->initialized)
854                 goto out_unlock;
855
856         sbsec = inode->i_sb->s_security;
857         if (!sbsec->initialized) {
858                 /* Defer initialization until selinux_complete_init,
859                    after the initial policy is loaded and the security
860                    server is ready to handle calls. */
861                 spin_lock(&sbsec->isec_lock);
862                 if (list_empty(&isec->list))
863                         list_add(&isec->list, &sbsec->isec_head);
864                 spin_unlock(&sbsec->isec_lock);
865                 goto out_unlock;
866         }
867
868         switch (sbsec->behavior) {
869         case SECURITY_FS_USE_XATTR:
870                 if (!inode->i_op->getxattr) {
871                         isec->sid = sbsec->def_sid;
872                         break;
873                 }
874
875                 /* Need a dentry, since the xattr API requires one.
876                    Life would be simpler if we could just pass the inode. */
877                 if (opt_dentry) {
878                         /* Called from d_instantiate or d_splice_alias. */
879                         dentry = dget(opt_dentry);
880                 } else {
881                         /* Called from selinux_complete_init, try to find a dentry. */
882                         dentry = d_find_alias(inode);
883                 }
884                 if (!dentry) {
885                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
886                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887                                inode->i_ino);
888                         goto out_unlock;
889                 }
890
891                 len = INITCONTEXTLEN;
892                 context = kmalloc(len, GFP_KERNEL);
893                 if (!context) {
894                         rc = -ENOMEM;
895                         dput(dentry);
896                         goto out_unlock;
897                 }
898                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899                                            context, len);
900                 if (rc == -ERANGE) {
901                         /* Need a larger buffer.  Query for the right size. */
902                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903                                                    NULL, 0);
904                         if (rc < 0) {
905                                 dput(dentry);
906                                 goto out_unlock;
907                         }
908                         kfree(context);
909                         len = rc;
910                         context = kmalloc(len, GFP_KERNEL);
911                         if (!context) {
912                                 rc = -ENOMEM;
913                                 dput(dentry);
914                                 goto out_unlock;
915                         }
916                         rc = inode->i_op->getxattr(dentry,
917                                                    XATTR_NAME_SELINUX,
918                                                    context, len);
919                 }
920                 dput(dentry);
921                 if (rc < 0) {
922                         if (rc != -ENODATA) {
923                                 printk(KERN_WARNING "%s:  getxattr returned "
924                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
925                                        -rc, inode->i_sb->s_id, inode->i_ino);
926                                 kfree(context);
927                                 goto out_unlock;
928                         }
929                         /* Map ENODATA to the default file SID */
930                         sid = sbsec->def_sid;
931                         rc = 0;
932                 } else {
933                         rc = security_context_to_sid_default(context, rc, &sid,
934                                                              sbsec->def_sid);
935                         if (rc) {
936                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
937                                        "returned %d for dev=%s ino=%ld\n",
938                                        __FUNCTION__, context, -rc,
939                                        inode->i_sb->s_id, inode->i_ino);
940                                 kfree(context);
941                                 /* Leave with the unlabeled SID */
942                                 rc = 0;
943                                 break;
944                         }
945                 }
946                 kfree(context);
947                 isec->sid = sid;
948                 break;
949         case SECURITY_FS_USE_TASK:
950                 isec->sid = isec->task_sid;
951                 break;
952         case SECURITY_FS_USE_TRANS:
953                 /* Default to the fs SID. */
954                 isec->sid = sbsec->sid;
955
956                 /* Try to obtain a transition SID. */
957                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958                 rc = security_transition_sid(isec->task_sid,
959                                              sbsec->sid,
960                                              isec->sclass,
961                                              &sid);
962                 if (rc)
963                         goto out_unlock;
964                 isec->sid = sid;
965                 break;
966         case SECURITY_FS_USE_MNTPOINT:
967                 isec->sid = sbsec->mntpoint_sid;
968                 break;
969         default:
970                 /* Default to the fs superblock SID. */
971                 isec->sid = sbsec->sid;
972
973                 if (sbsec->proc) {
974                         struct proc_inode *proci = PROC_I(inode);
975                         if (proci->pde) {
976                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977                                 rc = selinux_proc_get_sid(proci->pde,
978                                                           isec->sclass,
979                                                           &sid);
980                                 if (rc)
981                                         goto out_unlock;
982                                 isec->sid = sid;
983                         }
984                 }
985                 break;
986         }
987
988         isec->initialized = 1;
989
990 out_unlock:
991         mutex_unlock(&isec->lock);
992 out:
993         if (isec->sclass == SECCLASS_FILE)
994                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
995         return rc;
996 }
997
998 /* Convert a Linux signal to an access vector. */
999 static inline u32 signal_to_av(int sig)
1000 {
1001         u32 perm = 0;
1002
1003         switch (sig) {
1004         case SIGCHLD:
1005                 /* Commonly granted from child to parent. */
1006                 perm = PROCESS__SIGCHLD;
1007                 break;
1008         case SIGKILL:
1009                 /* Cannot be caught or ignored */
1010                 perm = PROCESS__SIGKILL;
1011                 break;
1012         case SIGSTOP:
1013                 /* Cannot be caught or ignored */
1014                 perm = PROCESS__SIGSTOP;
1015                 break;
1016         default:
1017                 /* All other signals. */
1018                 perm = PROCESS__SIGNAL;
1019                 break;
1020         }
1021
1022         return perm;
1023 }
1024
1025 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1026    fork check, ptrace check, etc. */
1027 static int task_has_perm(struct task_struct *tsk1,
1028                          struct task_struct *tsk2,
1029                          u32 perms)
1030 {
1031         struct task_security_struct *tsec1, *tsec2;
1032
1033         tsec1 = tsk1->security;
1034         tsec2 = tsk2->security;
1035         return avc_has_perm(tsec1->sid, tsec2->sid,
1036                             SECCLASS_PROCESS, perms, NULL);
1037 }
1038
1039 /* Check whether a task is allowed to use a capability. */
1040 static int task_has_capability(struct task_struct *tsk,
1041                                int cap)
1042 {
1043         struct task_security_struct *tsec;
1044         struct avc_audit_data ad;
1045
1046         tsec = tsk->security;
1047
1048         AVC_AUDIT_DATA_INIT(&ad,CAP);
1049         ad.tsk = tsk;
1050         ad.u.cap = cap;
1051
1052         return avc_has_perm(tsec->sid, tsec->sid,
1053                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1054 }
1055
1056 /* Check whether a task is allowed to use a system operation. */
1057 static int task_has_system(struct task_struct *tsk,
1058                            u32 perms)
1059 {
1060         struct task_security_struct *tsec;
1061
1062         tsec = tsk->security;
1063
1064         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1065                             SECCLASS_SYSTEM, perms, NULL);
1066 }
1067
1068 /* Check whether a task has a particular permission to an inode.
1069    The 'adp' parameter is optional and allows other audit
1070    data to be passed (e.g. the dentry). */
1071 static int inode_has_perm(struct task_struct *tsk,
1072                           struct inode *inode,
1073                           u32 perms,
1074                           struct avc_audit_data *adp)
1075 {
1076         struct task_security_struct *tsec;
1077         struct inode_security_struct *isec;
1078         struct avc_audit_data ad;
1079
1080         if (unlikely (IS_PRIVATE (inode)))
1081                 return 0;
1082
1083         tsec = tsk->security;
1084         isec = inode->i_security;
1085
1086         if (!adp) {
1087                 adp = &ad;
1088                 AVC_AUDIT_DATA_INIT(&ad, FS);
1089                 ad.u.fs.inode = inode;
1090         }
1091
1092         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1093 }
1094
1095 /* Same as inode_has_perm, but pass explicit audit data containing
1096    the dentry to help the auditing code to more easily generate the
1097    pathname if needed. */
1098 static inline int dentry_has_perm(struct task_struct *tsk,
1099                                   struct vfsmount *mnt,
1100                                   struct dentry *dentry,
1101                                   u32 av)
1102 {
1103         struct inode *inode = dentry->d_inode;
1104         struct avc_audit_data ad;
1105         AVC_AUDIT_DATA_INIT(&ad,FS);
1106         ad.u.fs.mnt = mnt;
1107         ad.u.fs.dentry = dentry;
1108         return inode_has_perm(tsk, inode, av, &ad);
1109 }
1110
1111 /* Check whether a task can use an open file descriptor to
1112    access an inode in a given way.  Check access to the
1113    descriptor itself, and then use dentry_has_perm to
1114    check a particular permission to the file.
1115    Access to the descriptor is implicitly granted if it
1116    has the same SID as the process.  If av is zero, then
1117    access to the file is not checked, e.g. for cases
1118    where only the descriptor is affected like seek. */
1119 static int file_has_perm(struct task_struct *tsk,
1120                                 struct file *file,
1121                                 u32 av)
1122 {
1123         struct task_security_struct *tsec = tsk->security;
1124         struct file_security_struct *fsec = file->f_security;
1125         struct vfsmount *mnt = file->f_path.mnt;
1126         struct dentry *dentry = file->f_path.dentry;
1127         struct inode *inode = dentry->d_inode;
1128         struct avc_audit_data ad;
1129         int rc;
1130
1131         AVC_AUDIT_DATA_INIT(&ad, FS);
1132         ad.u.fs.mnt = mnt;
1133         ad.u.fs.dentry = dentry;
1134
1135         if (tsec->sid != fsec->sid) {
1136                 rc = avc_has_perm(tsec->sid, fsec->sid,
1137                                   SECCLASS_FD,
1138                                   FD__USE,
1139                                   &ad);
1140                 if (rc)
1141                         return rc;
1142         }
1143
1144         /* av is zero if only checking access to the descriptor. */
1145         if (av)
1146                 return inode_has_perm(tsk, inode, av, &ad);
1147
1148         return 0;
1149 }
1150
1151 /* Check whether a task can create a file. */
1152 static int may_create(struct inode *dir,
1153                       struct dentry *dentry,
1154                       u16 tclass)
1155 {
1156         struct task_security_struct *tsec;
1157         struct inode_security_struct *dsec;
1158         struct superblock_security_struct *sbsec;
1159         u32 newsid;
1160         struct avc_audit_data ad;
1161         int rc;
1162
1163         tsec = current->security;
1164         dsec = dir->i_security;
1165         sbsec = dir->i_sb->s_security;
1166
1167         AVC_AUDIT_DATA_INIT(&ad, FS);
1168         ad.u.fs.dentry = dentry;
1169
1170         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1171                           DIR__ADD_NAME | DIR__SEARCH,
1172                           &ad);
1173         if (rc)
1174                 return rc;
1175
1176         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1177                 newsid = tsec->create_sid;
1178         } else {
1179                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1180                                              &newsid);
1181                 if (rc)
1182                         return rc;
1183         }
1184
1185         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1186         if (rc)
1187                 return rc;
1188
1189         return avc_has_perm(newsid, sbsec->sid,
1190                             SECCLASS_FILESYSTEM,
1191                             FILESYSTEM__ASSOCIATE, &ad);
1192 }
1193
1194 /* Check whether a task can create a key. */
1195 static int may_create_key(u32 ksid,
1196                           struct task_struct *ctx)
1197 {
1198         struct task_security_struct *tsec;
1199
1200         tsec = ctx->security;
1201
1202         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1203 }
1204
1205 #define MAY_LINK   0
1206 #define MAY_UNLINK 1
1207 #define MAY_RMDIR  2
1208
1209 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1210 static int may_link(struct inode *dir,
1211                     struct dentry *dentry,
1212                     int kind)
1213
1214 {
1215         struct task_security_struct *tsec;
1216         struct inode_security_struct *dsec, *isec;
1217         struct avc_audit_data ad;
1218         u32 av;
1219         int rc;
1220
1221         tsec = current->security;
1222         dsec = dir->i_security;
1223         isec = dentry->d_inode->i_security;
1224
1225         AVC_AUDIT_DATA_INIT(&ad, FS);
1226         ad.u.fs.dentry = dentry;
1227
1228         av = DIR__SEARCH;
1229         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1230         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1231         if (rc)
1232                 return rc;
1233
1234         switch (kind) {
1235         case MAY_LINK:
1236                 av = FILE__LINK;
1237                 break;
1238         case MAY_UNLINK:
1239                 av = FILE__UNLINK;
1240                 break;
1241         case MAY_RMDIR:
1242                 av = DIR__RMDIR;
1243                 break;
1244         default:
1245                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1246                 return 0;
1247         }
1248
1249         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1250         return rc;
1251 }
1252
1253 static inline int may_rename(struct inode *old_dir,
1254                              struct dentry *old_dentry,
1255                              struct inode *new_dir,
1256                              struct dentry *new_dentry)
1257 {
1258         struct task_security_struct *tsec;
1259         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1260         struct avc_audit_data ad;
1261         u32 av;
1262         int old_is_dir, new_is_dir;
1263         int rc;
1264
1265         tsec = current->security;
1266         old_dsec = old_dir->i_security;
1267         old_isec = old_dentry->d_inode->i_security;
1268         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1269         new_dsec = new_dir->i_security;
1270
1271         AVC_AUDIT_DATA_INIT(&ad, FS);
1272
1273         ad.u.fs.dentry = old_dentry;
1274         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1275                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1276         if (rc)
1277                 return rc;
1278         rc = avc_has_perm(tsec->sid, old_isec->sid,
1279                           old_isec->sclass, FILE__RENAME, &ad);
1280         if (rc)
1281                 return rc;
1282         if (old_is_dir && new_dir != old_dir) {
1283                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1284                                   old_isec->sclass, DIR__REPARENT, &ad);
1285                 if (rc)
1286                         return rc;
1287         }
1288
1289         ad.u.fs.dentry = new_dentry;
1290         av = DIR__ADD_NAME | DIR__SEARCH;
1291         if (new_dentry->d_inode)
1292                 av |= DIR__REMOVE_NAME;
1293         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1294         if (rc)
1295                 return rc;
1296         if (new_dentry->d_inode) {
1297                 new_isec = new_dentry->d_inode->i_security;
1298                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1299                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1300                                   new_isec->sclass,
1301                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1302                 if (rc)
1303                         return rc;
1304         }
1305
1306         return 0;
1307 }
1308
1309 /* Check whether a task can perform a filesystem operation. */
1310 static int superblock_has_perm(struct task_struct *tsk,
1311                                struct super_block *sb,
1312                                u32 perms,
1313                                struct avc_audit_data *ad)
1314 {
1315         struct task_security_struct *tsec;
1316         struct superblock_security_struct *sbsec;
1317
1318         tsec = tsk->security;
1319         sbsec = sb->s_security;
1320         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1321                             perms, ad);
1322 }
1323
1324 /* Convert a Linux mode and permission mask to an access vector. */
1325 static inline u32 file_mask_to_av(int mode, int mask)
1326 {
1327         u32 av = 0;
1328
1329         if ((mode & S_IFMT) != S_IFDIR) {
1330                 if (mask & MAY_EXEC)
1331                         av |= FILE__EXECUTE;
1332                 if (mask & MAY_READ)
1333                         av |= FILE__READ;
1334
1335                 if (mask & MAY_APPEND)
1336                         av |= FILE__APPEND;
1337                 else if (mask & MAY_WRITE)
1338                         av |= FILE__WRITE;
1339
1340         } else {
1341                 if (mask & MAY_EXEC)
1342                         av |= DIR__SEARCH;
1343                 if (mask & MAY_WRITE)
1344                         av |= DIR__WRITE;
1345                 if (mask & MAY_READ)
1346                         av |= DIR__READ;
1347         }
1348
1349         return av;
1350 }
1351
1352 /* Convert a Linux file to an access vector. */
1353 static inline u32 file_to_av(struct file *file)
1354 {
1355         u32 av = 0;
1356
1357         if (file->f_mode & FMODE_READ)
1358                 av |= FILE__READ;
1359         if (file->f_mode & FMODE_WRITE) {
1360                 if (file->f_flags & O_APPEND)
1361                         av |= FILE__APPEND;
1362                 else
1363                         av |= FILE__WRITE;
1364         }
1365
1366         return av;
1367 }
1368
1369 /* Hook functions begin here. */
1370
1371 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1372 {
1373         struct task_security_struct *psec = parent->security;
1374         struct task_security_struct *csec = child->security;
1375         int rc;
1376
1377         rc = secondary_ops->ptrace(parent,child);
1378         if (rc)
1379                 return rc;
1380
1381         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1382         /* Save the SID of the tracing process for later use in apply_creds. */
1383         if (!(child->ptrace & PT_PTRACED) && !rc)
1384                 csec->ptrace_sid = psec->sid;
1385         return rc;
1386 }
1387
1388 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1389                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1390 {
1391         int error;
1392
1393         error = task_has_perm(current, target, PROCESS__GETCAP);
1394         if (error)
1395                 return error;
1396
1397         return secondary_ops->capget(target, effective, inheritable, permitted);
1398 }
1399
1400 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1401                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1402 {
1403         int error;
1404
1405         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1406         if (error)
1407                 return error;
1408
1409         return task_has_perm(current, target, PROCESS__SETCAP);
1410 }
1411
1412 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1413                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1414 {
1415         secondary_ops->capset_set(target, effective, inheritable, permitted);
1416 }
1417
1418 static int selinux_capable(struct task_struct *tsk, int cap)
1419 {
1420         int rc;
1421
1422         rc = secondary_ops->capable(tsk, cap);
1423         if (rc)
1424                 return rc;
1425
1426         return task_has_capability(tsk,cap);
1427 }
1428
1429 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1430 {
1431         int buflen, rc;
1432         char *buffer, *path, *end;
1433
1434         rc = -ENOMEM;
1435         buffer = (char*)__get_free_page(GFP_KERNEL);
1436         if (!buffer)
1437                 goto out;
1438
1439         buflen = PAGE_SIZE;
1440         end = buffer+buflen;
1441         *--end = '\0';
1442         buflen--;
1443         path = end-1;
1444         *path = '/';
1445         while (table) {
1446                 const char *name = table->procname;
1447                 size_t namelen = strlen(name);
1448                 buflen -= namelen + 1;
1449                 if (buflen < 0)
1450                         goto out_free;
1451                 end -= namelen;
1452                 memcpy(end, name, namelen);
1453                 *--end = '/';
1454                 path = end;
1455                 table = table->parent;
1456         }
1457         buflen -= 4;
1458         if (buflen < 0)
1459                 goto out_free;
1460         end -= 4;
1461         memcpy(end, "/sys", 4);
1462         path = end;
1463         rc = security_genfs_sid("proc", path, tclass, sid);
1464 out_free:
1465         free_page((unsigned long)buffer);
1466 out:
1467         return rc;
1468 }
1469
1470 static int selinux_sysctl(ctl_table *table, int op)
1471 {
1472         int error = 0;
1473         u32 av;
1474         struct task_security_struct *tsec;
1475         u32 tsid;
1476         int rc;
1477
1478         rc = secondary_ops->sysctl(table, op);
1479         if (rc)
1480                 return rc;
1481
1482         tsec = current->security;
1483
1484         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1485                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1486         if (rc) {
1487                 /* Default to the well-defined sysctl SID. */
1488                 tsid = SECINITSID_SYSCTL;
1489         }
1490
1491         /* The op values are "defined" in sysctl.c, thereby creating
1492          * a bad coupling between this module and sysctl.c */
1493         if(op == 001) {
1494                 error = avc_has_perm(tsec->sid, tsid,
1495                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1496         } else {
1497                 av = 0;
1498                 if (op & 004)
1499                         av |= FILE__READ;
1500                 if (op & 002)
1501                         av |= FILE__WRITE;
1502                 if (av)
1503                         error = avc_has_perm(tsec->sid, tsid,
1504                                              SECCLASS_FILE, av, NULL);
1505         }
1506
1507         return error;
1508 }
1509
1510 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1511 {
1512         int rc = 0;
1513
1514         if (!sb)
1515                 return 0;
1516
1517         switch (cmds) {
1518                 case Q_SYNC:
1519                 case Q_QUOTAON:
1520                 case Q_QUOTAOFF:
1521                 case Q_SETINFO:
1522                 case Q_SETQUOTA:
1523                         rc = superblock_has_perm(current,
1524                                                  sb,
1525                                                  FILESYSTEM__QUOTAMOD, NULL);
1526                         break;
1527                 case Q_GETFMT:
1528                 case Q_GETINFO:
1529                 case Q_GETQUOTA:
1530                         rc = superblock_has_perm(current,
1531                                                  sb,
1532                                                  FILESYSTEM__QUOTAGET, NULL);
1533                         break;
1534                 default:
1535                         rc = 0;  /* let the kernel handle invalid cmds */
1536                         break;
1537         }
1538         return rc;
1539 }
1540
1541 static int selinux_quota_on(struct dentry *dentry)
1542 {
1543         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1544 }
1545
1546 static int selinux_syslog(int type)
1547 {
1548         int rc;
1549
1550         rc = secondary_ops->syslog(type);
1551         if (rc)
1552                 return rc;
1553
1554         switch (type) {
1555                 case 3:         /* Read last kernel messages */
1556                 case 10:        /* Return size of the log buffer */
1557                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1558                         break;
1559                 case 6:         /* Disable logging to console */
1560                 case 7:         /* Enable logging to console */
1561                 case 8:         /* Set level of messages printed to console */
1562                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1563                         break;
1564                 case 0:         /* Close log */
1565                 case 1:         /* Open log */
1566                 case 2:         /* Read from log */
1567                 case 4:         /* Read/clear last kernel messages */
1568                 case 5:         /* Clear ring buffer */
1569                 default:
1570                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1571                         break;
1572         }
1573         return rc;
1574 }
1575
1576 /*
1577  * Check that a process has enough memory to allocate a new virtual
1578  * mapping. 0 means there is enough memory for the allocation to
1579  * succeed and -ENOMEM implies there is not.
1580  *
1581  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1582  * if the capability is granted, but __vm_enough_memory requires 1 if
1583  * the capability is granted.
1584  *
1585  * Do not audit the selinux permission check, as this is applied to all
1586  * processes that allocate mappings.
1587  */
1588 static int selinux_vm_enough_memory(long pages)
1589 {
1590         int rc, cap_sys_admin = 0;
1591         struct task_security_struct *tsec = current->security;
1592
1593         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1594         if (rc == 0)
1595                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1596                                         SECCLASS_CAPABILITY,
1597                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1598                                         NULL);
1599
1600         if (rc == 0)
1601                 cap_sys_admin = 1;
1602
1603         return __vm_enough_memory(pages, cap_sys_admin);
1604 }
1605
1606 /* binprm security operations */
1607
1608 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1609 {
1610         struct bprm_security_struct *bsec;
1611
1612         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1613         if (!bsec)
1614                 return -ENOMEM;
1615
1616         bsec->bprm = bprm;
1617         bsec->sid = SECINITSID_UNLABELED;
1618         bsec->set = 0;
1619
1620         bprm->security = bsec;
1621         return 0;
1622 }
1623
1624 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1625 {
1626         struct task_security_struct *tsec;
1627         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1628         struct inode_security_struct *isec;
1629         struct bprm_security_struct *bsec;
1630         u32 newsid;
1631         struct avc_audit_data ad;
1632         int rc;
1633
1634         rc = secondary_ops->bprm_set_security(bprm);
1635         if (rc)
1636                 return rc;
1637
1638         bsec = bprm->security;
1639
1640         if (bsec->set)
1641                 return 0;
1642
1643         tsec = current->security;
1644         isec = inode->i_security;
1645
1646         /* Default to the current task SID. */
1647         bsec->sid = tsec->sid;
1648
1649         /* Reset fs, key, and sock SIDs on execve. */
1650         tsec->create_sid = 0;
1651         tsec->keycreate_sid = 0;
1652         tsec->sockcreate_sid = 0;
1653
1654         if (tsec->exec_sid) {
1655                 newsid = tsec->exec_sid;
1656                 /* Reset exec SID on execve. */
1657                 tsec->exec_sid = 0;
1658         } else {
1659                 /* Check for a default transition on this program. */
1660                 rc = security_transition_sid(tsec->sid, isec->sid,
1661                                              SECCLASS_PROCESS, &newsid);
1662                 if (rc)
1663                         return rc;
1664         }
1665
1666         AVC_AUDIT_DATA_INIT(&ad, FS);
1667         ad.u.fs.mnt = bprm->file->f_path.mnt;
1668         ad.u.fs.dentry = bprm->file->f_path.dentry;
1669
1670         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1671                 newsid = tsec->sid;
1672
1673         if (tsec->sid == newsid) {
1674                 rc = avc_has_perm(tsec->sid, isec->sid,
1675                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1676                 if (rc)
1677                         return rc;
1678         } else {
1679                 /* Check permissions for the transition. */
1680                 rc = avc_has_perm(tsec->sid, newsid,
1681                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1682                 if (rc)
1683                         return rc;
1684
1685                 rc = avc_has_perm(newsid, isec->sid,
1686                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1687                 if (rc)
1688                         return rc;
1689
1690                 /* Clear any possibly unsafe personality bits on exec: */
1691                 current->personality &= ~PER_CLEAR_ON_SETID;
1692
1693                 /* Set the security field to the new SID. */
1694                 bsec->sid = newsid;
1695         }
1696
1697         bsec->set = 1;
1698         return 0;
1699 }
1700
1701 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1702 {
1703         return secondary_ops->bprm_check_security(bprm);
1704 }
1705
1706
1707 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1708 {
1709         struct task_security_struct *tsec = current->security;
1710         int atsecure = 0;
1711
1712         if (tsec->osid != tsec->sid) {
1713                 /* Enable secure mode for SIDs transitions unless
1714                    the noatsecure permission is granted between
1715                    the two SIDs, i.e. ahp returns 0. */
1716                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1717                                          SECCLASS_PROCESS,
1718                                          PROCESS__NOATSECURE, NULL);
1719         }
1720
1721         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1722 }
1723
1724 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1725 {
1726         kfree(bprm->security);
1727         bprm->security = NULL;
1728 }
1729
1730 extern struct vfsmount *selinuxfs_mount;
1731 extern struct dentry *selinux_null;
1732
1733 /* Derived from fs/exec.c:flush_old_files. */
1734 static inline void flush_unauthorized_files(struct files_struct * files)
1735 {
1736         struct avc_audit_data ad;
1737         struct file *file, *devnull = NULL;
1738         struct tty_struct *tty;
1739         struct fdtable *fdt;
1740         long j = -1;
1741         int drop_tty = 0;
1742
1743         mutex_lock(&tty_mutex);
1744         tty = get_current_tty();
1745         if (tty) {
1746                 file_list_lock();
1747                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1748                 if (file) {
1749                         /* Revalidate access to controlling tty.
1750                            Use inode_has_perm on the tty inode directly rather
1751                            than using file_has_perm, as this particular open
1752                            file may belong to another process and we are only
1753                            interested in the inode-based check here. */
1754                         struct inode *inode = file->f_path.dentry->d_inode;
1755                         if (inode_has_perm(current, inode,
1756                                            FILE__READ | FILE__WRITE, NULL)) {
1757                                 drop_tty = 1;
1758                         }
1759                 }
1760                 file_list_unlock();
1761
1762                 /* Reset controlling tty. */
1763                 if (drop_tty)
1764                         proc_set_tty(current, NULL);
1765         }
1766         mutex_unlock(&tty_mutex);
1767
1768         /* Revalidate access to inherited open files. */
1769
1770         AVC_AUDIT_DATA_INIT(&ad,FS);
1771
1772         spin_lock(&files->file_lock);
1773         for (;;) {
1774                 unsigned long set, i;
1775                 int fd;
1776
1777                 j++;
1778                 i = j * __NFDBITS;
1779                 fdt = files_fdtable(files);
1780                 if (i >= fdt->max_fds)
1781                         break;
1782                 set = fdt->open_fds->fds_bits[j];
1783                 if (!set)
1784                         continue;
1785                 spin_unlock(&files->file_lock);
1786                 for ( ; set ; i++,set >>= 1) {
1787                         if (set & 1) {
1788                                 file = fget(i);
1789                                 if (!file)
1790                                         continue;
1791                                 if (file_has_perm(current,
1792                                                   file,
1793                                                   file_to_av(file))) {
1794                                         sys_close(i);
1795                                         fd = get_unused_fd();
1796                                         if (fd != i) {
1797                                                 if (fd >= 0)
1798                                                         put_unused_fd(fd);
1799                                                 fput(file);
1800                                                 continue;
1801                                         }
1802                                         if (devnull) {
1803                                                 get_file(devnull);
1804                                         } else {
1805                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1806                                                 if (IS_ERR(devnull)) {
1807                                                         devnull = NULL;
1808                                                         put_unused_fd(fd);
1809                                                         fput(file);
1810                                                         continue;
1811                                                 }
1812                                         }
1813                                         fd_install(fd, devnull);
1814                                 }
1815                                 fput(file);
1816                         }
1817                 }
1818                 spin_lock(&files->file_lock);
1819
1820         }
1821         spin_unlock(&files->file_lock);
1822 }
1823
1824 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1825 {
1826         struct task_security_struct *tsec;
1827         struct bprm_security_struct *bsec;
1828         u32 sid;
1829         int rc;
1830
1831         secondary_ops->bprm_apply_creds(bprm, unsafe);
1832
1833         tsec = current->security;
1834
1835         bsec = bprm->security;
1836         sid = bsec->sid;
1837
1838         tsec->osid = tsec->sid;
1839         bsec->unsafe = 0;
1840         if (tsec->sid != sid) {
1841                 /* Check for shared state.  If not ok, leave SID
1842                    unchanged and kill. */
1843                 if (unsafe & LSM_UNSAFE_SHARE) {
1844                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1845                                         PROCESS__SHARE, NULL);
1846                         if (rc) {
1847                                 bsec->unsafe = 1;
1848                                 return;
1849                         }
1850                 }
1851
1852                 /* Check for ptracing, and update the task SID if ok.
1853                    Otherwise, leave SID unchanged and kill. */
1854                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1855                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1856                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1857                                           NULL);
1858                         if (rc) {
1859                                 bsec->unsafe = 1;
1860                                 return;
1861                         }
1862                 }
1863                 tsec->sid = sid;
1864         }
1865 }
1866
1867 /*
1868  * called after apply_creds without the task lock held
1869  */
1870 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1871 {
1872         struct task_security_struct *tsec;
1873         struct rlimit *rlim, *initrlim;
1874         struct itimerval itimer;
1875         struct bprm_security_struct *bsec;
1876         int rc, i;
1877
1878         tsec = current->security;
1879         bsec = bprm->security;
1880
1881         if (bsec->unsafe) {
1882                 force_sig_specific(SIGKILL, current);
1883                 return;
1884         }
1885         if (tsec->osid == tsec->sid)
1886                 return;
1887
1888         /* Close files for which the new task SID is not authorized. */
1889         flush_unauthorized_files(current->files);
1890
1891         /* Check whether the new SID can inherit signal state
1892            from the old SID.  If not, clear itimers to avoid
1893            subsequent signal generation and flush and unblock
1894            signals. This must occur _after_ the task SID has
1895           been updated so that any kill done after the flush
1896           will be checked against the new SID. */
1897         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1898                           PROCESS__SIGINH, NULL);
1899         if (rc) {
1900                 memset(&itimer, 0, sizeof itimer);
1901                 for (i = 0; i < 3; i++)
1902                         do_setitimer(i, &itimer, NULL);
1903                 flush_signals(current);
1904                 spin_lock_irq(&current->sighand->siglock);
1905                 flush_signal_handlers(current, 1);
1906                 sigemptyset(&current->blocked);
1907                 recalc_sigpending();
1908                 spin_unlock_irq(&current->sighand->siglock);
1909         }
1910
1911         /* Check whether the new SID can inherit resource limits
1912            from the old SID.  If not, reset all soft limits to
1913            the lower of the current task's hard limit and the init
1914            task's soft limit.  Note that the setting of hard limits
1915            (even to lower them) can be controlled by the setrlimit
1916            check. The inclusion of the init task's soft limit into
1917            the computation is to avoid resetting soft limits higher
1918            than the default soft limit for cases where the default
1919            is lower than the hard limit, e.g. RLIMIT_CORE or
1920            RLIMIT_STACK.*/
1921         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1922                           PROCESS__RLIMITINH, NULL);
1923         if (rc) {
1924                 for (i = 0; i < RLIM_NLIMITS; i++) {
1925                         rlim = current->signal->rlim + i;
1926                         initrlim = init_task.signal->rlim+i;
1927                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1928                 }
1929                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1930                         /*
1931                          * This will cause RLIMIT_CPU calculations
1932                          * to be refigured.
1933                          */
1934                         current->it_prof_expires = jiffies_to_cputime(1);
1935                 }
1936         }
1937
1938         /* Wake up the parent if it is waiting so that it can
1939            recheck wait permission to the new task SID. */
1940         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1941 }
1942
1943 /* superblock security operations */
1944
1945 static int selinux_sb_alloc_security(struct super_block *sb)
1946 {
1947         return superblock_alloc_security(sb);
1948 }
1949
1950 static void selinux_sb_free_security(struct super_block *sb)
1951 {
1952         superblock_free_security(sb);
1953 }
1954
1955 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1956 {
1957         if (plen > olen)
1958                 return 0;
1959
1960         return !memcmp(prefix, option, plen);
1961 }
1962
1963 static inline int selinux_option(char *option, int len)
1964 {
1965         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1966                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1967                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1968                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1969 }
1970
1971 static inline void take_option(char **to, char *from, int *first, int len)
1972 {
1973         if (!*first) {
1974                 **to = ',';
1975                 *to += 1;
1976         } else
1977                 *first = 0;
1978         memcpy(*to, from, len);
1979         *to += len;
1980 }
1981
1982 static inline void take_selinux_option(char **to, char *from, int *first, 
1983                                        int len)
1984 {
1985         int current_size = 0;
1986
1987         if (!*first) {
1988                 **to = '|';
1989                 *to += 1;
1990         }
1991         else
1992                 *first = 0;
1993
1994         while (current_size < len) {
1995                 if (*from != '"') {
1996                         **to = *from;
1997                         *to += 1;
1998                 }
1999                 from += 1;
2000                 current_size += 1;
2001         }
2002 }
2003
2004 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2005 {
2006         int fnosec, fsec, rc = 0;
2007         char *in_save, *in_curr, *in_end;
2008         char *sec_curr, *nosec_save, *nosec;
2009         int open_quote = 0;
2010
2011         in_curr = orig;
2012         sec_curr = copy;
2013
2014         /* Binary mount data: just copy */
2015         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2016                 copy_page(sec_curr, in_curr);
2017                 goto out;
2018         }
2019
2020         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2021         if (!nosec) {
2022                 rc = -ENOMEM;
2023                 goto out;
2024         }
2025
2026         nosec_save = nosec;
2027         fnosec = fsec = 1;
2028         in_save = in_end = orig;
2029
2030         do {
2031                 if (*in_end == '"')
2032                         open_quote = !open_quote;
2033                 if ((*in_end == ',' && open_quote == 0) ||
2034                                 *in_end == '\0') {
2035                         int len = in_end - in_curr;
2036
2037                         if (selinux_option(in_curr, len))
2038                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2039                         else
2040                                 take_option(&nosec, in_curr, &fnosec, len);
2041
2042                         in_curr = in_end + 1;
2043                 }
2044         } while (*in_end++);
2045
2046         strcpy(in_save, nosec_save);
2047         free_page((unsigned long)nosec_save);
2048 out:
2049         return rc;
2050 }
2051
2052 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2053 {
2054         struct avc_audit_data ad;
2055         int rc;
2056
2057         rc = superblock_doinit(sb, data);
2058         if (rc)
2059                 return rc;
2060
2061         AVC_AUDIT_DATA_INIT(&ad,FS);
2062         ad.u.fs.dentry = sb->s_root;
2063         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2064 }
2065
2066 static int selinux_sb_statfs(struct dentry *dentry)
2067 {
2068         struct avc_audit_data ad;
2069
2070         AVC_AUDIT_DATA_INIT(&ad,FS);
2071         ad.u.fs.dentry = dentry->d_sb->s_root;
2072         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2073 }
2074
2075 static int selinux_mount(char * dev_name,
2076                          struct nameidata *nd,
2077                          char * type,
2078                          unsigned long flags,
2079                          void * data)
2080 {
2081         int rc;
2082
2083         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2084         if (rc)
2085                 return rc;
2086
2087         if (flags & MS_REMOUNT)
2088                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2089                                            FILESYSTEM__REMOUNT, NULL);
2090         else
2091                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2092                                        FILE__MOUNTON);
2093 }
2094
2095 static int selinux_umount(struct vfsmount *mnt, int flags)
2096 {
2097         int rc;
2098
2099         rc = secondary_ops->sb_umount(mnt, flags);
2100         if (rc)
2101                 return rc;
2102
2103         return superblock_has_perm(current,mnt->mnt_sb,
2104                                    FILESYSTEM__UNMOUNT,NULL);
2105 }
2106
2107 /* inode security operations */
2108
2109 static int selinux_inode_alloc_security(struct inode *inode)
2110 {
2111         return inode_alloc_security(inode);
2112 }
2113
2114 static void selinux_inode_free_security(struct inode *inode)
2115 {
2116         inode_free_security(inode);
2117 }
2118
2119 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2120                                        char **name, void **value,
2121                                        size_t *len)
2122 {
2123         struct task_security_struct *tsec;
2124         struct inode_security_struct *dsec;
2125         struct superblock_security_struct *sbsec;
2126         u32 newsid, clen;
2127         int rc;
2128         char *namep = NULL, *context;
2129
2130         tsec = current->security;
2131         dsec = dir->i_security;
2132         sbsec = dir->i_sb->s_security;
2133
2134         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2135                 newsid = tsec->create_sid;
2136         } else {
2137                 rc = security_transition_sid(tsec->sid, dsec->sid,
2138                                              inode_mode_to_security_class(inode->i_mode),
2139                                              &newsid);
2140                 if (rc) {
2141                         printk(KERN_WARNING "%s:  "
2142                                "security_transition_sid failed, rc=%d (dev=%s "
2143                                "ino=%ld)\n",
2144                                __FUNCTION__,
2145                                -rc, inode->i_sb->s_id, inode->i_ino);
2146                         return rc;
2147                 }
2148         }
2149
2150         /* Possibly defer initialization to selinux_complete_init. */
2151         if (sbsec->initialized) {
2152                 struct inode_security_struct *isec = inode->i_security;
2153                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2154                 isec->sid = newsid;
2155                 isec->initialized = 1;
2156         }
2157
2158         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2159                 return -EOPNOTSUPP;
2160
2161         if (name) {
2162                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2163                 if (!namep)
2164                         return -ENOMEM;
2165                 *name = namep;
2166         }
2167
2168         if (value && len) {
2169                 rc = security_sid_to_context(newsid, &context, &clen);
2170                 if (rc) {
2171                         kfree(namep);
2172                         return rc;
2173                 }
2174                 *value = context;
2175                 *len = clen;
2176         }
2177
2178         return 0;
2179 }
2180
2181 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2182 {
2183         return may_create(dir, dentry, SECCLASS_FILE);
2184 }
2185
2186 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2187 {
2188         int rc;
2189
2190         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2191         if (rc)
2192                 return rc;
2193         return may_link(dir, old_dentry, MAY_LINK);
2194 }
2195
2196 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2197 {
2198         int rc;
2199
2200         rc = secondary_ops->inode_unlink(dir, dentry);
2201         if (rc)
2202                 return rc;
2203         return may_link(dir, dentry, MAY_UNLINK);
2204 }
2205
2206 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2207 {
2208         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2209 }
2210
2211 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2212 {
2213         return may_create(dir, dentry, SECCLASS_DIR);
2214 }
2215
2216 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2217 {
2218         return may_link(dir, dentry, MAY_RMDIR);
2219 }
2220
2221 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2222 {
2223         int rc;
2224
2225         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2226         if (rc)
2227                 return rc;
2228
2229         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2230 }
2231
2232 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2233                                 struct inode *new_inode, struct dentry *new_dentry)
2234 {
2235         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2236 }
2237
2238 static int selinux_inode_readlink(struct dentry *dentry)
2239 {
2240         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2241 }
2242
2243 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2244 {
2245         int rc;
2246
2247         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2248         if (rc)
2249                 return rc;
2250         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2251 }
2252
2253 static int selinux_inode_permission(struct inode *inode, int mask,
2254                                     struct nameidata *nd)
2255 {
2256         int rc;
2257
2258         rc = secondary_ops->inode_permission(inode, mask, nd);
2259         if (rc)
2260                 return rc;
2261
2262         if (!mask) {
2263                 /* No permission to check.  Existence test. */
2264                 return 0;
2265         }
2266
2267         return inode_has_perm(current, inode,
2268                                file_mask_to_av(inode->i_mode, mask), NULL);
2269 }
2270
2271 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2272 {
2273         int rc;
2274
2275         rc = secondary_ops->inode_setattr(dentry, iattr);
2276         if (rc)
2277                 return rc;
2278
2279         if (iattr->ia_valid & ATTR_FORCE)
2280                 return 0;
2281
2282         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2283                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2284                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2285
2286         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2287 }
2288
2289 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2290 {
2291         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2292 }
2293
2294 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2295 {
2296         struct task_security_struct *tsec = current->security;
2297         struct inode *inode = dentry->d_inode;
2298         struct inode_security_struct *isec = inode->i_security;
2299         struct superblock_security_struct *sbsec;
2300         struct avc_audit_data ad;
2301         u32 newsid;
2302         int rc = 0;
2303
2304         if (strcmp(name, XATTR_NAME_SELINUX)) {
2305                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2306                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2307                     !capable(CAP_SYS_ADMIN)) {
2308                         /* A different attribute in the security namespace.
2309                            Restrict to administrator. */
2310                         return -EPERM;
2311                 }
2312
2313                 /* Not an attribute we recognize, so just check the
2314                    ordinary setattr permission. */
2315                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2316         }
2317
2318         sbsec = inode->i_sb->s_security;
2319         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2320                 return -EOPNOTSUPP;
2321
2322         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2323                 return -EPERM;
2324
2325         AVC_AUDIT_DATA_INIT(&ad,FS);
2326         ad.u.fs.dentry = dentry;
2327
2328         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2329                           FILE__RELABELFROM, &ad);
2330         if (rc)
2331                 return rc;
2332
2333         rc = security_context_to_sid(value, size, &newsid);
2334         if (rc)
2335                 return rc;
2336
2337         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2338                           FILE__RELABELTO, &ad);
2339         if (rc)
2340                 return rc;
2341
2342         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2343                                           isec->sclass);
2344         if (rc)
2345                 return rc;
2346
2347         return avc_has_perm(newsid,
2348                             sbsec->sid,
2349                             SECCLASS_FILESYSTEM,
2350                             FILESYSTEM__ASSOCIATE,
2351                             &ad);
2352 }
2353
2354 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2355                                         void *value, size_t size, int flags)
2356 {
2357         struct inode *inode = dentry->d_inode;
2358         struct inode_security_struct *isec = inode->i_security;
2359         u32 newsid;
2360         int rc;
2361
2362         if (strcmp(name, XATTR_NAME_SELINUX)) {
2363                 /* Not an attribute we recognize, so nothing to do. */
2364                 return;
2365         }
2366
2367         rc = security_context_to_sid(value, size, &newsid);
2368         if (rc) {
2369                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2370                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2371                 return;
2372         }
2373
2374         isec->sid = newsid;
2375         return;
2376 }
2377
2378 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2379 {
2380         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2381 }
2382
2383 static int selinux_inode_listxattr (struct dentry *dentry)
2384 {
2385         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2386 }
2387
2388 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2389 {
2390         if (strcmp(name, XATTR_NAME_SELINUX)) {
2391                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2392                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2393                     !capable(CAP_SYS_ADMIN)) {
2394                         /* A different attribute in the security namespace.
2395                            Restrict to administrator. */
2396                         return -EPERM;
2397                 }
2398
2399                 /* Not an attribute we recognize, so just check the
2400                    ordinary setattr permission. Might want a separate
2401                    permission for removexattr. */
2402                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2403         }
2404
2405         /* No one is allowed to remove a SELinux security label.
2406            You can change the label, but all data must be labeled. */
2407         return -EACCES;
2408 }
2409
2410 static const char *selinux_inode_xattr_getsuffix(void)
2411 {
2412       return XATTR_SELINUX_SUFFIX;
2413 }
2414
2415 /*
2416  * Copy the in-core inode security context value to the user.  If the
2417  * getxattr() prior to this succeeded, check to see if we need to
2418  * canonicalize the value to be finally returned to the user.
2419  *
2420  * Permission check is handled by selinux_inode_getxattr hook.
2421  */
2422 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2423 {
2424         struct inode_security_struct *isec = inode->i_security;
2425
2426         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2427                 return -EOPNOTSUPP;
2428
2429         return selinux_getsecurity(isec->sid, buffer, size);
2430 }
2431
2432 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2433                                      const void *value, size_t size, int flags)
2434 {
2435         struct inode_security_struct *isec = inode->i_security;
2436         u32 newsid;
2437         int rc;
2438
2439         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2440                 return -EOPNOTSUPP;
2441
2442         if (!value || !size)
2443                 return -EACCES;
2444
2445         rc = security_context_to_sid((void*)value, size, &newsid);
2446         if (rc)
2447                 return rc;
2448
2449         isec->sid = newsid;
2450         return 0;
2451 }
2452
2453 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2454 {
2455         const int len = sizeof(XATTR_NAME_SELINUX);
2456         if (buffer && len <= buffer_size)
2457                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2458         return len;
2459 }
2460
2461 /* file security operations */
2462
2463 static int selinux_file_permission(struct file *file, int mask)
2464 {
2465         int rc;
2466         struct inode *inode = file->f_path.dentry->d_inode;
2467
2468         if (!mask) {
2469                 /* No permission to check.  Existence test. */
2470                 return 0;
2471         }
2472
2473         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2474         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2475                 mask |= MAY_APPEND;
2476
2477         rc = file_has_perm(current, file,
2478                            file_mask_to_av(inode->i_mode, mask));
2479         if (rc)
2480                 return rc;
2481
2482         return selinux_netlbl_inode_permission(inode, mask);
2483 }
2484
2485 static int selinux_file_alloc_security(struct file *file)
2486 {
2487         return file_alloc_security(file);
2488 }
2489
2490 static void selinux_file_free_security(struct file *file)
2491 {
2492         file_free_security(file);
2493 }
2494
2495 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2496                               unsigned long arg)
2497 {
2498         int error = 0;
2499
2500         switch (cmd) {
2501                 case FIONREAD:
2502                 /* fall through */
2503                 case FIBMAP:
2504                 /* fall through */
2505                 case FIGETBSZ:
2506                 /* fall through */
2507                 case EXT2_IOC_GETFLAGS:
2508                 /* fall through */
2509                 case EXT2_IOC_GETVERSION:
2510                         error = file_has_perm(current, file, FILE__GETATTR);
2511                         break;
2512
2513                 case EXT2_IOC_SETFLAGS:
2514                 /* fall through */
2515                 case EXT2_IOC_SETVERSION:
2516                         error = file_has_perm(current, file, FILE__SETATTR);
2517                         break;
2518
2519                 /* sys_ioctl() checks */
2520                 case FIONBIO:
2521                 /* fall through */
2522                 case FIOASYNC:
2523                         error = file_has_perm(current, file, 0);
2524                         break;
2525
2526                 case KDSKBENT:
2527                 case KDSKBSENT:
2528                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2529                         break;
2530
2531                 /* default case assumes that the command will go
2532                  * to the file's ioctl() function.
2533                  */
2534                 default:
2535                         error = file_has_perm(current, file, FILE__IOCTL);
2536
2537         }
2538         return error;
2539 }
2540
2541 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2542 {
2543 #ifndef CONFIG_PPC32
2544         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2545                 /*
2546                  * We are making executable an anonymous mapping or a
2547                  * private file mapping that will also be writable.
2548                  * This has an additional check.
2549                  */
2550                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2551                 if (rc)
2552                         return rc;
2553         }
2554 #endif
2555
2556         if (file) {
2557                 /* read access is always possible with a mapping */
2558                 u32 av = FILE__READ;
2559
2560                 /* write access only matters if the mapping is shared */
2561                 if (shared && (prot & PROT_WRITE))
2562                         av |= FILE__WRITE;
2563
2564                 if (prot & PROT_EXEC)
2565                         av |= FILE__EXECUTE;
2566
2567                 return file_has_perm(current, file, av);
2568         }
2569         return 0;
2570 }
2571
2572 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2573                              unsigned long prot, unsigned long flags)
2574 {
2575         int rc;
2576
2577         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2578         if (rc)
2579                 return rc;
2580
2581         if (selinux_checkreqprot)
2582                 prot = reqprot;
2583
2584         return file_map_prot_check(file, prot,
2585                                    (flags & MAP_TYPE) == MAP_SHARED);
2586 }
2587
2588 static int selinux_file_mprotect(struct vm_area_struct *vma,
2589                                  unsigned long reqprot,
2590                                  unsigned long prot)
2591 {
2592         int rc;
2593
2594         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2595         if (rc)
2596                 return rc;
2597
2598         if (selinux_checkreqprot)
2599                 prot = reqprot;
2600
2601 #ifndef CONFIG_PPC32
2602         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2603                 rc = 0;
2604                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2605                     vma->vm_end <= vma->vm_mm->brk) {
2606                         rc = task_has_perm(current, current,
2607                                            PROCESS__EXECHEAP);
2608                 } else if (!vma->vm_file &&
2609                            vma->vm_start <= vma->vm_mm->start_stack &&
2610                            vma->vm_end >= vma->vm_mm->start_stack) {
2611                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2612                 } else if (vma->vm_file && vma->anon_vma) {
2613                         /*
2614                          * We are making executable a file mapping that has
2615                          * had some COW done. Since pages might have been
2616                          * written, check ability to execute the possibly
2617                          * modified content.  This typically should only
2618                          * occur for text relocations.
2619                          */
2620                         rc = file_has_perm(current, vma->vm_file,
2621                                            FILE__EXECMOD);
2622                 }
2623                 if (rc)
2624                         return rc;
2625         }
2626 #endif
2627
2628         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2629 }
2630
2631 static int selinux_file_lock(struct file *file, unsigned int cmd)
2632 {
2633         return file_has_perm(current, file, FILE__LOCK);
2634 }
2635
2636 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2637                               unsigned long arg)
2638 {
2639         int err = 0;
2640
2641         switch (cmd) {
2642                 case F_SETFL:
2643                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2644                                 err = -EINVAL;
2645                                 break;
2646                         }
2647
2648                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2649                                 err = file_has_perm(current, file,FILE__WRITE);
2650                                 break;
2651                         }
2652                         /* fall through */
2653                 case F_SETOWN:
2654                 case F_SETSIG:
2655                 case F_GETFL:
2656                 case F_GETOWN:
2657                 case F_GETSIG:
2658                         /* Just check FD__USE permission */
2659                         err = file_has_perm(current, file, 0);
2660                         break;
2661                 case F_GETLK:
2662                 case F_SETLK:
2663                 case F_SETLKW:
2664 #if BITS_PER_LONG == 32
2665                 case F_GETLK64:
2666                 case F_SETLK64:
2667                 case F_SETLKW64:
2668 #endif
2669                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2670                                 err = -EINVAL;
2671                                 break;
2672                         }
2673                         err = file_has_perm(current, file, FILE__LOCK);
2674                         break;
2675         }
2676
2677         return err;
2678 }
2679
2680 static int selinux_file_set_fowner(struct file *file)
2681 {
2682         struct task_security_struct *tsec;
2683         struct file_security_struct *fsec;
2684
2685         tsec = current->security;
2686         fsec = file->f_security;
2687         fsec->fown_sid = tsec->sid;
2688
2689         return 0;
2690 }
2691
2692 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2693                                        struct fown_struct *fown, int signum)
2694 {
2695         struct file *file;
2696         u32 perm;
2697         struct task_security_struct *tsec;
2698         struct file_security_struct *fsec;
2699
2700         /* struct fown_struct is never outside the context of a struct file */
2701         file = container_of(fown, struct file, f_owner);
2702
2703         tsec = tsk->security;
2704         fsec = file->f_security;
2705
2706         if (!signum)
2707                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2708         else
2709                 perm = signal_to_av(signum);
2710
2711         return avc_has_perm(fsec->fown_sid, tsec->sid,
2712                             SECCLASS_PROCESS, perm, NULL);
2713 }
2714
2715 static int selinux_file_receive(struct file *file)
2716 {
2717         return file_has_perm(current, file, file_to_av(file));
2718 }
2719
2720 /* task security operations */
2721
2722 static int selinux_task_create(unsigned long clone_flags)
2723 {
2724         int rc;
2725
2726         rc = secondary_ops->task_create(clone_flags);
2727         if (rc)
2728                 return rc;
2729
2730         return task_has_perm(current, current, PROCESS__FORK);
2731 }
2732
2733 static int selinux_task_alloc_security(struct task_struct *tsk)
2734 {
2735         struct task_security_struct *tsec1, *tsec2;
2736         int rc;
2737
2738         tsec1 = current->security;
2739
2740         rc = task_alloc_security(tsk);
2741         if (rc)
2742                 return rc;
2743         tsec2 = tsk->security;
2744
2745         tsec2->osid = tsec1->osid;
2746         tsec2->sid = tsec1->sid;
2747
2748         /* Retain the exec, fs, key, and sock SIDs across fork */
2749         tsec2->exec_sid = tsec1->exec_sid;
2750         tsec2->create_sid = tsec1->create_sid;
2751         tsec2->keycreate_sid = tsec1->keycreate_sid;
2752         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2753
2754         /* Retain ptracer SID across fork, if any.
2755            This will be reset by the ptrace hook upon any
2756            subsequent ptrace_attach operations. */
2757         tsec2->ptrace_sid = tsec1->ptrace_sid;
2758
2759         return 0;
2760 }
2761
2762 static void selinux_task_free_security(struct task_struct *tsk)
2763 {
2764         task_free_security(tsk);
2765 }
2766
2767 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2768 {
2769         /* Since setuid only affects the current process, and
2770            since the SELinux controls are not based on the Linux
2771            identity attributes, SELinux does not need to control
2772            this operation.  However, SELinux does control the use
2773            of the CAP_SETUID and CAP_SETGID capabilities using the
2774            capable hook. */
2775         return 0;
2776 }
2777
2778 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2779 {
2780         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2781 }
2782
2783 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2784 {
2785         /* See the comment for setuid above. */
2786         return 0;
2787 }
2788
2789 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2790 {
2791         return task_has_perm(current, p, PROCESS__SETPGID);
2792 }
2793
2794 static int selinux_task_getpgid(struct task_struct *p)
2795 {
2796         return task_has_perm(current, p, PROCESS__GETPGID);
2797 }
2798
2799 static int selinux_task_getsid(struct task_struct *p)
2800 {
2801         return task_has_perm(current, p, PROCESS__GETSESSION);
2802 }
2803
2804 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2805 {
2806         selinux_get_task_sid(p, secid);
2807 }
2808
2809 static int selinux_task_setgroups(struct group_info *group_info)
2810 {
2811         /* See the comment for setuid above. */
2812         return 0;
2813 }
2814
2815 static int selinux_task_setnice(struct task_struct *p, int nice)
2816 {
2817         int rc;
2818
2819         rc = secondary_ops->task_setnice(p, nice);
2820         if (rc)
2821                 return rc;
2822
2823         return task_has_perm(current,p, PROCESS__SETSCHED);
2824 }
2825
2826 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2827 {
2828         return task_has_perm(current, p, PROCESS__SETSCHED);
2829 }
2830
2831 static int selinux_task_getioprio(struct task_struct *p)
2832 {
2833         return task_has_perm(current, p, PROCESS__GETSCHED);
2834 }
2835
2836 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2837 {
2838         struct rlimit *old_rlim = current->signal->rlim + resource;
2839         int rc;
2840
2841         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2842         if (rc)
2843                 return rc;
2844
2845         /* Control the ability to change the hard limit (whether
2846            lowering or raising it), so that the hard limit can
2847            later be used as a safe reset point for the soft limit
2848            upon context transitions. See selinux_bprm_apply_creds. */
2849         if (old_rlim->rlim_max != new_rlim->rlim_max)
2850                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2851
2852         return 0;
2853 }
2854
2855 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2856 {
2857         return task_has_perm(current, p, PROCESS__SETSCHED);
2858 }
2859
2860 static int selinux_task_getscheduler(struct task_struct *p)
2861 {
2862         return task_has_perm(current, p, PROCESS__GETSCHED);
2863 }
2864
2865 static int selinux_task_movememory(struct task_struct *p)
2866 {
2867         return task_has_perm(current, p, PROCESS__SETSCHED);
2868 }
2869
2870 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2871                                 int sig, u32 secid)
2872 {
2873         u32 perm;
2874         int rc;
2875         struct task_security_struct *tsec;
2876
2877         rc = secondary_ops->task_kill(p, info, sig, secid);
2878         if (rc)
2879                 return rc;
2880
2881         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2882                 return 0;
2883
2884         if (!sig)
2885                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2886         else
2887                 perm = signal_to_av(sig);
2888         tsec = p->security;
2889         if (secid)
2890                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2891         else
2892                 rc = task_has_perm(current, p, perm);
2893         return rc;
2894 }
2895
2896 static int selinux_task_prctl(int option,
2897                               unsigned long arg2,
2898                               unsigned long arg3,
2899                               unsigned long arg4,
2900                               unsigned long arg5)
2901 {
2902         /* The current prctl operations do not appear to require
2903            any SELinux controls since they merely observe or modify
2904            the state of the current process. */
2905         return 0;
2906 }
2907
2908 static int selinux_task_wait(struct task_struct *p)
2909 {
2910         u32 perm;
2911
2912         perm = signal_to_av(p->exit_signal);
2913
2914         return task_has_perm(p, current, perm);
2915 }
2916
2917 static void selinux_task_reparent_to_init(struct task_struct *p)
2918 {
2919         struct task_security_struct *tsec;
2920
2921         secondary_ops->task_reparent_to_init(p);
2922
2923         tsec = p->security;
2924         tsec->osid = tsec->sid;
2925         tsec->sid = SECINITSID_KERNEL;
2926         return;
2927 }
2928
2929 static void selinux_task_to_inode(struct task_struct *p,
2930                                   struct inode *inode)
2931 {
2932         struct task_security_struct *tsec = p->security;
2933         struct inode_security_struct *isec = inode->i_security;
2934
2935         isec->sid = tsec->sid;
2936         isec->initialized = 1;
2937         return;
2938 }
2939
2940 /* Returns error only if unable to parse addresses */
2941 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2942                         struct avc_audit_data *ad, u8 *proto)
2943 {
2944         int offset, ihlen, ret = -EINVAL;
2945         struct iphdr _iph, *ih;
2946
2947         offset = skb->nh.raw - skb->data;
2948         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2949         if (ih == NULL)
2950                 goto out;
2951
2952         ihlen = ih->ihl * 4;
2953         if (ihlen < sizeof(_iph))
2954                 goto out;
2955
2956         ad->u.net.v4info.saddr = ih->saddr;
2957         ad->u.net.v4info.daddr = ih->daddr;
2958         ret = 0;
2959
2960         if (proto)
2961                 *proto = ih->protocol;
2962
2963         switch (ih->protocol) {
2964         case IPPROTO_TCP: {
2965                 struct tcphdr _tcph, *th;
2966
2967                 if (ntohs(ih->frag_off) & IP_OFFSET)
2968                         break;
2969
2970                 offset += ihlen;
2971                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2972                 if (th == NULL)
2973                         break;
2974
2975                 ad->u.net.sport = th->source;
2976                 ad->u.net.dport = th->dest;
2977                 break;
2978         }
2979         
2980         case IPPROTO_UDP: {
2981                 struct udphdr _udph, *uh;
2982                 
2983                 if (ntohs(ih->frag_off) & IP_OFFSET)
2984                         break;
2985                         
2986                 offset += ihlen;
2987                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2988                 if (uh == NULL)
2989                         break;  
2990
2991                 ad->u.net.sport = uh->source;
2992                 ad->u.net.dport = uh->dest;
2993                 break;
2994         }
2995
2996         case IPPROTO_DCCP: {
2997                 struct dccp_hdr _dccph, *dh;
2998
2999                 if (ntohs(ih->frag_off) & IP_OFFSET)
3000                         break;
3001
3002                 offset += ihlen;
3003                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3004                 if (dh == NULL)
3005                         break;
3006
3007                 ad->u.net.sport = dh->dccph_sport;
3008                 ad->u.net.dport = dh->dccph_dport;
3009                 break;
3010         }
3011
3012         default:
3013                 break;
3014         }
3015 out:
3016         return ret;
3017 }
3018
3019 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3020
3021 /* Returns error only if unable to parse addresses */
3022 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3023                         struct avc_audit_data *ad, u8 *proto)
3024 {
3025         u8 nexthdr;
3026         int ret = -EINVAL, offset;
3027         struct ipv6hdr _ipv6h, *ip6;
3028
3029         offset = skb->nh.raw - skb->data;
3030         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3031         if (ip6 == NULL)
3032                 goto out;
3033
3034         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3035         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3036         ret = 0;
3037
3038         nexthdr = ip6->nexthdr;
3039         offset += sizeof(_ipv6h);
3040         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3041         if (offset < 0)
3042                 goto out;
3043
3044         if (proto)
3045                 *proto = nexthdr;
3046
3047         switch (nexthdr) {
3048         case IPPROTO_TCP: {
3049                 struct tcphdr _tcph, *th;
3050
3051                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3052                 if (th == NULL)
3053                         break;
3054
3055                 ad->u.net.sport = th->source;
3056                 ad->u.net.dport = th->dest;
3057                 break;
3058         }
3059
3060         case IPPROTO_UDP: {
3061                 struct udphdr _udph, *uh;
3062
3063                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3064                 if (uh == NULL)
3065                         break;
3066
3067                 ad->u.net.sport = uh->source;
3068                 ad->u.net.dport = uh->dest;
3069                 break;
3070         }
3071
3072         case IPPROTO_DCCP: {
3073                 struct dccp_hdr _dccph, *dh;
3074
3075                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3076                 if (dh == NULL)
3077                         break;
3078
3079                 ad->u.net.sport = dh->dccph_sport;
3080                 ad->u.net.dport = dh->dccph_dport;
3081                 break;
3082         }
3083
3084         /* includes fragments */
3085         default:
3086                 break;
3087         }
3088 out:
3089         return ret;
3090 }
3091
3092 #endif /* IPV6 */
3093
3094 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3095                              char **addrp, int *len, int src, u8 *proto)
3096 {
3097         int ret = 0;
3098
3099         switch (ad->u.net.family) {
3100         case PF_INET:
3101                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3102                 if (ret || !addrp)
3103                         break;
3104                 *len = 4;
3105                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3106                                         &ad->u.net.v4info.daddr);
3107                 break;
3108
3109 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3110         case PF_INET6:
3111                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3112                 if (ret || !addrp)
3113                         break;
3114                 *len = 16;
3115                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3116                                         &ad->u.net.v6info.daddr);
3117                 break;
3118 #endif  /* IPV6 */
3119         default:
3120                 break;
3121         }
3122
3123         return ret;
3124 }
3125
3126 /* socket security operations */
3127 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3128                            u32 perms)
3129 {
3130         struct inode_security_struct *isec;
3131         struct task_security_struct *tsec;
3132         struct avc_audit_data ad;
3133         int err = 0;
3134
3135         tsec = task->security;
3136         isec = SOCK_INODE(sock)->i_security;
3137
3138         if (isec->sid == SECINITSID_KERNEL)
3139                 goto out;
3140
3141         AVC_AUDIT_DATA_INIT(&ad,NET);
3142         ad.u.net.sk = sock->sk;
3143         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3144
3145 out:
3146         return err;
3147 }
3148
3149 static int selinux_socket_create(int family, int type,
3150                                  int protocol, int kern)
3151 {
3152         int err = 0;
3153         struct task_security_struct *tsec;
3154         u32 newsid;
3155
3156         if (kern)
3157                 goto out;
3158
3159         tsec = current->security;
3160         newsid = tsec->sockcreate_sid ? : tsec->sid;
3161         err = avc_has_perm(tsec->sid, newsid,
3162                            socket_type_to_security_class(family, type,
3163                            protocol), SOCKET__CREATE, NULL);
3164
3165 out:
3166         return err;
3167 }
3168
3169 static int selinux_socket_post_create(struct socket *sock, int family,
3170                                       int type, int protocol, int kern)
3171 {
3172         int err = 0;
3173         struct inode_security_struct *isec;
3174         struct task_security_struct *tsec;
3175         struct sk_security_struct *sksec;
3176         u32 newsid;
3177
3178         isec = SOCK_INODE(sock)->i_security;
3179
3180         tsec = current->security;
3181         newsid = tsec->sockcreate_sid ? : tsec->sid;
3182         isec->sclass = socket_type_to_security_class(family, type, protocol);
3183         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3184         isec->initialized = 1;
3185
3186         if (sock->sk) {
3187                 sksec = sock->sk->sk_security;
3188                 sksec->sid = isec->sid;
3189                 err = selinux_netlbl_socket_post_create(sock);
3190         }
3191
3192         return err;
3193 }
3194
3195 /* Range of port numbers used to automatically bind.
3196    Need to determine whether we should perform a name_bind
3197    permission check between the socket and the port number. */
3198 #define ip_local_port_range_0 sysctl_local_port_range[0]
3199 #define ip_local_port_range_1 sysctl_local_port_range[1]
3200
3201 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3202 {
3203         u16 family;
3204         int err;
3205
3206         err = socket_has_perm(current, sock, SOCKET__BIND);
3207         if (err)
3208                 goto out;
3209
3210         /*
3211          * If PF_INET or PF_INET6, check name_bind permission for the port.
3212          * Multiple address binding for SCTP is not supported yet: we just
3213          * check the first address now.
3214          */
3215         family = sock->sk->sk_family;
3216         if (family == PF_INET || family == PF_INET6) {
3217                 char *addrp;
3218                 struct inode_security_struct *isec;
3219                 struct task_security_struct *tsec;
3220                 struct avc_audit_data ad;
3221                 struct sockaddr_in *addr4 = NULL;
3222                 struct sockaddr_in6 *addr6 = NULL;
3223                 unsigned short snum;
3224                 struct sock *sk = sock->sk;
3225                 u32 sid, node_perm, addrlen;
3226
3227                 tsec = current->security;
3228                 isec = SOCK_INODE(sock)->i_security;
3229
3230                 if (family == PF_INET) {
3231                         addr4 = (struct sockaddr_in *)address;
3232                         snum = ntohs(addr4->sin_port);
3233                         addrlen = sizeof(addr4->sin_addr.s_addr);
3234                         addrp = (char *)&addr4->sin_addr.s_addr;
3235                 } else {
3236                         addr6 = (struct sockaddr_in6 *)address;
3237                         snum = ntohs(addr6->sin6_port);
3238                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3239                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3240                 }
3241
3242                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3243                            snum > ip_local_port_range_1)) {
3244                         err = security_port_sid(sk->sk_family, sk->sk_type,
3245                                                 sk->sk_protocol, snum, &sid);
3246                         if (err)
3247                                 goto out;
3248                         AVC_AUDIT_DATA_INIT(&ad,NET);
3249                         ad.u.net.sport = htons(snum);
3250                         ad.u.net.family = family;
3251                         err = avc_has_perm(isec->sid, sid,
3252                                            isec->sclass,
3253                                            SOCKET__NAME_BIND, &ad);
3254                         if (err)
3255                                 goto out;
3256                 }
3257                 
3258                 switch(isec->sclass) {
3259                 case SECCLASS_TCP_SOCKET:
3260                         node_perm = TCP_SOCKET__NODE_BIND;
3261                         break;
3262                         
3263                 case SECCLASS_UDP_SOCKET:
3264                         node_perm = UDP_SOCKET__NODE_BIND;
3265                         break;
3266
3267                 case SECCLASS_DCCP_SOCKET:
3268                         node_perm = DCCP_SOCKET__NODE_BIND;
3269                         break;
3270
3271                 default:
3272                         node_perm = RAWIP_SOCKET__NODE_BIND;
3273                         break;
3274                 }
3275                 
3276                 err = security_node_sid(family, addrp, addrlen, &sid);
3277                 if (err)
3278                         goto out;
3279                 
3280                 AVC_AUDIT_DATA_INIT(&ad,NET);
3281                 ad.u.net.sport = htons(snum);
3282                 ad.u.net.family = family;
3283
3284                 if (family == PF_INET)
3285                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3286                 else
3287                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3288
3289                 err = avc_has_perm(isec->sid, sid,
3290                                    isec->sclass, node_perm, &ad);
3291                 if (err)
3292                         goto out;
3293         }
3294 out:
3295         return err;
3296 }
3297
3298 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3299 {
3300         struct inode_security_struct *isec;
3301         int err;
3302
3303         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3304         if (err)
3305                 return err;
3306
3307         /*
3308          * If a TCP or DCCP socket, check name_connect permission for the port.
3309          */
3310         isec = SOCK_INODE(sock)->i_security;
3311         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3312             isec->sclass == SECCLASS_DCCP_SOCKET) {
3313                 struct sock *sk = sock->sk;
3314                 struct avc_audit_data ad;
3315                 struct sockaddr_in *addr4 = NULL;
3316                 struct sockaddr_in6 *addr6 = NULL;
3317                 unsigned short snum;
3318                 u32 sid, perm;
3319
3320                 if (sk->sk_family == PF_INET) {
3321                         addr4 = (struct sockaddr_in *)address;
3322                         if (addrlen < sizeof(struct sockaddr_in))
3323                                 return -EINVAL;
3324                         snum = ntohs(addr4->sin_port);
3325                 } else {
3326                         addr6 = (struct sockaddr_in6 *)address;
3327                         if (addrlen < SIN6_LEN_RFC2133)
3328                                 return -EINVAL;
3329                         snum = ntohs(addr6->sin6_port);
3330                 }
3331
3332                 err = security_port_sid(sk->sk_family, sk->sk_type,
3333                                         sk->sk_protocol, snum, &sid);
3334                 if (err)
3335                         goto out;
3336
3337                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3338                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3339
3340                 AVC_AUDIT_DATA_INIT(&ad,NET);
3341                 ad.u.net.dport = htons(snum);
3342                 ad.u.net.family = sk->sk_family;
3343                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3344                 if (err)
3345                         goto out;
3346         }
3347
3348 out:
3349         return err;
3350 }
3351
3352 static int selinux_socket_listen(struct socket *sock, int backlog)
3353 {
3354         return socket_has_perm(current, sock, SOCKET__LISTEN);
3355 }
3356
3357 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3358 {
3359         int err;
3360         struct inode_security_struct *isec;
3361         struct inode_security_struct *newisec;
3362
3363         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3364         if (err)
3365                 return err;
3366
3367         newisec = SOCK_INODE(newsock)->i_security;
3368
3369         isec = SOCK_INODE(sock)->i_security;
3370         newisec->sclass = isec->sclass;
3371         newisec->sid = isec->sid;
3372         newisec->initialized = 1;
3373
3374         return 0;
3375 }
3376
3377 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3378                                   int size)
3379 {
3380         int rc;
3381
3382         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3383         if (rc)
3384                 return rc;
3385
3386         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3387 }
3388
3389 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3390                                   int size, int flags)
3391 {
3392         return socket_has_perm(current, sock, SOCKET__READ);
3393 }
3394
3395 static int selinux_socket_getsockname(struct socket *sock)
3396 {
3397         return socket_has_perm(current, sock, SOCKET__GETATTR);
3398 }
3399
3400 static int selinux_socket_getpeername(struct socket *sock)
3401 {
3402         return socket_has_perm(current, sock, SOCKET__GETATTR);
3403 }
3404
3405 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3406 {
3407         int err;
3408
3409         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3410         if (err)
3411                 return err;
3412
3413         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3414 }
3415
3416 static int selinux_socket_getsockopt(struct socket *sock, int level,
3417                                      int optname)
3418 {
3419         return socket_has_perm(current, sock, SOCKET__GETOPT);
3420 }
3421
3422 static int selinux_socket_shutdown(struct socket *sock, int how)
3423 {
3424         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3425 }
3426
3427 static int selinux_socket_unix_stream_connect(struct socket *sock,
3428                                               struct socket *other,
3429                                               struct sock *newsk)
3430 {
3431         struct sk_security_struct *ssec;
3432         struct inode_security_struct *isec;
3433         struct inode_security_struct *other_isec;
3434         struct avc_audit_data ad;
3435         int err;
3436
3437         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3438         if (err)
3439                 return err;
3440
3441         isec = SOCK_INODE(sock)->i_security;
3442         other_isec = SOCK_INODE(other)->i_security;
3443
3444         AVC_AUDIT_DATA_INIT(&ad,NET);
3445         ad.u.net.sk = other->sk;
3446
3447         err = avc_has_perm(isec->sid, other_isec->sid,
3448                            isec->sclass,
3449                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3450         if (err)
3451                 return err;
3452
3453         /* connecting socket */
3454         ssec = sock->sk->sk_security;
3455         ssec->peer_sid = other_isec->sid;
3456         
3457         /* server child socket */
3458         ssec = newsk->sk_security;
3459         ssec->peer_sid = isec->sid;
3460         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3461
3462         return err;
3463 }
3464
3465 static int selinux_socket_unix_may_send(struct socket *sock,
3466                                         struct socket *other)
3467 {
3468         struct inode_security_struct *isec;
3469         struct inode_security_struct *other_isec;
3470         struct avc_audit_data ad;
3471         int err;
3472
3473         isec = SOCK_INODE(sock)->i_security;
3474         other_isec = SOCK_INODE(other)->i_security;
3475
3476         AVC_AUDIT_DATA_INIT(&ad,NET);
3477         ad.u.net.sk = other->sk;
3478
3479         err = avc_has_perm(isec->sid, other_isec->sid,
3480                            isec->sclass, SOCKET__SENDTO, &ad);
3481         if (err)
3482                 return err;
3483
3484         return 0;
3485 }
3486
3487 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3488                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3489 {
3490         int err = 0;
3491         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3492         struct socket *sock;
3493         u16 sock_class = 0;
3494         u32 sock_sid = 0;
3495
3496         read_lock_bh(&sk->sk_callback_lock);
3497         sock = sk->sk_socket;
3498         if (sock) {
3499                 struct inode *inode;
3500                 inode = SOCK_INODE(sock);
3501                 if (inode) {
3502                         struct inode_security_struct *isec;
3503                         isec = inode->i_security;
3504                         sock_sid = isec->sid;
3505                         sock_class = isec->sclass;
3506                 }
3507         }
3508         read_unlock_bh(&sk->sk_callback_lock);
3509         if (!sock_sid)
3510                 goto out;
3511
3512         if (!skb->dev)
3513                 goto out;
3514
3515         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3516         if (err)
3517                 goto out;
3518
3519         switch (sock_class) {
3520         case SECCLASS_UDP_SOCKET:
3521                 netif_perm = NETIF__UDP_RECV;
3522                 node_perm = NODE__UDP_RECV;
3523                 recv_perm = UDP_SOCKET__RECV_MSG;
3524                 break;
3525         
3526         case SECCLASS_TCP_SOCKET:
3527                 netif_perm = NETIF__TCP_RECV;
3528                 node_perm = NODE__TCP_RECV;
3529                 recv_perm = TCP_SOCKET__RECV_MSG;
3530                 break;
3531
3532         case SECCLASS_DCCP_SOCKET:
3533                 netif_perm = NETIF__DCCP_RECV;
3534                 node_perm = NODE__DCCP_RECV;
3535                 recv_perm = DCCP_SOCKET__RECV_MSG;
3536                 break;
3537
3538         default:
3539                 netif_perm = NETIF__RAWIP_RECV;
3540                 node_perm = NODE__RAWIP_RECV;
3541                 break;
3542         }
3543
3544         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3545         if (err)
3546                 goto out;
3547         
3548         err = security_node_sid(family, addrp, len, &node_sid);
3549         if (err)
3550                 goto out;
3551         
3552         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3553         if (err)
3554                 goto out;
3555
3556         if (recv_perm) {
3557                 u32 port_sid;
3558
3559                 err = security_port_sid(sk->sk_family, sk->sk_type,
3560                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3561                                         &port_sid);
3562                 if (err)
3563                         goto out;
3564
3565                 err = avc_has_perm(sock_sid, port_sid,
3566                                    sock_class, recv_perm, ad);
3567         }
3568
3569 out:
3570         return err;
3571 }
3572
3573 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3574 {
3575         u16 family;
3576         char *addrp;
3577         int len, err = 0;
3578         struct avc_audit_data ad;
3579         struct sk_security_struct *sksec = sk->sk_security;
3580
3581         family = sk->sk_family;
3582         if (family != PF_INET && family != PF_INET6)
3583                 goto out;
3584
3585         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3586         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3587                 family = PF_INET;
3588
3589         AVC_AUDIT_DATA_INIT(&ad, NET);
3590         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3591         ad.u.net.family = family;
3592
3593         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3594         if (err)
3595                 goto out;
3596
3597         if (selinux_compat_net)
3598                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3599                                                   addrp, len);
3600         else
3601                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3602                                    PACKET__RECV, &ad);
3603         if (err)
3604                 goto out;
3605
3606         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3607         if (err)
3608                 goto out;
3609
3610         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3611 out:    
3612         return err;
3613 }
3614
3615 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3616                                             int __user *optlen, unsigned len)
3617 {
3618         int err = 0;
3619         char *scontext;
3620         u32 scontext_len;
3621         struct sk_security_struct *ssec;
3622         struct inode_security_struct *isec;
3623         u32 peer_sid = SECSID_NULL;
3624
3625         isec = SOCK_INODE(sock)->i_security;
3626
3627         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3628             isec->sclass == SECCLASS_TCP_SOCKET) {
3629                 ssec = sock->sk->sk_security;
3630                 peer_sid = ssec->peer_sid;
3631         }
3632         if (peer_sid == SECSID_NULL) {
3633                 err = -ENOPROTOOPT;
3634                 goto out;
3635         }
3636
3637         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3638
3639         if (err)
3640                 goto out;
3641
3642         if (scontext_len > len) {
3643                 err = -ERANGE;
3644                 goto out_len;
3645         }
3646
3647         if (copy_to_user(optval, scontext, scontext_len))
3648                 err = -EFAULT;
3649
3650 out_len:
3651         if (put_user(scontext_len, optlen))
3652                 err = -EFAULT;
3653
3654         kfree(scontext);
3655 out:    
3656         return err;
3657 }
3658
3659 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3660 {
3661         u32 peer_secid = SECSID_NULL;
3662         int err = 0;
3663
3664         if (sock && sock->sk->sk_family == PF_UNIX)
3665                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3666         else if (skb)
3667                 security_skb_extlbl_sid(skb,
3668                                         SECINITSID_UNLABELED,
3669                                         &peer_secid);
3670
3671         if (peer_secid == SECSID_NULL)
3672                 err = -EINVAL;
3673         *secid = peer_secid;
3674
3675         return err;
3676 }
3677
3678 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3679 {
3680         return sk_alloc_security(sk, family, priority);
3681 }
3682
3683 static void selinux_sk_free_security(struct sock *sk)
3684 {
3685         sk_free_security(sk);
3686 }
3687
3688 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3689 {
3690         struct sk_security_struct *ssec = sk->sk_security;
3691         struct sk_security_struct *newssec = newsk->sk_security;
3692
3693         newssec->sid = ssec->sid;
3694         newssec->peer_sid = ssec->peer_sid;
3695
3696         selinux_netlbl_sk_security_clone(ssec, newssec);
3697 }
3698
3699 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3700 {
3701         if (!sk)
3702                 *secid = SECINITSID_ANY_SOCKET;
3703         else {
3704                 struct sk_security_struct *sksec = sk->sk_security;
3705
3706                 *secid = sksec->sid;
3707         }
3708 }
3709
3710 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3711 {
3712         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3713         struct sk_security_struct *sksec = sk->sk_security;
3714
3715         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3716             sk->sk_family == PF_UNIX)
3717                 isec->sid = sksec->sid;
3718
3719         selinux_netlbl_sock_graft(sk, parent);
3720 }
3721
3722 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3723                                      struct request_sock *req)
3724 {
3725         struct sk_security_struct *sksec = sk->sk_security;
3726         int err;
3727         u32 newsid;
3728         u32 peersid;
3729
3730         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3731         if (peersid == SECSID_NULL) {
3732                 req->secid = sksec->sid;
3733                 req->peer_secid = SECSID_NULL;
3734                 return 0;
3735         }
3736
3737         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3738         if (err)
3739                 return err;
3740
3741         req->secid = newsid;
3742         req->peer_secid = peersid;
3743         return 0;
3744 }
3745
3746 static void selinux_inet_csk_clone(struct sock *newsk,
3747                                    const struct request_sock *req)
3748 {
3749         struct sk_security_struct *newsksec = newsk->sk_security;
3750
3751         newsksec->sid = req->secid;
3752         newsksec->peer_sid = req->peer_secid;
3753         /* NOTE: Ideally, we should also get the isec->sid for the
3754            new socket in sync, but we don't have the isec available yet.
3755            So we will wait until sock_graft to do it, by which
3756            time it will have been created and available. */
3757
3758         /* We don't need to take any sort of lock here as we are the only
3759          * thread with access to newsksec */
3760         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3761 }
3762
3763 static void selinux_inet_conn_established(struct sock *sk,
3764                                 struct sk_buff *skb)
3765 {
3766         struct sk_security_struct *sksec = sk->sk_security;
3767
3768         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3769 }
3770
3771 static void selinux_req_classify_flow(const struct request_sock *req,
3772                                       struct flowi *fl)
3773 {
3774         fl->secid = req->secid;
3775 }
3776
3777 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3778 {
3779         int err = 0;
3780         u32 perm;
3781         struct nlmsghdr *nlh;
3782         struct socket *sock = sk->sk_socket;
3783         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3784         
3785         if (skb->len < NLMSG_SPACE(0)) {
3786                 err = -EINVAL;
3787                 goto out;
3788         }
3789         nlh = (struct nlmsghdr *)skb->data;
3790         
3791         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3792         if (err) {
3793                 if (err == -EINVAL) {
3794                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3795                                   "SELinux:  unrecognized netlink message"
3796                                   " type=%hu for sclass=%hu\n",
3797                                   nlh->nlmsg_type, isec->sclass);
3798                         if (!selinux_enforcing)
3799                                 err = 0;
3800                 }
3801
3802                 /* Ignore */
3803                 if (err == -ENOENT)
3804                         err = 0;
3805                 goto out;
3806         }
3807
3808         err = socket_has_perm(current, sock, perm);
3809 out:
3810         return err;
3811 }
3812
3813 #ifdef CONFIG_NETFILTER
3814
3815 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3816                                             struct avc_audit_data *ad,
3817                                             u16 family, char *addrp, int len)
3818 {
3819         int err = 0;
3820         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3821         struct socket *sock;
3822         struct inode *inode;
3823         struct inode_security_struct *isec;
3824
3825         sock = sk->sk_socket;
3826         if (!sock)
3827                 goto out;
3828
3829         inode = SOCK_INODE(sock);
3830         if (!inode)
3831                 goto out;
3832
3833         isec = inode->i_security;
3834         
3835         err = sel_netif_sids(dev, &if_sid, NULL);
3836         if (err)
3837                 goto out;
3838
3839         switch (isec->sclass) {
3840         case SECCLASS_UDP_SOCKET:
3841                 netif_perm = NETIF__UDP_SEND;
3842                 node_perm = NODE__UDP_SEND;
3843                 send_perm = UDP_SOCKET__SEND_MSG;
3844                 break;
3845         
3846         case SECCLASS_TCP_SOCKET:
3847                 netif_perm = NETIF__TCP_SEND;
3848                 node_perm = NODE__TCP_SEND;
3849                 send_perm = TCP_SOCKET__SEND_MSG;
3850                 break;
3851
3852         case SECCLASS_DCCP_SOCKET:
3853                 netif_perm = NETIF__DCCP_SEND;
3854                 node_perm = NODE__DCCP_SEND;
3855                 send_perm = DCCP_SOCKET__SEND_MSG;
3856                 break;
3857
3858         default:
3859                 netif_perm = NETIF__RAWIP_SEND;
3860                 node_perm = NODE__RAWIP_SEND;
3861                 break;
3862         }
3863
3864         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3865         if (err)
3866                 goto out;
3867                 
3868         err = security_node_sid(family, addrp, len, &node_sid);
3869         if (err)
3870                 goto out;
3871         
3872         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3873         if (err)
3874                 goto out;
3875
3876         if (send_perm) {
3877                 u32 port_sid;
3878                 
3879                 err = security_port_sid(sk->sk_family,
3880                                         sk->sk_type,
3881                                         sk->sk_protocol,
3882                                         ntohs(ad->u.net.dport),
3883                                         &port_sid);
3884                 if (err)
3885                         goto out;
3886
3887                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3888                                    send_perm, ad);
3889         }
3890 out:
3891         return err;
3892 }
3893
3894 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3895                                               struct sk_buff **pskb,
3896                                               const struct net_device *in,
3897                                               const struct net_device *out,
3898                                               int (*okfn)(struct sk_buff *),
3899                                               u16 family)
3900 {
3901         char *addrp;
3902         int len, err = 0;
3903         struct sock *sk;
3904         struct sk_buff *skb = *pskb;
3905         struct avc_audit_data ad;
3906         struct net_device *dev = (struct net_device *)out;
3907         struct sk_security_struct *sksec;
3908         u8 proto;
3909
3910         sk = skb->sk;
3911         if (!sk)
3912                 goto out;
3913
3914         sksec = sk->sk_security;
3915
3916         AVC_AUDIT_DATA_INIT(&ad, NET);
3917         ad.u.net.netif = dev->name;
3918         ad.u.net.family = family;
3919
3920         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3921         if (err)
3922                 goto out;
3923
3924         if (selinux_compat_net)
3925                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3926                                                        family, addrp, len);
3927         else
3928                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3929                                    PACKET__SEND, &ad);
3930
3931         if (err)
3932                 goto out;
3933
3934         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3935 out:
3936         return err ? NF_DROP : NF_ACCEPT;
3937 }
3938
3939 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3940                                                 struct sk_buff **pskb,
3941                                                 const struct net_device *in,
3942                                                 const struct net_device *out,
3943                                                 int (*okfn)(struct sk_buff *))
3944 {
3945         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3946 }
3947
3948 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3949
3950 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3951                                                 struct sk_buff **pskb,
3952                                                 const struct net_device *in,
3953                                                 const struct net_device *out,
3954                                                 int (*okfn)(struct sk_buff *))
3955 {
3956         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3957 }
3958
3959 #endif  /* IPV6 */
3960
3961 #endif  /* CONFIG_NETFILTER */
3962
3963 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3964 {
3965         int err;
3966
3967         err = secondary_ops->netlink_send(sk, skb);
3968         if (err)
3969                 return err;
3970
3971         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3972                 err = selinux_nlmsg_perm(sk, skb);
3973
3974         return err;
3975 }
3976
3977 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3978 {
3979         int err;
3980         struct avc_audit_data ad;
3981
3982         err = secondary_ops->netlink_recv(skb, capability);
3983         if (err)
3984                 return err;
3985
3986         AVC_AUDIT_DATA_INIT(&ad, CAP);
3987         ad.u.cap = capability;
3988
3989         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3990                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3991 }
3992
3993 static int ipc_alloc_security(struct task_struct *task,
3994                               struct kern_ipc_perm *perm,
3995                               u16 sclass)
3996 {
3997         struct task_security_struct *tsec = task->security;
3998         struct ipc_security_struct *isec;
3999
4000         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4001         if (!isec)
4002                 return -ENOMEM;
4003
4004         isec->sclass = sclass;
4005         isec->ipc_perm = perm;
4006         isec->sid = tsec->sid;
4007         perm->security = isec;
4008
4009         return 0;
4010 }
4011
4012 static void ipc_free_security(struct kern_ipc_perm *perm)
4013 {
4014         struct ipc_security_struct *isec = perm->security;
4015         perm->security = NULL;
4016         kfree(isec);
4017 }
4018
4019 static int msg_msg_alloc_security(struct msg_msg *msg)
4020 {
4021         struct msg_security_struct *msec;
4022
4023         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4024         if (!msec)
4025                 return -ENOMEM;
4026
4027         msec->msg = msg;
4028         msec->sid = SECINITSID_UNLABELED;
4029         msg->security = msec;
4030
4031         return 0;
4032 }
4033
4034 static void msg_msg_free_security(struct msg_msg *msg)
4035 {
4036         struct msg_security_struct *msec = msg->security;
4037
4038         msg->security = NULL;
4039         kfree(msec);
4040 }
4041
4042 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4043                         u32 perms)
4044 {
4045         struct task_security_struct *tsec;
4046         struct ipc_security_struct *isec;
4047         struct avc_audit_data ad;
4048
4049         tsec = current->security;
4050         isec = ipc_perms->security;
4051
4052         AVC_AUDIT_DATA_INIT(&ad, IPC);
4053         ad.u.ipc_id = ipc_perms->key;
4054
4055         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4056 }
4057
4058 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4059 {
4060         return msg_msg_alloc_security(msg);
4061 }
4062
4063 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4064 {
4065         msg_msg_free_security(msg);
4066 }
4067
4068 /* message queue security operations */
4069 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4070 {
4071         struct task_security_struct *tsec;
4072         struct ipc_security_struct *isec;
4073         struct avc_audit_data ad;
4074         int rc;
4075
4076         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4077         if (rc)
4078                 return rc;
4079
4080         tsec = current->security;
4081         isec = msq->q_perm.security;
4082
4083         AVC_AUDIT_DATA_INIT(&ad, IPC);
4084         ad.u.ipc_id = msq->q_perm.key;
4085
4086         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4087                           MSGQ__CREATE, &ad);
4088         if (rc) {
4089                 ipc_free_security(&msq->q_perm);
4090                 return rc;
4091         }
4092         return 0;
4093 }
4094
4095 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4096 {
4097         ipc_free_security(&msq->q_perm);
4098 }
4099
4100 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4101 {
4102         struct task_security_struct *tsec;
4103         struct ipc_security_struct *isec;
4104         struct avc_audit_data ad;
4105
4106         tsec = current->security;
4107         isec = msq->q_perm.security;
4108
4109         AVC_AUDIT_DATA_INIT(&ad, IPC);
4110         ad.u.ipc_id = msq->q_perm.key;
4111
4112         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4113                             MSGQ__ASSOCIATE, &ad);
4114 }
4115
4116 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4117 {
4118         int err;
4119         int perms;
4120
4121         switch(cmd) {
4122         case IPC_INFO:
4123         case MSG_INFO:
4124                 /* No specific object, just general system-wide information. */
4125                 return task_has_system(current, SYSTEM__IPC_INFO);
4126         case IPC_STAT:
4127         case MSG_STAT:
4128                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4129                 break;
4130         case IPC_SET:
4131                 perms = MSGQ__SETATTR;
4132                 break;
4133         case IPC_RMID:
4134                 perms = MSGQ__DESTROY;
4135                 break;
4136         default:
4137                 return 0;
4138         }
4139
4140         err = ipc_has_perm(&msq->q_perm, perms);
4141         return err;
4142 }
4143
4144 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4145 {
4146         struct task_security_struct *tsec;
4147         struct ipc_security_struct *isec;
4148         struct msg_security_struct *msec;
4149         struct avc_audit_data ad;
4150         int rc;
4151
4152         tsec = current->security;
4153         isec = msq->q_perm.security;
4154         msec = msg->security;
4155
4156         /*
4157          * First time through, need to assign label to the message
4158          */
4159         if (msec->sid == SECINITSID_UNLABELED) {
4160                 /*
4161                  * Compute new sid based on current process and
4162                  * message queue this message will be stored in
4163                  */
4164                 rc = security_transition_sid(tsec->sid,
4165                                              isec->sid,
4166                                              SECCLASS_MSG,
4167                                              &msec->sid);
4168                 if (rc)
4169                         return rc;
4170         }
4171
4172         AVC_AUDIT_DATA_INIT(&ad, IPC);
4173         ad.u.ipc_id = msq->q_perm.key;
4174
4175         /* Can this process write to the queue? */
4176         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4177                           MSGQ__WRITE, &ad);
4178         if (!rc)
4179                 /* Can this process send the message */
4180                 rc = avc_has_perm(tsec->sid, msec->sid,
4181                                   SECCLASS_MSG, MSG__SEND, &ad);
4182         if (!rc)
4183                 /* Can the message be put in the queue? */
4184                 rc = avc_has_perm(msec->sid, isec->sid,
4185                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4186
4187         return rc;
4188 }
4189
4190 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4191                                     struct task_struct *target,
4192                                     long type, int mode)
4193 {
4194         struct task_security_struct *tsec;
4195         struct ipc_security_struct *isec;
4196         struct msg_security_struct *msec;
4197         struct avc_audit_data ad;
4198         int rc;
4199
4200         tsec = target->security;
4201         isec = msq->q_perm.security;
4202         msec = msg->security;
4203
4204         AVC_AUDIT_DATA_INIT(&ad, IPC);
4205         ad.u.ipc_id = msq->q_perm.key;
4206
4207         rc = avc_has_perm(tsec->sid, isec->sid,
4208                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4209         if (!rc)
4210                 rc = avc_has_perm(tsec->sid, msec->sid,
4211                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4212         return rc;
4213 }
4214
4215 /* Shared Memory security operations */
4216 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4217 {
4218         struct task_security_struct *tsec;
4219         struct ipc_security_struct *isec;
4220         struct avc_audit_data ad;
4221         int rc;
4222
4223         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4224         if (rc)
4225                 return rc;
4226
4227         tsec = current->security;
4228         isec = shp->shm_perm.security;
4229
4230         AVC_AUDIT_DATA_INIT(&ad, IPC);
4231         ad.u.ipc_id = shp->shm_perm.key;
4232
4233         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4234                           SHM__CREATE, &ad);
4235         if (rc) {
4236                 ipc_free_security(&shp->shm_perm);
4237                 return rc;
4238         }
4239         return 0;
4240 }
4241
4242 static void selinux_shm_free_security(struct shmid_kernel *shp)
4243 {
4244         ipc_free_security(&shp->shm_perm);
4245 }
4246
4247 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4248 {
4249         struct task_security_struct *tsec;
4250         struct ipc_security_struct *isec;
4251         struct avc_audit_data ad;
4252
4253         tsec = current->security;
4254         isec = shp->shm_perm.security;
4255
4256         AVC_AUDIT_DATA_INIT(&ad, IPC);
4257         ad.u.ipc_id = shp->shm_perm.key;
4258
4259         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4260                             SHM__ASSOCIATE, &ad);
4261 }
4262
4263 /* Note, at this point, shp is locked down */
4264 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4265 {
4266         int perms;
4267         int err;
4268
4269         switch(cmd) {
4270         case IPC_INFO:
4271         case SHM_INFO:
4272                 /* No specific object, just general system-wide information. */
4273                 return task_has_system(current, SYSTEM__IPC_INFO);
4274         case IPC_STAT:
4275         case SHM_STAT:
4276                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4277                 break;
4278         case IPC_SET:
4279                 perms = SHM__SETATTR;
4280                 break;
4281         case SHM_LOCK:
4282         case SHM_UNLOCK:
4283                 perms = SHM__LOCK;
4284                 break;
4285         case IPC_RMID:
4286                 perms = SHM__DESTROY;
4287                 break;
4288         default:
4289                 return 0;
4290         }
4291
4292         err = ipc_has_perm(&shp->shm_perm, perms);
4293         return err;
4294 }
4295
4296 static int selinux_shm_shmat(struct shmid_kernel *shp,
4297                              char __user *shmaddr, int shmflg)
4298 {
4299         u32 perms;
4300         int rc;
4301
4302         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4303         if (rc)
4304                 return rc;
4305
4306         if (shmflg & SHM_RDONLY)
4307                 perms = SHM__READ;
4308         else
4309                 perms = SHM__READ | SHM__WRITE;
4310
4311         return ipc_has_perm(&shp->shm_perm, perms);
4312 }
4313
4314 /* Semaphore security operations */
4315 static int selinux_sem_alloc_security(struct sem_array *sma)
4316 {
4317         struct task_security_struct *tsec;
4318         struct ipc_security_struct *isec;
4319         struct avc_audit_data ad;
4320         int rc;
4321
4322         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4323         if (rc)
4324                 return rc;
4325
4326         tsec = current->security;
4327         isec = sma->sem_perm.security;
4328
4329         AVC_AUDIT_DATA_INIT(&ad, IPC);
4330         ad.u.ipc_id = sma->sem_perm.key;
4331
4332         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4333                           SEM__CREATE, &ad);
4334         if (rc) {
4335                 ipc_free_security(&sma->sem_perm);
4336                 return rc;
4337         }
4338         return 0;
4339 }
4340
4341 static void selinux_sem_free_security(struct sem_array *sma)
4342 {
4343         ipc_free_security(&sma->sem_perm);
4344 }
4345
4346 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4347 {
4348         struct task_security_struct *tsec;
4349         struct ipc_security_struct *isec;
4350         struct avc_audit_data ad;
4351
4352         tsec = current->security;
4353         isec = sma->sem_perm.security;
4354
4355         AVC_AUDIT_DATA_INIT(&ad, IPC);
4356         ad.u.ipc_id = sma->sem_perm.key;
4357
4358         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4359                             SEM__ASSOCIATE, &ad);
4360 }
4361
4362 /* Note, at this point, sma is locked down */
4363 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4364 {
4365         int err;
4366         u32 perms;
4367
4368         switch(cmd) {
4369         case IPC_INFO:
4370         case SEM_INFO:
4371                 /* No specific object, just general system-wide information. */
4372                 return task_has_system(current, SYSTEM__IPC_INFO);
4373         case GETPID:
4374         case GETNCNT:
4375         case GETZCNT:
4376                 perms = SEM__GETATTR;
4377                 break;
4378         case GETVAL:
4379         case GETALL:
4380                 perms = SEM__READ;
4381                 break;
4382         case SETVAL:
4383         case SETALL:
4384                 perms = SEM__WRITE;
4385                 break;
4386         case IPC_RMID:
4387                 perms = SEM__DESTROY;
4388                 break;
4389         case IPC_SET:
4390                 perms = SEM__SETATTR;
4391                 break;
4392         case IPC_STAT:
4393         case SEM_STAT:
4394                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4395                 break;
4396         default:
4397                 return 0;
4398         }
4399
4400         err = ipc_has_perm(&sma->sem_perm, perms);
4401         return err;
4402 }
4403
4404 static int selinux_sem_semop(struct sem_array *sma,
4405                              struct sembuf *sops, unsigned nsops, int alter)
4406 {
4407         u32 perms;
4408
4409         if (alter)
4410                 perms = SEM__READ | SEM__WRITE;
4411         else
4412                 perms = SEM__READ;
4413
4414         return ipc_has_perm(&sma->sem_perm, perms);
4415 }
4416
4417 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4418 {
4419         u32 av = 0;
4420
4421         av = 0;
4422         if (flag & S_IRUGO)
4423                 av |= IPC__UNIX_READ;
4424         if (flag & S_IWUGO)
4425                 av |= IPC__UNIX_WRITE;
4426
4427         if (av == 0)
4428                 return 0;
4429
4430         return ipc_has_perm(ipcp, av);
4431 }
4432
4433 /* module stacking operations */
4434 static int selinux_register_security (const char *name, struct security_operations *ops)
4435 {
4436         if (secondary_ops != original_ops) {
4437                 printk(KERN_ERR "%s:  There is already a secondary security "
4438                        "module registered.\n", __FUNCTION__);
4439                 return -EINVAL;
4440         }
4441
4442         secondary_ops = ops;
4443
4444         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4445                __FUNCTION__,
4446                name);
4447
4448         return 0;
4449 }
4450
4451 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4452 {
4453         if (ops != secondary_ops) {
4454                 printk(KERN_ERR "%s:  trying to unregister a security module "
4455                         "that is not registered.\n", __FUNCTION__);
4456                 return -EINVAL;
4457         }
4458
4459         secondary_ops = original_ops;
4460
4461         return 0;
4462 }
4463
4464 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4465 {
4466         if (inode)
4467                 inode_doinit_with_dentry(inode, dentry);
4468 }
4469
4470 static int selinux_getprocattr(struct task_struct *p,
4471                                char *name, char **value)
4472 {
4473         struct task_security_struct *tsec;
4474         u32 sid;
4475         int error;
4476         unsigned len;
4477
4478         if (current != p) {
4479                 error = task_has_perm(current, p, PROCESS__GETATTR);
4480                 if (error)
4481                         return error;
4482         }
4483
4484         tsec = p->security;
4485
4486         if (!strcmp(name, "current"))
4487                 sid = tsec->sid;
4488         else if (!strcmp(name, "prev"))
4489                 sid = tsec->osid;
4490         else if (!strcmp(name, "exec"))
4491                 sid = tsec->exec_sid;
4492         else if (!strcmp(name, "fscreate"))
4493                 sid = tsec->create_sid;
4494         else if (!strcmp(name, "keycreate"))
4495                 sid = tsec->keycreate_sid;
4496         else if (!strcmp(name, "sockcreate"))
4497                 sid = tsec->sockcreate_sid;
4498         else
4499                 return -EINVAL;
4500
4501         if (!sid)
4502                 return 0;
4503
4504         error = security_sid_to_context(sid, value, &len);
4505         if (error)
4506                 return error;
4507         return len;
4508 }
4509
4510 static int selinux_setprocattr(struct task_struct *p,
4511                                char *name, void *value, size_t size)
4512 {
4513         struct task_security_struct *tsec;
4514         u32 sid = 0;
4515         int error;
4516         char *str = value;
4517
4518         if (current != p) {
4519                 /* SELinux only allows a process to change its own
4520                    security attributes. */
4521                 return -EACCES;
4522         }
4523
4524         /*
4525          * Basic control over ability to set these attributes at all.
4526          * current == p, but we'll pass them separately in case the
4527          * above restriction is ever removed.
4528          */
4529         if (!strcmp(name, "exec"))
4530                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4531         else if (!strcmp(name, "fscreate"))
4532                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4533         else if (!strcmp(name, "keycreate"))
4534                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4535         else if (!strcmp(name, "sockcreate"))
4536                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4537         else if (!strcmp(name, "current"))
4538                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4539         else
4540                 error = -EINVAL;
4541         if (error)
4542                 return error;
4543
4544         /* Obtain a SID for the context, if one was specified. */
4545         if (size && str[1] && str[1] != '\n') {
4546                 if (str[size-1] == '\n') {
4547                         str[size-1] = 0;
4548                         size--;
4549                 }
4550                 error = security_context_to_sid(value, size, &sid);
4551                 if (error)
4552                         return error;
4553         }
4554
4555         /* Permission checking based on the specified context is
4556            performed during the actual operation (execve,
4557            open/mkdir/...), when we know the full context of the
4558            operation.  See selinux_bprm_set_security for the execve
4559            checks and may_create for the file creation checks. The
4560            operation will then fail if the context is not permitted. */
4561         tsec = p->security;
4562         if (!strcmp(name, "exec"))
4563                 tsec->exec_sid = sid;
4564         else if (!strcmp(name, "fscreate"))
4565                 tsec->create_sid = sid;
4566         else if (!strcmp(name, "keycreate")) {
4567                 error = may_create_key(sid, p);
4568                 if (error)
4569                         return error;
4570                 tsec->keycreate_sid = sid;
4571         } else if (!strcmp(name, "sockcreate"))
4572                 tsec->sockcreate_sid = sid;
4573         else if (!strcmp(name, "current")) {
4574                 struct av_decision avd;
4575
4576                 if (sid == 0)
4577                         return -EINVAL;
4578
4579                 /* Only allow single threaded processes to change context */
4580                 if (atomic_read(&p->mm->mm_users) != 1) {
4581                         struct task_struct *g, *t;
4582                         struct mm_struct *mm = p->mm;
4583                         read_lock(&tasklist_lock);
4584                         do_each_thread(g, t)
4585                                 if (t->mm == mm && t != p) {
4586                                         read_unlock(&tasklist_lock);
4587                                         return -EPERM;
4588                                 }
4589                         while_each_thread(g, t);
4590                         read_unlock(&tasklist_lock);
4591                 }
4592
4593                 /* Check permissions for the transition. */
4594                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4595                                      PROCESS__DYNTRANSITION, NULL);
4596                 if (error)
4597                         return error;
4598
4599                 /* Check for ptracing, and update the task SID if ok.
4600                    Otherwise, leave SID unchanged and fail. */
4601                 task_lock(p);
4602                 if (p->ptrace & PT_PTRACED) {
4603                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4604                                                      SECCLASS_PROCESS,
4605                                                      PROCESS__PTRACE, &avd);
4606                         if (!error)
4607                                 tsec->sid = sid;
4608                         task_unlock(p);
4609                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4610                                   PROCESS__PTRACE, &avd, error, NULL);
4611                         if (error)
4612                                 return error;
4613                 } else {
4614                         tsec->sid = sid;
4615                         task_unlock(p);
4616                 }
4617         }
4618         else
4619                 return -EINVAL;
4620
4621         return size;
4622 }
4623
4624 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4625 {
4626         return security_sid_to_context(secid, secdata, seclen);
4627 }
4628
4629 static void selinux_release_secctx(char *secdata, u32 seclen)
4630 {
4631         if (secdata)
4632                 kfree(secdata);
4633 }
4634
4635 #ifdef CONFIG_KEYS
4636
4637 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4638                              unsigned long flags)
4639 {
4640         struct task_security_struct *tsec = tsk->security;
4641         struct key_security_struct *ksec;
4642
4643         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4644         if (!ksec)
4645                 return -ENOMEM;
4646
4647         ksec->obj = k;
4648         if (tsec->keycreate_sid)
4649                 ksec->sid = tsec->keycreate_sid;
4650         else
4651                 ksec->sid = tsec->sid;
4652         k->security = ksec;
4653
4654         return 0;
4655 }
4656
4657 static void selinux_key_free(struct key *k)
4658 {
4659         struct key_security_struct *ksec = k->security;
4660
4661         k->security = NULL;
4662         kfree(ksec);
4663 }
4664
4665 static int selinux_key_permission(key_ref_t key_ref,
4666                             struct task_struct *ctx,
4667                             key_perm_t perm)
4668 {
4669         struct key *key;
4670         struct task_security_struct *tsec;
4671         struct key_security_struct *ksec;
4672
4673         key = key_ref_to_ptr(key_ref);
4674
4675         tsec = ctx->security;
4676         ksec = key->security;
4677
4678         /* if no specific permissions are requested, we skip the
4679            permission check. No serious, additional covert channels
4680            appear to be created. */
4681         if (perm == 0)
4682                 return 0;
4683
4684         return avc_has_perm(tsec->sid, ksec->sid,
4685                             SECCLASS_KEY, perm, NULL);
4686 }
4687
4688 #endif
4689
4690 static struct security_operations selinux_ops = {
4691         .ptrace =                       selinux_ptrace,
4692         .capget =                       selinux_capget,
4693         .capset_check =                 selinux_capset_check,
4694         .capset_set =                   selinux_capset_set,
4695         .sysctl =                       selinux_sysctl,
4696         .capable =                      selinux_capable,
4697         .quotactl =                     selinux_quotactl,
4698         .quota_on =                     selinux_quota_on,
4699         .syslog =                       selinux_syslog,
4700         .vm_enough_memory =             selinux_vm_enough_memory,
4701
4702         .netlink_send =                 selinux_netlink_send,
4703         .netlink_recv =                 selinux_netlink_recv,
4704
4705         .bprm_alloc_security =          selinux_bprm_alloc_security,
4706         .bprm_free_security =           selinux_bprm_free_security,
4707         .bprm_apply_creds =             selinux_bprm_apply_creds,
4708         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4709         .bprm_set_security =            selinux_bprm_set_security,
4710         .bprm_check_security =          selinux_bprm_check_security,
4711         .bprm_secureexec =              selinux_bprm_secureexec,
4712
4713         .sb_alloc_security =            selinux_sb_alloc_security,
4714         .sb_free_security =             selinux_sb_free_security,
4715         .sb_copy_data =                 selinux_sb_copy_data,
4716         .sb_kern_mount =                selinux_sb_kern_mount,
4717         .sb_statfs =                    selinux_sb_statfs,
4718         .sb_mount =                     selinux_mount,
4719         .sb_umount =                    selinux_umount,
4720
4721         .inode_alloc_security =         selinux_inode_alloc_security,
4722         .inode_free_security =          selinux_inode_free_security,
4723         .inode_init_security =          selinux_inode_init_security,
4724         .inode_create =                 selinux_inode_create,
4725         .inode_link =                   selinux_inode_link,
4726         .inode_unlink =                 selinux_inode_unlink,
4727         .inode_symlink =                selinux_inode_symlink,
4728         .inode_mkdir =                  selinux_inode_mkdir,
4729         .inode_rmdir =                  selinux_inode_rmdir,
4730         .inode_mknod =                  selinux_inode_mknod,
4731         .inode_rename =                 selinux_inode_rename,
4732         .inode_readlink =               selinux_inode_readlink,
4733         .inode_follow_link =            selinux_inode_follow_link,
4734         .inode_permission =             selinux_inode_permission,
4735         .inode_setattr =                selinux_inode_setattr,
4736         .inode_getattr =                selinux_inode_getattr,
4737         .inode_setxattr =               selinux_inode_setxattr,
4738         .inode_post_setxattr =          selinux_inode_post_setxattr,
4739         .inode_getxattr =               selinux_inode_getxattr,
4740         .inode_listxattr =              selinux_inode_listxattr,
4741         .inode_removexattr =            selinux_inode_removexattr,
4742         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4743         .inode_getsecurity =            selinux_inode_getsecurity,
4744         .inode_setsecurity =            selinux_inode_setsecurity,
4745         .inode_listsecurity =           selinux_inode_listsecurity,
4746
4747         .file_permission =              selinux_file_permission,
4748         .file_alloc_security =          selinux_file_alloc_security,
4749         .file_free_security =           selinux_file_free_security,
4750         .file_ioctl =                   selinux_file_ioctl,
4751         .file_mmap =                    selinux_file_mmap,
4752         .file_mprotect =                selinux_file_mprotect,
4753         .file_lock =                    selinux_file_lock,
4754         .file_fcntl =                   selinux_file_fcntl,
4755         .file_set_fowner =              selinux_file_set_fowner,
4756         .file_send_sigiotask =          selinux_file_send_sigiotask,
4757         .file_receive =                 selinux_file_receive,
4758
4759         .task_create =                  selinux_task_create,
4760         .task_alloc_security =          selinux_task_alloc_security,
4761         .task_free_security =           selinux_task_free_security,
4762         .task_setuid =                  selinux_task_setuid,
4763         .task_post_setuid =             selinux_task_post_setuid,
4764         .task_setgid =                  selinux_task_setgid,
4765         .task_setpgid =                 selinux_task_setpgid,
4766         .task_getpgid =                 selinux_task_getpgid,
4767         .task_getsid =                  selinux_task_getsid,
4768         .task_getsecid =                selinux_task_getsecid,
4769         .task_setgroups =               selinux_task_setgroups,
4770         .task_setnice =                 selinux_task_setnice,
4771         .task_setioprio =               selinux_task_setioprio,
4772         .task_getioprio =               selinux_task_getioprio,
4773         .task_setrlimit =               selinux_task_setrlimit,
4774         .task_setscheduler =            selinux_task_setscheduler,
4775         .task_getscheduler =            selinux_task_getscheduler,
4776         .task_movememory =              selinux_task_movememory,
4777         .task_kill =                    selinux_task_kill,
4778         .task_wait =                    selinux_task_wait,
4779         .task_prctl =                   selinux_task_prctl,
4780         .task_reparent_to_init =        selinux_task_reparent_to_init,
4781         .task_to_inode =                selinux_task_to_inode,
4782
4783         .ipc_permission =               selinux_ipc_permission,
4784
4785         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4786         .msg_msg_free_security =        selinux_msg_msg_free_security,
4787
4788         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4789         .msg_queue_free_security =      selinux_msg_queue_free_security,
4790         .msg_queue_associate =          selinux_msg_queue_associate,
4791         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4792         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4793         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4794
4795         .shm_alloc_security =           selinux_shm_alloc_security,
4796         .shm_free_security =            selinux_shm_free_security,
4797         .shm_associate =                selinux_shm_associate,
4798         .shm_shmctl =                   selinux_shm_shmctl,
4799         .shm_shmat =                    selinux_shm_shmat,
4800
4801         .sem_alloc_security =           selinux_sem_alloc_security,
4802         .sem_free_security =            selinux_sem_free_security,
4803         .sem_associate =                selinux_sem_associate,
4804         .sem_semctl =                   selinux_sem_semctl,
4805         .sem_semop =                    selinux_sem_semop,
4806
4807         .register_security =            selinux_register_security,
4808         .unregister_security =          selinux_unregister_security,
4809
4810         .d_instantiate =                selinux_d_instantiate,
4811
4812         .getprocattr =                  selinux_getprocattr,
4813         .setprocattr =                  selinux_setprocattr,
4814
4815         .secid_to_secctx =              selinux_secid_to_secctx,
4816         .release_secctx =               selinux_release_secctx,
4817
4818         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4819         .unix_may_send =                selinux_socket_unix_may_send,
4820
4821         .socket_create =                selinux_socket_create,
4822         .socket_post_create =           selinux_socket_post_create,
4823         .socket_bind =                  selinux_socket_bind,
4824         .socket_connect =               selinux_socket_connect,
4825         .socket_listen =                selinux_socket_listen,
4826         .socket_accept =                selinux_socket_accept,
4827         .socket_sendmsg =               selinux_socket_sendmsg,
4828         .socket_recvmsg =               selinux_socket_recvmsg,
4829         .socket_getsockname =           selinux_socket_getsockname,
4830         .socket_getpeername =           selinux_socket_getpeername,
4831         .socket_getsockopt =            selinux_socket_getsockopt,
4832         .socket_setsockopt =            selinux_socket_setsockopt,
4833         .socket_shutdown =              selinux_socket_shutdown,
4834         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4835         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4836         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4837         .sk_alloc_security =            selinux_sk_alloc_security,
4838         .sk_free_security =             selinux_sk_free_security,
4839         .sk_clone_security =            selinux_sk_clone_security,
4840         .sk_getsecid =                  selinux_sk_getsecid,
4841         .sock_graft =                   selinux_sock_graft,
4842         .inet_conn_request =            selinux_inet_conn_request,
4843         .inet_csk_clone =               selinux_inet_csk_clone,
4844         .inet_conn_established =        selinux_inet_conn_established,
4845         .req_classify_flow =            selinux_req_classify_flow,
4846
4847 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4848         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4849         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4850         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4851         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4852         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4853         .xfrm_state_free_security =     selinux_xfrm_state_free,
4854         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4855         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4856         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4857         .xfrm_decode_session =          selinux_xfrm_decode_session,
4858 #endif
4859
4860 #ifdef CONFIG_KEYS
4861         .key_alloc =                    selinux_key_alloc,
4862         .key_free =                     selinux_key_free,
4863         .key_permission =               selinux_key_permission,
4864 #endif
4865 };
4866
4867 static __init int selinux_init(void)
4868 {
4869         struct task_security_struct *tsec;
4870
4871         if (!selinux_enabled) {
4872                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4873                 return 0;
4874         }
4875
4876         printk(KERN_INFO "SELinux:  Initializing.\n");
4877
4878         /* Set the security state for the initial task. */
4879         if (task_alloc_security(current))
4880                 panic("SELinux:  Failed to initialize initial task.\n");
4881         tsec = current->security;
4882         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4883
4884         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4885                                             sizeof(struct inode_security_struct),
4886                                             0, SLAB_PANIC, NULL, NULL);
4887         avc_init();
4888
4889         original_ops = secondary_ops = security_ops;
4890         if (!secondary_ops)
4891                 panic ("SELinux: No initial security operations\n");
4892         if (register_security (&selinux_ops))
4893                 panic("SELinux: Unable to register with kernel.\n");
4894
4895         if (selinux_enforcing) {
4896                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
4897         } else {
4898                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
4899         }
4900
4901 #ifdef CONFIG_KEYS
4902         /* Add security information to initial keyrings */
4903         selinux_key_alloc(&root_user_keyring, current,
4904                           KEY_ALLOC_NOT_IN_QUOTA);
4905         selinux_key_alloc(&root_session_keyring, current,
4906                           KEY_ALLOC_NOT_IN_QUOTA);
4907 #endif
4908
4909         return 0;
4910 }
4911
4912 void selinux_complete_init(void)
4913 {
4914         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
4915
4916         /* Set up any superblocks initialized prior to the policy load. */
4917         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
4918         spin_lock(&sb_lock);
4919         spin_lock(&sb_security_lock);
4920 next_sb:
4921         if (!list_empty(&superblock_security_head)) {
4922                 struct superblock_security_struct *sbsec =
4923                                 list_entry(superblock_security_head.next,
4924                                            struct superblock_security_struct,
4925                                            list);
4926                 struct super_block *sb = sbsec->sb;
4927                 sb->s_count++;
4928                 spin_unlock(&sb_security_lock);
4929                 spin_unlock(&sb_lock);
4930                 down_read(&sb->s_umount);
4931                 if (sb->s_root)
4932                         superblock_doinit(sb, NULL);
4933                 drop_super(sb);
4934                 spin_lock(&sb_lock);
4935                 spin_lock(&sb_security_lock);
4936                 list_del_init(&sbsec->list);
4937                 goto next_sb;
4938         }
4939         spin_unlock(&sb_security_lock);
4940         spin_unlock(&sb_lock);
4941 }
4942
4943 /* SELinux requires early initialization in order to label
4944    all processes and objects when they are created. */
4945 security_initcall(selinux_init);
4946
4947 #if defined(CONFIG_NETFILTER)
4948
4949 static struct nf_hook_ops selinux_ipv4_op = {
4950         .hook =         selinux_ipv4_postroute_last,
4951         .owner =        THIS_MODULE,
4952         .pf =           PF_INET,
4953         .hooknum =      NF_IP_POST_ROUTING,
4954         .priority =     NF_IP_PRI_SELINUX_LAST,
4955 };
4956
4957 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4958
4959 static struct nf_hook_ops selinux_ipv6_op = {
4960         .hook =         selinux_ipv6_postroute_last,
4961         .owner =        THIS_MODULE,
4962         .pf =           PF_INET6,
4963         .hooknum =      NF_IP6_POST_ROUTING,
4964         .priority =     NF_IP6_PRI_SELINUX_LAST,
4965 };
4966
4967 #endif  /* IPV6 */
4968
4969 static int __init selinux_nf_ip_init(void)
4970 {
4971         int err = 0;
4972
4973         if (!selinux_enabled)
4974                 goto out;
4975
4976         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
4977
4978         err = nf_register_hook(&selinux_ipv4_op);
4979         if (err)
4980                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4981
4982 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4983
4984         err = nf_register_hook(&selinux_ipv6_op);
4985         if (err)
4986                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4987
4988 #endif  /* IPV6 */
4989
4990 out:
4991         return err;
4992 }
4993
4994 __initcall(selinux_nf_ip_init);
4995
4996 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4997 static void selinux_nf_ip_exit(void)
4998 {
4999         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5000
5001         nf_unregister_hook(&selinux_ipv4_op);
5002 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5003         nf_unregister_hook(&selinux_ipv6_op);
5004 #endif  /* IPV6 */
5005 }
5006 #endif
5007
5008 #else /* CONFIG_NETFILTER */
5009
5010 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5011 #define selinux_nf_ip_exit()
5012 #endif
5013
5014 #endif /* CONFIG_NETFILTER */
5015
5016 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5017 int selinux_disable(void)
5018 {
5019         extern void exit_sel_fs(void);
5020         static int selinux_disabled = 0;
5021
5022         if (ss_initialized) {
5023                 /* Not permitted after initial policy load. */
5024                 return -EINVAL;
5025         }
5026
5027         if (selinux_disabled) {
5028                 /* Only do this once. */
5029                 return -EINVAL;
5030         }
5031
5032         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5033
5034         selinux_disabled = 1;
5035         selinux_enabled = 0;
5036
5037         /* Reset security_ops to the secondary module, dummy or capability. */
5038         security_ops = secondary_ops;
5039
5040         /* Unregister netfilter hooks. */
5041         selinux_nf_ip_exit();
5042
5043         /* Unregister selinuxfs. */
5044         exit_sel_fs();
5045
5046         return 0;
5047 }
5048 #endif
5049
5050