Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.23.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135         "Register test\t(offline)",
136         "Eeprom test\t(offline)",
137         "Link test\t(online)",
138         "RLDRAM test\t(offline)",
139         "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143         {"tmac_frms"},
144         {"tmac_data_octets"},
145         {"tmac_drop_frms"},
146         {"tmac_mcst_frms"},
147         {"tmac_bcst_frms"},
148         {"tmac_pause_ctrl_frms"},
149         {"tmac_ttl_octets"},
150         {"tmac_ucst_frms"},
151         {"tmac_nucst_frms"},
152         {"tmac_any_err_frms"},
153         {"tmac_ttl_less_fb_octets"},
154         {"tmac_vld_ip_octets"},
155         {"tmac_vld_ip"},
156         {"tmac_drop_ip"},
157         {"tmac_icmp"},
158         {"tmac_rst_tcp"},
159         {"tmac_tcp"},
160         {"tmac_udp"},
161         {"rmac_vld_frms"},
162         {"rmac_data_octets"},
163         {"rmac_fcs_err_frms"},
164         {"rmac_drop_frms"},
165         {"rmac_vld_mcst_frms"},
166         {"rmac_vld_bcst_frms"},
167         {"rmac_in_rng_len_err_frms"},
168         {"rmac_out_rng_len_err_frms"},
169         {"rmac_long_frms"},
170         {"rmac_pause_ctrl_frms"},
171         {"rmac_unsup_ctrl_frms"},
172         {"rmac_ttl_octets"},
173         {"rmac_accepted_ucst_frms"},
174         {"rmac_accepted_nucst_frms"},
175         {"rmac_discarded_frms"},
176         {"rmac_drop_events"},
177         {"rmac_ttl_less_fb_octets"},
178         {"rmac_ttl_frms"},
179         {"rmac_usized_frms"},
180         {"rmac_osized_frms"},
181         {"rmac_frag_frms"},
182         {"rmac_jabber_frms"},
183         {"rmac_ttl_64_frms"},
184         {"rmac_ttl_65_127_frms"},
185         {"rmac_ttl_128_255_frms"},
186         {"rmac_ttl_256_511_frms"},
187         {"rmac_ttl_512_1023_frms"},
188         {"rmac_ttl_1024_1518_frms"},
189         {"rmac_ip"},
190         {"rmac_ip_octets"},
191         {"rmac_hdr_err_ip"},
192         {"rmac_drop_ip"},
193         {"rmac_icmp"},
194         {"rmac_tcp"},
195         {"rmac_udp"},
196         {"rmac_err_drp_udp"},
197         {"rmac_xgmii_err_sym"},
198         {"rmac_frms_q0"},
199         {"rmac_frms_q1"},
200         {"rmac_frms_q2"},
201         {"rmac_frms_q3"},
202         {"rmac_frms_q4"},
203         {"rmac_frms_q5"},
204         {"rmac_frms_q6"},
205         {"rmac_frms_q7"},
206         {"rmac_full_q0"},
207         {"rmac_full_q1"},
208         {"rmac_full_q2"},
209         {"rmac_full_q3"},
210         {"rmac_full_q4"},
211         {"rmac_full_q5"},
212         {"rmac_full_q6"},
213         {"rmac_full_q7"},
214         {"rmac_pause_cnt"},
215         {"rmac_xgmii_data_err_cnt"},
216         {"rmac_xgmii_ctrl_err_cnt"},
217         {"rmac_accepted_ip"},
218         {"rmac_err_tcp"},
219         {"rd_req_cnt"},
220         {"new_rd_req_cnt"},
221         {"new_rd_req_rtry_cnt"},
222         {"rd_rtry_cnt"},
223         {"wr_rtry_rd_ack_cnt"},
224         {"wr_req_cnt"},
225         {"new_wr_req_cnt"},
226         {"new_wr_req_rtry_cnt"},
227         {"wr_rtry_cnt"},
228         {"wr_disc_cnt"},
229         {"rd_rtry_wr_ack_cnt"},
230         {"txp_wr_cnt"},
231         {"txd_rd_cnt"},
232         {"txd_wr_cnt"},
233         {"rxd_rd_cnt"},
234         {"rxd_wr_cnt"},
235         {"txf_rd_cnt"},
236         {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240         {"rmac_ttl_1519_4095_frms"},
241         {"rmac_ttl_4096_8191_frms"},
242         {"rmac_ttl_8192_max_frms"},
243         {"rmac_ttl_gt_max_frms"},
244         {"rmac_osized_alt_frms"},
245         {"rmac_jabber_alt_frms"},
246         {"rmac_gt_max_alt_frms"},
247         {"rmac_vlan_frms"},
248         {"rmac_len_discard"},
249         {"rmac_fcs_discard"},
250         {"rmac_pf_discard"},
251         {"rmac_da_discard"},
252         {"rmac_red_discard"},
253         {"rmac_rts_discard"},
254         {"rmac_ingm_full_discard"},
255         {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259         {"\n DRIVER STATISTICS"},
260         {"single_bit_ecc_errs"},
261         {"double_bit_ecc_errs"},
262         {"parity_err_cnt"},
263         {"serious_err_cnt"},
264         {"soft_reset_cnt"},
265         {"fifo_full_cnt"},
266         {"ring_full_cnt"},
267         ("alarm_transceiver_temp_high"),
268         ("alarm_transceiver_temp_low"),
269         ("alarm_laser_bias_current_high"),
270         ("alarm_laser_bias_current_low"),
271         ("alarm_laser_output_power_high"),
272         ("alarm_laser_output_power_low"),
273         ("warn_transceiver_temp_high"),
274         ("warn_transceiver_temp_low"),
275         ("warn_laser_bias_current_high"),
276         ("warn_laser_bias_current_low"),
277         ("warn_laser_output_power_high"),
278         ("warn_laser_output_power_low"),
279         ("lro_aggregated_pkts"),
280         ("lro_flush_both_count"),
281         ("lro_out_of_sequence_pkts"),
282         ("lro_flush_due_to_max_pkts"),
283         ("lro_avg_aggr_pkts"),
284         ("mem_alloc_fail_cnt"),
285         ("watchdog_timer_cnt"),
286         ("mem_allocated"),
287         ("mem_freed"),
288         ("link_up_cnt"),
289         ("link_down_cnt"),
290         ("link_up_time"),
291         ("link_down_time"),
292         ("tx_tcode_buf_abort_cnt"),
293         ("tx_tcode_desc_abort_cnt"),
294         ("tx_tcode_parity_err_cnt"),
295         ("tx_tcode_link_loss_cnt"),
296         ("tx_tcode_list_proc_err_cnt"),
297         ("rx_tcode_parity_err_cnt"),
298         ("rx_tcode_abort_cnt"),
299         ("rx_tcode_parity_abort_cnt"),
300         ("rx_tcode_rda_fail_cnt"),
301         ("rx_tcode_unkn_prot_cnt"),
302         ("rx_tcode_fcs_err_cnt"),
303         ("rx_tcode_buf_size_err_cnt"),
304         ("rx_tcode_rxd_corrupt_cnt"),
305         ("rx_tcode_unkn_err_cnt")
306 };
307
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310                                         ETH_GSTRING_LEN
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
312
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
315
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
318
319 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
321
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
323                         init_timer(&timer);                     \
324                         timer.function = handle;                \
325                         timer.data = (unsigned long) arg;       \
326                         mod_timer(&timer, (jiffies + exp))      \
327
328 /* Add the vlan */
329 static void s2io_vlan_rx_register(struct net_device *dev,
330                                         struct vlan_group *grp)
331 {
332         struct s2io_nic *nic = dev->priv;
333         unsigned long flags;
334
335         spin_lock_irqsave(&nic->tx_lock, flags);
336         nic->vlgrp = grp;
337         spin_unlock_irqrestore(&nic->tx_lock, flags);
338 }
339
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
342
343 /*
344  * Constants to be programmed into the Xena's registers, to configure
345  * the XAUI.
346  */
347
348 #define END_SIGN        0x0
349 static const u64 herc_act_dtx_cfg[] = {
350         /* Set address */
351         0x8000051536750000ULL, 0x80000515367500E0ULL,
352         /* Write data */
353         0x8000051536750004ULL, 0x80000515367500E4ULL,
354         /* Set address */
355         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
356         /* Write data */
357         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
358         /* Set address */
359         0x801205150D440000ULL, 0x801205150D4400E0ULL,
360         /* Write data */
361         0x801205150D440004ULL, 0x801205150D4400E4ULL,
362         /* Set address */
363         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
364         /* Write data */
365         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
366         /* Done */
367         END_SIGN
368 };
369
370 static const u64 xena_dtx_cfg[] = {
371         /* Set address */
372         0x8000051500000000ULL, 0x80000515000000E0ULL,
373         /* Write data */
374         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
375         /* Set address */
376         0x8001051500000000ULL, 0x80010515000000E0ULL,
377         /* Write data */
378         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
379         /* Set address */
380         0x8002051500000000ULL, 0x80020515000000E0ULL,
381         /* Write data */
382         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
383         END_SIGN
384 };
385
386 /*
387  * Constants for Fixing the MacAddress problem seen mostly on
388  * Alpha machines.
389  */
390 static const u64 fix_mac[] = {
391         0x0060000000000000ULL, 0x0060600000000000ULL,
392         0x0040600000000000ULL, 0x0000600000000000ULL,
393         0x0020600000000000ULL, 0x0060600000000000ULL,
394         0x0020600000000000ULL, 0x0060600000000000ULL,
395         0x0020600000000000ULL, 0x0060600000000000ULL,
396         0x0020600000000000ULL, 0x0060600000000000ULL,
397         0x0020600000000000ULL, 0x0060600000000000ULL,
398         0x0020600000000000ULL, 0x0060600000000000ULL,
399         0x0020600000000000ULL, 0x0060600000000000ULL,
400         0x0020600000000000ULL, 0x0060600000000000ULL,
401         0x0020600000000000ULL, 0x0060600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0000600000000000ULL,
404         0x0040600000000000ULL, 0x0060600000000000ULL,
405         END_SIGN
406 };
407
408 MODULE_LICENSE("GPL");
409 MODULE_VERSION(DRV_VERSION);
410
411
412 /* Module Loadable parameters. */
413 S2IO_PARM_INT(tx_fifo_num, 1);
414 S2IO_PARM_INT(rx_ring_num, 1);
415
416
417 S2IO_PARM_INT(rx_ring_mode, 1);
418 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419 S2IO_PARM_INT(rmac_pause_time, 0x100);
420 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422 S2IO_PARM_INT(shared_splits, 0);
423 S2IO_PARM_INT(tmac_util_period, 5);
424 S2IO_PARM_INT(rmac_util_period, 5);
425 S2IO_PARM_INT(bimodal, 0);
426 S2IO_PARM_INT(l3l4hdr_size, 128);
427 /* Frequency of Rx desc syncs expressed as power of 2 */
428 S2IO_PARM_INT(rxsync_frequency, 3);
429 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
430 S2IO_PARM_INT(intr_type, 0);
431 /* Large receive offload feature */
432 S2IO_PARM_INT(lro, 0);
433 /* Max pkts to be aggregated by LRO at one time. If not specified,
434  * aggregation happens until we hit max IP pkt size(64K)
435  */
436 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
437 S2IO_PARM_INT(indicate_max_pkts, 0);
438
439 S2IO_PARM_INT(napi, 1);
440 S2IO_PARM_INT(ufo, 0);
441 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
442
443 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447 static unsigned int rts_frm_len[MAX_RX_RINGS] =
448     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
449
450 module_param_array(tx_fifo_len, uint, NULL, 0);
451 module_param_array(rx_ring_sz, uint, NULL, 0);
452 module_param_array(rts_frm_len, uint, NULL, 0);
453
454 /*
455  * S2IO device table.
456  * This table lists all the devices that this driver supports.
457  */
458 static struct pci_device_id s2io_tbl[] __devinitdata = {
459         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460          PCI_ANY_ID, PCI_ANY_ID},
461         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462          PCI_ANY_ID, PCI_ANY_ID},
463         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
464          PCI_ANY_ID, PCI_ANY_ID},
465         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466          PCI_ANY_ID, PCI_ANY_ID},
467         {0,}
468 };
469
470 MODULE_DEVICE_TABLE(pci, s2io_tbl);
471
472 static struct pci_error_handlers s2io_err_handler = {
473         .error_detected = s2io_io_error_detected,
474         .slot_reset = s2io_io_slot_reset,
475         .resume = s2io_io_resume,
476 };
477
478 static struct pci_driver s2io_driver = {
479       .name = "S2IO",
480       .id_table = s2io_tbl,
481       .probe = s2io_init_nic,
482       .remove = __devexit_p(s2io_rem_nic),
483       .err_handler = &s2io_err_handler,
484 };
485
486 /* A simplifier macro used both by init and free shared_mem Fns(). */
487 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
488
489 /**
490  * init_shared_mem - Allocation and Initialization of Memory
491  * @nic: Device private variable.
492  * Description: The function allocates all the memory areas shared
493  * between the NIC and the driver. This includes Tx descriptors,
494  * Rx descriptors and the statistics block.
495  */
496
497 static int init_shared_mem(struct s2io_nic *nic)
498 {
499         u32 size;
500         void *tmp_v_addr, *tmp_v_addr_next;
501         dma_addr_t tmp_p_addr, tmp_p_addr_next;
502         struct RxD_block *pre_rxd_blk = NULL;
503         int i, j, blk_cnt;
504         int lst_size, lst_per_page;
505         struct net_device *dev = nic->dev;
506         unsigned long tmp;
507         struct buffAdd *ba;
508
509         struct mac_info *mac_control;
510         struct config_param *config;
511         unsigned long long mem_allocated = 0;
512
513         mac_control = &nic->mac_control;
514         config = &nic->config;
515
516
517         /* Allocation and initialization of TXDLs in FIOFs */
518         size = 0;
519         for (i = 0; i < config->tx_fifo_num; i++) {
520                 size += config->tx_cfg[i].fifo_len;
521         }
522         if (size > MAX_AVAILABLE_TXDS) {
523                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
524                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
525                 return -EINVAL;
526         }
527
528         lst_size = (sizeof(struct TxD) * config->max_txds);
529         lst_per_page = PAGE_SIZE / lst_size;
530
531         for (i = 0; i < config->tx_fifo_num; i++) {
532                 int fifo_len = config->tx_cfg[i].fifo_len;
533                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
534                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
535                                                           GFP_KERNEL);
536                 if (!mac_control->fifos[i].list_info) {
537                         DBG_PRINT(INFO_DBG,
538                                   "Malloc failed for list_info\n");
539                         return -ENOMEM;
540                 }
541                 mem_allocated += list_holder_size;
542                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
543         }
544         for (i = 0; i < config->tx_fifo_num; i++) {
545                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
546                                                 lst_per_page);
547                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
548                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
549                     config->tx_cfg[i].fifo_len - 1;
550                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
551                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
552                     config->tx_cfg[i].fifo_len - 1;
553                 mac_control->fifos[i].fifo_no = i;
554                 mac_control->fifos[i].nic = nic;
555                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
556
557                 for (j = 0; j < page_num; j++) {
558                         int k = 0;
559                         dma_addr_t tmp_p;
560                         void *tmp_v;
561                         tmp_v = pci_alloc_consistent(nic->pdev,
562                                                      PAGE_SIZE, &tmp_p);
563                         if (!tmp_v) {
564                                 DBG_PRINT(INFO_DBG,
565                                           "pci_alloc_consistent ");
566                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
567                                 return -ENOMEM;
568                         }
569                         /* If we got a zero DMA address(can happen on
570                          * certain platforms like PPC), reallocate.
571                          * Store virtual address of page we don't want,
572                          * to be freed later.
573                          */
574                         if (!tmp_p) {
575                                 mac_control->zerodma_virt_addr = tmp_v;
576                                 DBG_PRINT(INIT_DBG,
577                                 "%s: Zero DMA address for TxDL. ", dev->name);
578                                 DBG_PRINT(INIT_DBG,
579                                 "Virtual address %p\n", tmp_v);
580                                 tmp_v = pci_alloc_consistent(nic->pdev,
581                                                      PAGE_SIZE, &tmp_p);
582                                 if (!tmp_v) {
583                                         DBG_PRINT(INFO_DBG,
584                                           "pci_alloc_consistent ");
585                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
586                                         return -ENOMEM;
587                                 }
588                                 mem_allocated += PAGE_SIZE;
589                         }
590                         while (k < lst_per_page) {
591                                 int l = (j * lst_per_page) + k;
592                                 if (l == config->tx_cfg[i].fifo_len)
593                                         break;
594                                 mac_control->fifos[i].list_info[l].list_virt_addr =
595                                     tmp_v + (k * lst_size);
596                                 mac_control->fifos[i].list_info[l].list_phy_addr =
597                                     tmp_p + (k * lst_size);
598                                 k++;
599                         }
600                 }
601         }
602
603         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
604         if (!nic->ufo_in_band_v)
605                 return -ENOMEM;
606          mem_allocated += (size * sizeof(u64));
607
608         /* Allocation and initialization of RXDs in Rings */
609         size = 0;
610         for (i = 0; i < config->rx_ring_num; i++) {
611                 if (config->rx_cfg[i].num_rxd %
612                     (rxd_count[nic->rxd_mode] + 1)) {
613                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
614                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
615                                   i);
616                         DBG_PRINT(ERR_DBG, "RxDs per Block");
617                         return FAILURE;
618                 }
619                 size += config->rx_cfg[i].num_rxd;
620                 mac_control->rings[i].block_count =
621                         config->rx_cfg[i].num_rxd /
622                         (rxd_count[nic->rxd_mode] + 1 );
623                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
624                         mac_control->rings[i].block_count;
625         }
626         if (nic->rxd_mode == RXD_MODE_1)
627                 size = (size * (sizeof(struct RxD1)));
628         else
629                 size = (size * (sizeof(struct RxD3)));
630
631         for (i = 0; i < config->rx_ring_num; i++) {
632                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
633                 mac_control->rings[i].rx_curr_get_info.offset = 0;
634                 mac_control->rings[i].rx_curr_get_info.ring_len =
635                     config->rx_cfg[i].num_rxd - 1;
636                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
637                 mac_control->rings[i].rx_curr_put_info.offset = 0;
638                 mac_control->rings[i].rx_curr_put_info.ring_len =
639                     config->rx_cfg[i].num_rxd - 1;
640                 mac_control->rings[i].nic = nic;
641                 mac_control->rings[i].ring_no = i;
642
643                 blk_cnt = config->rx_cfg[i].num_rxd /
644                                 (rxd_count[nic->rxd_mode] + 1);
645                 /*  Allocating all the Rx blocks */
646                 for (j = 0; j < blk_cnt; j++) {
647                         struct rx_block_info *rx_blocks;
648                         int l;
649
650                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
651                         size = SIZE_OF_BLOCK; //size is always page size
652                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
653                                                           &tmp_p_addr);
654                         if (tmp_v_addr == NULL) {
655                                 /*
656                                  * In case of failure, free_shared_mem()
657                                  * is called, which should free any
658                                  * memory that was alloced till the
659                                  * failure happened.
660                                  */
661                                 rx_blocks->block_virt_addr = tmp_v_addr;
662                                 return -ENOMEM;
663                         }
664                         mem_allocated += size;
665                         memset(tmp_v_addr, 0, size);
666                         rx_blocks->block_virt_addr = tmp_v_addr;
667                         rx_blocks->block_dma_addr = tmp_p_addr;
668                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
669                                                   rxd_count[nic->rxd_mode],
670                                                   GFP_KERNEL);
671                         if (!rx_blocks->rxds)
672                                 return -ENOMEM;
673                         mem_allocated += 
674                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
675                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
676                                 rx_blocks->rxds[l].virt_addr =
677                                         rx_blocks->block_virt_addr +
678                                         (rxd_size[nic->rxd_mode] * l);
679                                 rx_blocks->rxds[l].dma_addr =
680                                         rx_blocks->block_dma_addr +
681                                         (rxd_size[nic->rxd_mode] * l);
682                         }
683                 }
684                 /* Interlinking all Rx Blocks */
685                 for (j = 0; j < blk_cnt; j++) {
686                         tmp_v_addr =
687                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
688                         tmp_v_addr_next =
689                                 mac_control->rings[i].rx_blocks[(j + 1) %
690                                               blk_cnt].block_virt_addr;
691                         tmp_p_addr =
692                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
693                         tmp_p_addr_next =
694                                 mac_control->rings[i].rx_blocks[(j + 1) %
695                                               blk_cnt].block_dma_addr;
696
697                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
698                         pre_rxd_blk->reserved_2_pNext_RxD_block =
699                             (unsigned long) tmp_v_addr_next;
700                         pre_rxd_blk->pNext_RxD_Blk_physical =
701                             (u64) tmp_p_addr_next;
702                 }
703         }
704         if (nic->rxd_mode >= RXD_MODE_3A) {
705                 /*
706                  * Allocation of Storages for buffer addresses in 2BUFF mode
707                  * and the buffers as well.
708                  */
709                 for (i = 0; i < config->rx_ring_num; i++) {
710                         blk_cnt = config->rx_cfg[i].num_rxd /
711                            (rxd_count[nic->rxd_mode]+ 1);
712                         mac_control->rings[i].ba =
713                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
714                                      GFP_KERNEL);
715                         if (!mac_control->rings[i].ba)
716                                 return -ENOMEM;
717                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
718                         for (j = 0; j < blk_cnt; j++) {
719                                 int k = 0;
720                                 mac_control->rings[i].ba[j] =
721                                         kmalloc((sizeof(struct buffAdd) *
722                                                 (rxd_count[nic->rxd_mode] + 1)),
723                                                 GFP_KERNEL);
724                                 if (!mac_control->rings[i].ba[j])
725                                         return -ENOMEM;
726                                 mem_allocated += (sizeof(struct buffAdd) *  \
727                                         (rxd_count[nic->rxd_mode] + 1));
728                                 while (k != rxd_count[nic->rxd_mode]) {
729                                         ba = &mac_control->rings[i].ba[j][k];
730
731                                         ba->ba_0_org = (void *) kmalloc
732                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
733                                         if (!ba->ba_0_org)
734                                                 return -ENOMEM;
735                                         mem_allocated += 
736                                                 (BUF0_LEN + ALIGN_SIZE);
737                                         tmp = (unsigned long)ba->ba_0_org;
738                                         tmp += ALIGN_SIZE;
739                                         tmp &= ~((unsigned long) ALIGN_SIZE);
740                                         ba->ba_0 = (void *) tmp;
741
742                                         ba->ba_1_org = (void *) kmalloc
743                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
744                                         if (!ba->ba_1_org)
745                                                 return -ENOMEM;
746                                         mem_allocated 
747                                                 += (BUF1_LEN + ALIGN_SIZE);
748                                         tmp = (unsigned long) ba->ba_1_org;
749                                         tmp += ALIGN_SIZE;
750                                         tmp &= ~((unsigned long) ALIGN_SIZE);
751                                         ba->ba_1 = (void *) tmp;
752                                         k++;
753                                 }
754                         }
755                 }
756         }
757
758         /* Allocation and initialization of Statistics block */
759         size = sizeof(struct stat_block);
760         mac_control->stats_mem = pci_alloc_consistent
761             (nic->pdev, size, &mac_control->stats_mem_phy);
762
763         if (!mac_control->stats_mem) {
764                 /*
765                  * In case of failure, free_shared_mem() is called, which
766                  * should free any memory that was alloced till the
767                  * failure happened.
768                  */
769                 return -ENOMEM;
770         }
771         mem_allocated += size;
772         mac_control->stats_mem_sz = size;
773
774         tmp_v_addr = mac_control->stats_mem;
775         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
776         memset(tmp_v_addr, 0, size);
777         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
778                   (unsigned long long) tmp_p_addr);
779         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
780         return SUCCESS;
781 }
782
783 /**
784  * free_shared_mem - Free the allocated Memory
785  * @nic:  Device private variable.
786  * Description: This function is to free all memory locations allocated by
787  * the init_shared_mem() function and return it to the kernel.
788  */
789
790 static void free_shared_mem(struct s2io_nic *nic)
791 {
792         int i, j, blk_cnt, size;
793         u32 ufo_size = 0;
794         void *tmp_v_addr;
795         dma_addr_t tmp_p_addr;
796         struct mac_info *mac_control;
797         struct config_param *config;
798         int lst_size, lst_per_page;
799         struct net_device *dev = nic->dev;
800         int page_num = 0;
801
802         if (!nic)
803                 return;
804
805         mac_control = &nic->mac_control;
806         config = &nic->config;
807
808         lst_size = (sizeof(struct TxD) * config->max_txds);
809         lst_per_page = PAGE_SIZE / lst_size;
810
811         for (i = 0; i < config->tx_fifo_num; i++) {
812                 ufo_size += config->tx_cfg[i].fifo_len;
813                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
814                                                         lst_per_page);
815                 for (j = 0; j < page_num; j++) {
816                         int mem_blks = (j * lst_per_page);
817                         if (!mac_control->fifos[i].list_info)
818                                 return;
819                         if (!mac_control->fifos[i].list_info[mem_blks].
820                                  list_virt_addr)
821                                 break;
822                         pci_free_consistent(nic->pdev, PAGE_SIZE,
823                                             mac_control->fifos[i].
824                                             list_info[mem_blks].
825                                             list_virt_addr,
826                                             mac_control->fifos[i].
827                                             list_info[mem_blks].
828                                             list_phy_addr);
829                         nic->mac_control.stats_info->sw_stat.mem_freed 
830                                                 += PAGE_SIZE;
831                 }
832                 /* If we got a zero DMA address during allocation,
833                  * free the page now
834                  */
835                 if (mac_control->zerodma_virt_addr) {
836                         pci_free_consistent(nic->pdev, PAGE_SIZE,
837                                             mac_control->zerodma_virt_addr,
838                                             (dma_addr_t)0);
839                         DBG_PRINT(INIT_DBG,
840                                 "%s: Freeing TxDL with zero DMA addr. ",
841                                 dev->name);
842                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
843                                 mac_control->zerodma_virt_addr);
844                         nic->mac_control.stats_info->sw_stat.mem_freed 
845                                                 += PAGE_SIZE;
846                 }
847                 kfree(mac_control->fifos[i].list_info);
848                 nic->mac_control.stats_info->sw_stat.mem_freed += 
849                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
850         }
851
852         size = SIZE_OF_BLOCK;
853         for (i = 0; i < config->rx_ring_num; i++) {
854                 blk_cnt = mac_control->rings[i].block_count;
855                 for (j = 0; j < blk_cnt; j++) {
856                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
857                                 block_virt_addr;
858                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
859                                 block_dma_addr;
860                         if (tmp_v_addr == NULL)
861                                 break;
862                         pci_free_consistent(nic->pdev, size,
863                                             tmp_v_addr, tmp_p_addr);
864                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
865                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
866                         nic->mac_control.stats_info->sw_stat.mem_freed += 
867                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
868                 }
869         }
870
871         if (nic->rxd_mode >= RXD_MODE_3A) {
872                 /* Freeing buffer storage addresses in 2BUFF mode. */
873                 for (i = 0; i < config->rx_ring_num; i++) {
874                         blk_cnt = config->rx_cfg[i].num_rxd /
875                             (rxd_count[nic->rxd_mode] + 1);
876                         for (j = 0; j < blk_cnt; j++) {
877                                 int k = 0;
878                                 if (!mac_control->rings[i].ba[j])
879                                         continue;
880                                 while (k != rxd_count[nic->rxd_mode]) {
881                                         struct buffAdd *ba =
882                                                 &mac_control->rings[i].ba[j][k];
883                                         kfree(ba->ba_0_org);
884                                         nic->mac_control.stats_info->sw_stat.\
885                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
886                                         kfree(ba->ba_1_org);
887                                         nic->mac_control.stats_info->sw_stat.\
888                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
889                                         k++;
890                                 }
891                                 kfree(mac_control->rings[i].ba[j]);
892                                 nic->mac_control.stats_info->sw_stat.mem_freed                          += (sizeof(struct buffAdd) * 
893                                 (rxd_count[nic->rxd_mode] + 1));
894                         }
895                         kfree(mac_control->rings[i].ba);
896                         nic->mac_control.stats_info->sw_stat.mem_freed += 
897                         (sizeof(struct buffAdd *) * blk_cnt);
898                 }
899         }
900
901         if (mac_control->stats_mem) {
902                 pci_free_consistent(nic->pdev,
903                                     mac_control->stats_mem_sz,
904                                     mac_control->stats_mem,
905                                     mac_control->stats_mem_phy);
906                 nic->mac_control.stats_info->sw_stat.mem_freed += 
907                         mac_control->stats_mem_sz;
908         }
909         if (nic->ufo_in_band_v) {
910                 kfree(nic->ufo_in_band_v);
911                 nic->mac_control.stats_info->sw_stat.mem_freed 
912                         += (ufo_size * sizeof(u64));
913         }
914 }
915
916 /**
917  * s2io_verify_pci_mode -
918  */
919
920 static int s2io_verify_pci_mode(struct s2io_nic *nic)
921 {
922         struct XENA_dev_config __iomem *bar0 = nic->bar0;
923         register u64 val64 = 0;
924         int     mode;
925
926         val64 = readq(&bar0->pci_mode);
927         mode = (u8)GET_PCI_MODE(val64);
928
929         if ( val64 & PCI_MODE_UNKNOWN_MODE)
930                 return -1;      /* Unknown PCI mode */
931         return mode;
932 }
933
934 #define NEC_VENID   0x1033
935 #define NEC_DEVID   0x0125
936 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
937 {
938         struct pci_dev *tdev = NULL;
939         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
940                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
941                         if (tdev->bus == s2io_pdev->bus->parent)
942                                 pci_dev_put(tdev);
943                                 return 1;
944                 }
945         }
946         return 0;
947 }
948
949 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
950 /**
951  * s2io_print_pci_mode -
952  */
953 static int s2io_print_pci_mode(struct s2io_nic *nic)
954 {
955         struct XENA_dev_config __iomem *bar0 = nic->bar0;
956         register u64 val64 = 0;
957         int     mode;
958         struct config_param *config = &nic->config;
959
960         val64 = readq(&bar0->pci_mode);
961         mode = (u8)GET_PCI_MODE(val64);
962
963         if ( val64 & PCI_MODE_UNKNOWN_MODE)
964                 return -1;      /* Unknown PCI mode */
965
966         config->bus_speed = bus_speed[mode];
967
968         if (s2io_on_nec_bridge(nic->pdev)) {
969                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
970                                                         nic->dev->name);
971                 return mode;
972         }
973
974         if (val64 & PCI_MODE_32_BITS) {
975                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
976         } else {
977                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
978         }
979
980         switch(mode) {
981                 case PCI_MODE_PCI_33:
982                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
983                         break;
984                 case PCI_MODE_PCI_66:
985                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
986                         break;
987                 case PCI_MODE_PCIX_M1_66:
988                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
989                         break;
990                 case PCI_MODE_PCIX_M1_100:
991                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
992                         break;
993                 case PCI_MODE_PCIX_M1_133:
994                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
995                         break;
996                 case PCI_MODE_PCIX_M2_66:
997                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
998                         break;
999                 case PCI_MODE_PCIX_M2_100:
1000                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1001                         break;
1002                 case PCI_MODE_PCIX_M2_133:
1003                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1004                         break;
1005                 default:
1006                         return -1;      /* Unsupported bus speed */
1007         }
1008
1009         return mode;
1010 }
1011
1012 /**
1013  *  init_nic - Initialization of hardware
1014  *  @nic: device peivate variable
1015  *  Description: The function sequentially configures every block
1016  *  of the H/W from their reset values.
1017  *  Return Value:  SUCCESS on success and
1018  *  '-1' on failure (endian settings incorrect).
1019  */
1020
1021 static int init_nic(struct s2io_nic *nic)
1022 {
1023         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1024         struct net_device *dev = nic->dev;
1025         register u64 val64 = 0;
1026         void __iomem *add;
1027         u32 time;
1028         int i, j;
1029         struct mac_info *mac_control;
1030         struct config_param *config;
1031         int dtx_cnt = 0;
1032         unsigned long long mem_share;
1033         int mem_size;
1034
1035         mac_control = &nic->mac_control;
1036         config = &nic->config;
1037
1038         /* to set the swapper controle on the card */
1039         if(s2io_set_swapper(nic)) {
1040                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1041                 return -1;
1042         }
1043
1044         /*
1045          * Herc requires EOI to be removed from reset before XGXS, so..
1046          */
1047         if (nic->device_type & XFRAME_II_DEVICE) {
1048                 val64 = 0xA500000000ULL;
1049                 writeq(val64, &bar0->sw_reset);
1050                 msleep(500);
1051                 val64 = readq(&bar0->sw_reset);
1052         }
1053
1054         /* Remove XGXS from reset state */
1055         val64 = 0;
1056         writeq(val64, &bar0->sw_reset);
1057         msleep(500);
1058         val64 = readq(&bar0->sw_reset);
1059
1060         /*  Enable Receiving broadcasts */
1061         add = &bar0->mac_cfg;
1062         val64 = readq(&bar0->mac_cfg);
1063         val64 |= MAC_RMAC_BCAST_ENABLE;
1064         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1065         writel((u32) val64, add);
1066         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1067         writel((u32) (val64 >> 32), (add + 4));
1068
1069         /* Read registers in all blocks */
1070         val64 = readq(&bar0->mac_int_mask);
1071         val64 = readq(&bar0->mc_int_mask);
1072         val64 = readq(&bar0->xgxs_int_mask);
1073
1074         /*  Set MTU */
1075         val64 = dev->mtu;
1076         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1077
1078         if (nic->device_type & XFRAME_II_DEVICE) {
1079                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1080                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1081                                           &bar0->dtx_control, UF);
1082                         if (dtx_cnt & 0x1)
1083                                 msleep(1); /* Necessary!! */
1084                         dtx_cnt++;
1085                 }
1086         } else {
1087                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1088                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1089                                           &bar0->dtx_control, UF);
1090                         val64 = readq(&bar0->dtx_control);
1091                         dtx_cnt++;
1092                 }
1093         }
1094
1095         /*  Tx DMA Initialization */
1096         val64 = 0;
1097         writeq(val64, &bar0->tx_fifo_partition_0);
1098         writeq(val64, &bar0->tx_fifo_partition_1);
1099         writeq(val64, &bar0->tx_fifo_partition_2);
1100         writeq(val64, &bar0->tx_fifo_partition_3);
1101
1102
1103         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1104                 val64 |=
1105                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1106                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1107                                     ((i * 32) + 5), 3);
1108
1109                 if (i == (config->tx_fifo_num - 1)) {
1110                         if (i % 2 == 0)
1111                                 i++;
1112                 }
1113
1114                 switch (i) {
1115                 case 1:
1116                         writeq(val64, &bar0->tx_fifo_partition_0);
1117                         val64 = 0;
1118                         break;
1119                 case 3:
1120                         writeq(val64, &bar0->tx_fifo_partition_1);
1121                         val64 = 0;
1122                         break;
1123                 case 5:
1124                         writeq(val64, &bar0->tx_fifo_partition_2);
1125                         val64 = 0;
1126                         break;
1127                 case 7:
1128                         writeq(val64, &bar0->tx_fifo_partition_3);
1129                         break;
1130                 }
1131         }
1132
1133         /*
1134          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1135          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1136          */
1137         if ((nic->device_type == XFRAME_I_DEVICE) &&
1138                 (nic->pdev->revision < 4))
1139                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1140
1141         val64 = readq(&bar0->tx_fifo_partition_0);
1142         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1143                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1144
1145         /*
1146          * Initialization of Tx_PA_CONFIG register to ignore packet
1147          * integrity checking.
1148          */
1149         val64 = readq(&bar0->tx_pa_cfg);
1150         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1151             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1152         writeq(val64, &bar0->tx_pa_cfg);
1153
1154         /* Rx DMA intialization. */
1155         val64 = 0;
1156         for (i = 0; i < config->rx_ring_num; i++) {
1157                 val64 |=
1158                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1159                          3);
1160         }
1161         writeq(val64, &bar0->rx_queue_priority);
1162
1163         /*
1164          * Allocating equal share of memory to all the
1165          * configured Rings.
1166          */
1167         val64 = 0;
1168         if (nic->device_type & XFRAME_II_DEVICE)
1169                 mem_size = 32;
1170         else
1171                 mem_size = 64;
1172
1173         for (i = 0; i < config->rx_ring_num; i++) {
1174                 switch (i) {
1175                 case 0:
1176                         mem_share = (mem_size / config->rx_ring_num +
1177                                      mem_size % config->rx_ring_num);
1178                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1179                         continue;
1180                 case 1:
1181                         mem_share = (mem_size / config->rx_ring_num);
1182                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1183                         continue;
1184                 case 2:
1185                         mem_share = (mem_size / config->rx_ring_num);
1186                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1187                         continue;
1188                 case 3:
1189                         mem_share = (mem_size / config->rx_ring_num);
1190                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1191                         continue;
1192                 case 4:
1193                         mem_share = (mem_size / config->rx_ring_num);
1194                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1195                         continue;
1196                 case 5:
1197                         mem_share = (mem_size / config->rx_ring_num);
1198                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1199                         continue;
1200                 case 6:
1201                         mem_share = (mem_size / config->rx_ring_num);
1202                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1203                         continue;
1204                 case 7:
1205                         mem_share = (mem_size / config->rx_ring_num);
1206                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1207                         continue;
1208                 }
1209         }
1210         writeq(val64, &bar0->rx_queue_cfg);
1211
1212         /*
1213          * Filling Tx round robin registers
1214          * as per the number of FIFOs
1215          */
1216         switch (config->tx_fifo_num) {
1217         case 1:
1218                 val64 = 0x0000000000000000ULL;
1219                 writeq(val64, &bar0->tx_w_round_robin_0);
1220                 writeq(val64, &bar0->tx_w_round_robin_1);
1221                 writeq(val64, &bar0->tx_w_round_robin_2);
1222                 writeq(val64, &bar0->tx_w_round_robin_3);
1223                 writeq(val64, &bar0->tx_w_round_robin_4);
1224                 break;
1225         case 2:
1226                 val64 = 0x0000010000010000ULL;
1227                 writeq(val64, &bar0->tx_w_round_robin_0);
1228                 val64 = 0x0100000100000100ULL;
1229                 writeq(val64, &bar0->tx_w_round_robin_1);
1230                 val64 = 0x0001000001000001ULL;
1231                 writeq(val64, &bar0->tx_w_round_robin_2);
1232                 val64 = 0x0000010000010000ULL;
1233                 writeq(val64, &bar0->tx_w_round_robin_3);
1234                 val64 = 0x0100000000000000ULL;
1235                 writeq(val64, &bar0->tx_w_round_robin_4);
1236                 break;
1237         case 3:
1238                 val64 = 0x0001000102000001ULL;
1239                 writeq(val64, &bar0->tx_w_round_robin_0);
1240                 val64 = 0x0001020000010001ULL;
1241                 writeq(val64, &bar0->tx_w_round_robin_1);
1242                 val64 = 0x0200000100010200ULL;
1243                 writeq(val64, &bar0->tx_w_round_robin_2);
1244                 val64 = 0x0001000102000001ULL;
1245                 writeq(val64, &bar0->tx_w_round_robin_3);
1246                 val64 = 0x0001020000000000ULL;
1247                 writeq(val64, &bar0->tx_w_round_robin_4);
1248                 break;
1249         case 4:
1250                 val64 = 0x0001020300010200ULL;
1251                 writeq(val64, &bar0->tx_w_round_robin_0);
1252                 val64 = 0x0100000102030001ULL;
1253                 writeq(val64, &bar0->tx_w_round_robin_1);
1254                 val64 = 0x0200010000010203ULL;
1255                 writeq(val64, &bar0->tx_w_round_robin_2);
1256                 val64 = 0x0001020001000001ULL;
1257                 writeq(val64, &bar0->tx_w_round_robin_3);
1258                 val64 = 0x0203000100000000ULL;
1259                 writeq(val64, &bar0->tx_w_round_robin_4);
1260                 break;
1261         case 5:
1262                 val64 = 0x0001000203000102ULL;
1263                 writeq(val64, &bar0->tx_w_round_robin_0);
1264                 val64 = 0x0001020001030004ULL;
1265                 writeq(val64, &bar0->tx_w_round_robin_1);
1266                 val64 = 0x0001000203000102ULL;
1267                 writeq(val64, &bar0->tx_w_round_robin_2);
1268                 val64 = 0x0001020001030004ULL;
1269                 writeq(val64, &bar0->tx_w_round_robin_3);
1270                 val64 = 0x0001000000000000ULL;
1271                 writeq(val64, &bar0->tx_w_round_robin_4);
1272                 break;
1273         case 6:
1274                 val64 = 0x0001020304000102ULL;
1275                 writeq(val64, &bar0->tx_w_round_robin_0);
1276                 val64 = 0x0304050001020001ULL;
1277                 writeq(val64, &bar0->tx_w_round_robin_1);
1278                 val64 = 0x0203000100000102ULL;
1279                 writeq(val64, &bar0->tx_w_round_robin_2);
1280                 val64 = 0x0304000102030405ULL;
1281                 writeq(val64, &bar0->tx_w_round_robin_3);
1282                 val64 = 0x0001000200000000ULL;
1283                 writeq(val64, &bar0->tx_w_round_robin_4);
1284                 break;
1285         case 7:
1286                 val64 = 0x0001020001020300ULL;
1287                 writeq(val64, &bar0->tx_w_round_robin_0);
1288                 val64 = 0x0102030400010203ULL;
1289                 writeq(val64, &bar0->tx_w_round_robin_1);
1290                 val64 = 0x0405060001020001ULL;
1291                 writeq(val64, &bar0->tx_w_round_robin_2);
1292                 val64 = 0x0304050000010200ULL;
1293                 writeq(val64, &bar0->tx_w_round_robin_3);
1294                 val64 = 0x0102030000000000ULL;
1295                 writeq(val64, &bar0->tx_w_round_robin_4);
1296                 break;
1297         case 8:
1298                 val64 = 0x0001020300040105ULL;
1299                 writeq(val64, &bar0->tx_w_round_robin_0);
1300                 val64 = 0x0200030106000204ULL;
1301                 writeq(val64, &bar0->tx_w_round_robin_1);
1302                 val64 = 0x0103000502010007ULL;
1303                 writeq(val64, &bar0->tx_w_round_robin_2);
1304                 val64 = 0x0304010002060500ULL;
1305                 writeq(val64, &bar0->tx_w_round_robin_3);
1306                 val64 = 0x0103020400000000ULL;
1307                 writeq(val64, &bar0->tx_w_round_robin_4);
1308                 break;
1309         }
1310
1311         /* Enable all configured Tx FIFO partitions */
1312         val64 = readq(&bar0->tx_fifo_partition_0);
1313         val64 |= (TX_FIFO_PARTITION_EN);
1314         writeq(val64, &bar0->tx_fifo_partition_0);
1315
1316         /* Filling the Rx round robin registers as per the
1317          * number of Rings and steering based on QoS.
1318          */
1319         switch (config->rx_ring_num) {
1320         case 1:
1321                 val64 = 0x8080808080808080ULL;
1322                 writeq(val64, &bar0->rts_qos_steering);
1323                 break;
1324         case 2:
1325                 val64 = 0x0000010000010000ULL;
1326                 writeq(val64, &bar0->rx_w_round_robin_0);
1327                 val64 = 0x0100000100000100ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_1);
1329                 val64 = 0x0001000001000001ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_2);
1331                 val64 = 0x0000010000010000ULL;
1332                 writeq(val64, &bar0->rx_w_round_robin_3);
1333                 val64 = 0x0100000000000000ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_4);
1335
1336                 val64 = 0x8080808040404040ULL;
1337                 writeq(val64, &bar0->rts_qos_steering);
1338                 break;
1339         case 3:
1340                 val64 = 0x0001000102000001ULL;
1341                 writeq(val64, &bar0->rx_w_round_robin_0);
1342                 val64 = 0x0001020000010001ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_1);
1344                 val64 = 0x0200000100010200ULL;
1345                 writeq(val64, &bar0->rx_w_round_robin_2);
1346                 val64 = 0x0001000102000001ULL;
1347                 writeq(val64, &bar0->rx_w_round_robin_3);
1348                 val64 = 0x0001020000000000ULL;
1349                 writeq(val64, &bar0->rx_w_round_robin_4);
1350
1351                 val64 = 0x8080804040402020ULL;
1352                 writeq(val64, &bar0->rts_qos_steering);
1353                 break;
1354         case 4:
1355                 val64 = 0x0001020300010200ULL;
1356                 writeq(val64, &bar0->rx_w_round_robin_0);
1357                 val64 = 0x0100000102030001ULL;
1358                 writeq(val64, &bar0->rx_w_round_robin_1);
1359                 val64 = 0x0200010000010203ULL;
1360                 writeq(val64, &bar0->rx_w_round_robin_2);
1361                 val64 = 0x0001020001000001ULL;
1362                 writeq(val64, &bar0->rx_w_round_robin_3);
1363                 val64 = 0x0203000100000000ULL;
1364                 writeq(val64, &bar0->rx_w_round_robin_4);
1365
1366                 val64 = 0x8080404020201010ULL;
1367                 writeq(val64, &bar0->rts_qos_steering);
1368                 break;
1369         case 5:
1370                 val64 = 0x0001000203000102ULL;
1371                 writeq(val64, &bar0->rx_w_round_robin_0);
1372                 val64 = 0x0001020001030004ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_1);
1374                 val64 = 0x0001000203000102ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_2);
1376                 val64 = 0x0001020001030004ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_3);
1378                 val64 = 0x0001000000000000ULL;
1379                 writeq(val64, &bar0->rx_w_round_robin_4);
1380
1381                 val64 = 0x8080404020201008ULL;
1382                 writeq(val64, &bar0->rts_qos_steering);
1383                 break;
1384         case 6:
1385                 val64 = 0x0001020304000102ULL;
1386                 writeq(val64, &bar0->rx_w_round_robin_0);
1387                 val64 = 0x0304050001020001ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_1);
1389                 val64 = 0x0203000100000102ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_2);
1391                 val64 = 0x0304000102030405ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_3);
1393                 val64 = 0x0001000200000000ULL;
1394                 writeq(val64, &bar0->rx_w_round_robin_4);
1395
1396                 val64 = 0x8080404020100804ULL;
1397                 writeq(val64, &bar0->rts_qos_steering);
1398                 break;
1399         case 7:
1400                 val64 = 0x0001020001020300ULL;
1401                 writeq(val64, &bar0->rx_w_round_robin_0);
1402                 val64 = 0x0102030400010203ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_1);
1404                 val64 = 0x0405060001020001ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_2);
1406                 val64 = 0x0304050000010200ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_3);
1408                 val64 = 0x0102030000000000ULL;
1409                 writeq(val64, &bar0->rx_w_round_robin_4);
1410
1411                 val64 = 0x8080402010080402ULL;
1412                 writeq(val64, &bar0->rts_qos_steering);
1413                 break;
1414         case 8:
1415                 val64 = 0x0001020300040105ULL;
1416                 writeq(val64, &bar0->rx_w_round_robin_0);
1417                 val64 = 0x0200030106000204ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_1);
1419                 val64 = 0x0103000502010007ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_2);
1421                 val64 = 0x0304010002060500ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_3);
1423                 val64 = 0x0103020400000000ULL;
1424                 writeq(val64, &bar0->rx_w_round_robin_4);
1425
1426                 val64 = 0x8040201008040201ULL;
1427                 writeq(val64, &bar0->rts_qos_steering);
1428                 break;
1429         }
1430
1431         /* UDP Fix */
1432         val64 = 0;
1433         for (i = 0; i < 8; i++)
1434                 writeq(val64, &bar0->rts_frm_len_n[i]);
1435
1436         /* Set the default rts frame length for the rings configured */
1437         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1438         for (i = 0 ; i < config->rx_ring_num ; i++)
1439                 writeq(val64, &bar0->rts_frm_len_n[i]);
1440
1441         /* Set the frame length for the configured rings
1442          * desired by the user
1443          */
1444         for (i = 0; i < config->rx_ring_num; i++) {
1445                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1446                  * specified frame length steering.
1447                  * If the user provides the frame length then program
1448                  * the rts_frm_len register for those values or else
1449                  * leave it as it is.
1450                  */
1451                 if (rts_frm_len[i] != 0) {
1452                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1453                                 &bar0->rts_frm_len_n[i]);
1454                 }
1455         }
1456         
1457         /* Disable differentiated services steering logic */
1458         for (i = 0; i < 64; i++) {
1459                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1460                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1461                                 dev->name);
1462                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1463                         return FAILURE;
1464                 }
1465         }
1466
1467         /* Program statistics memory */
1468         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1469
1470         if (nic->device_type == XFRAME_II_DEVICE) {
1471                 val64 = STAT_BC(0x320);
1472                 writeq(val64, &bar0->stat_byte_cnt);
1473         }
1474
1475         /*
1476          * Initializing the sampling rate for the device to calculate the
1477          * bandwidth utilization.
1478          */
1479         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1480             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1481         writeq(val64, &bar0->mac_link_util);
1482
1483
1484         /*
1485          * Initializing the Transmit and Receive Traffic Interrupt
1486          * Scheme.
1487          */
1488         /*
1489          * TTI Initialization. Default Tx timer gets us about
1490          * 250 interrupts per sec. Continuous interrupts are enabled
1491          * by default.
1492          */
1493         if (nic->device_type == XFRAME_II_DEVICE) {
1494                 int count = (nic->config.bus_speed * 125)/2;
1495                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1496         } else {
1497
1498                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1499         }
1500         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1501             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1502             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1503                 if (use_continuous_tx_intrs)
1504                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1505         writeq(val64, &bar0->tti_data1_mem);
1506
1507         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1508             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1509             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1510         writeq(val64, &bar0->tti_data2_mem);
1511
1512         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1513         writeq(val64, &bar0->tti_command_mem);
1514
1515         /*
1516          * Once the operation completes, the Strobe bit of the command
1517          * register will be reset. We poll for this particular condition
1518          * We wait for a maximum of 500ms for the operation to complete,
1519          * if it's not complete by then we return error.
1520          */
1521         time = 0;
1522         while (TRUE) {
1523                 val64 = readq(&bar0->tti_command_mem);
1524                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1525                         break;
1526                 }
1527                 if (time > 10) {
1528                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1529                                   dev->name);
1530                         return -1;
1531                 }
1532                 msleep(50);
1533                 time++;
1534         }
1535
1536         if (nic->config.bimodal) {
1537                 int k = 0;
1538                 for (k = 0; k < config->rx_ring_num; k++) {
1539                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1540                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1541                         writeq(val64, &bar0->tti_command_mem);
1542
1543                 /*
1544                  * Once the operation completes, the Strobe bit of the command
1545                  * register will be reset. We poll for this particular condition
1546                  * We wait for a maximum of 500ms for the operation to complete,
1547                  * if it's not complete by then we return error.
1548                 */
1549                         time = 0;
1550                         while (TRUE) {
1551                                 val64 = readq(&bar0->tti_command_mem);
1552                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1553                                         break;
1554                                 }
1555                                 if (time > 10) {
1556                                         DBG_PRINT(ERR_DBG,
1557                                                 "%s: TTI init Failed\n",
1558                                         dev->name);
1559                                         return -1;
1560                                 }
1561                                 time++;
1562                                 msleep(50);
1563                         }
1564                 }
1565         } else {
1566
1567                 /* RTI Initialization */
1568                 if (nic->device_type == XFRAME_II_DEVICE) {
1569                         /*
1570                          * Programmed to generate Apprx 500 Intrs per
1571                          * second
1572                          */
1573                         int count = (nic->config.bus_speed * 125)/4;
1574                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1575                 } else {
1576                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1577                 }
1578                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1579                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1580                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1581
1582                 writeq(val64, &bar0->rti_data1_mem);
1583
1584                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1585                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1586                 if (nic->intr_type == MSI_X)
1587                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1588                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1589                 else
1590                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1591                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1592                 writeq(val64, &bar0->rti_data2_mem);
1593
1594                 for (i = 0; i < config->rx_ring_num; i++) {
1595                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1596                                         | RTI_CMD_MEM_OFFSET(i);
1597                         writeq(val64, &bar0->rti_command_mem);
1598
1599                         /*
1600                          * Once the operation completes, the Strobe bit of the
1601                          * command register will be reset. We poll for this
1602                          * particular condition. We wait for a maximum of 500ms
1603                          * for the operation to complete, if it's not complete
1604                          * by then we return error.
1605                          */
1606                         time = 0;
1607                         while (TRUE) {
1608                                 val64 = readq(&bar0->rti_command_mem);
1609                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1610                                         break;
1611                                 }
1612                                 if (time > 10) {
1613                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1614                                                   dev->name);
1615                                         return -1;
1616                                 }
1617                                 time++;
1618                                 msleep(50);
1619                         }
1620                 }
1621         }
1622
1623         /*
1624          * Initializing proper values as Pause threshold into all
1625          * the 8 Queues on Rx side.
1626          */
1627         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1628         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1629
1630         /* Disable RMAC PAD STRIPPING */
1631         add = &bar0->mac_cfg;
1632         val64 = readq(&bar0->mac_cfg);
1633         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1634         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1635         writel((u32) (val64), add);
1636         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1637         writel((u32) (val64 >> 32), (add + 4));
1638         val64 = readq(&bar0->mac_cfg);
1639
1640         /* Enable FCS stripping by adapter */
1641         add = &bar0->mac_cfg;
1642         val64 = readq(&bar0->mac_cfg);
1643         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1644         if (nic->device_type == XFRAME_II_DEVICE)
1645                 writeq(val64, &bar0->mac_cfg);
1646         else {
1647                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1648                 writel((u32) (val64), add);
1649                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1650                 writel((u32) (val64 >> 32), (add + 4));
1651         }
1652
1653         /*
1654          * Set the time value to be inserted in the pause frame
1655          * generated by xena.
1656          */
1657         val64 = readq(&bar0->rmac_pause_cfg);
1658         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1659         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1660         writeq(val64, &bar0->rmac_pause_cfg);
1661
1662         /*
1663          * Set the Threshold Limit for Generating the pause frame
1664          * If the amount of data in any Queue exceeds ratio of
1665          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1666          * pause frame is generated
1667          */
1668         val64 = 0;
1669         for (i = 0; i < 4; i++) {
1670                 val64 |=
1671                     (((u64) 0xFF00 | nic->mac_control.
1672                       mc_pause_threshold_q0q3)
1673                      << (i * 2 * 8));
1674         }
1675         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1676
1677         val64 = 0;
1678         for (i = 0; i < 4; i++) {
1679                 val64 |=
1680                     (((u64) 0xFF00 | nic->mac_control.
1681                       mc_pause_threshold_q4q7)
1682                      << (i * 2 * 8));
1683         }
1684         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1685
1686         /*
1687          * TxDMA will stop Read request if the number of read split has
1688          * exceeded the limit pointed by shared_splits
1689          */
1690         val64 = readq(&bar0->pic_control);
1691         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1692         writeq(val64, &bar0->pic_control);
1693
1694         if (nic->config.bus_speed == 266) {
1695                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1696                 writeq(0x0, &bar0->read_retry_delay);
1697                 writeq(0x0, &bar0->write_retry_delay);
1698         }
1699
1700         /*
1701          * Programming the Herc to split every write transaction
1702          * that does not start on an ADB to reduce disconnects.
1703          */
1704         if (nic->device_type == XFRAME_II_DEVICE) {
1705                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1706                         MISC_LINK_STABILITY_PRD(3);
1707                 writeq(val64, &bar0->misc_control);
1708                 val64 = readq(&bar0->pic_control2);
1709                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1710                 writeq(val64, &bar0->pic_control2);
1711         }
1712         if (strstr(nic->product_name, "CX4")) {
1713                 val64 = TMAC_AVG_IPG(0x17);
1714                 writeq(val64, &bar0->tmac_avg_ipg);
1715         }
1716
1717         return SUCCESS;
1718 }
1719 #define LINK_UP_DOWN_INTERRUPT          1
1720 #define MAC_RMAC_ERR_TIMER              2
1721
1722 static int s2io_link_fault_indication(struct s2io_nic *nic)
1723 {
1724         if (nic->intr_type != INTA)
1725                 return MAC_RMAC_ERR_TIMER;
1726         if (nic->device_type == XFRAME_II_DEVICE)
1727                 return LINK_UP_DOWN_INTERRUPT;
1728         else
1729                 return MAC_RMAC_ERR_TIMER;
1730 }
1731
1732 /**
1733  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1734  *  @nic: device private variable,
1735  *  @mask: A mask indicating which Intr block must be modified and,
1736  *  @flag: A flag indicating whether to enable or disable the Intrs.
1737  *  Description: This function will either disable or enable the interrupts
1738  *  depending on the flag argument. The mask argument can be used to
1739  *  enable/disable any Intr block.
1740  *  Return Value: NONE.
1741  */
1742
1743 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1744 {
1745         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1746         register u64 val64 = 0, temp64 = 0;
1747
1748         /*  Top level interrupt classification */
1749         /*  PIC Interrupts */
1750         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1751                 /*  Enable PIC Intrs in the general intr mask register */
1752                 val64 = TXPIC_INT_M;
1753                 if (flag == ENABLE_INTRS) {
1754                         temp64 = readq(&bar0->general_int_mask);
1755                         temp64 &= ~((u64) val64);
1756                         writeq(temp64, &bar0->general_int_mask);
1757                         /*
1758                          * If Hercules adapter enable GPIO otherwise
1759                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1760                          * interrupts for now.
1761                          * TODO
1762                          */
1763                         if (s2io_link_fault_indication(nic) ==
1764                                         LINK_UP_DOWN_INTERRUPT ) {
1765                                 temp64 = readq(&bar0->pic_int_mask);
1766                                 temp64 &= ~((u64) PIC_INT_GPIO);
1767                                 writeq(temp64, &bar0->pic_int_mask);
1768                                 temp64 = readq(&bar0->gpio_int_mask);
1769                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1770                                 writeq(temp64, &bar0->gpio_int_mask);
1771                         } else {
1772                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1773                         }
1774                         /*
1775                          * No MSI Support is available presently, so TTI and
1776                          * RTI interrupts are also disabled.
1777                          */
1778                 } else if (flag == DISABLE_INTRS) {
1779                         /*
1780                          * Disable PIC Intrs in the general
1781                          * intr mask register
1782                          */
1783                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1784                         temp64 = readq(&bar0->general_int_mask);
1785                         val64 |= temp64;
1786                         writeq(val64, &bar0->general_int_mask);
1787                 }
1788         }
1789
1790         /*  MAC Interrupts */
1791         /*  Enabling/Disabling MAC interrupts */
1792         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1793                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1794                 if (flag == ENABLE_INTRS) {
1795                         temp64 = readq(&bar0->general_int_mask);
1796                         temp64 &= ~((u64) val64);
1797                         writeq(temp64, &bar0->general_int_mask);
1798                         /*
1799                          * All MAC block error interrupts are disabled for now
1800                          * TODO
1801                          */
1802                 } else if (flag == DISABLE_INTRS) {
1803                         /*
1804                          * Disable MAC Intrs in the general intr mask register
1805                          */
1806                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1807                         writeq(DISABLE_ALL_INTRS,
1808                                &bar0->mac_rmac_err_mask);
1809
1810                         temp64 = readq(&bar0->general_int_mask);
1811                         val64 |= temp64;
1812                         writeq(val64, &bar0->general_int_mask);
1813                 }
1814         }
1815
1816         /*  Tx traffic interrupts */
1817         if (mask & TX_TRAFFIC_INTR) {
1818                 val64 = TXTRAFFIC_INT_M;
1819                 if (flag == ENABLE_INTRS) {
1820                         temp64 = readq(&bar0->general_int_mask);
1821                         temp64 &= ~((u64) val64);
1822                         writeq(temp64, &bar0->general_int_mask);
1823                         /*
1824                          * Enable all the Tx side interrupts
1825                          * writing 0 Enables all 64 TX interrupt levels
1826                          */
1827                         writeq(0x0, &bar0->tx_traffic_mask);
1828                 } else if (flag == DISABLE_INTRS) {
1829                         /*
1830                          * Disable Tx Traffic Intrs in the general intr mask
1831                          * register.
1832                          */
1833                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1834                         temp64 = readq(&bar0->general_int_mask);
1835                         val64 |= temp64;
1836                         writeq(val64, &bar0->general_int_mask);
1837                 }
1838         }
1839
1840         /*  Rx traffic interrupts */
1841         if (mask & RX_TRAFFIC_INTR) {
1842                 val64 = RXTRAFFIC_INT_M;
1843                 if (flag == ENABLE_INTRS) {
1844                         temp64 = readq(&bar0->general_int_mask);
1845                         temp64 &= ~((u64) val64);
1846                         writeq(temp64, &bar0->general_int_mask);
1847                         /* writing 0 Enables all 8 RX interrupt levels */
1848                         writeq(0x0, &bar0->rx_traffic_mask);
1849                 } else if (flag == DISABLE_INTRS) {
1850                         /*
1851                          * Disable Rx Traffic Intrs in the general intr mask
1852                          * register.
1853                          */
1854                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1855                         temp64 = readq(&bar0->general_int_mask);
1856                         val64 |= temp64;
1857                         writeq(val64, &bar0->general_int_mask);
1858                 }
1859         }
1860 }
1861
1862 /**
1863  *  verify_pcc_quiescent- Checks for PCC quiescent state
1864  *  Return: 1 If PCC is quiescence
1865  *          0 If PCC is not quiescence
1866  */
1867 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1868 {
1869         int ret = 0, herc;
1870         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1871         u64 val64 = readq(&bar0->adapter_status);
1872         
1873         herc = (sp->device_type == XFRAME_II_DEVICE);
1874
1875         if (flag == FALSE) {
1876                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1877                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1878                                 ret = 1;
1879                 } else {
1880                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1881                                 ret = 1;
1882                 }
1883         } else {
1884                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1885                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1886                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1887                                 ret = 1;
1888                 } else {
1889                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1890                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1891                                 ret = 1;
1892                 }
1893         }
1894
1895         return ret;
1896 }
1897 /**
1898  *  verify_xena_quiescence - Checks whether the H/W is ready
1899  *  Description: Returns whether the H/W is ready to go or not. Depending
1900  *  on whether adapter enable bit was written or not the comparison
1901  *  differs and the calling function passes the input argument flag to
1902  *  indicate this.
1903  *  Return: 1 If xena is quiescence
1904  *          0 If Xena is not quiescence
1905  */
1906
1907 static int verify_xena_quiescence(struct s2io_nic *sp)
1908 {
1909         int  mode;
1910         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1911         u64 val64 = readq(&bar0->adapter_status);
1912         mode = s2io_verify_pci_mode(sp);
1913
1914         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1915                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1916                 return 0;
1917         }
1918         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1919         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1920                 return 0;
1921         }
1922         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1923                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1924                 return 0;
1925         }
1926         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1927                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1928                 return 0;
1929         }
1930         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1931                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1932                 return 0;
1933         }
1934         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1935                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1936                 return 0;
1937         }
1938         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1939                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1940                 return 0;
1941         }
1942         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1943                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1944                 return 0;
1945         }
1946
1947         /*
1948          * In PCI 33 mode, the P_PLL is not used, and therefore,
1949          * the the P_PLL_LOCK bit in the adapter_status register will
1950          * not be asserted.
1951          */
1952         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1953                 sp->device_type == XFRAME_II_DEVICE && mode !=
1954                 PCI_MODE_PCI_33) {
1955                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1956                 return 0;
1957         }
1958         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1959                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1960                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1961                 return 0;
1962         }
1963         return 1;
1964 }
1965
1966 /**
1967  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1968  * @sp: Pointer to device specifc structure
1969  * Description :
1970  * New procedure to clear mac address reading  problems on Alpha platforms
1971  *
1972  */
1973
1974 static void fix_mac_address(struct s2io_nic * sp)
1975 {
1976         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1977         u64 val64;
1978         int i = 0;
1979
1980         while (fix_mac[i] != END_SIGN) {
1981                 writeq(fix_mac[i++], &bar0->gpio_control);
1982                 udelay(10);
1983                 val64 = readq(&bar0->gpio_control);
1984         }
1985 }
1986
1987 /**
1988  *  start_nic - Turns the device on
1989  *  @nic : device private variable.
1990  *  Description:
1991  *  This function actually turns the device on. Before this  function is
1992  *  called,all Registers are configured from their reset states
1993  *  and shared memory is allocated but the NIC is still quiescent. On
1994  *  calling this function, the device interrupts are cleared and the NIC is
1995  *  literally switched on by writing into the adapter control register.
1996  *  Return Value:
1997  *  SUCCESS on success and -1 on failure.
1998  */
1999
2000 static int start_nic(struct s2io_nic *nic)
2001 {
2002         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2003         struct net_device *dev = nic->dev;
2004         register u64 val64 = 0;
2005         u16 subid, i;
2006         struct mac_info *mac_control;
2007         struct config_param *config;
2008
2009         mac_control = &nic->mac_control;
2010         config = &nic->config;
2011
2012         /*  PRC Initialization and configuration */
2013         for (i = 0; i < config->rx_ring_num; i++) {
2014                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2015                        &bar0->prc_rxd0_n[i]);
2016
2017                 val64 = readq(&bar0->prc_ctrl_n[i]);
2018                 if (nic->config.bimodal)
2019                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2020                 if (nic->rxd_mode == RXD_MODE_1)
2021                         val64 |= PRC_CTRL_RC_ENABLED;
2022                 else
2023                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2024                 if (nic->device_type == XFRAME_II_DEVICE)
2025                         val64 |= PRC_CTRL_GROUP_READS;
2026                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2027                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2028                 writeq(val64, &bar0->prc_ctrl_n[i]);
2029         }
2030
2031         if (nic->rxd_mode == RXD_MODE_3B) {
2032                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2033                 val64 = readq(&bar0->rx_pa_cfg);
2034                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2035                 writeq(val64, &bar0->rx_pa_cfg);
2036         }
2037
2038         if (vlan_tag_strip == 0) {
2039                 val64 = readq(&bar0->rx_pa_cfg);
2040                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2041                 writeq(val64, &bar0->rx_pa_cfg);
2042                 vlan_strip_flag = 0;
2043         }
2044
2045         /*
2046          * Enabling MC-RLDRAM. After enabling the device, we timeout
2047          * for around 100ms, which is approximately the time required
2048          * for the device to be ready for operation.
2049          */
2050         val64 = readq(&bar0->mc_rldram_mrs);
2051         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2052         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2053         val64 = readq(&bar0->mc_rldram_mrs);
2054
2055         msleep(100);    /* Delay by around 100 ms. */
2056
2057         /* Enabling ECC Protection. */
2058         val64 = readq(&bar0->adapter_control);
2059         val64 &= ~ADAPTER_ECC_EN;
2060         writeq(val64, &bar0->adapter_control);
2061
2062         /*
2063          * Clearing any possible Link state change interrupts that
2064          * could have popped up just before Enabling the card.
2065          */
2066         val64 = readq(&bar0->mac_rmac_err_reg);
2067         if (val64)
2068                 writeq(val64, &bar0->mac_rmac_err_reg);
2069
2070         /*
2071          * Verify if the device is ready to be enabled, if so enable
2072          * it.
2073          */
2074         val64 = readq(&bar0->adapter_status);
2075         if (!verify_xena_quiescence(nic)) {
2076                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2077                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2078                           (unsigned long long) val64);
2079                 return FAILURE;
2080         }
2081
2082         /*
2083          * With some switches, link might be already up at this point.
2084          * Because of this weird behavior, when we enable laser,
2085          * we may not get link. We need to handle this. We cannot
2086          * figure out which switch is misbehaving. So we are forced to
2087          * make a global change.
2088          */
2089
2090         /* Enabling Laser. */
2091         val64 = readq(&bar0->adapter_control);
2092         val64 |= ADAPTER_EOI_TX_ON;
2093         writeq(val64, &bar0->adapter_control);
2094
2095         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2096                 /*
2097                  * Dont see link state interrupts initally on some switches,
2098                  * so directly scheduling the link state task here.
2099                  */
2100                 schedule_work(&nic->set_link_task);
2101         }
2102         /* SXE-002: Initialize link and activity LED */
2103         subid = nic->pdev->subsystem_device;
2104         if (((subid & 0xFF) >= 0x07) &&
2105             (nic->device_type == XFRAME_I_DEVICE)) {
2106                 val64 = readq(&bar0->gpio_control);
2107                 val64 |= 0x0000800000000000ULL;
2108                 writeq(val64, &bar0->gpio_control);
2109                 val64 = 0x0411040400000000ULL;
2110                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2111         }
2112
2113         return SUCCESS;
2114 }
2115 /**
2116  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2117  */
2118 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2119                                         TxD *txdlp, int get_off)
2120 {
2121         struct s2io_nic *nic = fifo_data->nic;
2122         struct sk_buff *skb;
2123         struct TxD *txds;
2124         u16 j, frg_cnt;
2125
2126         txds = txdlp;
2127         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2128                 pci_unmap_single(nic->pdev, (dma_addr_t)
2129                         txds->Buffer_Pointer, sizeof(u64),
2130                         PCI_DMA_TODEVICE);
2131                 txds++;
2132         }
2133
2134         skb = (struct sk_buff *) ((unsigned long)
2135                         txds->Host_Control);
2136         if (!skb) {
2137                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2138                 return NULL;
2139         }
2140         pci_unmap_single(nic->pdev, (dma_addr_t)
2141                          txds->Buffer_Pointer,
2142                          skb->len - skb->data_len,
2143                          PCI_DMA_TODEVICE);
2144         frg_cnt = skb_shinfo(skb)->nr_frags;
2145         if (frg_cnt) {
2146                 txds++;
2147                 for (j = 0; j < frg_cnt; j++, txds++) {
2148                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2149                         if (!txds->Buffer_Pointer)
2150                                 break;
2151                         pci_unmap_page(nic->pdev, (dma_addr_t)
2152                                         txds->Buffer_Pointer,
2153                                        frag->size, PCI_DMA_TODEVICE);
2154                 }
2155         }
2156         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2157         return(skb);
2158 }
2159
2160 /**
2161  *  free_tx_buffers - Free all queued Tx buffers
2162  *  @nic : device private variable.
2163  *  Description:
2164  *  Free all queued Tx buffers.
2165  *  Return Value: void
2166 */
2167
2168 static void free_tx_buffers(struct s2io_nic *nic)
2169 {
2170         struct net_device *dev = nic->dev;
2171         struct sk_buff *skb;
2172         struct TxD *txdp;
2173         int i, j;
2174         struct mac_info *mac_control;
2175         struct config_param *config;
2176         int cnt = 0;
2177
2178         mac_control = &nic->mac_control;
2179         config = &nic->config;
2180
2181         for (i = 0; i < config->tx_fifo_num; i++) {
2182                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2183                         txdp = (struct TxD *) \
2184                         mac_control->fifos[i].list_info[j].list_virt_addr;
2185                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2186                         if (skb) {
2187                                 nic->mac_control.stats_info->sw_stat.mem_freed 
2188                                         += skb->truesize;
2189                                 dev_kfree_skb(skb);
2190                                 cnt++;
2191                         }
2192                 }
2193                 DBG_PRINT(INTR_DBG,
2194                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2195                           dev->name, cnt, i);
2196                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2197                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2198         }
2199 }
2200
2201 /**
2202  *   stop_nic -  To stop the nic
2203  *   @nic ; device private variable.
2204  *   Description:
2205  *   This function does exactly the opposite of what the start_nic()
2206  *   function does. This function is called to stop the device.
2207  *   Return Value:
2208  *   void.
2209  */
2210
2211 static void stop_nic(struct s2io_nic *nic)
2212 {
2213         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2214         register u64 val64 = 0;
2215         u16 interruptible;
2216         struct mac_info *mac_control;
2217         struct config_param *config;
2218
2219         mac_control = &nic->mac_control;
2220         config = &nic->config;
2221
2222         /*  Disable all interrupts */
2223         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2224         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2225         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2226         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2227
2228         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2229         val64 = readq(&bar0->adapter_control);
2230         val64 &= ~(ADAPTER_CNTL_EN);
2231         writeq(val64, &bar0->adapter_control);
2232 }
2233
2234 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2235                                 sk_buff *skb)
2236 {
2237         struct net_device *dev = nic->dev;
2238         struct sk_buff *frag_list;
2239         void *tmp;
2240
2241         /* Buffer-1 receives L3/L4 headers */
2242         ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2243                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2244                         PCI_DMA_FROMDEVICE);
2245
2246         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2247         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2248         if (skb_shinfo(skb)->frag_list == NULL) {
2249                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2250                 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2251                 return -ENOMEM ;
2252         }
2253         frag_list = skb_shinfo(skb)->frag_list;
2254         skb->truesize += frag_list->truesize;
2255         nic->mac_control.stats_info->sw_stat.mem_allocated 
2256                 += frag_list->truesize;
2257         frag_list->next = NULL;
2258         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2259         frag_list->data = tmp;
2260         skb_reset_tail_pointer(frag_list);
2261
2262         /* Buffer-2 receives L4 data payload */
2263         ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2264                                 frag_list->data, dev->mtu,
2265                                 PCI_DMA_FROMDEVICE);
2266         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2267         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2268
2269         return SUCCESS;
2270 }
2271
2272 /**
2273  *  fill_rx_buffers - Allocates the Rx side skbs
2274  *  @nic:  device private variable
2275  *  @ring_no: ring number
2276  *  Description:
2277  *  The function allocates Rx side skbs and puts the physical
2278  *  address of these buffers into the RxD buffer pointers, so that the NIC
2279  *  can DMA the received frame into these locations.
2280  *  The NIC supports 3 receive modes, viz
2281  *  1. single buffer,
2282  *  2. three buffer and
2283  *  3. Five buffer modes.
2284  *  Each mode defines how many fragments the received frame will be split
2285  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2286  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2287  *  is split into 3 fragments. As of now only single buffer mode is
2288  *  supported.
2289  *   Return Value:
2290  *  SUCCESS on success or an appropriate -ve value on failure.
2291  */
2292
2293 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2294 {
2295         struct net_device *dev = nic->dev;
2296         struct sk_buff *skb;
2297         struct RxD_t *rxdp;
2298         int off, off1, size, block_no, block_no1;
2299         u32 alloc_tab = 0;
2300         u32 alloc_cnt;
2301         struct mac_info *mac_control;
2302         struct config_param *config;
2303         u64 tmp;
2304         struct buffAdd *ba;
2305         unsigned long flags;
2306         struct RxD_t *first_rxdp = NULL;
2307         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2308
2309         mac_control = &nic->mac_control;
2310         config = &nic->config;
2311         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2312             atomic_read(&nic->rx_bufs_left[ring_no]);
2313
2314         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2315         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2316         while (alloc_tab < alloc_cnt) {
2317                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2318                     block_index;
2319                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2320
2321                 rxdp = mac_control->rings[ring_no].
2322                                 rx_blocks[block_no].rxds[off].virt_addr;
2323
2324                 if ((block_no == block_no1) && (off == off1) &&
2325                                         (rxdp->Host_Control)) {
2326                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2327                                   dev->name);
2328                         DBG_PRINT(INTR_DBG, " info equated\n");
2329                         goto end;
2330                 }
2331                 if (off && (off == rxd_count[nic->rxd_mode])) {
2332                         mac_control->rings[ring_no].rx_curr_put_info.
2333                             block_index++;
2334                         if (mac_control->rings[ring_no].rx_curr_put_info.
2335                             block_index == mac_control->rings[ring_no].
2336                                         block_count)
2337                                 mac_control->rings[ring_no].rx_curr_put_info.
2338                                         block_index = 0;
2339                         block_no = mac_control->rings[ring_no].
2340                                         rx_curr_put_info.block_index;
2341                         if (off == rxd_count[nic->rxd_mode])
2342                                 off = 0;
2343                         mac_control->rings[ring_no].rx_curr_put_info.
2344                                 offset = off;
2345                         rxdp = mac_control->rings[ring_no].
2346                                 rx_blocks[block_no].block_virt_addr;
2347                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2348                                   dev->name, rxdp);
2349                 }
2350                 if(!napi) {
2351                         spin_lock_irqsave(&nic->put_lock, flags);
2352                         mac_control->rings[ring_no].put_pos =
2353                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2354                         spin_unlock_irqrestore(&nic->put_lock, flags);
2355                 } else {
2356                         mac_control->rings[ring_no].put_pos =
2357                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2358                 }
2359                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2360                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2361                                 (rxdp->Control_2 & BIT(0)))) {
2362                         mac_control->rings[ring_no].rx_curr_put_info.
2363                                         offset = off;
2364                         goto end;
2365                 }
2366                 /* calculate size of skb based on ring mode */
2367                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2368                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2369                 if (nic->rxd_mode == RXD_MODE_1)
2370                         size += NET_IP_ALIGN;
2371                 else if (nic->rxd_mode == RXD_MODE_3B)
2372                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2373                 else
2374                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2375
2376                 /* allocate skb */
2377                 skb = dev_alloc_skb(size);
2378                 if(!skb) {
2379                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2380                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2381                         if (first_rxdp) {
2382                                 wmb();
2383                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2384                         }
2385                         nic->mac_control.stats_info->sw_stat. \
2386                                 mem_alloc_fail_cnt++;
2387                         return -ENOMEM ;
2388                 }
2389                 nic->mac_control.stats_info->sw_stat.mem_allocated 
2390                         += skb->truesize;
2391                 if (nic->rxd_mode == RXD_MODE_1) {
2392                         /* 1 buffer mode - normal operation mode */
2393                         memset(rxdp, 0, sizeof(struct RxD1));
2394                         skb_reserve(skb, NET_IP_ALIGN);
2395                         ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2396                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2397                                 PCI_DMA_FROMDEVICE);
2398                         rxdp->Control_2 = 
2399                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2400
2401                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2402                         /*
2403                          * 2 or 3 buffer mode -
2404                          * Both 2 buffer mode and 3 buffer mode provides 128
2405                          * byte aligned receive buffers.
2406                          *
2407                          * 3 buffer mode provides header separation where in
2408                          * skb->data will have L3/L4 headers where as
2409                          * skb_shinfo(skb)->frag_list will have the L4 data
2410                          * payload
2411                          */
2412
2413                         /* save buffer pointers to avoid frequent dma mapping */
2414                         Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2415                         Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2416                         memset(rxdp, 0, sizeof(struct RxD3));
2417                         /* restore the buffer pointers for dma sync*/
2418                         ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2419                         ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2420
2421                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2422                         skb_reserve(skb, BUF0_LEN);
2423                         tmp = (u64)(unsigned long) skb->data;
2424                         tmp += ALIGN_SIZE;
2425                         tmp &= ~ALIGN_SIZE;
2426                         skb->data = (void *) (unsigned long)tmp;
2427                         skb_reset_tail_pointer(skb);
2428
2429                         if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2430                                 ((struct RxD3*)rxdp)->Buffer0_ptr =
2431                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2432                                            PCI_DMA_FROMDEVICE);
2433                         else
2434                                 pci_dma_sync_single_for_device(nic->pdev,
2435                                 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2436                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2437                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2438                         if (nic->rxd_mode == RXD_MODE_3B) {
2439                                 /* Two buffer mode */
2440
2441                                 /*
2442                                  * Buffer2 will have L3/L4 header plus
2443                                  * L4 payload
2444                                  */
2445                                 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2446                                 (nic->pdev, skb->data, dev->mtu + 4,
2447                                                 PCI_DMA_FROMDEVICE);
2448
2449                                 /* Buffer-1 will be dummy buffer. Not used */
2450                                 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2451                                         ((struct RxD3*)rxdp)->Buffer1_ptr =
2452                                                 pci_map_single(nic->pdev,
2453                                                 ba->ba_1, BUF1_LEN,
2454                                                 PCI_DMA_FROMDEVICE);
2455                                 }
2456                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2457                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2458                                                                 (dev->mtu + 4);
2459                         } else {
2460                                 /* 3 buffer mode */
2461                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2462                                         nic->mac_control.stats_info->sw_stat.\
2463                                         mem_freed += skb->truesize;
2464                                         dev_kfree_skb_irq(skb);
2465                                         if (first_rxdp) {
2466                                                 wmb();
2467                                                 first_rxdp->Control_1 |=
2468                                                         RXD_OWN_XENA;
2469                                         }
2470                                         return -ENOMEM ;
2471                                 }
2472                         }
2473                         rxdp->Control_2 |= BIT(0);
2474                 }
2475                 rxdp->Host_Control = (unsigned long) (skb);
2476                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2477                         rxdp->Control_1 |= RXD_OWN_XENA;
2478                 off++;
2479                 if (off == (rxd_count[nic->rxd_mode] + 1))
2480                         off = 0;
2481                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2482
2483                 rxdp->Control_2 |= SET_RXD_MARKER;
2484                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2485                         if (first_rxdp) {
2486                                 wmb();
2487                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2488                         }
2489                         first_rxdp = rxdp;
2490                 }
2491                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2492                 alloc_tab++;
2493         }
2494
2495       end:
2496         /* Transfer ownership of first descriptor to adapter just before
2497          * exiting. Before that, use memory barrier so that ownership
2498          * and other fields are seen by adapter correctly.
2499          */
2500         if (first_rxdp) {
2501                 wmb();
2502                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2503         }
2504
2505         return SUCCESS;
2506 }
2507
2508 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2509 {
2510         struct net_device *dev = sp->dev;
2511         int j;
2512         struct sk_buff *skb;
2513         struct RxD_t *rxdp;
2514         struct mac_info *mac_control;
2515         struct buffAdd *ba;
2516
2517         mac_control = &sp->mac_control;
2518         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2519                 rxdp = mac_control->rings[ring_no].
2520                                 rx_blocks[blk].rxds[j].virt_addr;
2521                 skb = (struct sk_buff *)
2522                         ((unsigned long) rxdp->Host_Control);
2523                 if (!skb) {
2524                         continue;
2525                 }
2526                 if (sp->rxd_mode == RXD_MODE_1) {
2527                         pci_unmap_single(sp->pdev, (dma_addr_t)
2528                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2529                                  dev->mtu +
2530                                  HEADER_ETHERNET_II_802_3_SIZE
2531                                  + HEADER_802_2_SIZE +
2532                                  HEADER_SNAP_SIZE,
2533                                  PCI_DMA_FROMDEVICE);
2534                         memset(rxdp, 0, sizeof(struct RxD1));
2535                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2536                         ba = &mac_control->rings[ring_no].
2537                                 ba[blk][j];
2538                         pci_unmap_single(sp->pdev, (dma_addr_t)
2539                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2540                                  BUF0_LEN,
2541                                  PCI_DMA_FROMDEVICE);
2542                         pci_unmap_single(sp->pdev, (dma_addr_t)
2543                                  ((struct RxD3*)rxdp)->Buffer1_ptr,
2544                                  BUF1_LEN,
2545                                  PCI_DMA_FROMDEVICE);
2546                         pci_unmap_single(sp->pdev, (dma_addr_t)
2547                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2548                                  dev->mtu + 4,
2549                                  PCI_DMA_FROMDEVICE);
2550                         memset(rxdp, 0, sizeof(struct RxD3));
2551                 } else {
2552                         pci_unmap_single(sp->pdev, (dma_addr_t)
2553                                 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2554                                 PCI_DMA_FROMDEVICE);
2555                         pci_unmap_single(sp->pdev, (dma_addr_t)
2556                                 ((struct RxD3*)rxdp)->Buffer1_ptr,
2557                                 l3l4hdr_size + 4,
2558                                 PCI_DMA_FROMDEVICE);
2559                         pci_unmap_single(sp->pdev, (dma_addr_t)
2560                                 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2561                                 PCI_DMA_FROMDEVICE);
2562                         memset(rxdp, 0, sizeof(struct RxD3));
2563                 }
2564                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2565                 dev_kfree_skb(skb);
2566                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2567         }
2568 }
2569
2570 /**
2571  *  free_rx_buffers - Frees all Rx buffers
2572  *  @sp: device private variable.
2573  *  Description:
2574  *  This function will free all Rx buffers allocated by host.
2575  *  Return Value:
2576  *  NONE.
2577  */
2578
2579 static void free_rx_buffers(struct s2io_nic *sp)
2580 {
2581         struct net_device *dev = sp->dev;
2582         int i, blk = 0, buf_cnt = 0;
2583         struct mac_info *mac_control;
2584         struct config_param *config;
2585
2586         mac_control = &sp->mac_control;
2587         config = &sp->config;
2588
2589         for (i = 0; i < config->rx_ring_num; i++) {
2590                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2591                         free_rxd_blk(sp,i,blk);
2592
2593                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2594                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2595                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2596                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2597                 atomic_set(&sp->rx_bufs_left[i], 0);
2598                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2599                           dev->name, buf_cnt, i);
2600         }
2601 }
2602
2603 /**
2604  * s2io_poll - Rx interrupt handler for NAPI support
2605  * @dev : pointer to the device structure.
2606  * @budget : The number of packets that were budgeted to be processed
2607  * during  one pass through the 'Poll" function.
2608  * Description:
2609  * Comes into picture only if NAPI support has been incorporated. It does
2610  * the same thing that rx_intr_handler does, but not in a interrupt context
2611  * also It will process only a given number of packets.
2612  * Return value:
2613  * 0 on success and 1 if there are No Rx packets to be processed.
2614  */
2615
2616 static int s2io_poll(struct net_device *dev, int *budget)
2617 {
2618         struct s2io_nic *nic = dev->priv;
2619         int pkt_cnt = 0, org_pkts_to_process;
2620         struct mac_info *mac_control;
2621         struct config_param *config;
2622         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2623         int i;
2624
2625         atomic_inc(&nic->isr_cnt);
2626         mac_control = &nic->mac_control;
2627         config = &nic->config;
2628
2629         nic->pkts_to_process = *budget;
2630         if (nic->pkts_to_process > dev->quota)
2631                 nic->pkts_to_process = dev->quota;
2632         org_pkts_to_process = nic->pkts_to_process;
2633
2634         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2635         readl(&bar0->rx_traffic_int);
2636
2637         for (i = 0; i < config->rx_ring_num; i++) {
2638                 rx_intr_handler(&mac_control->rings[i]);
2639                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2640                 if (!nic->pkts_to_process) {
2641                         /* Quota for the current iteration has been met */
2642                         goto no_rx;
2643                 }
2644         }
2645         if (!pkt_cnt)
2646                 pkt_cnt = 1;
2647
2648         dev->quota -= pkt_cnt;
2649         *budget -= pkt_cnt;
2650         netif_rx_complete(dev);
2651
2652         for (i = 0; i < config->rx_ring_num; i++) {
2653                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2654                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2655                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2656                         break;
2657                 }
2658         }
2659         /* Re enable the Rx interrupts. */
2660         writeq(0x0, &bar0->rx_traffic_mask);
2661         readl(&bar0->rx_traffic_mask);
2662         atomic_dec(&nic->isr_cnt);
2663         return 0;
2664
2665 no_rx:
2666         dev->quota -= pkt_cnt;
2667         *budget -= pkt_cnt;
2668
2669         for (i = 0; i < config->rx_ring_num; i++) {
2670                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2671                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2672                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2673                         break;
2674                 }
2675         }
2676         atomic_dec(&nic->isr_cnt);
2677         return 1;
2678 }
2679
2680 #ifdef CONFIG_NET_POLL_CONTROLLER
2681 /**
2682  * s2io_netpoll - netpoll event handler entry point
2683  * @dev : pointer to the device structure.
2684  * Description:
2685  *      This function will be called by upper layer to check for events on the
2686  * interface in situations where interrupts are disabled. It is used for
2687  * specific in-kernel networking tasks, such as remote consoles and kernel
2688  * debugging over the network (example netdump in RedHat).
2689  */
2690 static void s2io_netpoll(struct net_device *dev)
2691 {
2692         struct s2io_nic *nic = dev->priv;
2693         struct mac_info *mac_control;
2694         struct config_param *config;
2695         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2696         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2697         int i;
2698
2699         if (pci_channel_offline(nic->pdev))
2700                 return;
2701
2702         disable_irq(dev->irq);
2703
2704         atomic_inc(&nic->isr_cnt);
2705         mac_control = &nic->mac_control;
2706         config = &nic->config;
2707
2708         writeq(val64, &bar0->rx_traffic_int);
2709         writeq(val64, &bar0->tx_traffic_int);
2710
2711         /* we need to free up the transmitted skbufs or else netpoll will
2712          * run out of skbs and will fail and eventually netpoll application such
2713          * as netdump will fail.
2714          */
2715         for (i = 0; i < config->tx_fifo_num; i++)
2716                 tx_intr_handler(&mac_control->fifos[i]);
2717
2718         /* check for received packet and indicate up to network */
2719         for (i = 0; i < config->rx_ring_num; i++)
2720                 rx_intr_handler(&mac_control->rings[i]);
2721
2722         for (i = 0; i < config->rx_ring_num; i++) {
2723                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2724                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2725                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2726                         break;
2727                 }
2728         }
2729         atomic_dec(&nic->isr_cnt);
2730         enable_irq(dev->irq);
2731         return;
2732 }
2733 #endif
2734
2735 /**
2736  *  rx_intr_handler - Rx interrupt handler
2737  *  @nic: device private variable.
2738  *  Description:
2739  *  If the interrupt is because of a received frame or if the
2740  *  receive ring contains fresh as yet un-processed frames,this function is
2741  *  called. It picks out the RxD at which place the last Rx processing had
2742  *  stopped and sends the skb to the OSM's Rx handler and then increments
2743  *  the offset.
2744  *  Return Value:
2745  *  NONE.
2746  */
2747 static void rx_intr_handler(struct ring_info *ring_data)
2748 {
2749         struct s2io_nic *nic = ring_data->nic;
2750         struct net_device *dev = (struct net_device *) nic->dev;
2751         int get_block, put_block, put_offset;
2752         struct rx_curr_get_info get_info, put_info;
2753         struct RxD_t *rxdp;
2754         struct sk_buff *skb;
2755         int pkt_cnt = 0;
2756         int i;
2757
2758         spin_lock(&nic->rx_lock);
2759         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2760                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2761                           __FUNCTION__, dev->name);
2762                 spin_unlock(&nic->rx_lock);
2763                 return;
2764         }
2765
2766         get_info = ring_data->rx_curr_get_info;
2767         get_block = get_info.block_index;
2768         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2769         put_block = put_info.block_index;
2770         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2771         if (!napi) {
2772                 spin_lock(&nic->put_lock);
2773                 put_offset = ring_data->put_pos;
2774                 spin_unlock(&nic->put_lock);
2775         } else
2776                 put_offset = ring_data->put_pos;
2777
2778         while (RXD_IS_UP2DT(rxdp)) {
2779                 /*
2780                  * If your are next to put index then it's
2781                  * FIFO full condition
2782                  */
2783                 if ((get_block == put_block) &&
2784                     (get_info.offset + 1) == put_info.offset) {
2785                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2786                         break;
2787                 }
2788                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2789                 if (skb == NULL) {
2790                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2791                                   dev->name);
2792                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2793                         spin_unlock(&nic->rx_lock);
2794                         return;
2795                 }
2796                 if (nic->rxd_mode == RXD_MODE_1) {
2797                         pci_unmap_single(nic->pdev, (dma_addr_t)
2798                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2799                                  dev->mtu +
2800                                  HEADER_ETHERNET_II_802_3_SIZE +
2801                                  HEADER_802_2_SIZE +
2802                                  HEADER_SNAP_SIZE,
2803                                  PCI_DMA_FROMDEVICE);
2804                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2805                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2806                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2807                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2808                         pci_unmap_single(nic->pdev, (dma_addr_t)
2809                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2810                                  dev->mtu + 4,
2811                                  PCI_DMA_FROMDEVICE);
2812                 } else {
2813                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2814                                          ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2815                                          PCI_DMA_FROMDEVICE);
2816                         pci_unmap_single(nic->pdev, (dma_addr_t)
2817                                          ((struct RxD3*)rxdp)->Buffer1_ptr,
2818                                          l3l4hdr_size + 4,
2819                                          PCI_DMA_FROMDEVICE);
2820                         pci_unmap_single(nic->pdev, (dma_addr_t)
2821                                          ((struct RxD3*)rxdp)->Buffer2_ptr,
2822                                          dev->mtu, PCI_DMA_FROMDEVICE);
2823                 }
2824                 prefetch(skb->data);
2825                 rx_osm_handler(ring_data, rxdp);
2826                 get_info.offset++;
2827                 ring_data->rx_curr_get_info.offset = get_info.offset;
2828                 rxdp = ring_data->rx_blocks[get_block].
2829                                 rxds[get_info.offset].virt_addr;
2830                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2831                         get_info.offset = 0;
2832                         ring_data->rx_curr_get_info.offset = get_info.offset;
2833                         get_block++;
2834                         if (get_block == ring_data->block_count)
2835                                 get_block = 0;
2836                         ring_data->rx_curr_get_info.block_index = get_block;
2837                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2838                 }
2839
2840                 nic->pkts_to_process -= 1;
2841                 if ((napi) && (!nic->pkts_to_process))
2842                         break;
2843                 pkt_cnt++;
2844                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2845                         break;
2846         }
2847         if (nic->lro) {
2848                 /* Clear all LRO sessions before exiting */
2849                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2850                         struct lro *lro = &nic->lro0_n[i];
2851                         if (lro->in_use) {
2852                                 update_L3L4_header(nic, lro);
2853                                 queue_rx_frame(lro->parent);
2854                                 clear_lro_session(lro);
2855                         }
2856                 }
2857         }
2858
2859         spin_unlock(&nic->rx_lock);
2860 }
2861
2862 /**
2863  *  tx_intr_handler - Transmit interrupt handler
2864  *  @nic : device private variable
2865  *  Description:
2866  *  If an interrupt was raised to indicate DMA complete of the
2867  *  Tx packet, this function is called. It identifies the last TxD
2868  *  whose buffer was freed and frees all skbs whose data have already
2869  *  DMA'ed into the NICs internal memory.
2870  *  Return Value:
2871  *  NONE
2872  */
2873
2874 static void tx_intr_handler(struct fifo_info *fifo_data)
2875 {
2876         struct s2io_nic *nic = fifo_data->nic;
2877         struct net_device *dev = (struct net_device *) nic->dev;
2878         struct tx_curr_get_info get_info, put_info;
2879         struct sk_buff *skb;
2880         struct TxD *txdlp;
2881         u8 err_mask;
2882
2883         get_info = fifo_data->tx_curr_get_info;
2884         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2885         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2886             list_virt_addr;
2887         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2888                (get_info.offset != put_info.offset) &&
2889                (txdlp->Host_Control)) {
2890                 /* Check for TxD errors */
2891                 if (txdlp->Control_1 & TXD_T_CODE) {
2892                         unsigned long long err;
2893                         err = txdlp->Control_1 & TXD_T_CODE;
2894                         if (err & 0x1) {
2895                                 nic->mac_control.stats_info->sw_stat.
2896                                                 parity_err_cnt++;
2897                         }
2898
2899                         /* update t_code statistics */
2900                         err_mask = err >> 48;
2901                         switch(err_mask) {
2902                                 case 2:
2903                                         nic->mac_control.stats_info->sw_stat.
2904                                                         tx_buf_abort_cnt++;
2905                                 break;
2906
2907                                 case 3:
2908                                         nic->mac_control.stats_info->sw_stat.
2909                                                         tx_desc_abort_cnt++;
2910                                 break;
2911
2912                                 case 7:
2913                                         nic->mac_control.stats_info->sw_stat.
2914                                                         tx_parity_err_cnt++;
2915                                 break;
2916
2917                                 case 10:
2918                                         nic->mac_control.stats_info->sw_stat.
2919                                                         tx_link_loss_cnt++;
2920                                 break;
2921
2922                                 case 15:
2923                                         nic->mac_control.stats_info->sw_stat.
2924                                                         tx_list_proc_err_cnt++;
2925                                 break;
2926                         }
2927                 }
2928
2929                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2930                 if (skb == NULL) {
2931                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2932                         __FUNCTION__);
2933                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2934                         return;
2935                 }
2936
2937                 /* Updating the statistics block */
2938                 nic->stats.tx_bytes += skb->len;
2939                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2940                 dev_kfree_skb_irq(skb);
2941
2942                 get_info.offset++;
2943                 if (get_info.offset == get_info.fifo_len + 1)
2944                         get_info.offset = 0;
2945                 txdlp = (struct TxD *) fifo_data->list_info
2946                     [get_info.offset].list_virt_addr;
2947                 fifo_data->tx_curr_get_info.offset =
2948                     get_info.offset;
2949         }
2950
2951         spin_lock(&nic->tx_lock);
2952         if (netif_queue_stopped(dev))
2953                 netif_wake_queue(dev);
2954         spin_unlock(&nic->tx_lock);
2955 }
2956
2957 /**
2958  *  s2io_mdio_write - Function to write in to MDIO registers
2959  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2960  *  @addr     : address value
2961  *  @value    : data value
2962  *  @dev      : pointer to net_device structure
2963  *  Description:
2964  *  This function is used to write values to the MDIO registers
2965  *  NONE
2966  */
2967 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2968 {
2969         u64 val64 = 0x0;
2970         struct s2io_nic *sp = dev->priv;
2971         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2972
2973         //address transaction
2974         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2975                         | MDIO_MMD_DEV_ADDR(mmd_type)
2976                         | MDIO_MMS_PRT_ADDR(0x0);
2977         writeq(val64, &bar0->mdio_control);
2978         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2979         writeq(val64, &bar0->mdio_control);
2980         udelay(100);
2981
2982         //Data transaction
2983         val64 = 0x0;
2984         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985                         | MDIO_MMD_DEV_ADDR(mmd_type)
2986                         | MDIO_MMS_PRT_ADDR(0x0)
2987                         | MDIO_MDIO_DATA(value)
2988                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2989         writeq(val64, &bar0->mdio_control);
2990         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2991         writeq(val64, &bar0->mdio_control);
2992         udelay(100);
2993
2994         val64 = 0x0;
2995         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2996         | MDIO_MMD_DEV_ADDR(mmd_type)
2997         | MDIO_MMS_PRT_ADDR(0x0)
2998         | MDIO_OP(MDIO_OP_READ_TRANS);
2999         writeq(val64, &bar0->mdio_control);
3000         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3001         writeq(val64, &bar0->mdio_control);
3002         udelay(100);
3003
3004 }
3005
3006 /**
3007  *  s2io_mdio_read - Function to write in to MDIO registers
3008  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3009  *  @addr     : address value
3010  *  @dev      : pointer to net_device structure
3011  *  Description:
3012  *  This function is used to read values to the MDIO registers
3013  *  NONE
3014  */
3015 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3016 {
3017         u64 val64 = 0x0;
3018         u64 rval64 = 0x0;
3019         struct s2io_nic *sp = dev->priv;
3020         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3021
3022         /* address transaction */
3023         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3024                         | MDIO_MMD_DEV_ADDR(mmd_type)
3025                         | MDIO_MMS_PRT_ADDR(0x0);
3026         writeq(val64, &bar0->mdio_control);
3027         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3028         writeq(val64, &bar0->mdio_control);
3029         udelay(100);
3030
3031         /* Data transaction */
3032         val64 = 0x0;
3033         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3034                         | MDIO_MMD_DEV_ADDR(mmd_type)
3035                         | MDIO_MMS_PRT_ADDR(0x0)
3036                         | MDIO_OP(MDIO_OP_READ_TRANS);
3037         writeq(val64, &bar0->mdio_control);
3038         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3039         writeq(val64, &bar0->mdio_control);
3040         udelay(100);
3041
3042         /* Read the value from regs */
3043         rval64 = readq(&bar0->mdio_control);
3044         rval64 = rval64 & 0xFFFF0000;
3045         rval64 = rval64 >> 16;
3046         return rval64;
3047 }
3048 /**
3049  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3050  *  @counter      : couter value to be updated
3051  *  @flag         : flag to indicate the status
3052  *  @type         : counter type
3053  *  Description:
3054  *  This function is to check the status of the xpak counters value
3055  *  NONE
3056  */
3057
3058 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3059 {
3060         u64 mask = 0x3;
3061         u64 val64;
3062         int i;
3063         for(i = 0; i <index; i++)
3064                 mask = mask << 0x2;
3065
3066         if(flag > 0)
3067         {
3068                 *counter = *counter + 1;
3069                 val64 = *regs_stat & mask;
3070                 val64 = val64 >> (index * 0x2);
3071                 val64 = val64 + 1;
3072                 if(val64 == 3)
3073                 {
3074                         switch(type)
3075                         {
3076                         case 1:
3077                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3078                                           "service. Excessive temperatures may "
3079                                           "result in premature transceiver "
3080                                           "failure \n");
3081                         break;
3082                         case 2:
3083                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3084                                           "service Excessive bias currents may "
3085                                           "indicate imminent laser diode "
3086                                           "failure \n");
3087                         break;
3088                         case 3:
3089                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3090                                           "service Excessive laser output "
3091                                           "power may saturate far-end "
3092                                           "receiver\n");
3093                         break;
3094                         default:
3095                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3096                                           "type \n");
3097                         }
3098                         val64 = 0x0;
3099                 }
3100                 val64 = val64 << (index * 0x2);
3101                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3102
3103         } else {
3104                 *regs_stat = *regs_stat & (~mask);
3105         }
3106 }
3107
3108 /**
3109  *  s2io_updt_xpak_counter - Function to update the xpak counters
3110  *  @dev         : pointer to net_device struct
3111  *  Description:
3112  *  This function is to upate the status of the xpak counters value
3113  *  NONE
3114  */
3115 static void s2io_updt_xpak_counter(struct net_device *dev)
3116 {
3117         u16 flag  = 0x0;
3118         u16 type  = 0x0;
3119         u16 val16 = 0x0;
3120         u64 val64 = 0x0;
3121         u64 addr  = 0x0;
3122
3123         struct s2io_nic *sp = dev->priv;
3124         struct stat_block *stat_info = sp->mac_control.stats_info;
3125
3126         /* Check the communication with the MDIO slave */
3127         addr = 0x0000;
3128         val64 = 0x0;
3129         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3130         if((val64 == 0xFFFF) || (val64 == 0x0000))
3131         {
3132                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3133                           "Returned %llx\n", (unsigned long long)val64);
3134                 return;
3135         }
3136
3137         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3138         if(val64 != 0x2040)
3139         {
3140                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3141                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3142                           (unsigned long long)val64);
3143                 return;
3144         }
3145
3146         /* Loading the DOM register to MDIO register */
3147         addr = 0xA100;
3148         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3149         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3150
3151         /* Reading the Alarm flags */
3152         addr = 0xA070;
3153         val64 = 0x0;
3154         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3155
3156         flag = CHECKBIT(val64, 0x7);
3157         type = 1;
3158         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3159                                 &stat_info->xpak_stat.xpak_regs_stat,
3160                                 0x0, flag, type);
3161
3162         if(CHECKBIT(val64, 0x6))
3163                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3164
3165         flag = CHECKBIT(val64, 0x3);
3166         type = 2;
3167         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3168                                 &stat_info->xpak_stat.xpak_regs_stat,
3169                                 0x2, flag, type);
3170
3171         if(CHECKBIT(val64, 0x2))
3172                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3173
3174         flag = CHECKBIT(val64, 0x1);
3175         type = 3;
3176         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3177                                 &stat_info->xpak_stat.xpak_regs_stat,
3178                                 0x4, flag, type);
3179
3180         if(CHECKBIT(val64, 0x0))
3181                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3182
3183         /* Reading the Warning flags */
3184         addr = 0xA074;
3185         val64 = 0x0;
3186         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3187
3188         if(CHECKBIT(val64, 0x7))
3189                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3190
3191         if(CHECKBIT(val64, 0x6))
3192                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3193
3194         if(CHECKBIT(val64, 0x3))
3195                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3196
3197         if(CHECKBIT(val64, 0x2))
3198                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3199
3200         if(CHECKBIT(val64, 0x1))
3201                 stat_info->xpak_stat.warn_laser_output_power_high++;
3202
3203         if(CHECKBIT(val64, 0x0))
3204                 stat_info->xpak_stat.warn_laser_output_power_low++;
3205 }
3206
3207 /**
3208  *  alarm_intr_handler - Alarm Interrrupt handler
3209  *  @nic: device private variable
3210  *  Description: If the interrupt was neither because of Rx packet or Tx
3211  *  complete, this function is called. If the interrupt was to indicate
3212  *  a loss of link, the OSM link status handler is invoked for any other
3213  *  alarm interrupt the block that raised the interrupt is displayed
3214  *  and a H/W reset is issued.
3215  *  Return Value:
3216  *  NONE
3217 */
3218
3219 static void alarm_intr_handler(struct s2io_nic *nic)
3220 {
3221         struct net_device *dev = (struct net_device *) nic->dev;
3222         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3223         register u64 val64 = 0, err_reg = 0;
3224         u64 cnt;
3225         int i;
3226         if (atomic_read(&nic->card_state) == CARD_DOWN)
3227                 return;
3228         if (pci_channel_offline(nic->pdev))
3229                 return;
3230         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3231         /* Handling the XPAK counters update */
3232         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3233                 /* waiting for an hour */
3234                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3235         } else {
3236                 s2io_updt_xpak_counter(dev);
3237                 /* reset the count to zero */
3238                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3239         }
3240
3241         /* Handling link status change error Intr */
3242         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3243                 err_reg = readq(&bar0->mac_rmac_err_reg);
3244                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3245                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3246                         schedule_work(&nic->set_link_task);
3247                 }
3248         }
3249
3250         /* Handling Ecc errors */
3251         val64 = readq(&bar0->mc_err_reg);
3252         writeq(val64, &bar0->mc_err_reg);
3253         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3254                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3255                         nic->mac_control.stats_info->sw_stat.
3256                                 double_ecc_errs++;
3257                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3258                                   dev->name);
3259                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3260                         if (nic->device_type != XFRAME_II_DEVICE) {
3261                                 /* Reset XframeI only if critical error */
3262                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3263                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3264                                         netif_stop_queue(dev);
3265                                         schedule_work(&nic->rst_timer_task);
3266                                         nic->mac_control.stats_info->sw_stat.
3267                                                         soft_reset_cnt++;
3268                                 }
3269                         }
3270                 } else {
3271                         nic->mac_control.stats_info->sw_stat.
3272                                 single_ecc_errs++;
3273                 }
3274         }
3275
3276         /* In case of a serious error, the device will be Reset. */
3277         val64 = readq(&bar0->serr_source);
3278         if (val64 & SERR_SOURCE_ANY) {
3279                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3280                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3281                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3282                           (unsigned long long)val64);
3283                 netif_stop_queue(dev);
3284                 schedule_work(&nic->rst_timer_task);
3285                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3286         }
3287
3288         /*
3289          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3290          * Error occurs, the adapter will be recycled by disabling the
3291          * adapter enable bit and enabling it again after the device
3292          * becomes Quiescent.
3293          */
3294         val64 = readq(&bar0->pcc_err_reg);
3295         writeq(val64, &bar0->pcc_err_reg);
3296         if (val64 & PCC_FB_ECC_DB_ERR) {
3297                 u64 ac = readq(&bar0->adapter_control);
3298                 ac &= ~(ADAPTER_CNTL_EN);
3299                 writeq(ac, &bar0->adapter_control);
3300                 ac = readq(&bar0->adapter_control);
3301                 schedule_work(&nic->set_link_task);
3302         }
3303         /* Check for data parity error */
3304         val64 = readq(&bar0->pic_int_status);
3305         if (val64 & PIC_INT_GPIO) {
3306                 val64 = readq(&bar0->gpio_int_reg);
3307                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3308                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3309                         schedule_work(&nic->rst_timer_task);
3310                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3311                 }
3312         }
3313
3314         /* Check for ring full counter */
3315         if (nic->device_type & XFRAME_II_DEVICE) {
3316                 val64 = readq(&bar0->ring_bump_counter1);
3317                 for (i=0; i<4; i++) {
3318                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3319                         cnt >>= 64 - ((i+1)*16);
3320                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3321                                 += cnt;
3322                 }
3323
3324                 val64 = readq(&bar0->ring_bump_counter2);
3325                 for (i=0; i<4; i++) {
3326                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3327                         cnt >>= 64 - ((i+1)*16);
3328                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3329                                 += cnt;
3330                 }
3331         }
3332
3333         /* Other type of interrupts are not being handled now,  TODO */
3334 }
3335
3336 /**
3337  *  wait_for_cmd_complete - waits for a command to complete.
3338  *  @sp : private member of the device structure, which is a pointer to the
3339  *  s2io_nic structure.
3340  *  Description: Function that waits for a command to Write into RMAC
3341  *  ADDR DATA registers to be completed and returns either success or
3342  *  error depending on whether the command was complete or not.
3343  *  Return value:
3344  *   SUCCESS on success and FAILURE on failure.
3345  */
3346
3347 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348                                 int bit_state)
3349 {
3350         int ret = FAILURE, cnt = 0, delay = 1;
3351         u64 val64;
3352
3353         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354                 return FAILURE;
3355
3356         do {
3357                 val64 = readq(addr);
3358                 if (bit_state == S2IO_BIT_RESET) {
3359                         if (!(val64 & busy_bit)) {
3360                                 ret = SUCCESS;
3361                                 break;
3362                         }
3363                 } else {
3364                         if (!(val64 & busy_bit)) {
3365                                 ret = SUCCESS;
3366                                 break;
3367                         }
3368                 }
3369
3370                 if(in_interrupt())
3371                         mdelay(delay);
3372                 else
3373                         msleep(delay);
3374
3375                 if (++cnt >= 10)
3376                         delay = 50;
3377         } while (cnt < 20);
3378         return ret;
3379 }
3380 /*
3381  * check_pci_device_id - Checks if the device id is supported
3382  * @id : device id
3383  * Description: Function to check if the pci device id is supported by driver.
3384  * Return value: Actual device id if supported else PCI_ANY_ID
3385  */
3386 static u16 check_pci_device_id(u16 id)
3387 {
3388         switch (id) {
3389         case PCI_DEVICE_ID_HERC_WIN:
3390         case PCI_DEVICE_ID_HERC_UNI:
3391                 return XFRAME_II_DEVICE;
3392         case PCI_DEVICE_ID_S2IO_UNI:
3393         case PCI_DEVICE_ID_S2IO_WIN:
3394                 return XFRAME_I_DEVICE;
3395         default:
3396                 return PCI_ANY_ID;
3397         }
3398 }
3399
3400 /**
3401  *  s2io_reset - Resets the card.
3402  *  @sp : private member of the device structure.
3403  *  Description: Function to Reset the card. This function then also
3404  *  restores the previously saved PCI configuration space registers as
3405  *  the card reset also resets the configuration space.
3406  *  Return value:
3407  *  void.
3408  */
3409
3410 static void s2io_reset(struct s2io_nic * sp)
3411 {
3412         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413         u64 val64;
3414         u16 subid, pci_cmd;
3415         int i;
3416         u16 val16;
3417         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419
3420         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3421                         __FUNCTION__, sp->dev->name);
3422
3423         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3424         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3425
3426         if (sp->device_type == XFRAME_II_DEVICE) {
3427                 int ret;
3428                 ret = pci_set_power_state(sp->pdev, 3);
3429                 if (!ret)
3430                         ret = pci_set_power_state(sp->pdev, 0);
3431                 else {
3432                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3433                                         __FUNCTION__);
3434                         goto old_way;
3435                 }
3436                 msleep(20);
3437                 goto new_way;
3438         }
3439 old_way:
3440         val64 = SW_RESET_ALL;
3441         writeq(val64, &bar0->sw_reset);
3442 new_way:
3443         if (strstr(sp->product_name, "CX4")) {
3444                 msleep(750);
3445         }
3446         msleep(250);
3447         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3448
3449                 /* Restore the PCI state saved during initialization. */
3450                 pci_restore_state(sp->pdev);
3451                 pci_read_config_word(sp->pdev, 0x2, &val16);
3452                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3453                         break;
3454                 msleep(200);
3455         }
3456
3457         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3458                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3459         }
3460
3461         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3462
3463         s2io_init_pci(sp);
3464
3465         /* Set swapper to enable I/O register access */
3466         s2io_set_swapper(sp);
3467
3468         /* Restore the MSIX table entries from local variables */
3469         restore_xmsi_data(sp);
3470
3471         /* Clear certain PCI/PCI-X fields after reset */
3472         if (sp->device_type == XFRAME_II_DEVICE) {
3473                 /* Clear "detected parity error" bit */
3474                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3475
3476                 /* Clearing PCIX Ecc status register */
3477                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3478
3479                 /* Clearing PCI_STATUS error reflected here */
3480                 writeq(BIT(62), &bar0->txpic_int_reg);
3481         }
3482
3483         /* Reset device statistics maintained by OS */
3484         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3485         
3486         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3487         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3488         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3489         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3490         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3491         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3492         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3493         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3494         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3495         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3496         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3497         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3498         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3499         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3500         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3501         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3502         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3503         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3504         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3505
3506         /* SXE-002: Configure link and activity LED to turn it off */
3507         subid = sp->pdev->subsystem_device;
3508         if (((subid & 0xFF) >= 0x07) &&
3509             (sp->device_type == XFRAME_I_DEVICE)) {
3510                 val64 = readq(&bar0->gpio_control);
3511                 val64 |= 0x0000800000000000ULL;
3512                 writeq(val64, &bar0->gpio_control);
3513                 val64 = 0x0411040400000000ULL;
3514                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3515         }
3516
3517         /*
3518          * Clear spurious ECC interrupts that would have occured on
3519          * XFRAME II cards after reset.
3520          */
3521         if (sp->device_type == XFRAME_II_DEVICE) {
3522                 val64 = readq(&bar0->pcc_err_reg);
3523                 writeq(val64, &bar0->pcc_err_reg);
3524         }
3525
3526         /* restore the previously assigned mac address */
3527         s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3528
3529         sp->device_enabled_once = FALSE;
3530 }
3531
3532 /**
3533  *  s2io_set_swapper - to set the swapper controle on the card
3534  *  @sp : private member of the device structure,
3535  *  pointer to the s2io_nic structure.
3536  *  Description: Function to set the swapper control on the card
3537  *  correctly depending on the 'endianness' of the system.
3538  *  Return value:
3539  *  SUCCESS on success and FAILURE on failure.
3540  */
3541
3542 static int s2io_set_swapper(struct s2io_nic * sp)
3543 {
3544         struct net_device *dev = sp->dev;
3545         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3546         u64 val64, valt, valr;
3547
3548         /*
3549          * Set proper endian settings and verify the same by reading
3550          * the PIF Feed-back register.
3551          */
3552
3553         val64 = readq(&bar0->pif_rd_swapper_fb);
3554         if (val64 != 0x0123456789ABCDEFULL) {
3555                 int i = 0;
3556                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3557                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3558                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3559                                 0};                     /* FE=0, SE=0 */
3560
3561                 while(i<4) {
3562                         writeq(value[i], &bar0->swapper_ctrl);
3563                         val64 = readq(&bar0->pif_rd_swapper_fb);
3564                         if (val64 == 0x0123456789ABCDEFULL)
3565                                 break;
3566                         i++;
3567                 }
3568                 if (i == 4) {
3569                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3570                                 dev->name);
3571                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3572                                 (unsigned long long) val64);
3573                         return FAILURE;
3574                 }
3575                 valr = value[i];
3576         } else {
3577                 valr = readq(&bar0->swapper_ctrl);
3578         }
3579
3580         valt = 0x0123456789ABCDEFULL;
3581         writeq(valt, &bar0->xmsi_address);
3582         val64 = readq(&bar0->xmsi_address);
3583
3584         if(val64 != valt) {
3585                 int i = 0;
3586                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3587                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3588                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3589                                 0};                     /* FE=0, SE=0 */
3590
3591                 while(i<4) {
3592                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3593                         writeq(valt, &bar0->xmsi_address);
3594                         val64 = readq(&bar0->xmsi_address);
3595                         if(val64 == valt)
3596                                 break;
3597                         i++;
3598                 }
3599                 if(i == 4) {
3600                         unsigned long long x = val64;
3601                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3602                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3603                         return FAILURE;
3604                 }
3605         }
3606         val64 = readq(&bar0->swapper_ctrl);
3607         val64 &= 0xFFFF000000000000ULL;
3608
3609 #ifdef  __BIG_ENDIAN
3610         /*
3611          * The device by default set to a big endian format, so a
3612          * big endian driver need not set anything.
3613          */
3614         val64 |= (SWAPPER_CTRL_TXP_FE |
3615                  SWAPPER_CTRL_TXP_SE |
3616                  SWAPPER_CTRL_TXD_R_FE |
3617                  SWAPPER_CTRL_TXD_W_FE |
3618                  SWAPPER_CTRL_TXF_R_FE |
3619                  SWAPPER_CTRL_RXD_R_FE |
3620                  SWAPPER_CTRL_RXD_W_FE |
3621                  SWAPPER_CTRL_RXF_W_FE |
3622                  SWAPPER_CTRL_XMSI_FE |
3623                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3624         if (sp->intr_type == INTA)
3625                 val64 |= SWAPPER_CTRL_XMSI_SE;
3626         writeq(val64, &bar0->swapper_ctrl);
3627 #else
3628         /*
3629          * Initially we enable all bits to make it accessible by the
3630          * driver, then we selectively enable only those bits that
3631          * we want to set.
3632          */
3633         val64 |= (SWAPPER_CTRL_TXP_FE |
3634                  SWAPPER_CTRL_TXP_SE |
3635                  SWAPPER_CTRL_TXD_R_FE |
3636                  SWAPPER_CTRL_TXD_R_SE |
3637                  SWAPPER_CTRL_TXD_W_FE |
3638                  SWAPPER_CTRL_TXD_W_SE |
3639                  SWAPPER_CTRL_TXF_R_FE |
3640                  SWAPPER_CTRL_RXD_R_FE |
3641                  SWAPPER_CTRL_RXD_R_SE |
3642                  SWAPPER_CTRL_RXD_W_FE |
3643                  SWAPPER_CTRL_RXD_W_SE |
3644                  SWAPPER_CTRL_RXF_W_FE |
3645                  SWAPPER_CTRL_XMSI_FE |
3646                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3647         if (sp->intr_type == INTA)
3648                 val64 |= SWAPPER_CTRL_XMSI_SE;
3649         writeq(val64, &bar0->swapper_ctrl);
3650 #endif
3651         val64 = readq(&bar0->swapper_ctrl);
3652
3653         /*
3654          * Verifying if endian settings are accurate by reading a
3655          * feedback register.
3656          */
3657         val64 = readq(&bar0->pif_rd_swapper_fb);
3658         if (val64 != 0x0123456789ABCDEFULL) {
3659                 /* Endian settings are incorrect, calls for another dekko. */
3660                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3661                           dev->name);
3662                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3663                           (unsigned long long) val64);
3664                 return FAILURE;
3665         }
3666
3667         return SUCCESS;
3668 }
3669
3670 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3671 {
3672         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3673         u64 val64;
3674         int ret = 0, cnt = 0;
3675
3676         do {
3677                 val64 = readq(&bar0->xmsi_access);
3678                 if (!(val64 & BIT(15)))
3679                         break;
3680                 mdelay(1);
3681                 cnt++;
3682         } while(cnt < 5);
3683         if (cnt == 5) {
3684                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3685                 ret = 1;
3686         }
3687
3688         return ret;
3689 }
3690
3691 static void restore_xmsi_data(struct s2io_nic *nic)
3692 {
3693         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3694         u64 val64;
3695         int i;
3696
3697         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3698                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3699                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3700                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3701                 writeq(val64, &bar0->xmsi_access);
3702                 if (wait_for_msix_trans(nic, i)) {
3703                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3704                         continue;
3705                 }
3706         }
3707 }
3708
3709 static void store_xmsi_data(struct s2io_nic *nic)
3710 {
3711         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712         u64 val64, addr, data;
3713         int i;
3714
3715         /* Store and display */
3716         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3717                 val64 = (BIT(15) | vBIT(i, 26, 6));
3718                 writeq(val64, &bar0->xmsi_access);
3719                 if (wait_for_msix_trans(nic, i)) {
3720                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3721                         continue;
3722                 }
3723                 addr = readq(&bar0->xmsi_address);
3724                 data = readq(&bar0->xmsi_data);
3725                 if (addr && data) {
3726                         nic->msix_info[i].addr = addr;
3727                         nic->msix_info[i].data = data;
3728                 }
3729         }
3730 }
3731
3732 int s2io_enable_msi(struct s2io_nic *nic)
3733 {
3734         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3735         u16 msi_ctrl, msg_val;
3736         struct config_param *config = &nic->config;
3737         struct net_device *dev = nic->dev;
3738         u64 val64, tx_mat, rx_mat;
3739         int i, err;
3740
3741         val64 = readq(&bar0->pic_control);
3742         val64 &= ~BIT(1);
3743         writeq(val64, &bar0->pic_control);
3744
3745         err = pci_enable_msi(nic->pdev);
3746         if (err) {
3747                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3748                           nic->dev->name);
3749                 return err;
3750         }
3751
3752         /*
3753          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3754          * for interrupt handling.
3755          */
3756         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3757         msg_val ^= 0x1;
3758         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3759         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3760
3761         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3762         msi_ctrl |= 0x10;
3763         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3764
3765         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3766         tx_mat = readq(&bar0->tx_mat0_n[0]);
3767         for (i=0; i<config->tx_fifo_num; i++) {
3768                 tx_mat |= TX_MAT_SET(i, 1);
3769         }
3770         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3771
3772         rx_mat = readq(&bar0->rx_mat);
3773         for (i=0; i<config->rx_ring_num; i++) {
3774                 rx_mat |= RX_MAT_SET(i, 1);
3775         }
3776         writeq(rx_mat, &bar0->rx_mat);
3777
3778         dev->irq = nic->pdev->irq;
3779         return 0;
3780 }
3781
3782 static int s2io_enable_msi_x(struct s2io_nic *nic)
3783 {
3784         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3785         u64 tx_mat, rx_mat;
3786         u16 msi_control; /* Temp variable */
3787         int ret, i, j, msix_indx = 1;
3788
3789         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3790                                GFP_KERNEL);
3791         if (nic->entries == NULL) {
3792                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3793                         __FUNCTION__);
3794                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3795                 return -ENOMEM;
3796         }
3797         nic->mac_control.stats_info->sw_stat.mem_allocated 
3798                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3799         memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3800
3801         nic->s2io_entries =
3802                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3803                                    GFP_KERNEL);
3804         if (nic->s2io_entries == NULL) {
3805                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 
3806                         __FUNCTION__);
3807                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3808                 kfree(nic->entries);
3809                 nic->mac_control.stats_info->sw_stat.mem_freed 
3810                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3811                 return -ENOMEM;
3812         }
3813          nic->mac_control.stats_info->sw_stat.mem_allocated 
3814                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3815         memset(nic->s2io_entries, 0,
3816                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3817
3818         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3819                 nic->entries[i].entry = i;
3820                 nic->s2io_entries[i].entry = i;
3821                 nic->s2io_entries[i].arg = NULL;
3822                 nic->s2io_entries[i].in_use = 0;
3823         }
3824
3825         tx_mat = readq(&bar0->tx_mat0_n[0]);
3826         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3827                 tx_mat |= TX_MAT_SET(i, msix_indx);
3828                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3829                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3830                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3831         }
3832         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3833
3834         if (!nic->config.bimodal) {
3835                 rx_mat = readq(&bar0->rx_mat);
3836                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3837                         rx_mat |= RX_MAT_SET(j, msix_indx);
3838                         nic->s2io_entries[msix_indx].arg 
3839                                 = &nic->mac_control.rings[j];
3840                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3841                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3842                 }
3843                 writeq(rx_mat, &bar0->rx_mat);
3844         } else {
3845                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3846                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3847                         tx_mat |= TX_MAT_SET(i, msix_indx);
3848                         nic->s2io_entries[msix_indx].arg 
3849                                 = &nic->mac_control.rings[j];
3850                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3851                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3852                 }
3853                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3854         }
3855
3856         nic->avail_msix_vectors = 0;
3857         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3858         /* We fail init if error or we get less vectors than min required */
3859         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3860                 nic->avail_msix_vectors = ret;
3861                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3862         }
3863         if (ret) {
3864                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3865                 kfree(nic->entries);
3866                 nic->mac_control.stats_info->sw_stat.mem_freed 
3867                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3868                 kfree(nic->s2io_entries);
3869                 nic->mac_control.stats_info->sw_stat.mem_freed 
3870                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3871                 nic->entries = NULL;
3872                 nic->s2io_entries = NULL;
3873                 nic->avail_msix_vectors = 0;
3874                 return -ENOMEM;
3875         }
3876         if (!nic->avail_msix_vectors)
3877                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3878
3879         /*
3880          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3881          * in the herc NIC. (Temp change, needs to be removed later)
3882          */
3883         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3884         msi_control |= 0x1; /* Enable MSI */
3885         pci_write_config_word(nic->pdev, 0x42, msi_control);
3886
3887         return 0;
3888 }
3889
3890 /* ********************************************************* *
3891  * Functions defined below concern the OS part of the driver *
3892  * ********************************************************* */
3893
3894 /**
3895  *  s2io_open - open entry point of the driver
3896  *  @dev : pointer to the device structure.
3897  *  Description:
3898  *  This function is the open entry point of the driver. It mainly calls a
3899  *  function to allocate Rx buffers and inserts them into the buffer
3900  *  descriptors and then enables the Rx part of the NIC.
3901  *  Return value:
3902  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3903  *   file on failure.
3904  */
3905
3906 static int s2io_open(struct net_device *dev)
3907 {
3908         struct s2io_nic *sp = dev->priv;
3909         int err = 0;
3910
3911         /*
3912          * Make sure you have link off by default every time
3913          * Nic is initialized
3914          */
3915         netif_carrier_off(dev);
3916         sp->last_link_state = 0;
3917
3918         /* Initialize H/W and enable interrupts */
3919         err = s2io_card_up(sp);
3920         if (err) {
3921                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3922                           dev->name);
3923                 goto hw_init_failed;
3924         }
3925
3926         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3927                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3928                 s2io_card_down(sp);
3929                 err = -ENODEV;
3930                 goto hw_init_failed;
3931         }
3932
3933         netif_start_queue(dev);
3934         return 0;
3935
3936 hw_init_failed:
3937         if (sp->intr_type == MSI_X) {
3938                 if (sp->entries) {
3939                         kfree(sp->entries);
3940                         sp->mac_control.stats_info->sw_stat.mem_freed 
3941                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3942                 }
3943                 if (sp->s2io_entries) {
3944                         kfree(sp->s2io_entries);
3945                         sp->mac_control.stats_info->sw_stat.mem_freed 
3946                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3947                 }
3948         }
3949         return err;
3950 }
3951
3952 /**
3953  *  s2io_close -close entry point of the driver
3954  *  @dev : device pointer.
3955  *  Description:
3956  *  This is the stop entry point of the driver. It needs to undo exactly
3957  *  whatever was done by the open entry point,thus it's usually referred to
3958  *  as the close function.Among other things this function mainly stops the
3959  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3960  *  Return value:
3961  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3962  *  file on failure.
3963  */
3964
3965 static int s2io_close(struct net_device *dev)
3966 {
3967         struct s2io_nic *sp = dev->priv;
3968
3969         netif_stop_queue(dev);
3970         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3971         s2io_card_down(sp);
3972
3973         return 0;
3974 }
3975
3976 /**
3977  *  s2io_xmit - Tx entry point of te driver
3978  *  @skb : the socket buffer containing the Tx data.
3979  *  @dev : device pointer.
3980  *  Description :
3981  *  This function is the Tx entry point of the driver. S2IO NIC supports
3982  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3983  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3984  *  not be upadted.
3985  *  Return value:
3986  *  0 on success & 1 on failure.
3987  */
3988
3989 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3990 {
3991         struct s2io_nic *sp = dev->priv;
3992         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3993         register u64 val64;
3994         struct TxD *txdp;
3995         struct TxFIFO_element __iomem *tx_fifo;
3996         unsigned long flags;
3997         u16 vlan_tag = 0;
3998         int vlan_priority = 0;
3999         struct mac_info *mac_control;
4000         struct config_param *config;
4001         int offload_type;
4002
4003         mac_control = &sp->mac_control;
4004         config = &sp->config;
4005
4006         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4007
4008         if (unlikely(skb->len <= 0)) {
4009                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4010                 dev_kfree_skb_any(skb);
4011                 return 0;
4012 }
4013
4014         spin_lock_irqsave(&sp->tx_lock, flags);
4015         if (atomic_read(&sp->card_state) == CARD_DOWN) {
4016                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4017                           dev->name);
4018                 spin_unlock_irqrestore(&sp->tx_lock, flags);
4019                 dev_kfree_skb(skb);
4020                 return 0;
4021         }
4022
4023         queue = 0;
4024         /* Get Fifo number to Transmit based on vlan priority */
4025         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4026                 vlan_tag = vlan_tx_tag_get(skb);
4027                 vlan_priority = vlan_tag >> 13;
4028                 queue = config->fifo_mapping[vlan_priority];
4029         }
4030
4031         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4032         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4033         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4034                 list_virt_addr;
4035
4036         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4037         /* Avoid "put" pointer going beyond "get" pointer */
4038         if (txdp->Host_Control ||
4039                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4040                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4041                 netif_stop_queue(dev);
4042                 dev_kfree_skb(skb);
4043                 spin_unlock_irqrestore(&sp->tx_lock, flags);
4044                 return 0;
4045         }
4046
4047         offload_type = s2io_offload_type(skb);
4048         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4049                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4050                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4051         }
4052         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4053                 txdp->Control_2 |=
4054                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4055                      TXD_TX_CKO_UDP_EN);
4056         }
4057         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4058         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4059         txdp->Control_2 |= config->tx_intr_type;
4060
4061         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4062                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4063                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4064         }
4065
4066         frg_len = skb->len - skb->data_len;
4067         if (offload_type == SKB_GSO_UDP) {
4068                 int ufo_size;
4069
4070                 ufo_size = s2io_udp_mss(skb);
4071                 ufo_size &= ~7;
4072                 txdp->Control_1 |= TXD_UFO_EN;
4073                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4074                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4075 #ifdef __BIG_ENDIAN
4076                 sp->ufo_in_band_v[put_off] =
4077                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4078 #else
4079                 sp->ufo_in_band_v[put_off] =
4080                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4081 #endif
4082                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4083                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4084                                         sp->ufo_in_band_v,
4085                                         sizeof(u64), PCI_DMA_TODEVICE);
4086                 txdp++;
4087         }
4088
4089         txdp->Buffer_Pointer = pci_map_single
4090             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4091         txdp->Host_Control = (unsigned long) skb;
4092         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4093         if (offload_type == SKB_GSO_UDP)
4094                 txdp->Control_1 |= TXD_UFO_EN;
4095
4096         frg_cnt = skb_shinfo(skb)->nr_frags;
4097         /* For fragmented SKB. */
4098         for (i = 0; i < frg_cnt; i++) {
4099                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4100                 /* A '0' length fragment will be ignored */
4101                 if (!frag->size)
4102                         continue;
4103                 txdp++;
4104                 txdp->Buffer_Pointer = (u64) pci_map_page
4105                     (sp->pdev, frag->page, frag->page_offset,
4106                      frag->size, PCI_DMA_TODEVICE);
4107                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4108                 if (offload_type == SKB_GSO_UDP)
4109                         txdp->Control_1 |= TXD_UFO_EN;
4110         }
4111         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4112
4113         if (offload_type == SKB_GSO_UDP)
4114                 frg_cnt++; /* as Txd0 was used for inband header */
4115
4116         tx_fifo = mac_control->tx_FIFO_start[queue];
4117         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4118         writeq(val64, &tx_fifo->TxDL_Pointer);
4119
4120         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4121                  TX_FIFO_LAST_LIST);
4122         if (offload_type)
4123                 val64 |= TX_FIFO_SPECIAL_FUNC;
4124
4125         writeq(val64, &tx_fifo->List_Control);
4126
4127         mmiowb();
4128
4129         put_off++;
4130         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4131                 put_off = 0;
4132         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4133
4134         /* Avoid "put" pointer going beyond "get" pointer */
4135         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4136                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4137                 DBG_PRINT(TX_DBG,
4138                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4139                           put_off, get_off);
4140                 netif_stop_queue(dev);
4141         }
4142         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4143         dev->trans_start = jiffies;
4144         spin_unlock_irqrestore(&sp->tx_lock, flags);
4145
4146         return 0;
4147 }
4148
4149 static void
4150 s2io_alarm_handle(unsigned long data)
4151 {
4152         struct s2io_nic *sp = (struct s2io_nic *)data;
4153
4154         alarm_intr_handler(sp);
4155         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4156 }
4157
4158 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4159 {
4160         int rxb_size, level;
4161
4162         if (!sp->lro) {
4163                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4164                 level = rx_buffer_level(sp, rxb_size, rng_n);
4165
4166                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4167                         int ret;
4168                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4169                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4170                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4171                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4172                                           __FUNCTION__);
4173                                 clear_bit(0, (&sp->tasklet_status));
4174                                 return -1;
4175                         }
4176                         clear_bit(0, (&sp->tasklet_status));
4177                 } else if (level == LOW)
4178                         tasklet_schedule(&sp->task);
4179
4180         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4181                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4182                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4183         }
4184         return 0;
4185 }
4186
4187 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4188 {
4189         struct net_device *dev = (struct net_device *) dev_id;
4190         struct s2io_nic *sp = dev->priv;
4191         int i;
4192         struct mac_info *mac_control;
4193         struct config_param *config;
4194
4195         atomic_inc(&sp->isr_cnt);
4196         mac_control = &sp->mac_control;
4197         config = &sp->config;
4198         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4199
4200         /* If Intr is because of Rx Traffic */
4201         for (i = 0; i < config->rx_ring_num; i++)
4202                 rx_intr_handler(&mac_control->rings[i]);
4203
4204         /* If Intr is because of Tx Traffic */
4205         for (i = 0; i < config->tx_fifo_num; i++)
4206                 tx_intr_handler(&mac_control->fifos[i]);
4207
4208         /*
4209          * If the Rx buffer count is below the panic threshold then
4210          * reallocate the buffers from the interrupt handler itself,
4211          * else schedule a tasklet to reallocate the buffers.
4212          */
4213         for (i = 0; i < config->rx_ring_num; i++)
4214                 s2io_chk_rx_buffers(sp, i);
4215
4216         atomic_dec(&sp->isr_cnt);
4217         return IRQ_HANDLED;
4218 }
4219
4220 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4221 {
4222         struct ring_info *ring = (struct ring_info *)dev_id;
4223         struct s2io_nic *sp = ring->nic;
4224
4225         atomic_inc(&sp->isr_cnt);
4226
4227         rx_intr_handler(ring);
4228         s2io_chk_rx_buffers(sp, ring->ring_no);
4229
4230         atomic_dec(&sp->isr_cnt);
4231         return IRQ_HANDLED;
4232 }
4233
4234 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4235 {
4236         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4237         struct s2io_nic *sp = fifo->nic;
4238
4239         atomic_inc(&sp->isr_cnt);
4240         tx_intr_handler(fifo);
4241         atomic_dec(&sp->isr_cnt);
4242         return IRQ_HANDLED;
4243 }
4244 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4245 {
4246         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4247         u64 val64;
4248
4249         val64 = readq(&bar0->pic_int_status);
4250         if (val64 & PIC_INT_GPIO) {
4251                 val64 = readq(&bar0->gpio_int_reg);
4252                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4253                     (val64 & GPIO_INT_REG_LINK_UP)) {
4254                         /*
4255                          * This is unstable state so clear both up/down
4256                          * interrupt and adapter to re-evaluate the link state.
4257                          */
4258                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4259                         val64 |= GPIO_INT_REG_LINK_UP;
4260                         writeq(val64, &bar0->gpio_int_reg);
4261                         val64 = readq(&bar0->gpio_int_mask);
4262                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4263                                    GPIO_INT_MASK_LINK_DOWN);
4264                         writeq(val64, &bar0->gpio_int_mask);
4265                 }
4266                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4267                         val64 = readq(&bar0->adapter_status);
4268                                 /* Enable Adapter */
4269                         val64 = readq(&bar0->adapter_control);
4270                         val64 |= ADAPTER_CNTL_EN;
4271                         writeq(val64, &bar0->adapter_control);
4272                         val64 |= ADAPTER_LED_ON;
4273                         writeq(val64, &bar0->adapter_control);
4274                         if (!sp->device_enabled_once)
4275                                 sp->device_enabled_once = 1;
4276
4277                         s2io_link(sp, LINK_UP);
4278                         /*
4279                          * unmask link down interrupt and mask link-up
4280                          * intr
4281                          */
4282                         val64 = readq(&bar0->gpio_int_mask);
4283                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4284                         val64 |= GPIO_INT_MASK_LINK_UP;
4285                         writeq(val64, &bar0->gpio_int_mask);
4286
4287                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4288                         val64 = readq(&bar0->adapter_status);
4289                         s2io_link(sp, LINK_DOWN);
4290                         /* Link is down so unmaks link up interrupt */
4291                         val64 = readq(&bar0->gpio_int_mask);
4292                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4293                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4294                         writeq(val64, &bar0->gpio_int_mask);
4295
4296                         /* turn off LED */
4297                         val64 = readq(&bar0->adapter_control);
4298                         val64 = val64 &(~ADAPTER_LED_ON);
4299                         writeq(val64, &bar0->adapter_control);
4300                 }
4301         }
4302         val64 = readq(&bar0->gpio_int_mask);
4303 }
4304
4305 /**
4306  *  s2io_isr - ISR handler of the device .
4307  *  @irq: the irq of the device.
4308  *  @dev_id: a void pointer to the dev structure of the NIC.
4309  *  Description:  This function is the ISR handler of the device. It
4310  *  identifies the reason for the interrupt and calls the relevant
4311  *  service routines. As a contongency measure, this ISR allocates the
4312  *  recv buffers, if their numbers are below the panic value which is
4313  *  presently set to 25% of the original number of rcv buffers allocated.
4314  *  Return value:
4315  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4316  *   IRQ_NONE: will be returned if interrupt is not from our device
4317  */
4318 static irqreturn_t s2io_isr(int irq, void *dev_id)
4319 {
4320         struct net_device *dev = (struct net_device *) dev_id;
4321         struct s2io_nic *sp = dev->priv;
4322         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4323         int i;
4324         u64 reason = 0;
4325         struct mac_info *mac_control;
4326         struct config_param *config;
4327
4328         /* Pretend we handled any irq's from a disconnected card */
4329         if (pci_channel_offline(sp->pdev))
4330                 return IRQ_NONE;
4331
4332         atomic_inc(&sp->isr_cnt);
4333         mac_control = &sp->mac_control;
4334         config = &sp->config;
4335
4336         /*
4337          * Identify the cause for interrupt and call the appropriate
4338          * interrupt handler. Causes for the interrupt could be;
4339          * 1. Rx of packet.
4340          * 2. Tx complete.
4341          * 3. Link down.
4342          * 4. Error in any functional blocks of the NIC.
4343          */
4344         reason = readq(&bar0->general_int_status);
4345
4346         if (!reason) {
4347                 /* The interrupt was not raised by us. */
4348                 atomic_dec(&sp->isr_cnt);
4349                 return IRQ_NONE;
4350         }
4351         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4352                 /* Disable device and get out */
4353                 atomic_dec(&sp->isr_cnt);
4354                 return IRQ_NONE;
4355         }
4356
4357         if (napi) {
4358                 if (reason & GEN_INTR_RXTRAFFIC) {
4359                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4360                                 __netif_rx_schedule(dev);
4361                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4362                         }
4363                         else
4364                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4365                 }
4366         } else {
4367                 /*
4368                  * Rx handler is called by default, without checking for the
4369                  * cause of interrupt.
4370                  * rx_traffic_int reg is an R1 register, writing all 1's
4371                  * will ensure that the actual interrupt causing bit get's
4372                  * cleared and hence a read can be avoided.
4373                  */
4374                 if (reason & GEN_INTR_RXTRAFFIC)
4375                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4376
4377                 for (i = 0; i < config->rx_ring_num; i++) {
4378                         rx_intr_handler(&mac_control->rings[i]);
4379                 }
4380         }
4381
4382         /*
4383          * tx_traffic_int reg is an R1 register, writing all 1's
4384          * will ensure that the actual interrupt causing bit get's
4385          * cleared and hence a read can be avoided.
4386          */
4387         if (reason & GEN_INTR_TXTRAFFIC)
4388                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4389
4390         for (i = 0; i < config->tx_fifo_num; i++)
4391                 tx_intr_handler(&mac_control->fifos[i]);
4392
4393         if (reason & GEN_INTR_TXPIC)
4394                 s2io_txpic_intr_handle(sp);
4395         /*
4396          * If the Rx buffer count is below the panic threshold then
4397          * reallocate the buffers from the interrupt handler itself,
4398          * else schedule a tasklet to reallocate the buffers.
4399          */
4400         if (!napi) {
4401                 for (i = 0; i < config->rx_ring_num; i++)
4402                         s2io_chk_rx_buffers(sp, i);
4403         }
4404
4405         writeq(0, &bar0->general_int_mask);
4406         readl(&bar0->general_int_status);
4407
4408         atomic_dec(&sp->isr_cnt);
4409         return IRQ_HANDLED;
4410 }
4411
4412 /**
4413  * s2io_updt_stats -
4414  */
4415 static void s2io_updt_stats(struct s2io_nic *sp)
4416 {
4417         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4418         u64 val64;
4419         int cnt = 0;
4420
4421         if (atomic_read(&sp->card_state) == CARD_UP) {
4422                 /* Apprx 30us on a 133 MHz bus */
4423                 val64 = SET_UPDT_CLICKS(10) |
4424                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4425                 writeq(val64, &bar0->stat_cfg);
4426                 do {
4427                         udelay(100);
4428                         val64 = readq(&bar0->stat_cfg);
4429                         if (!(val64 & BIT(0)))
4430                                 break;
4431                         cnt++;
4432                         if (cnt == 5)
4433                                 break; /* Updt failed */
4434                 } while(1);
4435         } 
4436 }
4437
4438 /**
4439  *  s2io_get_stats - Updates the device statistics structure.
4440  *  @dev : pointer to the device structure.
4441  *  Description:
4442  *  This function updates the device statistics structure in the s2io_nic
4443  *  structure and returns a pointer to the same.
4444  *  Return value:
4445  *  pointer to the updated net_device_stats structure.
4446  */
4447
4448 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4449 {
4450         struct s2io_nic *sp = dev->priv;
4451         struct mac_info *mac_control;
4452         struct config_param *config;
4453
4454
4455         mac_control = &sp->mac_control;
4456         config = &sp->config;
4457
4458         /* Configure Stats for immediate updt */
4459         s2io_updt_stats(sp);
4460
4461         sp->stats.tx_packets =
4462                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4463         sp->stats.tx_errors =
4464                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4465         sp->stats.rx_errors =
4466                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4467         sp->stats.multicast =
4468                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4469         sp->stats.rx_length_errors =
4470                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4471
4472         return (&sp->stats);
4473 }
4474
4475 /**
4476  *  s2io_set_multicast - entry point for multicast address enable/disable.
4477  *  @dev : pointer to the device structure
4478  *  Description:
4479  *  This function is a driver entry point which gets called by the kernel
4480  *  whenever multicast addresses must be enabled/disabled. This also gets
4481  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4482  *  determine, if multicast address must be enabled or if promiscuous mode
4483  *  is to be disabled etc.
4484  *  Return value:
4485  *  void.
4486  */
4487
4488 static void s2io_set_multicast(struct net_device *dev)
4489 {
4490         int i, j, prev_cnt;
4491         struct dev_mc_list *mclist;
4492         struct s2io_nic *sp = dev->priv;
4493         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4494         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4495             0xfeffffffffffULL;
4496         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4497         void __iomem *add;
4498
4499         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4500                 /*  Enable all Multicast addresses */
4501                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4502                        &bar0->rmac_addr_data0_mem);
4503                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4504                        &bar0->rmac_addr_data1_mem);
4505                 val64 = RMAC_ADDR_CMD_MEM_WE |
4506                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4507                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4508                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4509                 /* Wait till command completes */
4510                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4511                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4512                                         S2IO_BIT_RESET);
4513
4514                 sp->m_cast_flg = 1;
4515                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4516         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4517                 /*  Disable all Multicast addresses */
4518                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4519                        &bar0->rmac_addr_data0_mem);
4520                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4521                        &bar0->rmac_addr_data1_mem);
4522                 val64 = RMAC_ADDR_CMD_MEM_WE |
4523                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4524                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4525                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4526                 /* Wait till command completes */
4527                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4528                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4529                                         S2IO_BIT_RESET);
4530
4531                 sp->m_cast_flg = 0;
4532                 sp->all_multi_pos = 0;
4533         }
4534
4535         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4536                 /*  Put the NIC into promiscuous mode */
4537                 add = &bar0->mac_cfg;
4538                 val64 = readq(&bar0->mac_cfg);
4539                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4540
4541                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4542                 writel((u32) val64, add);
4543                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4544                 writel((u32) (val64 >> 32), (add + 4));
4545
4546                 if (vlan_tag_strip != 1) {
4547                         val64 = readq(&bar0->rx_pa_cfg);
4548                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4549                         writeq(val64, &bar0->rx_pa_cfg);
4550                         vlan_strip_flag = 0;
4551                 }
4552
4553                 val64 = readq(&bar0->mac_cfg);
4554                 sp->promisc_flg = 1;
4555                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4556                           dev->name);
4557         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4558                 /*  Remove the NIC from promiscuous mode */
4559                 add = &bar0->mac_cfg;
4560                 val64 = readq(&bar0->mac_cfg);
4561                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4562
4563                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4564                 writel((u32) val64, add);
4565                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4566                 writel((u32) (val64 >> 32), (add + 4));
4567
4568                 if (vlan_tag_strip != 0) {
4569                         val64 = readq(&bar0->rx_pa_cfg);
4570                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4571                         writeq(val64, &bar0->rx_pa_cfg);
4572                         vlan_strip_flag = 1;
4573                 }
4574
4575                 val64 = readq(&bar0->mac_cfg);
4576                 sp->promisc_flg = 0;
4577                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4578                           dev->name);
4579         }
4580
4581         /*  Update individual M_CAST address list */
4582         if ((!sp->m_cast_flg) && dev->mc_count) {
4583                 if (dev->mc_count >
4584                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4585                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4586                                   dev->name);
4587                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4588                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4589                         return;
4590                 }
4591
4592                 prev_cnt = sp->mc_addr_count;
4593                 sp->mc_addr_count = dev->mc_count;
4594
4595                 /* Clear out the previous list of Mc in the H/W. */
4596                 for (i = 0; i < prev_cnt; i++) {
4597                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4598                                &bar0->rmac_addr_data0_mem);
4599                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4600                                 &bar0->rmac_addr_data1_mem);
4601                         val64 = RMAC_ADDR_CMD_MEM_WE |
4602                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4603                             RMAC_ADDR_CMD_MEM_OFFSET
4604                             (MAC_MC_ADDR_START_OFFSET + i);
4605                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4606
4607                         /* Wait for command completes */
4608                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4609                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4610                                         S2IO_BIT_RESET)) {
4611                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4612                                           dev->name);
4613                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4614                                 return;
4615                         }
4616                 }
4617
4618                 /* Create the new Rx filter list and update the same in H/W. */
4619                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4620                      i++, mclist = mclist->next) {
4621                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4622                                ETH_ALEN);
4623                         mac_addr = 0;
4624                         for (j = 0; j < ETH_ALEN; j++) {
4625                                 mac_addr |= mclist->dmi_addr[j];
4626                                 mac_addr <<= 8;
4627                         }
4628                         mac_addr >>= 8;
4629                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4630                                &bar0->rmac_addr_data0_mem);
4631                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4632                                 &bar0->rmac_addr_data1_mem);
4633                         val64 = RMAC_ADDR_CMD_MEM_WE |
4634                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4635                             RMAC_ADDR_CMD_MEM_OFFSET
4636                             (i + MAC_MC_ADDR_START_OFFSET);
4637                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4638
4639                         /* Wait for command completes */
4640                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4641                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4642                                         S2IO_BIT_RESET)) {
4643                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4644                                           dev->name);
4645                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4646                                 return;
4647                         }
4648                 }
4649         }
4650 }
4651
4652 /**
4653  *  s2io_set_mac_addr - Programs the Xframe mac address
4654  *  @dev : pointer to the device structure.
4655  *  @addr: a uchar pointer to the new mac address which is to be set.
4656  *  Description : This procedure will program the Xframe to receive
4657  *  frames with new Mac Address
4658  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4659  *  as defined in errno.h file on failure.
4660  */
4661
4662 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4663 {
4664         struct s2io_nic *sp = dev->priv;
4665         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4666         register u64 val64, mac_addr = 0;
4667         int i;
4668         u64 old_mac_addr = 0;
4669
4670         /*
4671          * Set the new MAC address as the new unicast filter and reflect this
4672          * change on the device address registered with the OS. It will be
4673          * at offset 0.
4674          */
4675         for (i = 0; i < ETH_ALEN; i++) {
4676                 mac_addr <<= 8;
4677                 mac_addr |= addr[i];
4678                 old_mac_addr <<= 8;
4679                 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4680         }
4681
4682         if(0 == mac_addr)
4683                 return SUCCESS;
4684
4685         /* Update the internal structure with this new mac address */
4686         if(mac_addr != old_mac_addr) {
4687                 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4688                 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4689                 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4690                 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4691                 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4692                 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4693                 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4694         }
4695
4696         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4697                &bar0->rmac_addr_data0_mem);
4698
4699         val64 =
4700             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4701             RMAC_ADDR_CMD_MEM_OFFSET(0);
4702         writeq(val64, &bar0->rmac_addr_cmd_mem);
4703         /* Wait till command completes */
4704         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4705                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4706                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4707                 return FAILURE;
4708         }
4709
4710         return SUCCESS;
4711 }
4712
4713 /**
4714  * s2io_ethtool_sset - Sets different link parameters.
4715  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4716  * @info: pointer to the structure with parameters given by ethtool to set
4717  * link information.
4718  * Description:
4719  * The function sets different link parameters provided by the user onto
4720  * the NIC.
4721  * Return value:
4722  * 0 on success.
4723 */
4724
4725 static int s2io_ethtool_sset(struct net_device *dev,
4726                              struct ethtool_cmd *info)
4727 {
4728         struct s2io_nic *sp = dev->priv;
4729         if ((info->autoneg == AUTONEG_ENABLE) ||
4730             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4731                 return -EINVAL;
4732         else {
4733                 s2io_close(sp->dev);
4734                 s2io_open(sp->dev);
4735         }
4736
4737         return 0;
4738 }
4739
4740 /**
4741  * s2io_ethtol_gset - Return link specific information.
4742  * @sp : private member of the device structure, pointer to the
4743  *      s2io_nic structure.
4744  * @info : pointer to the structure with parameters given by ethtool
4745  * to return link information.
4746  * Description:
4747  * Returns link specific information like speed, duplex etc.. to ethtool.
4748  * Return value :
4749  * return 0 on success.
4750  */
4751
4752 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4753 {
4754         struct s2io_nic *sp = dev->priv;
4755         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4756         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4757         info->port = PORT_FIBRE;
4758         /* info->transceiver?? TODO */
4759
4760         if (netif_carrier_ok(sp->dev)) {
4761                 info->speed = 10000;
4762                 info->duplex = DUPLEX_FULL;
4763         } else {
4764                 info->speed = -1;
4765                 info->duplex = -1;
4766         }
4767
4768         info->autoneg = AUTONEG_DISABLE;
4769         return 0;
4770 }
4771
4772 /**
4773  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4774  * @sp : private member of the device structure, which is a pointer to the
4775  * s2io_nic structure.
4776  * @info : pointer to the structure with parameters given by ethtool to
4777  * return driver information.
4778  * Description:
4779  * Returns driver specefic information like name, version etc.. to ethtool.
4780  * Return value:
4781  *  void
4782  */
4783
4784 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4785                                   struct ethtool_drvinfo *info)
4786 {
4787         struct s2io_nic *sp = dev->priv;
4788
4789         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4790         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4791         strncpy(info->fw_version, "", sizeof(info->fw_version));
4792         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4793         info->regdump_len = XENA_REG_SPACE;
4794         info->eedump_len = XENA_EEPROM_SPACE;
4795         info->testinfo_len = S2IO_TEST_LEN;
4796
4797         if (sp->device_type == XFRAME_I_DEVICE)
4798                 info->n_stats = XFRAME_I_STAT_LEN;
4799         else
4800                 info->n_stats = XFRAME_II_STAT_LEN;
4801 }
4802
4803 /**
4804  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4805  *  @sp: private member of the device structure, which is a pointer to the
4806  *  s2io_nic structure.
4807  *  @regs : pointer to the structure with parameters given by ethtool for
4808  *  dumping the registers.
4809  *  @reg_space: The input argumnet into which all the registers are dumped.
4810  *  Description:
4811  *  Dumps the entire register space of xFrame NIC into the user given
4812  *  buffer area.
4813  * Return value :
4814  * void .
4815 */
4816
4817 static void s2io_ethtool_gregs(struct net_device *dev,
4818                                struct ethtool_regs *regs, void *space)
4819 {
4820         int i;
4821         u64 reg;
4822         u8 *reg_space = (u8 *) space;
4823         struct s2io_nic *sp = dev->priv;
4824
4825         regs->len = XENA_REG_SPACE;
4826         regs->version = sp->pdev->subsystem_device;
4827
4828         for (i = 0; i < regs->len; i += 8) {
4829                 reg = readq(sp->bar0 + i);
4830                 memcpy((reg_space + i), &reg, 8);
4831         }
4832 }
4833
4834 /**
4835  *  s2io_phy_id  - timer function that alternates adapter LED.
4836  *  @data : address of the private member of the device structure, which
4837  *  is a pointer to the s2io_nic structure, provided as an u32.
4838  * Description: This is actually the timer function that alternates the
4839  * adapter LED bit of the adapter control bit to set/reset every time on
4840  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4841  *  once every second.
4842 */
4843 static void s2io_phy_id(unsigned long data)
4844 {
4845         struct s2io_nic *sp = (struct s2io_nic *) data;
4846         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4847         u64 val64 = 0;
4848         u16 subid;
4849
4850         subid = sp->pdev->subsystem_device;
4851         if ((sp->device_type == XFRAME_II_DEVICE) ||
4852                    ((subid & 0xFF) >= 0x07)) {
4853                 val64 = readq(&bar0->gpio_control);
4854                 val64 ^= GPIO_CTRL_GPIO_0;
4855                 writeq(val64, &bar0->gpio_control);
4856         } else {
4857                 val64 = readq(&bar0->adapter_control);
4858                 val64 ^= ADAPTER_LED_ON;
4859                 writeq(val64, &bar0->adapter_control);
4860         }
4861
4862         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4863 }
4864
4865 /**
4866  * s2io_ethtool_idnic - To physically identify the nic on the system.
4867  * @sp : private member of the device structure, which is a pointer to the
4868  * s2io_nic structure.
4869  * @id : pointer to the structure with identification parameters given by
4870  * ethtool.
4871  * Description: Used to physically identify the NIC on the system.
4872  * The Link LED will blink for a time specified by the user for
4873  * identification.
4874  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4875  * identification is possible only if it's link is up.
4876  * Return value:
4877  * int , returns 0 on success
4878  */
4879
4880 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4881 {
4882         u64 val64 = 0, last_gpio_ctrl_val;
4883         struct s2io_nic *sp = dev->priv;
4884         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4885         u16 subid;
4886
4887         subid = sp->pdev->subsystem_device;
4888         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4889         if ((sp->device_type == XFRAME_I_DEVICE) &&
4890                 ((subid & 0xFF) < 0x07)) {
4891                 val64 = readq(&bar0->adapter_control);
4892                 if (!(val64 & ADAPTER_CNTL_EN)) {
4893                         printk(KERN_ERR
4894                                "Adapter Link down, cannot blink LED\n");
4895                         return -EFAULT;
4896                 }
4897         }
4898         if (sp->id_timer.function == NULL) {
4899                 init_timer(&sp->id_timer);
4900                 sp->id_timer.function = s2io_phy_id;
4901                 sp->id_timer.data = (unsigned long) sp;
4902         }
4903         mod_timer(&sp->id_timer, jiffies);
4904         if (data)
4905                 msleep_interruptible(data * HZ);
4906         else
4907                 msleep_interruptible(MAX_FLICKER_TIME);
4908         del_timer_sync(&sp->id_timer);
4909
4910         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4911                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4912                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4913         }
4914
4915         return 0;
4916 }
4917
4918 static void s2io_ethtool_gringparam(struct net_device *dev,
4919                                     struct ethtool_ringparam *ering)
4920 {
4921         struct s2io_nic *sp = dev->priv;
4922         int i,tx_desc_count=0,rx_desc_count=0;
4923
4924         if (sp->rxd_mode == RXD_MODE_1)
4925                 ering->rx_max_pending = MAX_RX_DESC_1;
4926         else if (sp->rxd_mode == RXD_MODE_3B)
4927                 ering->rx_max_pending = MAX_RX_DESC_2;
4928         else if (sp->rxd_mode == RXD_MODE_3A)
4929                 ering->rx_max_pending = MAX_RX_DESC_3;
4930
4931         ering->tx_max_pending = MAX_TX_DESC;
4932         for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4933                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4934         }
4935         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4936         ering->tx_pending = tx_desc_count;
4937         rx_desc_count = 0;
4938         for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4939                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4940         }
4941         ering->rx_pending = rx_desc_count;
4942
4943         ering->rx_mini_max_pending = 0;
4944         ering->rx_mini_pending = 0;
4945         if(sp->rxd_mode == RXD_MODE_1)
4946                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4947         else if (sp->rxd_mode == RXD_MODE_3B)
4948                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4949         ering->rx_jumbo_pending = rx_desc_count;
4950 }
4951
4952 /**
4953  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4954  * @sp : private member of the device structure, which is a pointer to the
4955  *      s2io_nic structure.
4956  * @ep : pointer to the structure with pause parameters given by ethtool.
4957  * Description:
4958  * Returns the Pause frame generation and reception capability of the NIC.
4959  * Return value:
4960  *  void
4961  */
4962 static void s2io_ethtool_getpause_data(struct net_device *dev,
4963                                        struct ethtool_pauseparam *ep)
4964 {
4965         u64 val64;
4966         struct s2io_nic *sp = dev->priv;
4967         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4968
4969         val64 = readq(&bar0->rmac_pause_cfg);
4970         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4971                 ep->tx_pause = TRUE;
4972         if (val64 & RMAC_PAUSE_RX_ENABLE)
4973                 ep->rx_pause = TRUE;
4974         ep->autoneg = FALSE;
4975 }
4976
4977 /**
4978  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4979  * @sp : private member of the device structure, which is a pointer to the
4980  *      s2io_nic structure.
4981  * @ep : pointer to the structure with pause parameters given by ethtool.
4982  * Description:
4983  * It can be used to set or reset Pause frame generation or reception
4984  * support of the NIC.
4985  * Return value:
4986  * int, returns 0 on Success
4987  */
4988
4989 static int s2io_ethtool_setpause_data(struct net_device *dev,
4990                                struct ethtool_pauseparam *ep)
4991 {
4992         u64 val64;
4993         struct s2io_nic *sp = dev->priv;
4994         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4995
4996         val64 = readq(&bar0->rmac_pause_cfg);
4997         if (ep->tx_pause)
4998                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4999         else
5000                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5001         if (ep->rx_pause)
5002                 val64 |= RMAC_PAUSE_RX_ENABLE;
5003         else
5004                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5005         writeq(val64, &bar0->rmac_pause_cfg);
5006         return 0;
5007 }
5008
5009 /**
5010  * read_eeprom - reads 4 bytes of data from user given offset.
5011  * @sp : private member of the device structure, which is a pointer to the
5012  *      s2io_nic structure.
5013  * @off : offset at which the data must be written
5014  * @data : Its an output parameter where the data read at the given
5015  *      offset is stored.
5016  * Description:
5017  * Will read 4 bytes of data from the user given offset and return the
5018  * read data.
5019  * NOTE: Will allow to read only part of the EEPROM visible through the
5020  *   I2C bus.
5021  * Return value:
5022  *  -1 on failure and 0 on success.
5023  */
5024
5025 #define S2IO_DEV_ID             5
5026 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5027 {
5028         int ret = -1;
5029         u32 exit_cnt = 0;
5030         u64 val64;
5031         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5032
5033         if (sp->device_type == XFRAME_I_DEVICE) {
5034                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5035                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5036                     I2C_CONTROL_CNTL_START;
5037                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5038
5039                 while (exit_cnt < 5) {
5040                         val64 = readq(&bar0->i2c_control);
5041                         if (I2C_CONTROL_CNTL_END(val64)) {
5042                                 *data = I2C_CONTROL_GET_DATA(val64);
5043                                 ret = 0;
5044                                 break;
5045                         }
5046                         msleep(50);
5047                         exit_cnt++;
5048                 }
5049         }
5050
5051         if (sp->device_type == XFRAME_II_DEVICE) {
5052                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5053                         SPI_CONTROL_BYTECNT(0x3) |
5054                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5055                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5056                 val64 |= SPI_CONTROL_REQ;
5057                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5058                 while (exit_cnt < 5) {
5059                         val64 = readq(&bar0->spi_control);
5060                         if (val64 & SPI_CONTROL_NACK) {
5061                                 ret = 1;
5062                                 break;
5063                         } else if (val64 & SPI_CONTROL_DONE) {
5064                                 *data = readq(&bar0->spi_data);
5065                                 *data &= 0xffffff;
5066                                 ret = 0;
5067                                 break;
5068                         }
5069                         msleep(50);
5070                         exit_cnt++;
5071                 }
5072         }
5073         return ret;
5074 }
5075
5076 /**
5077  *  write_eeprom - actually writes the relevant part of the data value.
5078  *  @sp : private member of the device structure, which is a pointer to the
5079  *       s2io_nic structure.
5080  *  @off : offset at which the data must be written
5081  *  @data : The data that is to be written
5082  *  @cnt : Number of bytes of the data that are actually to be written into
5083  *  the Eeprom. (max of 3)
5084  * Description:
5085  *  Actually writes the relevant part of the data value into the Eeprom
5086  *  through the I2C bus.
5087  * Return value:
5088  *  0 on success, -1 on failure.
5089  */
5090
5091 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5092 {
5093         int exit_cnt = 0, ret = -1;
5094         u64 val64;
5095         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5096
5097         if (sp->device_type == XFRAME_I_DEVICE) {
5098                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5099                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5100                     I2C_CONTROL_CNTL_START;
5101                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5102
5103                 while (exit_cnt < 5) {
5104                         val64 = readq(&bar0->i2c_control);
5105                         if (I2C_CONTROL_CNTL_END(val64)) {
5106                                 if (!(val64 & I2C_CONTROL_NACK))
5107                                         ret = 0;
5108                                 break;
5109                         }
5110                         msleep(50);
5111                         exit_cnt++;
5112                 }
5113         }
5114
5115         if (sp->device_type == XFRAME_II_DEVICE) {
5116                 int write_cnt = (cnt == 8) ? 0 : cnt;
5117                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5118
5119                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5120                         SPI_CONTROL_BYTECNT(write_cnt) |
5121                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5122                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5123                 val64 |= SPI_CONTROL_REQ;
5124                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5125                 while (exit_cnt < 5) {
5126                         val64 = readq(&bar0->spi_control);
5127                         if (val64 & SPI_CONTROL_NACK) {
5128                                 ret = 1;
5129                                 break;
5130                         } else if (val64 & SPI_CONTROL_DONE) {
5131                                 ret = 0;
5132                                 break;
5133                         }
5134                         msleep(50);
5135                         exit_cnt++;
5136                 }
5137         }
5138         return ret;
5139 }
5140 static void s2io_vpd_read(struct s2io_nic *nic)
5141 {
5142         u8 *vpd_data;
5143         u8 data;
5144         int i=0, cnt, fail = 0;
5145         int vpd_addr = 0x80;
5146
5147         if (nic->device_type == XFRAME_II_DEVICE) {
5148                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5149                 vpd_addr = 0x80;
5150         }
5151         else {
5152                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5153                 vpd_addr = 0x50;
5154         }
5155         strcpy(nic->serial_num, "NOT AVAILABLE");
5156
5157         vpd_data = kmalloc(256, GFP_KERNEL);
5158         if (!vpd_data) {
5159                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5160                 return;
5161         }
5162         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5163
5164         for (i = 0; i < 256; i +=4 ) {
5165                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5166                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5167                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5168                 for (cnt = 0; cnt <5; cnt++) {
5169                         msleep(2);
5170                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5171                         if (data == 0x80)
5172                                 break;
5173                 }
5174                 if (cnt >= 5) {
5175                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5176                         fail = 1;
5177                         break;
5178                 }
5179                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5180                                       (u32 *)&vpd_data[i]);
5181         }
5182
5183         if(!fail) {
5184                 /* read serial number of adapter */
5185                 for (cnt = 0; cnt < 256; cnt++) {
5186                 if ((vpd_data[cnt] == 'S') &&
5187                         (vpd_data[cnt+1] == 'N') &&
5188                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5189                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5190                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5191                                         vpd_data[cnt+2]);
5192                                 break;
5193                         }
5194                 }
5195         }
5196
5197         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5198                 memset(nic->product_name, 0, vpd_data[1]);
5199                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5200         }
5201         kfree(vpd_data);
5202         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5203 }
5204
5205 /**
5206  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5207  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5208  *  @eeprom : pointer to the user level structure provided by ethtool,
5209  *  containing all relevant information.
5210  *  @data_buf : user defined value to be written into Eeprom.
5211  *  Description: Reads the values stored in the Eeprom at given offset
5212  *  for a given length. Stores these values int the input argument data
5213  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5214  *  Return value:
5215  *  int  0 on success
5216  */
5217
5218 static int s2io_ethtool_geeprom(struct net_device *dev,
5219                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5220 {
5221         u32 i, valid;
5222         u64 data;
5223         struct s2io_nic *sp = dev->priv;
5224
5225         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5226
5227         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5228                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5229
5230         for (i = 0; i < eeprom->len; i += 4) {
5231                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5232                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5233                         return -EFAULT;
5234                 }
5235                 valid = INV(data);
5236                 memcpy((data_buf + i), &valid, 4);
5237         }
5238         return 0;
5239 }
5240
5241 /**
5242  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5243  *  @sp : private member of the device structure, which is a pointer to the
5244  *  s2io_nic structure.
5245  *  @eeprom : pointer to the user level structure provided by ethtool,
5246  *  containing all relevant information.
5247  *  @data_buf ; user defined value to be written into Eeprom.
5248  *  Description:
5249  *  Tries to write the user provided value in the Eeprom, at the offset
5250  *  given by the user.
5251  *  Return value:
5252  *  0 on success, -EFAULT on failure.
5253  */
5254
5255 static int s2io_ethtool_seeprom(struct net_device *dev,
5256                                 struct ethtool_eeprom *eeprom,
5257                                 u8 * data_buf)
5258 {
5259         int len = eeprom->len, cnt = 0;
5260         u64 valid = 0, data;
5261         struct s2io_nic *sp = dev->priv;
5262
5263         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5264                 DBG_PRINT(ERR_DBG,
5265                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5266                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5267                           eeprom->magic);
5268                 return -EFAULT;
5269         }
5270
5271         while (len) {
5272                 data = (u32) data_buf[cnt] & 0x000000FF;
5273                 if (data) {
5274                         valid = (u32) (data << 24);
5275                 } else
5276                         valid = data;
5277
5278                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5279                         DBG_PRINT(ERR_DBG,
5280                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5281                         DBG_PRINT(ERR_DBG,
5282                                   "write into the specified offset\n");
5283                         return -EFAULT;
5284                 }
5285                 cnt++;
5286                 len--;
5287         }
5288
5289         return 0;
5290 }
5291
5292 /**
5293  * s2io_register_test - reads and writes into all clock domains.
5294  * @sp : private member of the device structure, which is a pointer to the
5295  * s2io_nic structure.
5296  * @data : variable that returns the result of each of the test conducted b
5297  * by the driver.
5298  * Description:
5299  * Read and write into all clock domains. The NIC has 3 clock domains,
5300  * see that registers in all the three regions are accessible.
5301  * Return value:
5302  * 0 on success.
5303  */
5304
5305 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5306 {
5307         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5308         u64 val64 = 0, exp_val;
5309         int fail = 0;
5310
5311         val64 = readq(&bar0->pif_rd_swapper_fb);
5312         if (val64 != 0x123456789abcdefULL) {
5313                 fail = 1;
5314                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5315         }
5316
5317         val64 = readq(&bar0->rmac_pause_cfg);
5318         if (val64 != 0xc000ffff00000000ULL) {
5319                 fail = 1;
5320                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5321         }
5322
5323         val64 = readq(&bar0->rx_queue_cfg);
5324         if (sp->device_type == XFRAME_II_DEVICE)
5325                 exp_val = 0x0404040404040404ULL;
5326         else
5327                 exp_val = 0x0808080808080808ULL;
5328         if (val64 != exp_val) {
5329                 fail = 1;
5330                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5331         }
5332
5333         val64 = readq(&bar0->xgxs_efifo_cfg);
5334         if (val64 != 0x000000001923141EULL) {
5335                 fail = 1;
5336                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5337         }
5338
5339         val64 = 0x5A5A5A5A5A5A5A5AULL;
5340         writeq(val64, &bar0->xmsi_data);
5341         val64 = readq(&bar0->xmsi_data);
5342         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5343                 fail = 1;
5344                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5345         }
5346
5347         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5348         writeq(val64, &bar0->xmsi_data);
5349         val64 = readq(&bar0->xmsi_data);
5350         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5351                 fail = 1;
5352                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5353         }
5354
5355         *data = fail;
5356         return fail;
5357 }
5358
5359 /**
5360  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5361  * @sp : private member of the device structure, which is a pointer to the
5362  * s2io_nic structure.
5363  * @data:variable that returns the result of each of the test conducted by
5364  * the driver.
5365  * Description:
5366  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5367  * register.
5368  * Return value:
5369  * 0 on success.
5370  */
5371
5372 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5373 {
5374         int fail = 0;
5375         u64 ret_data, org_4F0, org_7F0;
5376         u8 saved_4F0 = 0, saved_7F0 = 0;
5377         struct net_device *dev = sp->dev;
5378
5379         /* Test Write Error at offset 0 */
5380         /* Note that SPI interface allows write access to all areas
5381          * of EEPROM. Hence doing all negative testing only for Xframe I.
5382          */
5383         if (sp->device_type == XFRAME_I_DEVICE)
5384                 if (!write_eeprom(sp, 0, 0, 3))
5385                         fail = 1;
5386
5387         /* Save current values at offsets 0x4F0 and 0x7F0 */
5388         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5389                 saved_4F0 = 1;
5390         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5391                 saved_7F0 = 1;
5392
5393         /* Test Write at offset 4f0 */
5394         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5395                 fail = 1;
5396         if (read_eeprom(sp, 0x4F0, &ret_data))
5397                 fail = 1;
5398
5399         if (ret_data != 0x012345) {
5400                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5401                         "Data written %llx Data read %llx\n",
5402                         dev->name, (unsigned long long)0x12345,
5403                         (unsigned long long)ret_data);
5404                 fail = 1;
5405         }
5406
5407         /* Reset the EEPROM data go FFFF */
5408         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5409
5410         /* Test Write Request Error at offset 0x7c */
5411         if (sp->device_type == XFRAME_I_DEVICE)
5412                 if (!write_eeprom(sp, 0x07C, 0, 3))
5413                         fail = 1;
5414
5415         /* Test Write Request at offset 0x7f0 */
5416         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5417                 fail = 1;
5418         if (read_eeprom(sp, 0x7F0, &ret_data))
5419                 fail = 1;
5420
5421         if (ret_data != 0x012345) {
5422                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5423                         "Data written %llx Data read %llx\n",
5424                         dev->name, (unsigned long long)0x12345,
5425                         (unsigned long long)ret_data);
5426                 fail = 1;
5427         }
5428
5429         /* Reset the EEPROM data go FFFF */
5430         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5431
5432         if (sp->device_type == XFRAME_I_DEVICE) {
5433                 /* Test Write Error at offset 0x80 */
5434                 if (!write_eeprom(sp, 0x080, 0, 3))
5435                         fail = 1;
5436
5437                 /* Test Write Error at offset 0xfc */
5438                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5439                         fail = 1;
5440
5441                 /* Test Write Error at offset 0x100 */
5442                 if (!write_eeprom(sp, 0x100, 0, 3))
5443                         fail = 1;
5444
5445                 /* Test Write Error at offset 4ec */
5446                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5447                         fail = 1;
5448         }
5449
5450         /* Restore values at offsets 0x4F0 and 0x7F0 */
5451         if (saved_4F0)
5452                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5453         if (saved_7F0)
5454                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5455
5456         *data = fail;
5457         return fail;
5458 }
5459
5460 /**
5461  * s2io_bist_test - invokes the MemBist test of the card .
5462  * @sp : private member of the device structure, which is a pointer to the
5463  * s2io_nic structure.
5464  * @data:variable that returns the result of each of the test conducted by
5465  * the driver.
5466  * Description:
5467  * This invokes the MemBist test of the card. We give around
5468  * 2 secs time for the Test to complete. If it's still not complete
5469  * within this peiod, we consider that the test failed.
5470  * Return value:
5471  * 0 on success and -1 on failure.
5472  */
5473
5474 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5475 {
5476         u8 bist = 0;
5477         int cnt = 0, ret = -1;
5478
5479         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5480         bist |= PCI_BIST_START;
5481         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5482
5483         while (cnt < 20) {
5484                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5485                 if (!(bist & PCI_BIST_START)) {
5486                         *data = (bist & PCI_BIST_CODE_MASK);
5487                         ret = 0;
5488                         break;
5489                 }
5490                 msleep(100);
5491                 cnt++;
5492         }
5493
5494         return ret;
5495 }
5496
5497 /**
5498  * s2io-link_test - verifies the link state of the nic
5499  * @sp ; private member of the device structure, which is a pointer to the
5500  * s2io_nic structure.
5501  * @data: variable that returns the result of each of the test conducted by
5502  * the driver.
5503  * Description:
5504  * The function verifies the link state of the NIC and updates the input
5505  * argument 'data' appropriately.
5506  * Return value:
5507  * 0 on success.
5508  */
5509
5510 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5511 {
5512         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5513         u64 val64;
5514
5515         val64 = readq(&bar0->adapter_status);
5516         if(!(LINK_IS_UP(val64)))
5517                 *data = 1;
5518         else
5519                 *data = 0;
5520
5521         return *data;
5522 }
5523
5524 /**
5525  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5526  * @sp - private member of the device structure, which is a pointer to the
5527  * s2io_nic structure.
5528  * @data - variable that returns the result of each of the test
5529  * conducted by the driver.
5530  * Description:
5531  *  This is one of the offline test that tests the read and write
5532  *  access to the RldRam chip on the NIC.
5533  * Return value:
5534  *  0 on success.
5535  */
5536
5537 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5538 {
5539         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5540         u64 val64;
5541         int cnt, iteration = 0, test_fail = 0;
5542
5543         val64 = readq(&bar0->adapter_control);
5544         val64 &= ~ADAPTER_ECC_EN;
5545         writeq(val64, &bar0->adapter_control);
5546
5547         val64 = readq(&bar0->mc_rldram_test_ctrl);
5548         val64 |= MC_RLDRAM_TEST_MODE;
5549         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5550
5551         val64 = readq(&bar0->mc_rldram_mrs);
5552         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5553         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5554
5555         val64 |= MC_RLDRAM_MRS_ENABLE;
5556         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5557
5558         while (iteration < 2) {
5559                 val64 = 0x55555555aaaa0000ULL;
5560                 if (iteration == 1) {
5561                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5562                 }
5563                 writeq(val64, &bar0->mc_rldram_test_d0);
5564
5565                 val64 = 0xaaaa5a5555550000ULL;
5566                 if (iteration == 1) {
5567                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5568                 }
5569                 writeq(val64, &bar0->mc_rldram_test_d1);
5570
5571                 val64 = 0x55aaaaaaaa5a0000ULL;
5572                 if (iteration == 1) {
5573                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5574                 }
5575                 writeq(val64, &bar0->mc_rldram_test_d2);
5576
5577                 val64 = (u64) (0x0000003ffffe0100ULL);
5578                 writeq(val64, &bar0->mc_rldram_test_add);
5579
5580                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5581                         MC_RLDRAM_TEST_GO;
5582                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5583
5584                 for (cnt = 0; cnt < 5; cnt++) {
5585                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5586                         if (val64 & MC_RLDRAM_TEST_DONE)
5587                                 break;
5588                         msleep(200);
5589                 }
5590
5591                 if (cnt == 5)
5592                         break;
5593
5594                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5595                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5596
5597                 for (cnt = 0; cnt < 5; cnt++) {
5598                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5599                         if (val64 & MC_RLDRAM_TEST_DONE)
5600                                 break;
5601                         msleep(500);
5602                 }
5603
5604                 if (cnt == 5)
5605                         break;
5606
5607                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5608                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5609                         test_fail = 1;
5610
5611                 iteration++;
5612         }
5613
5614         *data = test_fail;
5615
5616         /* Bring the adapter out of test mode */
5617         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5618
5619         return test_fail;
5620 }
5621
5622 /**
5623  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5624  *  @sp : private member of the device structure, which is a pointer to the
5625  *  s2io_nic structure.
5626  *  @ethtest : pointer to a ethtool command specific structure that will be
5627  *  returned to the user.
5628  *  @data : variable that returns the result of each of the test
5629  * conducted by the driver.
5630  * Description:
5631  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5632  *  the health of the card.
5633  * Return value:
5634  *  void
5635  */
5636
5637 static void s2io_ethtool_test(struct net_device *dev,
5638                               struct ethtool_test *ethtest,
5639                               uint64_t * data)
5640 {
5641         struct s2io_nic *sp = dev->priv;
5642         int orig_state = netif_running(sp->dev);
5643
5644         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5645                 /* Offline Tests. */
5646                 if (orig_state)
5647                         s2io_close(sp->dev);
5648
5649                 if (s2io_register_test(sp, &data[0]))
5650                         ethtest->flags |= ETH_TEST_FL_FAILED;
5651
5652                 s2io_reset(sp);
5653
5654                 if (s2io_rldram_test(sp, &data[3]))
5655                         ethtest->flags |= ETH_TEST_FL_FAILED;
5656
5657                 s2io_reset(sp);
5658
5659                 if (s2io_eeprom_test(sp, &data[1]))
5660                         ethtest->flags |= ETH_TEST_FL_FAILED;
5661
5662                 if (s2io_bist_test(sp, &data[4]))
5663                         ethtest->flags |= ETH_TEST_FL_FAILED;
5664
5665                 if (orig_state)
5666                         s2io_open(sp->dev);
5667
5668                 data[2] = 0;
5669         } else {
5670                 /* Online Tests. */
5671                 if (!orig_state) {
5672                         DBG_PRINT(ERR_DBG,
5673                                   "%s: is not up, cannot run test\n",
5674                                   dev->name);
5675                         data[0] = -1;
5676                         data[1] = -1;
5677                         data[2] = -1;
5678                         data[3] = -1;
5679                         data[4] = -1;
5680                 }
5681
5682                 if (s2io_link_test(sp, &data[2]))
5683                         ethtest->flags |= ETH_TEST_FL_FAILED;
5684
5685                 data[0] = 0;
5686                 data[1] = 0;
5687                 data[3] = 0;
5688                 data[4] = 0;
5689         }
5690 }
5691
5692 static void s2io_get_ethtool_stats(struct net_device *dev,
5693                                    struct ethtool_stats *estats,
5694                                    u64 * tmp_stats)
5695 {
5696         int i = 0;
5697         struct s2io_nic *sp = dev->priv;
5698         struct stat_block *stat_info = sp->mac_control.stats_info;
5699
5700         s2io_updt_stats(sp);
5701         tmp_stats[i++] =
5702                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5703                 le32_to_cpu(stat_info->tmac_frms);
5704         tmp_stats[i++] =
5705                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5706                 le32_to_cpu(stat_info->tmac_data_octets);
5707         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5708         tmp_stats[i++] =
5709                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5710                 le32_to_cpu(stat_info->tmac_mcst_frms);
5711         tmp_stats[i++] =
5712                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5713                 le32_to_cpu(stat_info->tmac_bcst_frms);
5714         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5715         tmp_stats[i++] =
5716                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5717                 le32_to_cpu(stat_info->tmac_ttl_octets);
5718         tmp_stats[i++] =
5719                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5720                 le32_to_cpu(stat_info->tmac_ucst_frms);
5721         tmp_stats[i++] =
5722                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5723                 le32_to_cpu(stat_info->tmac_nucst_frms);
5724         tmp_stats[i++] =
5725                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5726                 le32_to_cpu(stat_info->tmac_any_err_frms);
5727         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5728         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5729         tmp_stats[i++] =
5730                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5731                 le32_to_cpu(stat_info->tmac_vld_ip);
5732         tmp_stats[i++] =
5733                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5734                 le32_to_cpu(stat_info->tmac_drop_ip);
5735         tmp_stats[i++] =
5736                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5737                 le32_to_cpu(stat_info->tmac_icmp);
5738         tmp_stats[i++] =
5739                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5740                 le32_to_cpu(stat_info->tmac_rst_tcp);
5741         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5742         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5743                 le32_to_cpu(stat_info->tmac_udp);
5744         tmp_stats[i++] =
5745                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5746                 le32_to_cpu(stat_info->rmac_vld_frms);
5747         tmp_stats[i++] =
5748                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5749                 le32_to_cpu(stat_info->rmac_data_octets);
5750         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5751         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5752         tmp_stats[i++] =
5753                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5754                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5755         tmp_stats[i++] =
5756                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5757                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5758         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5759         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5760         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5761         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5762         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5763         tmp_stats[i++] =
5764                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5765                 le32_to_cpu(stat_info->rmac_ttl_octets);
5766         tmp_stats[i++] =
5767                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5768                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5769         tmp_stats[i++] =
5770                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5771                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5772         tmp_stats[i++] =
5773                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5774                 le32_to_cpu(stat_info->rmac_discarded_frms);
5775         tmp_stats[i++] =
5776                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5777                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5778         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5779         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5780         tmp_stats[i++] =
5781                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5782                 le32_to_cpu(stat_info->rmac_usized_frms);
5783         tmp_stats[i++] =
5784                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5785                 le32_to_cpu(stat_info->rmac_osized_frms);
5786         tmp_stats[i++] =
5787                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5788                 le32_to_cpu(stat_info->rmac_frag_frms);
5789         tmp_stats[i++] =
5790                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5791                 le32_to_cpu(stat_info->rmac_jabber_frms);
5792         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5793         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5794         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5795         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5796         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5797         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5798         tmp_stats[i++] =
5799                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5800                 le32_to_cpu(stat_info->rmac_ip);
5801         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5802         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5803         tmp_stats[i++] =
5804                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5805                 le32_to_cpu(stat_info->rmac_drop_ip);
5806         tmp_stats[i++] =
5807                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5808                 le32_to_cpu(stat_info->rmac_icmp);
5809         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5810         tmp_stats[i++] =
5811                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5812                 le32_to_cpu(stat_info->rmac_udp);
5813         tmp_stats[i++] =
5814                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5815                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5816         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5817         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5818         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5819         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5820         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5821         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5822         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5823         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5824         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5825         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5826         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5827         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5828         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5829         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5830         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5831         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5832         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5833         tmp_stats[i++] =
5834                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5835                 le32_to_cpu(stat_info->rmac_pause_cnt);
5836         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5837         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5838         tmp_stats[i++] =
5839                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5840                 le32_to_cpu(stat_info->rmac_accepted_ip);
5841         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5842         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5843         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5844         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5845         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5846         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5847         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5848         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5849         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5850         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5851         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5852         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5853         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5854         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5855         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5856         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5857         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5858         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5859         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5860
5861         /* Enhanced statistics exist only for Hercules */
5862         if(sp->device_type == XFRAME_II_DEVICE) {
5863                 tmp_stats[i++] =
5864                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5865                 tmp_stats[i++] =
5866                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5867                 tmp_stats[i++] =
5868                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5869                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5870                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5871                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5872                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5873                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5874                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5875                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5876                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5877                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5878                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5879                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5880                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5881                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5882         }
5883
5884         tmp_stats[i++] = 0;
5885         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5886         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5887         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5888         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5889         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5890         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5891         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5892         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5893         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5894         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5895         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5896         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5897         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5898         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5899         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5900         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5901         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5902         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5903         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5904         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5905         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5906         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5907         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5908         if (stat_info->sw_stat.num_aggregations) {
5909                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5910                 int count = 0;
5911                 /*
5912                  * Since 64-bit divide does not work on all platforms,
5913                  * do repeated subtraction.
5914                  */
5915                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5916                         tmp -= stat_info->sw_stat.num_aggregations;
5917                         count++;
5918                 }
5919                 tmp_stats[i++] = count;
5920         }
5921         else
5922                 tmp_stats[i++] = 0;
5923         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5924         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5925         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5926         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5927         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5928         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5929         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5930         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5931
5932         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5933         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5934         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5935         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5936         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5937
5938         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5939         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5940         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5941         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5942         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5943         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5944         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5945         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5946         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5947 }
5948
5949 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5950 {
5951         return (XENA_REG_SPACE);
5952 }
5953
5954
5955 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5956 {
5957         struct s2io_nic *sp = dev->priv;
5958
5959         return (sp->rx_csum);
5960 }
5961
5962 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5963 {
5964         struct s2io_nic *sp = dev->priv;
5965
5966         if (data)
5967                 sp->rx_csum = 1;
5968         else
5969                 sp->rx_csum = 0;
5970
5971         return 0;
5972 }
5973
5974 static int s2io_get_eeprom_len(struct net_device *dev)
5975 {
5976         return (XENA_EEPROM_SPACE);
5977 }
5978
5979 static int s2io_ethtool_self_test_count(struct net_device *dev)
5980 {
5981         return (S2IO_TEST_LEN);
5982 }
5983
5984 static void s2io_ethtool_get_strings(struct net_device *dev,
5985                                      u32 stringset, u8 * data)
5986 {
5987         int stat_size = 0;
5988         struct s2io_nic *sp = dev->priv;
5989
5990         switch (stringset) {
5991         case ETH_SS_TEST:
5992                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5993                 break;
5994         case ETH_SS_STATS:
5995                 stat_size = sizeof(ethtool_xena_stats_keys);
5996                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5997                 if(sp->device_type == XFRAME_II_DEVICE) {
5998                         memcpy(data + stat_size,
5999                                 &ethtool_enhanced_stats_keys,
6000                                 sizeof(ethtool_enhanced_stats_keys));
6001                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6002                 }
6003
6004                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6005                         sizeof(ethtool_driver_stats_keys));
6006         }
6007 }
6008 static int s2io_ethtool_get_stats_count(struct net_device *dev)
6009 {
6010         struct s2io_nic *sp = dev->priv;
6011         int stat_count = 0;
6012         switch(sp->device_type) {
6013         case XFRAME_I_DEVICE:
6014                 stat_count = XFRAME_I_STAT_LEN;
6015         break;
6016
6017         case XFRAME_II_DEVICE:
6018                 stat_count = XFRAME_II_STAT_LEN;
6019         break;
6020         }
6021
6022         return stat_count;
6023 }
6024
6025 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6026 {
6027         if (data)
6028                 dev->features |= NETIF_F_IP_CSUM;
6029         else
6030                 dev->features &= ~NETIF_F_IP_CSUM;
6031
6032         return 0;
6033 }
6034
6035 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6036 {
6037         return (dev->features & NETIF_F_TSO) != 0;
6038 }
6039 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6040 {
6041         if (data)
6042                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6043         else
6044                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6045
6046         return 0;
6047 }
6048
6049 static const struct ethtool_ops netdev_ethtool_ops = {
6050         .get_settings = s2io_ethtool_gset,
6051         .set_settings = s2io_ethtool_sset,
6052         .get_drvinfo = s2io_ethtool_gdrvinfo,
6053         .get_regs_len = s2io_ethtool_get_regs_len,
6054         .get_regs = s2io_ethtool_gregs,
6055         .get_link = ethtool_op_get_link,
6056         .get_eeprom_len = s2io_get_eeprom_len,
6057         .get_eeprom = s2io_ethtool_geeprom,
6058         .set_eeprom = s2io_ethtool_seeprom,
6059         .get_ringparam = s2io_ethtool_gringparam,
6060         .get_pauseparam = s2io_ethtool_getpause_data,
6061         .set_pauseparam = s2io_ethtool_setpause_data,
6062         .get_rx_csum = s2io_ethtool_get_rx_csum,
6063         .set_rx_csum = s2io_ethtool_set_rx_csum,
6064         .get_tx_csum = ethtool_op_get_tx_csum,
6065         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6066         .get_sg = ethtool_op_get_sg,
6067         .set_sg = ethtool_op_set_sg,
6068         .get_tso = s2io_ethtool_op_get_tso,
6069         .set_tso = s2io_ethtool_op_set_tso,
6070         .get_ufo = ethtool_op_get_ufo,
6071         .set_ufo = ethtool_op_set_ufo,
6072         .self_test_count = s2io_ethtool_self_test_count,
6073         .self_test = s2io_ethtool_test,
6074         .get_strings = s2io_ethtool_get_strings,
6075         .phys_id = s2io_ethtool_idnic,
6076         .get_stats_count = s2io_ethtool_get_stats_count,
6077         .get_ethtool_stats = s2io_get_ethtool_stats
6078 };
6079
6080 /**
6081  *  s2io_ioctl - Entry point for the Ioctl
6082  *  @dev :  Device pointer.
6083  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6084  *  a proprietary structure used to pass information to the driver.
6085  *  @cmd :  This is used to distinguish between the different commands that
6086  *  can be passed to the IOCTL functions.
6087  *  Description:
6088  *  Currently there are no special functionality supported in IOCTL, hence
6089  *  function always return EOPNOTSUPPORTED
6090  */
6091
6092 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6093 {
6094         return -EOPNOTSUPP;
6095 }
6096
6097 /**
6098  *  s2io_change_mtu - entry point to change MTU size for the device.
6099  *   @dev : device pointer.
6100  *   @new_mtu : the new MTU size for the device.
6101  *   Description: A driver entry point to change MTU size for the device.
6102  *   Before changing the MTU the device must be stopped.
6103  *  Return value:
6104  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6105  *   file on failure.
6106  */
6107
6108 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6109 {
6110         struct s2io_nic *sp = dev->priv;
6111
6112         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6113                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6114                           dev->name);
6115                 return -EPERM;
6116         }
6117
6118         dev->mtu = new_mtu;
6119         if (netif_running(dev)) {
6120                 s2io_card_down(sp);
6121                 netif_stop_queue(dev);
6122                 if (s2io_card_up(sp)) {
6123                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6124                                   __FUNCTION__);
6125                 }
6126                 if (netif_queue_stopped(dev))
6127                         netif_wake_queue(dev);
6128         } else { /* Device is down */
6129                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6130                 u64 val64 = new_mtu;
6131
6132                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6133         }
6134
6135         return 0;
6136 }
6137
6138 /**
6139  *  s2io_tasklet - Bottom half of the ISR.
6140  *  @dev_adr : address of the device structure in dma_addr_t format.
6141  *  Description:
6142  *  This is the tasklet or the bottom half of the ISR. This is
6143  *  an extension of the ISR which is scheduled by the scheduler to be run
6144  *  when the load on the CPU is low. All low priority tasks of the ISR can
6145  *  be pushed into the tasklet. For now the tasklet is used only to
6146  *  replenish the Rx buffers in the Rx buffer descriptors.
6147  *  Return value:
6148  *  void.
6149  */
6150
6151 static void s2io_tasklet(unsigned long dev_addr)
6152 {
6153         struct net_device *dev = (struct net_device *) dev_addr;
6154         struct s2io_nic *sp = dev->priv;
6155         int i, ret;
6156         struct mac_info *mac_control;
6157         struct config_param *config;
6158
6159         mac_control = &sp->mac_control;
6160         config = &sp->config;
6161
6162         if (!TASKLET_IN_USE) {
6163                 for (i = 0; i < config->rx_ring_num; i++) {
6164                         ret = fill_rx_buffers(sp, i);
6165                         if (ret == -ENOMEM) {
6166                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6167                                           dev->name);
6168                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6169                                 break;
6170                         } else if (ret == -EFILL) {
6171                                 DBG_PRINT(INFO_DBG,
6172                                           "%s: Rx Ring %d is full\n",
6173                                           dev->name, i);
6174                                 break;
6175                         }
6176                 }
6177                 clear_bit(0, (&sp->tasklet_status));
6178         }
6179 }
6180
6181 /**
6182  * s2io_set_link - Set the LInk status
6183  * @data: long pointer to device private structue
6184  * Description: Sets the link status for the adapter
6185  */
6186
6187 static void s2io_set_link(struct work_struct *work)
6188 {
6189         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6190         struct net_device *dev = nic->dev;
6191         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6192         register u64 val64;
6193         u16 subid;
6194
6195         rtnl_lock();
6196
6197         if (!netif_running(dev))
6198                 goto out_unlock;
6199
6200         if (test_and_set_bit(0, &(nic->link_state))) {
6201                 /* The card is being reset, no point doing anything */
6202                 goto out_unlock;
6203         }
6204
6205         subid = nic->pdev->subsystem_device;
6206         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6207                 /*
6208                  * Allow a small delay for the NICs self initiated
6209                  * cleanup to complete.
6210                  */
6211                 msleep(100);
6212         }
6213
6214         val64 = readq(&bar0->adapter_status);
6215         if (LINK_IS_UP(val64)) {
6216                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6217                         if (verify_xena_quiescence(nic)) {
6218                                 val64 = readq(&bar0->adapter_control);
6219                                 val64 |= ADAPTER_CNTL_EN;
6220                                 writeq(val64, &bar0->adapter_control);
6221                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6222                                         nic->device_type, subid)) {
6223                                         val64 = readq(&bar0->gpio_control);
6224                                         val64 |= GPIO_CTRL_GPIO_0;
6225                                         writeq(val64, &bar0->gpio_control);
6226                                         val64 = readq(&bar0->gpio_control);
6227                                 } else {
6228                                         val64 |= ADAPTER_LED_ON;
6229                                         writeq(val64, &bar0->adapter_control);
6230                                 }
6231                                 nic->device_enabled_once = TRUE;
6232                         } else {
6233                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6234                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6235                                 netif_stop_queue(dev);
6236                         }
6237                 }
6238                 val64 = readq(&bar0->adapter_status);
6239                 if (!LINK_IS_UP(val64)) {
6240                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6241                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6242                         DBG_PRINT(ERR_DBG, "device \n");
6243                 } else
6244                         s2io_link(nic, LINK_UP);
6245         } else {
6246                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6247                                                       subid)) {
6248                         val64 = readq(&bar0->gpio_control);
6249                         val64 &= ~GPIO_CTRL_GPIO_0;
6250                         writeq(val64, &bar0->gpio_control);
6251                         val64 = readq(&bar0->gpio_control);
6252                 }
6253                 s2io_link(nic, LINK_DOWN);
6254         }
6255         clear_bit(0, &(nic->link_state));
6256
6257 out_unlock:
6258         rtnl_unlock();
6259 }
6260
6261 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6262                                 struct buffAdd *ba,
6263                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6264                                 u64 *temp2, int size)
6265 {
6266         struct net_device *dev = sp->dev;
6267         struct sk_buff *frag_list;
6268
6269         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6270                 /* allocate skb */
6271                 if (*skb) {
6272                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6273                         /*
6274                          * As Rx frame are not going to be processed,
6275                          * using same mapped address for the Rxd
6276                          * buffer pointer
6277                          */
6278                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6279                 } else {
6280                         *skb = dev_alloc_skb(size);
6281                         if (!(*skb)) {
6282                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6283                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6284                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6285                                 sp->mac_control.stats_info->sw_stat. \
6286                                         mem_alloc_fail_cnt++;
6287                                 return -ENOMEM ;
6288                         }
6289                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6290                                 += (*skb)->truesize;
6291                         /* storing the mapped addr in a temp variable
6292                          * such it will be used for next rxd whose
6293                          * Host Control is NULL
6294                          */
6295                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6296                                 pci_map_single( sp->pdev, (*skb)->data,
6297                                         size - NET_IP_ALIGN,
6298                                         PCI_DMA_FROMDEVICE);
6299                         rxdp->Host_Control = (unsigned long) (*skb);
6300                 }
6301         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6302                 /* Two buffer Mode */
6303                 if (*skb) {
6304                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6305                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6306                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6307                 } else {
6308                         *skb = dev_alloc_skb(size);
6309                         if (!(*skb)) {
6310                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6311                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6312                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6313                                 sp->mac_control.stats_info->sw_stat. \
6314                                         mem_alloc_fail_cnt++;
6315                                 return -ENOMEM;
6316                         }
6317                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6318                                 += (*skb)->truesize;
6319                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6320                                 pci_map_single(sp->pdev, (*skb)->data,
6321                                                dev->mtu + 4,
6322                                                PCI_DMA_FROMDEVICE);
6323                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6324                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6325                                                 PCI_DMA_FROMDEVICE);
6326                         rxdp->Host_Control = (unsigned long) (*skb);
6327
6328                         /* Buffer-1 will be dummy buffer not used */
6329                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6330                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6331                                                PCI_DMA_FROMDEVICE);
6332                 }
6333         } else if ((rxdp->Host_Control == 0)) {
6334                 /* Three buffer mode */
6335                 if (*skb) {
6336                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6337                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6338                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6339                 } else {
6340                         *skb = dev_alloc_skb(size);
6341                         if (!(*skb)) {
6342                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6343                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6344                                 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6345                                 sp->mac_control.stats_info->sw_stat. \
6346                                         mem_alloc_fail_cnt++;
6347                                 return -ENOMEM;
6348                         }
6349                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6350                                 += (*skb)->truesize;
6351                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6352                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6353                                                PCI_DMA_FROMDEVICE);
6354                         /* Buffer-1 receives L3/L4 headers */
6355                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6356                                 pci_map_single( sp->pdev, (*skb)->data,
6357                                                 l3l4hdr_size + 4,
6358                                                 PCI_DMA_FROMDEVICE);
6359                         /*
6360                          * skb_shinfo(skb)->frag_list will have L4
6361                          * data payload
6362                          */
6363                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6364                                                                    ALIGN_SIZE);
6365                         if (skb_shinfo(*skb)->frag_list == NULL) {
6366                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6367                                           failed\n ", dev->name);
6368                                 sp->mac_control.stats_info->sw_stat. \
6369                                         mem_alloc_fail_cnt++;
6370                                 return -ENOMEM ;
6371                         }
6372                         frag_list = skb_shinfo(*skb)->frag_list;
6373                         frag_list->next = NULL;
6374                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6375                                 += frag_list->truesize;
6376                         /*
6377                          * Buffer-2 receives L4 data payload
6378                          */
6379                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6380                                 pci_map_single( sp->pdev, frag_list->data,
6381                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6382                 }
6383         }
6384         return 0;
6385 }
6386 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6387                                 int size)
6388 {
6389         struct net_device *dev = sp->dev;
6390         if (sp->rxd_mode == RXD_MODE_1) {
6391                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6392         } else if (sp->rxd_mode == RXD_MODE_3B) {
6393                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6394                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6395                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6396         } else {
6397                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6398                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6399                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6400         }
6401 }
6402
6403 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6404 {
6405         int i, j, k, blk_cnt = 0, size;
6406         struct mac_info * mac_control = &sp->mac_control;
6407         struct config_param *config = &sp->config;
6408         struct net_device *dev = sp->dev;
6409         struct RxD_t *rxdp = NULL;
6410         struct sk_buff *skb = NULL;
6411         struct buffAdd *ba = NULL;
6412         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6413
6414         /* Calculate the size based on ring mode */
6415         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6416                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6417         if (sp->rxd_mode == RXD_MODE_1)
6418                 size += NET_IP_ALIGN;
6419         else if (sp->rxd_mode == RXD_MODE_3B)
6420                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6421         else
6422                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6423
6424         for (i = 0; i < config->rx_ring_num; i++) {
6425                 blk_cnt = config->rx_cfg[i].num_rxd /
6426                         (rxd_count[sp->rxd_mode] +1);
6427
6428                 for (j = 0; j < blk_cnt; j++) {
6429                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6430                                 rxdp = mac_control->rings[i].
6431                                         rx_blocks[j].rxds[k].virt_addr;
6432                                 if(sp->rxd_mode >= RXD_MODE_3A)
6433                                         ba = &mac_control->rings[i].ba[j][k];
6434                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6435                                                        &skb,(u64 *)&temp0_64,
6436                                                        (u64 *)&temp1_64,
6437                                                        (u64 *)&temp2_64,
6438                                                         size) == ENOMEM) {
6439                                         return 0;
6440                                 }
6441
6442                                 set_rxd_buffer_size(sp, rxdp, size);
6443                                 wmb();
6444                                 /* flip the Ownership bit to Hardware */
6445                                 rxdp->Control_1 |= RXD_OWN_XENA;
6446                         }
6447                 }
6448         }
6449         return 0;
6450
6451 }
6452
6453 static int s2io_add_isr(struct s2io_nic * sp)
6454 {
6455         int ret = 0;
6456         struct net_device *dev = sp->dev;
6457         int err = 0;
6458
6459         if (sp->intr_type == MSI)
6460                 ret = s2io_enable_msi(sp);
6461         else if (sp->intr_type == MSI_X)
6462                 ret = s2io_enable_msi_x(sp);
6463         if (ret) {
6464                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6465                 sp->intr_type = INTA;
6466         }
6467
6468         /* Store the values of the MSIX table in the struct s2io_nic structure */
6469         store_xmsi_data(sp);
6470
6471         /* After proper initialization of H/W, register ISR */
6472         if (sp->intr_type == MSI) {
6473                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6474                         IRQF_SHARED, sp->name, dev);
6475                 if (err) {
6476                         pci_disable_msi(sp->pdev);
6477                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6478                                   dev->name);
6479                         return -1;
6480                 }
6481         }
6482         if (sp->intr_type == MSI_X) {
6483                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6484
6485                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6486                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6487                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6488                                         dev->name, i);
6489                                 err = request_irq(sp->entries[i].vector,
6490                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6491                                                   sp->s2io_entries[i].arg);
6492                                 /* If either data or addr is zero print it */
6493                                 if(!(sp->msix_info[i].addr &&
6494                                         sp->msix_info[i].data)) {
6495                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6496                                                 "Data:0x%lx\n",sp->desc[i],
6497                                                 (unsigned long long)
6498                                                 sp->msix_info[i].addr,
6499                                                 (unsigned long)
6500                                                 ntohl(sp->msix_info[i].data));
6501                                 } else {
6502                                         msix_tx_cnt++;
6503                                 }
6504                         } else {
6505                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6506                                         dev->name, i);
6507                                 err = request_irq(sp->entries[i].vector,
6508                                           s2io_msix_ring_handle, 0, sp->desc[i],
6509                                                   sp->s2io_entries[i].arg);
6510                                 /* If either data or addr is zero print it */
6511                                 if(!(sp->msix_info[i].addr &&
6512                                         sp->msix_info[i].data)) {
6513                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6514                                                 "Data:0x%lx\n",sp->desc[i],
6515                                                 (unsigned long long)
6516                                                 sp->msix_info[i].addr,
6517                                                 (unsigned long)
6518                                                 ntohl(sp->msix_info[i].data));
6519                                 } else {
6520                                         msix_rx_cnt++;
6521                                 }
6522                         }
6523                         if (err) {
6524                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6525                                           "failed\n", dev->name, i);
6526                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6527                                 return -1;
6528                         }
6529                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6530                 }
6531                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6532                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6533         }
6534         if (sp->intr_type == INTA) {
6535                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6536                                 sp->name, dev);
6537                 if (err) {
6538                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6539                                   dev->name);
6540                         return -1;
6541                 }
6542         }
6543         return 0;
6544 }
6545 static void s2io_rem_isr(struct s2io_nic * sp)
6546 {
6547         int cnt = 0;
6548         struct net_device *dev = sp->dev;
6549
6550         if (sp->intr_type == MSI_X) {
6551                 int i;
6552                 u16 msi_control;
6553
6554                 for (i=1; (sp->s2io_entries[i].in_use ==
6555                         MSIX_REGISTERED_SUCCESS); i++) {
6556                         int vector = sp->entries[i].vector;
6557                         void *arg = sp->s2io_entries[i].arg;
6558
6559                         free_irq(vector, arg);
6560                 }
6561                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6562                 msi_control &= 0xFFFE; /* Disable MSI */
6563                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6564
6565                 pci_disable_msix(sp->pdev);
6566         } else {
6567                 free_irq(sp->pdev->irq, dev);
6568                 if (sp->intr_type == MSI) {
6569                         u16 val;
6570
6571                         pci_disable_msi(sp->pdev);
6572                         pci_read_config_word(sp->pdev, 0x4c, &val);
6573                         val ^= 0x1;
6574                         pci_write_config_word(sp->pdev, 0x4c, val);
6575                 }
6576         }
6577         /* Waiting till all Interrupt handlers are complete */
6578         cnt = 0;
6579         do {
6580                 msleep(10);
6581                 if (!atomic_read(&sp->isr_cnt))
6582                         break;
6583                 cnt++;
6584         } while(cnt < 5);
6585 }
6586
6587 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6588 {
6589         int cnt = 0;
6590         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6591         unsigned long flags;
6592         register u64 val64 = 0;
6593
6594         del_timer_sync(&sp->alarm_timer);
6595         /* If s2io_set_link task is executing, wait till it completes. */
6596         while (test_and_set_bit(0, &(sp->link_state))) {
6597                 msleep(50);
6598         }
6599         atomic_set(&sp->card_state, CARD_DOWN);
6600
6601         /* disable Tx and Rx traffic on the NIC */
6602         if (do_io)
6603                 stop_nic(sp);
6604
6605         s2io_rem_isr(sp);
6606
6607         /* Kill tasklet. */
6608         tasklet_kill(&sp->task);
6609
6610         /* Check if the device is Quiescent and then Reset the NIC */
6611         while(do_io) {
6612                 /* As per the HW requirement we need to replenish the
6613                  * receive buffer to avoid the ring bump. Since there is
6614                  * no intention of processing the Rx frame at this pointwe are
6615                  * just settting the ownership bit of rxd in Each Rx
6616                  * ring to HW and set the appropriate buffer size
6617                  * based on the ring mode
6618                  */
6619                 rxd_owner_bit_reset(sp);
6620
6621                 val64 = readq(&bar0->adapter_status);
6622                 if (verify_xena_quiescence(sp)) {
6623                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6624                         break;
6625                 }
6626
6627                 msleep(50);
6628                 cnt++;
6629                 if (cnt == 10) {
6630                         DBG_PRINT(ERR_DBG,
6631                                   "s2io_close:Device not Quiescent ");
6632                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6633                                   (unsigned long long) val64);
6634                         break;
6635                 }
6636         }
6637         if (do_io)
6638                 s2io_reset(sp);
6639
6640         spin_lock_irqsave(&sp->tx_lock, flags);
6641         /* Free all Tx buffers */
6642         free_tx_buffers(sp);
6643         spin_unlock_irqrestore(&sp->tx_lock, flags);
6644
6645         /* Free all Rx buffers */
6646         spin_lock_irqsave(&sp->rx_lock, flags);
6647         free_rx_buffers(sp);
6648         spin_unlock_irqrestore(&sp->rx_lock, flags);
6649
6650         clear_bit(0, &(sp->link_state));
6651 }
6652
6653 static void s2io_card_down(struct s2io_nic * sp)
6654 {
6655         do_s2io_card_down(sp, 1);
6656 }
6657
6658 static int s2io_card_up(struct s2io_nic * sp)
6659 {
6660         int i, ret = 0;
6661         struct mac_info *mac_control;
6662         struct config_param *config;
6663         struct net_device *dev = (struct net_device *) sp->dev;
6664         u16 interruptible;
6665
6666         /* Initialize the H/W I/O registers */
6667         if (init_nic(sp) != 0) {
6668                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6669                           dev->name);
6670                 s2io_reset(sp);
6671                 return -ENODEV;
6672         }
6673
6674         /*
6675          * Initializing the Rx buffers. For now we are considering only 1
6676          * Rx ring and initializing buffers into 30 Rx blocks
6677          */
6678         mac_control = &sp->mac_control;
6679         config = &sp->config;
6680
6681         for (i = 0; i < config->rx_ring_num; i++) {
6682                 if ((ret = fill_rx_buffers(sp, i))) {
6683                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6684                                   dev->name);
6685                         s2io_reset(sp);
6686                         free_rx_buffers(sp);
6687                         return -ENOMEM;
6688                 }
6689                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6690                           atomic_read(&sp->rx_bufs_left[i]));
6691         }
6692         /* Maintain the state prior to the open */
6693         if (sp->promisc_flg)
6694                 sp->promisc_flg = 0;
6695         if (sp->m_cast_flg) {
6696                 sp->m_cast_flg = 0;
6697                 sp->all_multi_pos= 0;
6698         }
6699
6700         /* Setting its receive mode */
6701         s2io_set_multicast(dev);
6702
6703         if (sp->lro) {
6704                 /* Initialize max aggregatable pkts per session based on MTU */
6705                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6706                 /* Check if we can use(if specified) user provided value */
6707                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6708                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6709         }
6710
6711         /* Enable Rx Traffic and interrupts on the NIC */
6712         if (start_nic(sp)) {
6713                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6714                 s2io_reset(sp);
6715                 free_rx_buffers(sp);
6716                 return -ENODEV;
6717         }
6718
6719         /* Add interrupt service routine */
6720         if (s2io_add_isr(sp) != 0) {
6721                 if (sp->intr_type == MSI_X)
6722                         s2io_rem_isr(sp);
6723                 s2io_reset(sp);
6724                 free_rx_buffers(sp);
6725                 return -ENODEV;
6726         }
6727
6728         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6729
6730         /* Enable tasklet for the device */
6731         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6732
6733         /*  Enable select interrupts */
6734         if (sp->intr_type != INTA)
6735                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6736         else {
6737                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6738                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6739                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6740                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6741         }
6742
6743
6744         atomic_set(&sp->card_state, CARD_UP);
6745         return 0;
6746 }
6747
6748 /**
6749  * s2io_restart_nic - Resets the NIC.
6750  * @data : long pointer to the device private structure
6751  * Description:
6752  * This function is scheduled to be run by the s2io_tx_watchdog
6753  * function after 0.5 secs to reset the NIC. The idea is to reduce
6754  * the run time of the watch dog routine which is run holding a
6755  * spin lock.
6756  */
6757
6758 static void s2io_restart_nic(struct work_struct *work)
6759 {
6760         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6761         struct net_device *dev = sp->dev;
6762
6763         rtnl_lock();
6764
6765         if (!netif_running(dev))
6766                 goto out_unlock;
6767
6768         s2io_card_down(sp);
6769         if (s2io_card_up(sp)) {
6770                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6771                           dev->name);
6772         }
6773         netif_wake_queue(dev);
6774         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6775                   dev->name);
6776 out_unlock:
6777         rtnl_unlock();
6778 }
6779
6780 /**
6781  *  s2io_tx_watchdog - Watchdog for transmit side.
6782  *  @dev : Pointer to net device structure
6783  *  Description:
6784  *  This function is triggered if the Tx Queue is stopped
6785  *  for a pre-defined amount of time when the Interface is still up.
6786  *  If the Interface is jammed in such a situation, the hardware is
6787  *  reset (by s2io_close) and restarted again (by s2io_open) to
6788  *  overcome any problem that might have been caused in the hardware.
6789  *  Return value:
6790  *  void
6791  */
6792
6793 static void s2io_tx_watchdog(struct net_device *dev)
6794 {
6795         struct s2io_nic *sp = dev->priv;
6796
6797         if (netif_carrier_ok(dev)) {
6798                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6799                 schedule_work(&sp->rst_timer_task);
6800                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6801         }
6802 }
6803
6804 /**
6805  *   rx_osm_handler - To perform some OS related operations on SKB.
6806  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6807  *   @skb : the socket buffer pointer.
6808  *   @len : length of the packet
6809  *   @cksum : FCS checksum of the frame.
6810  *   @ring_no : the ring from which this RxD was extracted.
6811  *   Description:
6812  *   This function is called by the Rx interrupt serivce routine to perform
6813  *   some OS related operations on the SKB before passing it to the upper
6814  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6815  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6816  *   to the upper layer. If the checksum is wrong, it increments the Rx
6817  *   packet error count, frees the SKB and returns error.
6818  *   Return value:
6819  *   SUCCESS on success and -1 on failure.
6820  */
6821 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6822 {
6823         struct s2io_nic *sp = ring_data->nic;
6824         struct net_device *dev = (struct net_device *) sp->dev;
6825         struct sk_buff *skb = (struct sk_buff *)
6826                 ((unsigned long) rxdp->Host_Control);
6827         int ring_no = ring_data->ring_no;
6828         u16 l3_csum, l4_csum;
6829         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6830         struct lro *lro;
6831         u8 err_mask;
6832
6833         skb->dev = dev;
6834
6835         if (err) {
6836                 /* Check for parity error */
6837                 if (err & 0x1) {
6838                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6839                 }
6840                 err_mask = err >> 48;
6841                 switch(err_mask) {
6842                         case 1:
6843                                 sp->mac_control.stats_info->sw_stat.
6844                                 rx_parity_err_cnt++;
6845                         break;
6846
6847                         case 2:
6848                                 sp->mac_control.stats_info->sw_stat.
6849                                 rx_abort_cnt++;
6850                         break;
6851
6852                         case 3:
6853                                 sp->mac_control.stats_info->sw_stat.
6854                                 rx_parity_abort_cnt++;
6855                         break;
6856
6857                         case 4:
6858                                 sp->mac_control.stats_info->sw_stat.
6859                                 rx_rda_fail_cnt++;
6860                         break;
6861
6862                         case 5:
6863                                 sp->mac_control.stats_info->sw_stat.
6864                                 rx_unkn_prot_cnt++;
6865                         break;
6866
6867                         case 6:
6868                                 sp->mac_control.stats_info->sw_stat.
6869                                 rx_fcs_err_cnt++;
6870                         break;
6871
6872                         case 7:
6873                                 sp->mac_control.stats_info->sw_stat.
6874                                 rx_buf_size_err_cnt++;
6875                         break;
6876
6877                         case 8:
6878                                 sp->mac_control.stats_info->sw_stat.
6879                                 rx_rxd_corrupt_cnt++;
6880                         break;
6881
6882                         case 15:
6883                                 sp->mac_control.stats_info->sw_stat.
6884                                 rx_unkn_err_cnt++;
6885                         break;
6886                 }
6887                 /*
6888                 * Drop the packet if bad transfer code. Exception being
6889                 * 0x5, which could be due to unsupported IPv6 extension header.
6890                 * In this case, we let stack handle the packet.
6891                 * Note that in this case, since checksum will be incorrect,
6892                 * stack will validate the same.
6893                 */
6894                 if (err_mask != 0x5) {
6895                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6896                                 dev->name, err_mask);
6897                         sp->stats.rx_crc_errors++;
6898                         sp->mac_control.stats_info->sw_stat.mem_freed 
6899                                 += skb->truesize;
6900                         dev_kfree_skb(skb);
6901                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6902                         rxdp->Host_Control = 0;
6903                         return 0;
6904                 }
6905         }
6906
6907         /* Updating statistics */
6908         rxdp->Host_Control = 0;
6909         if (sp->rxd_mode == RXD_MODE_1) {
6910                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6911
6912                 sp->stats.rx_bytes += len;
6913                 skb_put(skb, len);
6914
6915         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6916                 int get_block = ring_data->rx_curr_get_info.block_index;
6917                 int get_off = ring_data->rx_curr_get_info.offset;
6918                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6919                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6920                 unsigned char *buff = skb_push(skb, buf0_len);
6921
6922                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6923                 sp->stats.rx_bytes += buf0_len + buf2_len;
6924                 memcpy(buff, ba->ba_0, buf0_len);
6925
6926                 if (sp->rxd_mode == RXD_MODE_3A) {
6927                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6928
6929                         skb_put(skb, buf1_len);
6930                         skb->len += buf2_len;
6931                         skb->data_len += buf2_len;
6932                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6933                         sp->stats.rx_bytes += buf1_len;
6934
6935                 } else
6936                         skb_put(skb, buf2_len);
6937         }
6938
6939         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6940             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6941             (sp->rx_csum)) {
6942                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6943                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6944                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6945                         /*
6946                          * NIC verifies if the Checksum of the received
6947                          * frame is Ok or not and accordingly returns
6948                          * a flag in the RxD.
6949                          */
6950                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6951                         if (sp->lro) {
6952                                 u32 tcp_len;
6953                                 u8 *tcp;
6954                                 int ret = 0;
6955
6956                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6957                                                 &tcp_len, &lro, rxdp, sp);
6958                                 switch (ret) {
6959                                         case 3: /* Begin anew */
6960                                                 lro->parent = skb;
6961                                                 goto aggregate;
6962                                         case 1: /* Aggregate */
6963                                         {
6964                                                 lro_append_pkt(sp, lro,
6965                                                         skb, tcp_len);
6966                                                 goto aggregate;
6967                                         }
6968                                         case 4: /* Flush session */
6969                                         {
6970                                                 lro_append_pkt(sp, lro,
6971                                                         skb, tcp_len);
6972                                                 queue_rx_frame(lro->parent);
6973                                                 clear_lro_session(lro);
6974                                                 sp->mac_control.stats_info->
6975                                                     sw_stat.flush_max_pkts++;
6976                                                 goto aggregate;
6977                                         }
6978                                         case 2: /* Flush both */
6979                                                 lro->parent->data_len =
6980                                                         lro->frags_len;
6981                                                 sp->mac_control.stats_info->
6982                                                      sw_stat.sending_both++;
6983                                                 queue_rx_frame(lro->parent);
6984                                                 clear_lro_session(lro);
6985                                                 goto send_up;
6986                                         case 0: /* sessions exceeded */
6987                                         case -1: /* non-TCP or not
6988                                                   * L2 aggregatable
6989                                                   */
6990                                         case 5: /*
6991                                                  * First pkt in session not
6992                                                  * L3/L4 aggregatable
6993                                                  */
6994                                                 break;
6995                                         default:
6996                                                 DBG_PRINT(ERR_DBG,
6997                                                         "%s: Samadhana!!\n",
6998                                                          __FUNCTION__);
6999                                                 BUG();
7000                                 }
7001                         }
7002                 } else {
7003                         /*
7004                          * Packet with erroneous checksum, let the
7005                          * upper layers deal with it.
7006                          */
7007                         skb->ip_summed = CHECKSUM_NONE;
7008                 }
7009         } else {
7010                 skb->ip_summed = CHECKSUM_NONE;
7011         }
7012         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7013         if (!sp->lro) {
7014                 skb->protocol = eth_type_trans(skb, dev);
7015                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7016                         vlan_strip_flag)) {
7017                         /* Queueing the vlan frame to the upper layer */
7018                         if (napi)
7019                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7020                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7021                         else
7022                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7023                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7024                 } else {
7025                         if (napi)
7026                                 netif_receive_skb(skb);
7027                         else
7028                                 netif_rx(skb);
7029                 }
7030         } else {
7031 send_up:
7032                 queue_rx_frame(skb);
7033         }
7034         dev->last_rx = jiffies;
7035 aggregate:
7036         atomic_dec(&sp->rx_bufs_left[ring_no]);
7037         return SUCCESS;
7038 }
7039
7040 /**
7041  *  s2io_link - stops/starts the Tx queue.
7042  *  @sp : private member of the device structure, which is a pointer to the
7043  *  s2io_nic structure.
7044  *  @link : inidicates whether link is UP/DOWN.
7045  *  Description:
7046  *  This function stops/starts the Tx queue depending on whether the link
7047  *  status of the NIC is is down or up. This is called by the Alarm
7048  *  interrupt handler whenever a link change interrupt comes up.
7049  *  Return value:
7050  *  void.
7051  */
7052
7053 static void s2io_link(struct s2io_nic * sp, int link)
7054 {
7055         struct net_device *dev = (struct net_device *) sp->dev;
7056
7057         if (link != sp->last_link_state) {
7058                 if (link == LINK_DOWN) {
7059                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7060                         netif_carrier_off(dev);
7061                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7062                         sp->mac_control.stats_info->sw_stat.link_up_time = 
7063                                 jiffies - sp->start_time;
7064                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7065                 } else {
7066                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7067                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7068                         sp->mac_control.stats_info->sw_stat.link_down_time = 
7069                                 jiffies - sp->start_time;
7070                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7071                         netif_carrier_on(dev);
7072                 }
7073         }
7074         sp->last_link_state = link;
7075         sp->start_time = jiffies;
7076 }
7077
7078 /**
7079  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7080  *  @sp : private member of the device structure, which is a pointer to the
7081  *  s2io_nic structure.
7082  *  Description:
7083  *  This function initializes a few of the PCI and PCI-X configuration registers
7084  *  with recommended values.
7085  *  Return value:
7086  *  void
7087  */
7088
7089 static void s2io_init_pci(struct s2io_nic * sp)
7090 {
7091         u16 pci_cmd = 0, pcix_cmd = 0;
7092
7093         /* Enable Data Parity Error Recovery in PCI-X command register. */
7094         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7095                              &(pcix_cmd));
7096         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7097                               (pcix_cmd | 1));
7098         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7099                              &(pcix_cmd));
7100
7101         /* Set the PErr Response bit in PCI command register. */
7102         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7103         pci_write_config_word(sp->pdev, PCI_COMMAND,
7104                               (pci_cmd | PCI_COMMAND_PARITY));
7105         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7106 }
7107
7108 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7109 {
7110         if ( tx_fifo_num > 8) {
7111                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7112                          "supported\n");
7113                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7114                 tx_fifo_num = 8;
7115         }
7116         if ( rx_ring_num > 8) {
7117                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7118                          "supported\n");
7119                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7120                 rx_ring_num = 8;
7121         }
7122         if (*dev_intr_type != INTA)
7123                 napi = 0;
7124
7125 #ifndef CONFIG_PCI_MSI
7126         if (*dev_intr_type != INTA) {
7127                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7128                           "MSI/MSI-X. Defaulting to INTA\n");
7129                 *dev_intr_type = INTA;
7130         }
7131 #else
7132         if (*dev_intr_type > MSI_X) {
7133                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7134                           "Defaulting to INTA\n");
7135                 *dev_intr_type = INTA;
7136         }
7137 #endif
7138         if ((*dev_intr_type == MSI_X) &&
7139                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7140                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7141                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7142                                         "Defaulting to INTA\n");
7143                 *dev_intr_type = INTA;
7144         }
7145
7146         if (rx_ring_mode > 3) {
7147                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7148                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7149                 rx_ring_mode = 3;
7150         }
7151         return SUCCESS;
7152 }
7153
7154 /**
7155  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7156  * or Traffic class respectively.
7157  * @nic: device peivate variable
7158  * Description: The function configures the receive steering to
7159  * desired receive ring.
7160  * Return Value:  SUCCESS on success and
7161  * '-1' on failure (endian settings incorrect).
7162  */
7163 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7164 {
7165         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7166         register u64 val64 = 0;
7167
7168         if (ds_codepoint > 63)
7169                 return FAILURE;
7170
7171         val64 = RTS_DS_MEM_DATA(ring);
7172         writeq(val64, &bar0->rts_ds_mem_data);
7173
7174         val64 = RTS_DS_MEM_CTRL_WE |
7175                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7176                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7177
7178         writeq(val64, &bar0->rts_ds_mem_ctrl);
7179
7180         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7181                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7182                                 S2IO_BIT_RESET);
7183 }
7184
7185 /**
7186  *  s2io_init_nic - Initialization of the adapter .
7187  *  @pdev : structure containing the PCI related information of the device.
7188  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7189  *  Description:
7190  *  The function initializes an adapter identified by the pci_dec structure.
7191  *  All OS related initialization including memory and device structure and
7192  *  initlaization of the device private variable is done. Also the swapper
7193  *  control register is initialized to enable read and write into the I/O
7194  *  registers of the device.
7195  *  Return value:
7196  *  returns 0 on success and negative on failure.
7197  */
7198
7199 static int __devinit
7200 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7201 {
7202         struct s2io_nic *sp;
7203         struct net_device *dev;
7204         int i, j, ret;
7205         int dma_flag = FALSE;
7206         u32 mac_up, mac_down;
7207         u64 val64 = 0, tmp64 = 0;
7208         struct XENA_dev_config __iomem *bar0 = NULL;
7209         u16 subid;
7210         struct mac_info *mac_control;
7211         struct config_param *config;
7212         int mode;
7213         u8 dev_intr_type = intr_type;
7214
7215         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7216                 return ret;
7217
7218         if ((ret = pci_enable_device(pdev))) {
7219                 DBG_PRINT(ERR_DBG,
7220                           "s2io_init_nic: pci_enable_device failed\n");
7221                 return ret;
7222         }
7223
7224         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7225                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7226                 dma_flag = TRUE;
7227                 if (pci_set_consistent_dma_mask
7228                     (pdev, DMA_64BIT_MASK)) {
7229                         DBG_PRINT(ERR_DBG,
7230                                   "Unable to obtain 64bit DMA for \
7231                                         consistent allocations\n");
7232                         pci_disable_device(pdev);
7233                         return -ENOMEM;
7234                 }
7235         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7236                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7237         } else {
7238                 pci_disable_device(pdev);
7239                 return -ENOMEM;
7240         }
7241         if (dev_intr_type != MSI_X) {
7242                 if (pci_request_regions(pdev, s2io_driver_name)) {
7243                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7244                         pci_disable_device(pdev);
7245                         return -ENODEV;
7246                 }
7247         }
7248         else {
7249                 if (!(request_mem_region(pci_resource_start(pdev, 0),
7250                          pci_resource_len(pdev, 0), s2io_driver_name))) {
7251                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7252                         pci_disable_device(pdev);
7253                         return -ENODEV;
7254                 }
7255                 if (!(request_mem_region(pci_resource_start(pdev, 2),
7256                          pci_resource_len(pdev, 2), s2io_driver_name))) {
7257                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7258                         release_mem_region(pci_resource_start(pdev, 0),
7259                                    pci_resource_len(pdev, 0));
7260                         pci_disable_device(pdev);
7261                         return -ENODEV;
7262                 }
7263         }
7264
7265         dev = alloc_etherdev(sizeof(struct s2io_nic));
7266         if (dev == NULL) {
7267                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7268                 pci_disable_device(pdev);
7269                 pci_release_regions(pdev);
7270                 return -ENODEV;
7271         }
7272
7273         pci_set_master(pdev);
7274         pci_set_drvdata(pdev, dev);
7275         SET_MODULE_OWNER(dev);
7276         SET_NETDEV_DEV(dev, &pdev->dev);
7277
7278         /*  Private member variable initialized to s2io NIC structure */
7279         sp = dev->priv;
7280         memset(sp, 0, sizeof(struct s2io_nic));
7281         sp->dev = dev;
7282         sp->pdev = pdev;
7283         sp->high_dma_flag = dma_flag;
7284         sp->device_enabled_once = FALSE;
7285         if (rx_ring_mode == 1)
7286                 sp->rxd_mode = RXD_MODE_1;
7287         if (rx_ring_mode == 2)
7288                 sp->rxd_mode = RXD_MODE_3B;
7289         if (rx_ring_mode == 3)
7290                 sp->rxd_mode = RXD_MODE_3A;
7291
7292         sp->intr_type = dev_intr_type;
7293
7294         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7295                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7296                 sp->device_type = XFRAME_II_DEVICE;
7297         else
7298                 sp->device_type = XFRAME_I_DEVICE;
7299
7300         sp->lro = lro;
7301
7302         /* Initialize some PCI/PCI-X fields of the NIC. */
7303         s2io_init_pci(sp);
7304
7305         /*
7306          * Setting the device configuration parameters.
7307          * Most of these parameters can be specified by the user during
7308          * module insertion as they are module loadable parameters. If
7309          * these parameters are not not specified during load time, they
7310          * are initialized with default values.
7311          */
7312         mac_control = &sp->mac_control;
7313         config = &sp->config;
7314
7315         /* Tx side parameters. */
7316         config->tx_fifo_num = tx_fifo_num;
7317         for (i = 0; i < MAX_TX_FIFOS; i++) {
7318                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7319                 config->tx_cfg[i].fifo_priority = i;
7320         }
7321
7322         /* mapping the QoS priority to the configured fifos */
7323         for (i = 0; i < MAX_TX_FIFOS; i++)
7324                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7325
7326         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7327         for (i = 0; i < config->tx_fifo_num; i++) {
7328                 config->tx_cfg[i].f_no_snoop =
7329                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7330                 if (config->tx_cfg[i].fifo_len < 65) {
7331                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7332                         break;
7333                 }
7334         }
7335         /* + 2 because one Txd for skb->data and one Txd for UFO */
7336         config->max_txds = MAX_SKB_FRAGS + 2;
7337
7338         /* Rx side parameters. */
7339         config->rx_ring_num = rx_ring_num;
7340         for (i = 0; i < MAX_RX_RINGS; i++) {
7341                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7342                     (rxd_count[sp->rxd_mode] + 1);
7343                 config->rx_cfg[i].ring_priority = i;
7344         }
7345
7346         for (i = 0; i < rx_ring_num; i++) {
7347                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7348                 config->rx_cfg[i].f_no_snoop =
7349                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7350         }
7351
7352         /*  Setting Mac Control parameters */
7353         mac_control->rmac_pause_time = rmac_pause_time;
7354         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7355         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7356
7357
7358         /* Initialize Ring buffer parameters. */
7359         for (i = 0; i < config->rx_ring_num; i++)
7360                 atomic_set(&sp->rx_bufs_left[i], 0);
7361
7362         /* Initialize the number of ISRs currently running */
7363         atomic_set(&sp->isr_cnt, 0);
7364
7365         /*  initialize the shared memory used by the NIC and the host */
7366         if (init_shared_mem(sp)) {
7367                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7368                           dev->name);
7369                 ret = -ENOMEM;
7370                 goto mem_alloc_failed;
7371         }
7372
7373         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7374                                      pci_resource_len(pdev, 0));
7375         if (!sp->bar0) {
7376                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7377                           dev->name);
7378                 ret = -ENOMEM;
7379                 goto bar0_remap_failed;
7380         }
7381
7382         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7383                                      pci_resource_len(pdev, 2));
7384         if (!sp->bar1) {
7385                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7386                           dev->name);
7387                 ret = -ENOMEM;
7388                 goto bar1_remap_failed;
7389         }
7390
7391         dev->irq = pdev->irq;
7392         dev->base_addr = (unsigned long) sp->bar0;
7393
7394         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7395         for (j = 0; j < MAX_TX_FIFOS; j++) {
7396                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7397                     (sp->bar1 + (j * 0x00020000));
7398         }
7399
7400         /*  Driver entry points */
7401         dev->open = &s2io_open;
7402         dev->stop = &s2io_close;
7403         dev->hard_start_xmit = &s2io_xmit;
7404         dev->get_stats = &s2io_get_stats;
7405         dev->set_multicast_list = &s2io_set_multicast;
7406         dev->do_ioctl = &s2io_ioctl;
7407         dev->change_mtu = &s2io_change_mtu;
7408         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7409         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7410         dev->vlan_rx_register = s2io_vlan_rx_register;
7411
7412         /*
7413          * will use eth_mac_addr() for  dev->set_mac_address
7414          * mac address will be set every time dev->open() is called
7415          */
7416         dev->poll = s2io_poll;
7417         dev->weight = 32;
7418
7419 #ifdef CONFIG_NET_POLL_CONTROLLER
7420         dev->poll_controller = s2io_netpoll;
7421 #endif
7422
7423         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7424         if (sp->high_dma_flag == TRUE)
7425                 dev->features |= NETIF_F_HIGHDMA;
7426         dev->features |= NETIF_F_TSO;
7427         dev->features |= NETIF_F_TSO6;
7428         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7429                 dev->features |= NETIF_F_UFO;
7430                 dev->features |= NETIF_F_HW_CSUM;
7431         }
7432
7433         dev->tx_timeout = &s2io_tx_watchdog;
7434         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7435         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7436         INIT_WORK(&sp->set_link_task, s2io_set_link);
7437
7438         pci_save_state(sp->pdev);
7439
7440         /* Setting swapper control on the NIC, for proper reset operation */
7441         if (s2io_set_swapper(sp)) {
7442                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7443                           dev->name);
7444                 ret = -EAGAIN;
7445                 goto set_swap_failed;
7446         }
7447
7448         /* Verify if the Herc works on the slot its placed into */
7449         if (sp->device_type & XFRAME_II_DEVICE) {
7450                 mode = s2io_verify_pci_mode(sp);
7451                 if (mode < 0) {
7452                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7453                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7454                         ret = -EBADSLT;
7455                         goto set_swap_failed;
7456                 }
7457         }
7458
7459         /* Not needed for Herc */
7460         if (sp->device_type & XFRAME_I_DEVICE) {
7461                 /*
7462                  * Fix for all "FFs" MAC address problems observed on
7463                  * Alpha platforms
7464                  */
7465                 fix_mac_address(sp);
7466                 s2io_reset(sp);
7467         }
7468
7469         /*
7470          * MAC address initialization.
7471          * For now only one mac address will be read and used.
7472          */
7473         bar0 = sp->bar0;
7474         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7475             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7476         writeq(val64, &bar0->rmac_addr_cmd_mem);
7477         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7478                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7479         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7480         mac_down = (u32) tmp64;
7481         mac_up = (u32) (tmp64 >> 32);
7482
7483         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7484         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7485         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7486         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7487         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7488         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7489
7490         /*  Set the factory defined MAC address initially   */
7491         dev->addr_len = ETH_ALEN;
7492         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7493
7494         /* reset Nic and bring it to known state */
7495         s2io_reset(sp);
7496
7497         /*
7498          * Initialize the tasklet status and link state flags
7499          * and the card state parameter
7500          */
7501         atomic_set(&(sp->card_state), 0);
7502         sp->tasklet_status = 0;
7503         sp->link_state = 0;
7504
7505         /* Initialize spinlocks */
7506         spin_lock_init(&sp->tx_lock);
7507
7508         if (!napi)
7509                 spin_lock_init(&sp->put_lock);
7510         spin_lock_init(&sp->rx_lock);
7511
7512         /*
7513          * SXE-002: Configure link and activity LED to init state
7514          * on driver load.
7515          */
7516         subid = sp->pdev->subsystem_device;
7517         if ((subid & 0xFF) >= 0x07) {
7518                 val64 = readq(&bar0->gpio_control);
7519                 val64 |= 0x0000800000000000ULL;
7520                 writeq(val64, &bar0->gpio_control);
7521                 val64 = 0x0411040400000000ULL;
7522                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7523                 val64 = readq(&bar0->gpio_control);
7524         }
7525
7526         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7527
7528         if (register_netdev(dev)) {
7529                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7530                 ret = -ENODEV;
7531                 goto register_failed;
7532         }
7533         s2io_vpd_read(sp);
7534         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7535         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7536                   sp->product_name, pdev->revision);
7537         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7538                   s2io_driver_version);
7539         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7540                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7541                           sp->def_mac_addr[0].mac_addr[0],
7542                           sp->def_mac_addr[0].mac_addr[1],
7543                           sp->def_mac_addr[0].mac_addr[2],
7544                           sp->def_mac_addr[0].mac_addr[3],
7545                           sp->def_mac_addr[0].mac_addr[4],
7546                           sp->def_mac_addr[0].mac_addr[5]);
7547         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7548         if (sp->device_type & XFRAME_II_DEVICE) {
7549                 mode = s2io_print_pci_mode(sp);
7550                 if (mode < 0) {
7551                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7552                         ret = -EBADSLT;
7553                         unregister_netdev(dev);
7554                         goto set_swap_failed;
7555                 }
7556         }
7557         switch(sp->rxd_mode) {
7558                 case RXD_MODE_1:
7559                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7560                                                 dev->name);
7561                     break;
7562                 case RXD_MODE_3B:
7563                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7564                                                 dev->name);
7565                     break;
7566                 case RXD_MODE_3A:
7567                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7568                                                 dev->name);
7569                     break;
7570         }
7571
7572         if (napi)
7573                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7574         switch(sp->intr_type) {
7575                 case INTA:
7576                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7577                     break;
7578                 case MSI:
7579                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7580                     break;
7581                 case MSI_X:
7582                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7583                     break;
7584         }
7585         if (sp->lro)
7586                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7587                           dev->name);
7588         if (ufo)
7589                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7590                                         " enabled\n", dev->name);
7591         /* Initialize device name */
7592         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7593
7594         /* Initialize bimodal Interrupts */
7595         sp->config.bimodal = bimodal;
7596         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7597                 sp->config.bimodal = 0;
7598                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7599                         dev->name);
7600         }
7601
7602         /*
7603          * Make Link state as off at this point, when the Link change
7604          * interrupt comes the state will be automatically changed to
7605          * the right state.
7606          */
7607         netif_carrier_off(dev);
7608
7609         return 0;
7610
7611       register_failed:
7612       set_swap_failed:
7613         iounmap(sp->bar1);
7614       bar1_remap_failed:
7615         iounmap(sp->bar0);
7616       bar0_remap_failed:
7617       mem_alloc_failed:
7618         free_shared_mem(sp);
7619         pci_disable_device(pdev);
7620         if (dev_intr_type != MSI_X)
7621                 pci_release_regions(pdev);
7622         else {
7623                 release_mem_region(pci_resource_start(pdev, 0),
7624                         pci_resource_len(pdev, 0));
7625                 release_mem_region(pci_resource_start(pdev, 2),
7626                         pci_resource_len(pdev, 2));
7627         }
7628         pci_set_drvdata(pdev, NULL);
7629         free_netdev(dev);
7630
7631         return ret;
7632 }
7633
7634 /**
7635  * s2io_rem_nic - Free the PCI device
7636  * @pdev: structure containing the PCI related information of the device.
7637  * Description: This function is called by the Pci subsystem to release a
7638  * PCI device and free up all resource held up by the device. This could
7639  * be in response to a Hot plug event or when the driver is to be removed
7640  * from memory.
7641  */
7642
7643 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7644 {
7645         struct net_device *dev =
7646             (struct net_device *) pci_get_drvdata(pdev);
7647         struct s2io_nic *sp;
7648
7649         if (dev == NULL) {
7650                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7651                 return;
7652         }
7653
7654         flush_scheduled_work();
7655
7656         sp = dev->priv;
7657         unregister_netdev(dev);
7658
7659         free_shared_mem(sp);
7660         iounmap(sp->bar0);
7661         iounmap(sp->bar1);
7662         if (sp->intr_type != MSI_X)
7663                 pci_release_regions(pdev);
7664         else {
7665                 release_mem_region(pci_resource_start(pdev, 0),
7666                         pci_resource_len(pdev, 0));
7667                 release_mem_region(pci_resource_start(pdev, 2),
7668                         pci_resource_len(pdev, 2));
7669         }
7670         pci_set_drvdata(pdev, NULL);
7671         free_netdev(dev);
7672         pci_disable_device(pdev);
7673 }
7674
7675 /**
7676  * s2io_starter - Entry point for the driver
7677  * Description: This function is the entry point for the driver. It verifies
7678  * the module loadable parameters and initializes PCI configuration space.
7679  */
7680
7681 int __init s2io_starter(void)
7682 {
7683         return pci_register_driver(&s2io_driver);
7684 }
7685
7686 /**
7687  * s2io_closer - Cleanup routine for the driver
7688  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7689  */
7690
7691 static __exit void s2io_closer(void)
7692 {
7693         pci_unregister_driver(&s2io_driver);
7694         DBG_PRINT(INIT_DBG, "cleanup done\n");
7695 }
7696
7697 module_init(s2io_starter);
7698 module_exit(s2io_closer);
7699
7700 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7701                 struct tcphdr **tcp, struct RxD_t *rxdp)
7702 {
7703         int ip_off;
7704         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7705
7706         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7707                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7708                           __FUNCTION__);
7709                 return -1;
7710         }
7711
7712         /* TODO:
7713          * By default the VLAN field in the MAC is stripped by the card, if this
7714          * feature is turned off in rx_pa_cfg register, then the ip_off field
7715          * has to be shifted by a further 2 bytes
7716          */
7717         switch (l2_type) {
7718                 case 0: /* DIX type */
7719                 case 4: /* DIX type with VLAN */
7720                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7721                         break;
7722                 /* LLC, SNAP etc are considered non-mergeable */
7723                 default:
7724                         return -1;
7725         }
7726
7727         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7728         ip_len = (u8)((*ip)->ihl);
7729         ip_len <<= 2;
7730         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7731
7732         return 0;
7733 }
7734
7735 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7736                                   struct tcphdr *tcp)
7737 {
7738         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7739         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7740            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7741                 return -1;
7742         return 0;
7743 }
7744
7745 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7746 {
7747         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7748 }
7749
7750 static void initiate_new_session(struct lro *lro, u8 *l2h,
7751                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7752 {
7753         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7754         lro->l2h = l2h;
7755         lro->iph = ip;
7756         lro->tcph = tcp;
7757         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7758         lro->tcp_ack = ntohl(tcp->ack_seq);
7759         lro->sg_num = 1;
7760         lro->total_len = ntohs(ip->tot_len);
7761         lro->frags_len = 0;
7762         /*
7763          * check if we saw TCP timestamp. Other consistency checks have
7764          * already been done.
7765          */
7766         if (tcp->doff == 8) {
7767                 u32 *ptr;
7768                 ptr = (u32 *)(tcp+1);
7769                 lro->saw_ts = 1;
7770                 lro->cur_tsval = *(ptr+1);
7771                 lro->cur_tsecr = *(ptr+2);
7772         }
7773         lro->in_use = 1;
7774 }
7775
7776 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7777 {
7778         struct iphdr *ip = lro->iph;
7779         struct tcphdr *tcp = lro->tcph;
7780         __sum16 nchk;
7781         struct stat_block *statinfo = sp->mac_control.stats_info;
7782         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7783
7784         /* Update L3 header */
7785         ip->tot_len = htons(lro->total_len);
7786         ip->check = 0;
7787         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7788         ip->check = nchk;
7789
7790         /* Update L4 header */
7791         tcp->ack_seq = lro->tcp_ack;
7792         tcp->window = lro->window;
7793
7794         /* Update tsecr field if this session has timestamps enabled */
7795         if (lro->saw_ts) {
7796                 u32 *ptr = (u32 *)(tcp + 1);
7797                 *(ptr+2) = lro->cur_tsecr;
7798         }
7799
7800         /* Update counters required for calculation of
7801          * average no. of packets aggregated.
7802          */
7803         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7804         statinfo->sw_stat.num_aggregations++;
7805 }
7806
7807 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7808                 struct tcphdr *tcp, u32 l4_pyld)
7809 {
7810         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7811         lro->total_len += l4_pyld;
7812         lro->frags_len += l4_pyld;
7813         lro->tcp_next_seq += l4_pyld;
7814         lro->sg_num++;
7815
7816         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7817         lro->tcp_ack = tcp->ack_seq;
7818         lro->window = tcp->window;
7819
7820         if (lro->saw_ts) {
7821                 u32 *ptr;
7822                 /* Update tsecr and tsval from this packet */
7823                 ptr = (u32 *) (tcp + 1);
7824                 lro->cur_tsval = *(ptr + 1);
7825                 lro->cur_tsecr = *(ptr + 2);
7826         }
7827 }
7828
7829 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7830                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7831 {
7832         u8 *ptr;
7833
7834         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7835
7836         if (!tcp_pyld_len) {
7837                 /* Runt frame or a pure ack */
7838                 return -1;
7839         }
7840
7841         if (ip->ihl != 5) /* IP has options */
7842                 return -1;
7843
7844         /* If we see CE codepoint in IP header, packet is not mergeable */
7845         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7846                 return -1;
7847
7848         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7849         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7850                                     tcp->ece || tcp->cwr || !tcp->ack) {
7851                 /*
7852                  * Currently recognize only the ack control word and
7853                  * any other control field being set would result in
7854                  * flushing the LRO session
7855                  */
7856                 return -1;
7857         }
7858
7859         /*
7860          * Allow only one TCP timestamp option. Don't aggregate if
7861          * any other options are detected.
7862          */
7863         if (tcp->doff != 5 && tcp->doff != 8)
7864                 return -1;
7865
7866         if (tcp->doff == 8) {
7867                 ptr = (u8 *)(tcp + 1);
7868                 while (*ptr == TCPOPT_NOP)
7869                         ptr++;
7870                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7871                         return -1;
7872
7873                 /* Ensure timestamp value increases monotonically */
7874                 if (l_lro)
7875                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7876                                 return -1;
7877
7878                 /* timestamp echo reply should be non-zero */
7879                 if (*((u32 *)(ptr+6)) == 0)
7880                         return -1;
7881         }
7882
7883         return 0;
7884 }
7885
7886 static int
7887 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7888                       struct RxD_t *rxdp, struct s2io_nic *sp)
7889 {
7890         struct iphdr *ip;
7891         struct tcphdr *tcph;
7892         int ret = 0, i;
7893
7894         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7895                                          rxdp))) {
7896                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7897                           ip->saddr, ip->daddr);
7898         } else {
7899                 return ret;
7900         }
7901
7902         tcph = (struct tcphdr *)*tcp;
7903         *tcp_len = get_l4_pyld_length(ip, tcph);
7904         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7905                 struct lro *l_lro = &sp->lro0_n[i];
7906                 if (l_lro->in_use) {
7907                         if (check_for_socket_match(l_lro, ip, tcph))
7908                                 continue;
7909                         /* Sock pair matched */
7910                         *lro = l_lro;
7911
7912                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7913                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7914                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7915                                           (*lro)->tcp_next_seq,
7916                                           ntohl(tcph->seq));
7917
7918                                 sp->mac_control.stats_info->
7919                                    sw_stat.outof_sequence_pkts++;
7920                                 ret = 2;
7921                                 break;
7922                         }
7923
7924                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7925                                 ret = 1; /* Aggregate */
7926                         else
7927                                 ret = 2; /* Flush both */
7928                         break;
7929                 }
7930         }
7931
7932         if (ret == 0) {
7933                 /* Before searching for available LRO objects,
7934                  * check if the pkt is L3/L4 aggregatable. If not
7935                  * don't create new LRO session. Just send this
7936                  * packet up.
7937                  */
7938                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7939                         return 5;
7940                 }
7941
7942                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7943                         struct lro *l_lro = &sp->lro0_n[i];
7944                         if (!(l_lro->in_use)) {
7945                                 *lro = l_lro;
7946                                 ret = 3; /* Begin anew */
7947                                 break;
7948                         }
7949                 }
7950         }
7951
7952         if (ret == 0) { /* sessions exceeded */
7953                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7954                           __FUNCTION__);
7955                 *lro = NULL;
7956                 return ret;
7957         }
7958
7959         switch (ret) {
7960                 case 3:
7961                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7962                         break;
7963                 case 2:
7964                         update_L3L4_header(sp, *lro);
7965                         break;
7966                 case 1:
7967                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7968                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7969                                 update_L3L4_header(sp, *lro);
7970                                 ret = 4; /* Flush the LRO */
7971                         }
7972                         break;
7973                 default:
7974                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7975                                 __FUNCTION__);
7976                         break;
7977         }
7978
7979         return ret;
7980 }
7981
7982 static void clear_lro_session(struct lro *lro)
7983 {
7984         static u16 lro_struct_size = sizeof(struct lro);
7985
7986         memset(lro, 0, lro_struct_size);
7987 }
7988
7989 static void queue_rx_frame(struct sk_buff *skb)
7990 {
7991         struct net_device *dev = skb->dev;
7992
7993         skb->protocol = eth_type_trans(skb, dev);
7994         if (napi)
7995                 netif_receive_skb(skb);
7996         else
7997                 netif_rx(skb);
7998 }
7999
8000 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8001                            struct sk_buff *skb,
8002                            u32 tcp_len)
8003 {
8004         struct sk_buff *first = lro->parent;
8005
8006         first->len += tcp_len;
8007         first->data_len = lro->frags_len;
8008         skb_pull(skb, (skb->len - tcp_len));
8009         if (skb_shinfo(first)->frag_list)
8010                 lro->last_frag->next = skb;
8011         else
8012                 skb_shinfo(first)->frag_list = skb;
8013         first->truesize += skb->truesize;
8014         lro->last_frag = skb;
8015         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8016         return;
8017 }
8018
8019 /**
8020  * s2io_io_error_detected - called when PCI error is detected
8021  * @pdev: Pointer to PCI device
8022  * @state: The current pci connection state
8023  *
8024  * This function is called after a PCI bus error affecting
8025  * this device has been detected.
8026  */
8027 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8028                                                pci_channel_state_t state)
8029 {
8030         struct net_device *netdev = pci_get_drvdata(pdev);
8031         struct s2io_nic *sp = netdev->priv;
8032
8033         netif_device_detach(netdev);
8034
8035         if (netif_running(netdev)) {
8036                 /* Bring down the card, while avoiding PCI I/O */
8037                 do_s2io_card_down(sp, 0);
8038         }
8039         pci_disable_device(pdev);
8040
8041         return PCI_ERS_RESULT_NEED_RESET;
8042 }
8043
8044 /**
8045  * s2io_io_slot_reset - called after the pci bus has been reset.
8046  * @pdev: Pointer to PCI device
8047  *
8048  * Restart the card from scratch, as if from a cold-boot.
8049  * At this point, the card has exprienced a hard reset,
8050  * followed by fixups by BIOS, and has its config space
8051  * set up identically to what it was at cold boot.
8052  */
8053 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8054 {
8055         struct net_device *netdev = pci_get_drvdata(pdev);
8056         struct s2io_nic *sp = netdev->priv;
8057
8058         if (pci_enable_device(pdev)) {
8059                 printk(KERN_ERR "s2io: "
8060                        "Cannot re-enable PCI device after reset.\n");
8061                 return PCI_ERS_RESULT_DISCONNECT;
8062         }
8063
8064         pci_set_master(pdev);
8065         s2io_reset(sp);
8066
8067         return PCI_ERS_RESULT_RECOVERED;
8068 }
8069
8070 /**
8071  * s2io_io_resume - called when traffic can start flowing again.
8072  * @pdev: Pointer to PCI device
8073  *
8074  * This callback is called when the error recovery driver tells
8075  * us that its OK to resume normal operation.
8076  */
8077 static void s2io_io_resume(struct pci_dev *pdev)
8078 {
8079         struct net_device *netdev = pci_get_drvdata(pdev);
8080         struct s2io_nic *sp = netdev->priv;
8081
8082         if (netif_running(netdev)) {
8083                 if (s2io_card_up(sp)) {
8084                         printk(KERN_ERR "s2io: "
8085                                "Can't bring device back up after reset.\n");
8086                         return;
8087                 }
8088
8089                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8090                         s2io_card_down(sp);
8091                         printk(KERN_ERR "s2io: "
8092                                "Can't resetore mac addr after reset.\n");
8093                         return;
8094                 }
8095         }
8096
8097         netif_device_attach(netdev);
8098         netif_wake_queue(netdev);
8099 }