ssb: Fix usage of struct device used for DMAing
[linux-2.6] / include / asm-powerpc / pgtable-ppc32.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2 #define _ASM_POWERPC_PGTABLE_PPC32_H
3
4 #include <asm-generic/pgtable-nopmd.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/sched.h>
8 #include <linux/threads.h>
9 #include <asm/io.h>                     /* For sub-arch specific PPC_PIN_SIZE */
10
11 extern unsigned long va_to_phys(unsigned long address);
12 extern pte_t *va_to_pte(unsigned long address);
13 extern unsigned long ioremap_bot, ioremap_base;
14
15 #ifdef CONFIG_44x
16 extern int icache_44x_need_flush;
17 #endif
18
19 #endif /* __ASSEMBLY__ */
20
21 /*
22  * The PowerPC MMU uses a hash table containing PTEs, together with
23  * a set of 16 segment registers (on 32-bit implementations), to define
24  * the virtual to physical address mapping.
25  *
26  * We use the hash table as an extended TLB, i.e. a cache of currently
27  * active mappings.  We maintain a two-level page table tree, much
28  * like that used by the i386, for the sake of the Linux memory
29  * management code.  Low-level assembler code in hashtable.S
30  * (procedure hash_page) is responsible for extracting ptes from the
31  * tree and putting them into the hash table when necessary, and
32  * updating the accessed and modified bits in the page table tree.
33  */
34
35 /*
36  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
37  * We also use the two level tables, but we can put the real bits in them
38  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
39  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
40  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
41  * based upon user/super access.  The TLB does not have accessed nor write
42  * protect.  We assume that if the TLB get loaded with an entry it is
43  * accessed, and overload the changed bit for write protect.  We use
44  * two bits in the software pte that are supposed to be set to zero in
45  * the TLB entry (24 and 25) for these indicators.  Although the level 1
46  * descriptor contains the guarded and writethrough/copyback bits, we can
47  * set these at the page level since they get copied from the Mx_TWC
48  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
49  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
50  * These will get masked from the level 2 descriptor at TLB load time, and
51  * copied to the MD_TWC before it gets loaded.
52  * Large page sizes added.  We currently support two sizes, 4K and 8M.
53  * This also allows a TLB hander optimization because we can directly
54  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
55  * mapping of well known areas.  The PMD (PGD) entries contain control
56  * flags in addition to the address, so care must be taken that the
57  * software no longer assumes these are only pointers.
58  */
59
60 /*
61  * At present, all PowerPC 400-class processors share a similar TLB
62  * architecture. The instruction and data sides share a unified,
63  * 64-entry, fully-associative TLB which is maintained totally under
64  * software control. In addition, the instruction side has a
65  * hardware-managed, 4-entry, fully-associative TLB which serves as a
66  * first level to the shared TLB. These two TLBs are known as the UTLB
67  * and ITLB, respectively (see "mmu.h" for definitions).
68  */
69
70 /*
71  * The normal case is that PTEs are 32-bits and we have a 1-page
72  * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
73  *
74  * For any >32-bit physical address platform, we can use the following
75  * two level page table layout where the pgdir is 8KB and the MS 13 bits
76  * are an index to the second level table.  The combined pgdir/pmd first
77  * level has 2048 entries and the second level has 512 64-bit PTE entries.
78  * -Matt
79  */
80 /* PGDIR_SHIFT determines what a top-level page table entry can map */
81 #define PGDIR_SHIFT     (PAGE_SHIFT + PTE_SHIFT)
82 #define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK      (~(PGDIR_SIZE-1))
84
85 /*
86  * entries per page directory level: our page-table tree is two-level, so
87  * we don't really have any PMD directory.
88  */
89 #ifndef __ASSEMBLY__
90 #define PTE_TABLE_SIZE  (sizeof(pte_t) << PTE_SHIFT)
91 #define PGD_TABLE_SIZE  (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
92 #endif  /* __ASSEMBLY__ */
93
94 #define PTRS_PER_PTE    (1 << PTE_SHIFT)
95 #define PTRS_PER_PMD    1
96 #define PTRS_PER_PGD    (1 << (32 - PGDIR_SHIFT))
97
98 #define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
99 #define FIRST_USER_ADDRESS      0
100
101 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
102 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
103
104 #define pte_ERROR(e) \
105         printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
106                 (unsigned long long)pte_val(e))
107 #define pgd_ERROR(e) \
108         printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
109
110 /*
111  * Just any arbitrary offset to the start of the vmalloc VM area: the
112  * current 64MB value just means that there will be a 64MB "hole" after the
113  * physical memory until the kernel virtual memory starts.  That means that
114  * any out-of-bounds memory accesses will hopefully be caught.
115  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
116  * area for the same reason. ;)
117  *
118  * We no longer map larger than phys RAM with the BATs so we don't have
119  * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
120  * about clashes between our early calls to ioremap() that start growing down
121  * from ioremap_base being run into the VM area allocations (growing upwards
122  * from VMALLOC_START).  For this reason we have ioremap_bot to check when
123  * we actually run into our mappings setup in the early boot with the VM
124  * system.  This really does become a problem for machines with good amounts
125  * of RAM.  -- Cort
126  */
127 #define VMALLOC_OFFSET (0x1000000) /* 16M */
128 #ifdef PPC_PIN_SIZE
129 #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
130 #else
131 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
132 #endif
133 #define VMALLOC_END     ioremap_bot
134
135 /*
136  * Bits in a linux-style PTE.  These match the bits in the
137  * (hardware-defined) PowerPC PTE as closely as possible.
138  */
139
140 #if defined(CONFIG_40x)
141
142 /* There are several potential gotchas here.  The 40x hardware TLBLO
143    field looks like this:
144
145    0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
146    RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
147
148    Where possible we make the Linux PTE bits match up with this
149
150    - bits 20 and 21 must be cleared, because we use 4k pages (40x can
151      support down to 1k pages), this is done in the TLBMiss exception
152      handler.
153    - We use only zones 0 (for kernel pages) and 1 (for user pages)
154      of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
155      miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
156      zone.
157    - PRESENT *must* be in the bottom two bits because swap cache
158      entries use the top 30 bits.  Because 40x doesn't support SMP
159      anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
160      is cleared in the TLB miss handler before the TLB entry is loaded.
161    - All other bits of the PTE are loaded into TLBLO without
162      modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
163      software PTE bits.  We actually use use bits 21, 24, 25, and
164      30 respectively for the software bits: ACCESSED, DIRTY, RW, and
165      PRESENT.
166 */
167
168 /* Definitions for 40x embedded chips. */
169 #define _PAGE_GUARDED   0x001   /* G: page is guarded from prefetch */
170 #define _PAGE_FILE      0x001   /* when !present: nonlinear file mapping */
171 #define _PAGE_PRESENT   0x002   /* software: PTE contains a translation */
172 #define _PAGE_NO_CACHE  0x004   /* I: caching is inhibited */
173 #define _PAGE_WRITETHRU 0x008   /* W: caching is write-through */
174 #define _PAGE_USER      0x010   /* matches one of the zone permission bits */
175 #define _PAGE_RW        0x040   /* software: Writes permitted */
176 #define _PAGE_DIRTY     0x080   /* software: dirty page */
177 #define _PAGE_HWWRITE   0x100   /* hardware: Dirty & RW, set in exception */
178 #define _PAGE_HWEXEC    0x200   /* hardware: EX permission */
179 #define _PAGE_ACCESSED  0x400   /* software: R: page referenced */
180
181 #define _PMD_PRESENT    0x400   /* PMD points to page of PTEs */
182 #define _PMD_BAD        0x802
183 #define _PMD_SIZE       0x0e0   /* size field, != 0 for large-page PMD entry */
184 #define _PMD_SIZE_4M    0x0c0
185 #define _PMD_SIZE_16M   0x0e0
186 #define PMD_PAGE_SIZE(pmdval)   (1024 << (((pmdval) & _PMD_SIZE) >> 4))
187
188 #elif defined(CONFIG_44x)
189 /*
190  * Definitions for PPC440
191  *
192  * Because of the 3 word TLB entries to support 36-bit addressing,
193  * the attribute are difficult to map in such a fashion that they
194  * are easily loaded during exception processing.  I decided to
195  * organize the entry so the ERPN is the only portion in the
196  * upper word of the PTE and the attribute bits below are packed
197  * in as sensibly as they can be in the area below a 4KB page size
198  * oriented RPN.  This at least makes it easy to load the RPN and
199  * ERPN fields in the TLB. -Matt
200  *
201  * Note that these bits preclude future use of a page size
202  * less than 4KB.
203  *
204  *
205  * PPC 440 core has following TLB attribute fields;
206  *
207  *   TLB1:
208  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
209  *   RPN.................................  -  -  -  -  -  - ERPN.......
210  *
211  *   TLB2:
212  *   0  1  2  3  4  ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
213  *   -  -  -  -  -    - U0 U1 U2 U3 W  I  M  G  E   - UX UW UR SX SW SR
214  *
215  * There are some constrains and options, to decide mapping software bits
216  * into TLB entry.
217  *
218  *   - PRESENT *must* be in the bottom three bits because swap cache
219  *     entries use the top 29 bits for TLB2.
220  *
221  *   - FILE *must* be in the bottom three bits because swap cache
222  *     entries use the top 29 bits for TLB2.
223  *
224  *   - CACHE COHERENT bit (M) has no effect on PPC440 core, because it
225  *     doesn't support SMP. So we can use this as software bit, like
226  *     DIRTY.
227  *
228  * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
229  * for memory protection related functions (see PTE structure in
230  * include/asm-ppc/mmu.h).  The _PAGE_XXX definitions in this file map to the
231  * above bits.  Note that the bit values are CPU specific, not architecture
232  * specific.
233  *
234  * The kernel PTE entry holds an arch-dependent swp_entry structure under
235  * certain situations. In other words, in such situations some portion of
236  * the PTE bits are used as a swp_entry. In the PPC implementation, the
237  * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
238  * hold protection values. That means the three protection bits are
239  * reserved for both PTE and SWAP entry at the most significant three
240  * LSBs.
241  *
242  * There are three protection bits available for SWAP entry:
243  *      _PAGE_PRESENT
244  *      _PAGE_FILE
245  *      _PAGE_HASHPTE (if HW has)
246  *
247  * So those three bits have to be inside of 0-2nd LSB of PTE.
248  *
249  */
250
251 #define _PAGE_PRESENT   0x00000001              /* S: PTE valid */
252 #define _PAGE_RW        0x00000002              /* S: Write permission */
253 #define _PAGE_FILE      0x00000004              /* S: nonlinear file mapping */
254 #define _PAGE_ACCESSED  0x00000008              /* S: Page referenced */
255 #define _PAGE_HWWRITE   0x00000010              /* H: Dirty & RW */
256 #define _PAGE_HWEXEC    0x00000020              /* H: Execute permission */
257 #define _PAGE_USER      0x00000040              /* S: User page */
258 #define _PAGE_ENDIAN    0x00000080              /* H: E bit */
259 #define _PAGE_GUARDED   0x00000100              /* H: G bit */
260 #define _PAGE_DIRTY     0x00000200              /* S: Page dirty */
261 #define _PAGE_NO_CACHE  0x00000400              /* H: I bit */
262 #define _PAGE_WRITETHRU 0x00000800              /* H: W bit */
263
264 /* TODO: Add large page lowmem mapping support */
265 #define _PMD_PRESENT    0
266 #define _PMD_PRESENT_MASK (PAGE_MASK)
267 #define _PMD_BAD        (~PAGE_MASK)
268
269 /* ERPN in a PTE never gets cleared, ignore it */
270 #define _PTE_NONE_MASK  0xffffffff00000000ULL
271
272 #elif defined(CONFIG_FSL_BOOKE)
273 /*
274    MMU Assist Register 3:
275
276    32 33 34 35 36  ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
277    RPN......................  0  0 U0 U1 U2 U3 UX SX UW SW UR SR
278
279    - PRESENT *must* be in the bottom three bits because swap cache
280      entries use the top 29 bits.
281
282    - FILE *must* be in the bottom three bits because swap cache
283      entries use the top 29 bits.
284 */
285
286 /* Definitions for FSL Book-E Cores */
287 #define _PAGE_PRESENT   0x00001 /* S: PTE contains a translation */
288 #define _PAGE_USER      0x00002 /* S: User page (maps to UR) */
289 #define _PAGE_FILE      0x00002 /* S: when !present: nonlinear file mapping */
290 #define _PAGE_ACCESSED  0x00004 /* S: Page referenced */
291 #define _PAGE_HWWRITE   0x00008 /* H: Dirty & RW, set in exception */
292 #define _PAGE_RW        0x00010 /* S: Write permission */
293 #define _PAGE_HWEXEC    0x00020 /* H: UX permission */
294
295 #define _PAGE_ENDIAN    0x00040 /* H: E bit */
296 #define _PAGE_GUARDED   0x00080 /* H: G bit */
297 #define _PAGE_COHERENT  0x00100 /* H: M bit */
298 #define _PAGE_NO_CACHE  0x00200 /* H: I bit */
299 #define _PAGE_WRITETHRU 0x00400 /* H: W bit */
300
301 #ifdef CONFIG_PTE_64BIT
302 #define _PAGE_DIRTY     0x08000 /* S: Page dirty */
303
304 /* ERPN in a PTE never gets cleared, ignore it */
305 #define _PTE_NONE_MASK  0xffffffffffff0000ULL
306 #else
307 #define _PAGE_DIRTY     0x00800 /* S: Page dirty */
308 #endif
309
310 #define _PMD_PRESENT    0
311 #define _PMD_PRESENT_MASK (PAGE_MASK)
312 #define _PMD_BAD        (~PAGE_MASK)
313
314 #elif defined(CONFIG_8xx)
315 /* Definitions for 8xx embedded chips. */
316 #define _PAGE_PRESENT   0x0001  /* Page is valid */
317 #define _PAGE_FILE      0x0002  /* when !present: nonlinear file mapping */
318 #define _PAGE_NO_CACHE  0x0002  /* I: cache inhibit */
319 #define _PAGE_SHARED    0x0004  /* No ASID (context) compare */
320
321 /* These five software bits must be masked out when the entry is loaded
322  * into the TLB.
323  */
324 #define _PAGE_EXEC      0x0008  /* software: i-cache coherency required */
325 #define _PAGE_GUARDED   0x0010  /* software: guarded access */
326 #define _PAGE_DIRTY     0x0020  /* software: page changed */
327 #define _PAGE_RW        0x0040  /* software: user write access allowed */
328 #define _PAGE_ACCESSED  0x0080  /* software: page referenced */
329
330 /* Setting any bits in the nibble with the follow two controls will
331  * require a TLB exception handler change.  It is assumed unused bits
332  * are always zero.
333  */
334 #define _PAGE_HWWRITE   0x0100  /* h/w write enable: never set in Linux PTE */
335 #define _PAGE_USER      0x0800  /* One of the PP bits, the other is USER&~RW */
336
337 #define _PMD_PRESENT    0x0001
338 #define _PMD_BAD        0x0ff0
339 #define _PMD_PAGE_MASK  0x000c
340 #define _PMD_PAGE_8M    0x000c
341
342 #define _PTE_NONE_MASK _PAGE_ACCESSED
343
344 #else /* CONFIG_6xx */
345 /* Definitions for 60x, 740/750, etc. */
346 #define _PAGE_PRESENT   0x001   /* software: pte contains a translation */
347 #define _PAGE_HASHPTE   0x002   /* hash_page has made an HPTE for this pte */
348 #define _PAGE_FILE      0x004   /* when !present: nonlinear file mapping */
349 #define _PAGE_USER      0x004   /* usermode access allowed */
350 #define _PAGE_GUARDED   0x008   /* G: prohibit speculative access */
351 #define _PAGE_COHERENT  0x010   /* M: enforce memory coherence (SMP systems) */
352 #define _PAGE_NO_CACHE  0x020   /* I: cache inhibit */
353 #define _PAGE_WRITETHRU 0x040   /* W: cache write-through */
354 #define _PAGE_DIRTY     0x080   /* C: page changed */
355 #define _PAGE_ACCESSED  0x100   /* R: page referenced */
356 #define _PAGE_EXEC      0x200   /* software: i-cache coherency required */
357 #define _PAGE_RW        0x400   /* software: user write access allowed */
358
359 #define _PTE_NONE_MASK  _PAGE_HASHPTE
360
361 #define _PMD_PRESENT    0
362 #define _PMD_PRESENT_MASK (PAGE_MASK)
363 #define _PMD_BAD        (~PAGE_MASK)
364 #endif
365
366 /*
367  * Some bits are only used on some cpu families...
368  */
369 #ifndef _PAGE_HASHPTE
370 #define _PAGE_HASHPTE   0
371 #endif
372 #ifndef _PTE_NONE_MASK
373 #define _PTE_NONE_MASK 0
374 #endif
375 #ifndef _PAGE_SHARED
376 #define _PAGE_SHARED    0
377 #endif
378 #ifndef _PAGE_HWWRITE
379 #define _PAGE_HWWRITE   0
380 #endif
381 #ifndef _PAGE_HWEXEC
382 #define _PAGE_HWEXEC    0
383 #endif
384 #ifndef _PAGE_EXEC
385 #define _PAGE_EXEC      0
386 #endif
387 #ifndef _PMD_PRESENT_MASK
388 #define _PMD_PRESENT_MASK       _PMD_PRESENT
389 #endif
390 #ifndef _PMD_SIZE
391 #define _PMD_SIZE       0
392 #define PMD_PAGE_SIZE(pmd)      bad_call_to_PMD_PAGE_SIZE()
393 #endif
394
395 #define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
396
397 /*
398  * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
399  * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
400  * to have it in the Linux PTE, and in fact the bit could be reused for
401  * another purpose.  -- paulus.
402  */
403
404 #ifdef CONFIG_44x
405 #define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED)
406 #else
407 #define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED)
408 #endif
409 #define _PAGE_WRENABLE  (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
410 #define _PAGE_KERNEL    (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
411
412 #ifdef CONFIG_PPC_STD_MMU
413 /* On standard PPC MMU, no user access implies kernel read/write access,
414  * so to write-protect kernel memory we must turn on user access */
415 #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
416 #else
417 #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
418 #endif
419
420 #define _PAGE_IO        (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
421 #define _PAGE_RAM       (_PAGE_KERNEL | _PAGE_HWEXEC)
422
423 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH)
424 /* We want the debuggers to be able to set breakpoints anywhere, so
425  * don't write protect the kernel text */
426 #define _PAGE_RAM_TEXT  _PAGE_RAM
427 #else
428 #define _PAGE_RAM_TEXT  (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
429 #endif
430
431 #define PAGE_NONE       __pgprot(_PAGE_BASE)
432 #define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_USER)
433 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
434 #define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
435 #define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
436 #define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_USER)
437 #define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
438
439 #define PAGE_KERNEL             __pgprot(_PAGE_RAM)
440 #define PAGE_KERNEL_NOCACHE     __pgprot(_PAGE_IO)
441
442 /*
443  * The PowerPC can only do execute protection on a segment (256MB) basis,
444  * not on a page basis.  So we consider execute permission the same as read.
445  * Also, write permissions imply read permissions.
446  * This is the closest we can get..
447  */
448 #define __P000  PAGE_NONE
449 #define __P001  PAGE_READONLY_X
450 #define __P010  PAGE_COPY
451 #define __P011  PAGE_COPY_X
452 #define __P100  PAGE_READONLY
453 #define __P101  PAGE_READONLY_X
454 #define __P110  PAGE_COPY
455 #define __P111  PAGE_COPY_X
456
457 #define __S000  PAGE_NONE
458 #define __S001  PAGE_READONLY_X
459 #define __S010  PAGE_SHARED
460 #define __S011  PAGE_SHARED_X
461 #define __S100  PAGE_READONLY
462 #define __S101  PAGE_READONLY_X
463 #define __S110  PAGE_SHARED
464 #define __S111  PAGE_SHARED_X
465
466 #ifndef __ASSEMBLY__
467 /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
468  * kernel without large page PMD support */
469 extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
470
471 /*
472  * Conversions between PTE values and page frame numbers.
473  */
474
475 /* in some case we want to additionaly adjust where the pfn is in the pte to
476  * allow room for more flags */
477 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
478 #define PFN_SHIFT_OFFSET        (PAGE_SHIFT + 8)
479 #else
480 #define PFN_SHIFT_OFFSET        (PAGE_SHIFT)
481 #endif
482
483 #define pte_pfn(x)              (pte_val(x) >> PFN_SHIFT_OFFSET)
484 #define pte_page(x)             pfn_to_page(pte_pfn(x))
485
486 #define pfn_pte(pfn, prot)      __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
487                                         pgprot_val(prot))
488 #define mk_pte(page, prot)      pfn_pte(page_to_pfn(page), prot)
489 #endif /* __ASSEMBLY__ */
490
491 #define pte_none(pte)           ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
492 #define pte_present(pte)        (pte_val(pte) & _PAGE_PRESENT)
493 #define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
494
495 #define pmd_none(pmd)           (!pmd_val(pmd))
496 #define pmd_bad(pmd)            (pmd_val(pmd) & _PMD_BAD)
497 #define pmd_present(pmd)        (pmd_val(pmd) & _PMD_PRESENT_MASK)
498 #define pmd_clear(pmdp)         do { pmd_val(*(pmdp)) = 0; } while (0)
499
500 #ifndef __ASSEMBLY__
501 /*
502  * The following only work if pte_present() is true.
503  * Undefined behaviour if not..
504  */
505 static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_RW; }
506 static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_DIRTY; }
507 static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
508 static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
509
510 static inline void pte_uncache(pte_t pte)       { pte_val(pte) |= _PAGE_NO_CACHE; }
511 static inline void pte_cache(pte_t pte)         { pte_val(pte) &= ~_PAGE_NO_CACHE; }
512
513 static inline pte_t pte_wrprotect(pte_t pte) {
514         pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
515 static inline pte_t pte_mkclean(pte_t pte) {
516         pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
517 static inline pte_t pte_mkold(pte_t pte) {
518         pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
519
520 static inline pte_t pte_mkwrite(pte_t pte) {
521         pte_val(pte) |= _PAGE_RW; return pte; }
522 static inline pte_t pte_mkdirty(pte_t pte) {
523         pte_val(pte) |= _PAGE_DIRTY; return pte; }
524 static inline pte_t pte_mkyoung(pte_t pte) {
525         pte_val(pte) |= _PAGE_ACCESSED; return pte; }
526
527 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
528 {
529         pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
530         return pte;
531 }
532
533 /*
534  * When flushing the tlb entry for a page, we also need to flush the hash
535  * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
536  */
537 extern int flush_hash_pages(unsigned context, unsigned long va,
538                             unsigned long pmdval, int count);
539
540 /* Add an HPTE to the hash table */
541 extern void add_hash_page(unsigned context, unsigned long va,
542                           unsigned long pmdval);
543
544 /*
545  * Atomic PTE updates.
546  *
547  * pte_update clears and sets bit atomically, and returns
548  * the old pte value.  In the 64-bit PTE case we lock around the
549  * low PTE word since we expect ALL flag bits to be there
550  */
551 #ifndef CONFIG_PTE_64BIT
552 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
553                                        unsigned long set)
554 {
555         unsigned long old, tmp;
556
557         __asm__ __volatile__("\
558 1:      lwarx   %0,0,%3\n\
559         andc    %1,%0,%4\n\
560         or      %1,%1,%5\n"
561         PPC405_ERR77(0,%3)
562 "       stwcx.  %1,0,%3\n\
563         bne-    1b"
564         : "=&r" (old), "=&r" (tmp), "=m" (*p)
565         : "r" (p), "r" (clr), "r" (set), "m" (*p)
566         : "cc" );
567 #ifdef CONFIG_44x
568         if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
569                 icache_44x_need_flush = 1;
570 #endif
571         return old;
572 }
573 #else
574 static inline unsigned long long pte_update(pte_t *p, unsigned long clr,
575                                        unsigned long set)
576 {
577         unsigned long long old;
578         unsigned long tmp;
579
580         __asm__ __volatile__("\
581 1:      lwarx   %L0,0,%4\n\
582         lwzx    %0,0,%3\n\
583         andc    %1,%L0,%5\n\
584         or      %1,%1,%6\n"
585         PPC405_ERR77(0,%3)
586 "       stwcx.  %1,0,%4\n\
587         bne-    1b"
588         : "=&r" (old), "=&r" (tmp), "=m" (*p)
589         : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
590         : "cc" );
591 #ifdef CONFIG_44x
592         if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
593                 icache_44x_need_flush = 1;
594 #endif
595         return old;
596 }
597 #endif
598
599 /*
600  * set_pte stores a linux PTE into the linux page table.
601  * On machines which use an MMU hash table we avoid changing the
602  * _PAGE_HASHPTE bit.
603  */
604 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
605                               pte_t *ptep, pte_t pte)
606 {
607 #if _PAGE_HASHPTE != 0
608         pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE);
609 #else
610         *ptep = pte;
611 #endif
612 }
613
614 /*
615  * 2.6 calles this without flushing the TLB entry, this is wrong
616  * for our hash-based implementation, we fix that up here
617  */
618 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
619 static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
620 {
621         unsigned long old;
622         old = pte_update(ptep, _PAGE_ACCESSED, 0);
623 #if _PAGE_HASHPTE != 0
624         if (old & _PAGE_HASHPTE) {
625                 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
626                 flush_hash_pages(context, addr, ptephys, 1);
627         }
628 #endif
629         return (old & _PAGE_ACCESSED) != 0;
630 }
631 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
632         __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
633
634 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
635 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
636                                        pte_t *ptep)
637 {
638         return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
639 }
640
641 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
642 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
643                                       pte_t *ptep)
644 {
645         pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
646 }
647
648 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
649 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
650 {
651         unsigned long bits = pte_val(entry) &
652                 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW);
653         pte_update(ptep, 0, bits);
654 }
655
656 #define  ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
657 ({                                                                         \
658         int __changed = !pte_same(*(__ptep), __entry);                     \
659         if (__changed) {                                                   \
660                 __ptep_set_access_flags(__ptep, __entry, __dirty);         \
661                 flush_tlb_page_nohash(__vma, __address);                   \
662         }                                                                  \
663         __changed;                                                         \
664 })
665
666 /*
667  * Macro to mark a page protection value as "uncacheable".
668  */
669 #define pgprot_noncached(prot)  (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
670
671 struct file;
672 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
673                                      unsigned long size, pgprot_t vma_prot);
674 #define __HAVE_PHYS_MEM_ACCESS_PROT
675
676 #define __HAVE_ARCH_PTE_SAME
677 #define pte_same(A,B)   (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
678
679 /*
680  * Note that on Book E processors, the pmd contains the kernel virtual
681  * (lowmem) address of the pte page.  The physical address is less useful
682  * because everything runs with translation enabled (even the TLB miss
683  * handler).  On everything else the pmd contains the physical address
684  * of the pte page.  -- paulus
685  */
686 #ifndef CONFIG_BOOKE
687 #define pmd_page_vaddr(pmd)     \
688         ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
689 #define pmd_page(pmd)           \
690         (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
691 #else
692 #define pmd_page_vaddr(pmd)     \
693         ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
694 #define pmd_page(pmd)           \
695         (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT))
696 #endif
697
698 /* to find an entry in a kernel page-table-directory */
699 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
700
701 /* to find an entry in a page-table-directory */
702 #define pgd_index(address)       ((address) >> PGDIR_SHIFT)
703 #define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
704
705 /* Find an entry in the third-level page table.. */
706 #define pte_index(address)              \
707         (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
708 #define pte_offset_kernel(dir, addr)    \
709         ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
710 #define pte_offset_map(dir, addr)               \
711         ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
712 #define pte_offset_map_nested(dir, addr)        \
713         ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
714
715 #define pte_unmap(pte)          kunmap_atomic(pte, KM_PTE0)
716 #define pte_unmap_nested(pte)   kunmap_atomic(pte, KM_PTE1)
717
718 /*
719  * Encode and decode a swap entry.
720  * Note that the bits we use in a PTE for representing a swap entry
721  * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
722  *_PAGE_HASHPTE bit (if used).  -- paulus
723  */
724 #define __swp_type(entry)               ((entry).val & 0x1f)
725 #define __swp_offset(entry)             ((entry).val >> 5)
726 #define __swp_entry(type, offset)       ((swp_entry_t) { (type) | ((offset) << 5) })
727 #define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) >> 3 })
728 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val << 3 })
729
730 /* Encode and decode a nonlinear file mapping entry */
731 #define PTE_FILE_MAX_BITS       29
732 #define pte_to_pgoff(pte)       (pte_val(pte) >> 3)
733 #define pgoff_to_pte(off)       ((pte_t) { ((off) << 3) | _PAGE_FILE })
734
735 /*
736  * No page table caches to initialise
737  */
738 #define pgtable_cache_init()    do { } while (0)
739
740 extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
741                       pmd_t **pmdp);
742
743 #endif /* !__ASSEMBLY__ */
744
745 #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */