4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * ->i_alloc_sem (various)
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
126 void remove_from_page_cache(struct page *page)
128 struct address_space *mapping = page->mapping;
130 BUG_ON(!PageLocked(page));
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
137 static int sync_page(void *word)
139 struct address_space *mapping;
142 page = container_of((unsigned long *)word, struct page, flags);
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
199 if (!mapping_cap_writeback_dirty(mapping))
202 ret = do_writepages(mapping, &wbc);
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
212 int filemap_fdatawrite(struct address_space *mapping)
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 EXPORT_SYMBOL(filemap_fdatawrite);
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
231 int filemap_flush(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 EXPORT_SYMBOL(filemap_flush);
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
243 * Wait for writeback to complete against pages indexed by start->end
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
257 pagevec_init(&pvec, 0);
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
272 wait_on_page_writeback(page);
276 pagevec_release(&pvec);
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
319 ret = wait_on_page_writeback_range(mapping, start, end);
322 EXPORT_SYMBOL(sync_page_range);
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348 ret = wait_on_page_writeback_range(mapping, start, end);
351 EXPORT_SYMBOL(sync_page_range_nolock);
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
360 int filemap_fdatawait(struct address_space *mapping)
362 loff_t i_size = i_size_read(mapping->host);
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 EXPORT_SYMBOL(filemap_fdatawait);
372 int filemap_write_and_wait(struct address_space *mapping)
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
385 int err2 = filemap_fdatawait(mapping);
392 EXPORT_SYMBOL(filemap_write_and_wait);
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
400 * Write out and wait upon file offsets lstart->lend, inclusive.
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
413 /* See comment of filemap_write_and_wait() */
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
426 * add_to_page_cache - add newly allocated pagecache pages
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
436 * This function does not add the page to the LRU. The caller must do that.
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
447 page_cache_get(page);
449 page->mapping = mapping;
450 page->index = offset;
452 __inc_zone_page_state(page, NR_FILE_PAGES);
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
459 EXPORT_SYMBOL(add_to_page_cache);
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
471 struct page *__page_cache_alloc(gfp_t gfp)
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, gfp, 0);
477 return alloc_pages(gfp, 0);
479 EXPORT_SYMBOL(__page_cache_alloc);
482 static int __sleep_on_page_lock(void *word)
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
498 static wait_queue_head_t *page_waitqueue(struct page *page)
500 const struct zone *zone = page_zone(page);
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
505 static inline void wake_up_page(struct page *page, int bit)
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
518 EXPORT_SYMBOL(wait_on_page_bit);
521 * unlock_page - unlock a locked page
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
534 void fastcall unlock_page(struct page *page)
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
542 EXPORT_SYMBOL(unlock_page);
545 * end_page_writeback - end writeback against a page
548 void end_page_writeback(struct page *page)
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
557 EXPORT_SYMBOL(end_page_writeback);
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 void fastcall __lock_page(struct page *page)
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
575 EXPORT_SYMBOL(__lock_page);
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
581 void fastcall __lock_page_nosync(struct page *page)
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
596 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
607 EXPORT_SYMBOL(find_get_page);
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
617 * Returns zero if the page was not present. find_lock_page() may sleep.
619 struct page *find_lock_page(struct address_space *mapping,
625 read_lock_irq(&mapping->tree_lock);
626 page = radix_tree_lookup(&mapping->page_tree, offset);
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping)) {
636 page_cache_release(page);
639 VM_BUG_ON(page->index != offset);
643 read_unlock_irq(&mapping->tree_lock);
647 EXPORT_SYMBOL(find_lock_page);
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
655 * Locates a page in the pagecache. If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list. The returned page is locked and has its reference count
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
663 * find_or_create_page() returns the desired page's address, or zero on
666 struct page *find_or_create_page(struct address_space *mapping,
667 pgoff_t index, gfp_t gfp_mask)
672 page = find_lock_page(mapping, index);
674 page = __page_cache_alloc(gfp_mask);
677 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
679 page_cache_release(page);
687 EXPORT_SYMBOL(find_or_create_page);
690 * find_get_pages - gang pagecache lookup
691 * @mapping: The address_space to search
692 * @start: The starting page index
693 * @nr_pages: The maximum number of pages
694 * @pages: Where the resulting pages are placed
696 * find_get_pages() will search for and return a group of up to
697 * @nr_pages pages in the mapping. The pages are placed at @pages.
698 * find_get_pages() takes a reference against the returned pages.
700 * The search returns a group of mapping-contiguous pages with ascending
701 * indexes. There may be holes in the indices due to not-present pages.
703 * find_get_pages() returns the number of pages which were found.
705 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
706 unsigned int nr_pages, struct page **pages)
711 read_lock_irq(&mapping->tree_lock);
712 ret = radix_tree_gang_lookup(&mapping->page_tree,
713 (void **)pages, start, nr_pages);
714 for (i = 0; i < ret; i++)
715 page_cache_get(pages[i]);
716 read_unlock_irq(&mapping->tree_lock);
721 * find_get_pages_contig - gang contiguous pagecache lookup
722 * @mapping: The address_space to search
723 * @index: The starting page index
724 * @nr_pages: The maximum number of pages
725 * @pages: Where the resulting pages are placed
727 * find_get_pages_contig() works exactly like find_get_pages(), except
728 * that the returned number of pages are guaranteed to be contiguous.
730 * find_get_pages_contig() returns the number of pages which were found.
732 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
733 unsigned int nr_pages, struct page **pages)
738 read_lock_irq(&mapping->tree_lock);
739 ret = radix_tree_gang_lookup(&mapping->page_tree,
740 (void **)pages, index, nr_pages);
741 for (i = 0; i < ret; i++) {
742 if (pages[i]->mapping == NULL || pages[i]->index != index)
745 page_cache_get(pages[i]);
748 read_unlock_irq(&mapping->tree_lock);
751 EXPORT_SYMBOL(find_get_pages_contig);
754 * find_get_pages_tag - find and return pages that match @tag
755 * @mapping: the address_space to search
756 * @index: the starting page index
757 * @tag: the tag index
758 * @nr_pages: the maximum number of pages
759 * @pages: where the resulting pages are placed
761 * Like find_get_pages, except we only return pages which are tagged with
762 * @tag. We update @index to index the next page for the traversal.
764 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
765 int tag, unsigned int nr_pages, struct page **pages)
770 read_lock_irq(&mapping->tree_lock);
771 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
772 (void **)pages, *index, nr_pages, tag);
773 for (i = 0; i < ret; i++)
774 page_cache_get(pages[i]);
776 *index = pages[ret - 1]->index + 1;
777 read_unlock_irq(&mapping->tree_lock);
780 EXPORT_SYMBOL(find_get_pages_tag);
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
796 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
798 struct page *page = find_get_page(mapping, index);
801 if (!TestSetPageLocked(page))
803 page_cache_release(page);
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
813 EXPORT_SYMBOL(grab_cache_page_nowait);
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828 * It is going insane. Fix it by quickly scaling down the readahead size.
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
854 * Note the struct file* is only passed for the use of readpage.
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *ra,
861 read_descriptor_t *desc,
864 struct inode *inode = mapping->host;
868 unsigned long offset; /* offset into pagecache page */
869 unsigned int prev_offset;
872 index = *ppos >> PAGE_CACHE_SHIFT;
873 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
874 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
875 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
876 offset = *ppos & ~PAGE_CACHE_MASK;
882 unsigned long nr, ret;
886 page = find_get_page(mapping, index);
888 page_cache_sync_readahead(mapping,
890 index, last_index - index);
891 page = find_get_page(mapping, index);
892 if (unlikely(page == NULL))
895 if (PageReadahead(page)) {
896 page_cache_async_readahead(mapping,
898 index, last_index - index);
900 if (!PageUptodate(page))
901 goto page_not_up_to_date;
904 * i_size must be checked after we know the page is Uptodate.
906 * Checking i_size after the check allows us to calculate
907 * the correct value for "nr", which means the zero-filled
908 * part of the page is not copied back to userspace (unless
909 * another truncate extends the file - this is desired though).
912 isize = i_size_read(inode);
913 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
914 if (unlikely(!isize || index > end_index)) {
915 page_cache_release(page);
919 /* nr is the maximum number of bytes to copy from this page */
920 nr = PAGE_CACHE_SIZE;
921 if (index == end_index) {
922 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
924 page_cache_release(page);
930 /* If users can be writing to this page using arbitrary
931 * virtual addresses, take care about potential aliasing
932 * before reading the page on the kernel side.
934 if (mapping_writably_mapped(mapping))
935 flush_dcache_page(page);
938 * When a sequential read accesses a page several times,
939 * only mark it as accessed the first time.
941 if (prev_index != index || offset != prev_offset)
942 mark_page_accessed(page);
946 * Ok, we have the page, and it's up-to-date, so
947 * now we can copy it to user space...
949 * The actor routine returns how many bytes were actually used..
950 * NOTE! This may not be the same as how much of a user buffer
951 * we filled up (we may be padding etc), so we can only update
952 * "pos" here (the actor routine has to update the user buffer
953 * pointers and the remaining count).
955 ret = actor(desc, page, offset, nr);
957 index += offset >> PAGE_CACHE_SHIFT;
958 offset &= ~PAGE_CACHE_MASK;
959 prev_offset = offset;
961 page_cache_release(page);
962 if (ret == nr && desc->count)
967 /* Get exclusive access to the page ... */
970 /* Did it get truncated before we got the lock? */
971 if (!page->mapping) {
973 page_cache_release(page);
977 /* Did somebody else fill it already? */
978 if (PageUptodate(page)) {
984 /* Start the actual read. The read will unlock the page. */
985 error = mapping->a_ops->readpage(filp, page);
987 if (unlikely(error)) {
988 if (error == AOP_TRUNCATED_PAGE) {
989 page_cache_release(page);
995 if (!PageUptodate(page)) {
997 if (!PageUptodate(page)) {
998 if (page->mapping == NULL) {
1000 * invalidate_inode_pages got it
1003 page_cache_release(page);
1008 shrink_readahead_size_eio(filp, ra);
1009 goto readpage_error;
1017 /* UHHUH! A synchronous read error occurred. Report it */
1018 desc->error = error;
1019 page_cache_release(page);
1024 * Ok, it wasn't cached, so we need to create a new
1027 page = page_cache_alloc_cold(mapping);
1029 desc->error = -ENOMEM;
1032 error = add_to_page_cache_lru(page, mapping,
1035 page_cache_release(page);
1036 if (error == -EEXIST)
1038 desc->error = error;
1045 ra->prev_pos = prev_index;
1046 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1047 ra->prev_pos |= prev_offset;
1049 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1051 file_accessed(filp);
1053 EXPORT_SYMBOL(do_generic_mapping_read);
1055 int file_read_actor(read_descriptor_t *desc, struct page *page,
1056 unsigned long offset, unsigned long size)
1059 unsigned long left, count = desc->count;
1065 * Faults on the destination of a read are common, so do it before
1068 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1069 kaddr = kmap_atomic(page, KM_USER0);
1070 left = __copy_to_user_inatomic(desc->arg.buf,
1071 kaddr + offset, size);
1072 kunmap_atomic(kaddr, KM_USER0);
1077 /* Do it the slow way */
1079 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1084 desc->error = -EFAULT;
1087 desc->count = count - size;
1088 desc->written += size;
1089 desc->arg.buf += size;
1094 * Performs necessary checks before doing a write
1095 * @iov: io vector request
1096 * @nr_segs: number of segments in the iovec
1097 * @count: number of bytes to write
1098 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1100 * Adjust number of segments and amount of bytes to write (nr_segs should be
1101 * properly initialized first). Returns appropriate error code that caller
1102 * should return or zero in case that write should be allowed.
1104 int generic_segment_checks(const struct iovec *iov,
1105 unsigned long *nr_segs, size_t *count, int access_flags)
1109 for (seg = 0; seg < *nr_segs; seg++) {
1110 const struct iovec *iv = &iov[seg];
1113 * If any segment has a negative length, or the cumulative
1114 * length ever wraps negative then return -EINVAL.
1117 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1119 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1124 cnt -= iv->iov_len; /* This segment is no good */
1130 EXPORT_SYMBOL(generic_segment_checks);
1133 * generic_file_aio_read - generic filesystem read routine
1134 * @iocb: kernel I/O control block
1135 * @iov: io vector request
1136 * @nr_segs: number of segments in the iovec
1137 * @pos: current file position
1139 * This is the "read()" routine for all filesystems
1140 * that can use the page cache directly.
1143 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1144 unsigned long nr_segs, loff_t pos)
1146 struct file *filp = iocb->ki_filp;
1150 loff_t *ppos = &iocb->ki_pos;
1153 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1157 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1158 if (filp->f_flags & O_DIRECT) {
1160 struct address_space *mapping;
1161 struct inode *inode;
1163 mapping = filp->f_mapping;
1164 inode = mapping->host;
1167 goto out; /* skip atime */
1168 size = i_size_read(inode);
1170 retval = generic_file_direct_IO(READ, iocb,
1173 *ppos = pos + retval;
1175 if (likely(retval != 0)) {
1176 file_accessed(filp);
1183 for (seg = 0; seg < nr_segs; seg++) {
1184 read_descriptor_t desc;
1187 desc.arg.buf = iov[seg].iov_base;
1188 desc.count = iov[seg].iov_len;
1189 if (desc.count == 0)
1192 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1193 retval += desc.written;
1195 retval = retval ?: desc.error;
1205 EXPORT_SYMBOL(generic_file_aio_read);
1208 do_readahead(struct address_space *mapping, struct file *filp,
1209 pgoff_t index, unsigned long nr)
1211 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1214 force_page_cache_readahead(mapping, filp, index,
1215 max_sane_readahead(nr));
1219 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1227 if (file->f_mode & FMODE_READ) {
1228 struct address_space *mapping = file->f_mapping;
1229 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1230 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1231 unsigned long len = end - start + 1;
1232 ret = do_readahead(mapping, file, start, len);
1241 * page_cache_read - adds requested page to the page cache if not already there
1242 * @file: file to read
1243 * @offset: page index
1245 * This adds the requested page to the page cache if it isn't already there,
1246 * and schedules an I/O to read in its contents from disk.
1248 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1250 struct address_space *mapping = file->f_mapping;
1255 page = page_cache_alloc_cold(mapping);
1259 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1261 ret = mapping->a_ops->readpage(file, page);
1262 else if (ret == -EEXIST)
1263 ret = 0; /* losing race to add is OK */
1265 page_cache_release(page);
1267 } while (ret == AOP_TRUNCATED_PAGE);
1272 #define MMAP_LOTSAMISS (100)
1275 * filemap_fault - read in file data for page fault handling
1276 * @vma: vma in which the fault was taken
1277 * @vmf: struct vm_fault containing details of the fault
1279 * filemap_fault() is invoked via the vma operations vector for a
1280 * mapped memory region to read in file data during a page fault.
1282 * The goto's are kind of ugly, but this streamlines the normal case of having
1283 * it in the page cache, and handles the special cases reasonably without
1284 * having a lot of duplicated code.
1286 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1289 struct file *file = vma->vm_file;
1290 struct address_space *mapping = file->f_mapping;
1291 struct file_ra_state *ra = &file->f_ra;
1292 struct inode *inode = mapping->host;
1295 int did_readaround = 0;
1298 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1299 if (vmf->pgoff >= size)
1300 goto outside_data_content;
1302 /* If we don't want any read-ahead, don't bother */
1303 if (VM_RandomReadHint(vma))
1304 goto no_cached_page;
1307 * Do we have something in the page cache already?
1310 page = find_lock_page(mapping, vmf->pgoff);
1312 * For sequential accesses, we use the generic readahead logic.
1314 if (VM_SequentialReadHint(vma)) {
1316 page_cache_sync_readahead(mapping, ra, file,
1318 page = find_lock_page(mapping, vmf->pgoff);
1320 goto no_cached_page;
1322 if (PageReadahead(page)) {
1323 page_cache_async_readahead(mapping, ra, file, page,
1329 unsigned long ra_pages;
1334 * Do we miss much more than hit in this file? If so,
1335 * stop bothering with read-ahead. It will only hurt.
1337 if (ra->mmap_miss > MMAP_LOTSAMISS)
1338 goto no_cached_page;
1341 * To keep the pgmajfault counter straight, we need to
1342 * check did_readaround, as this is an inner loop.
1344 if (!did_readaround) {
1345 ret = VM_FAULT_MAJOR;
1346 count_vm_event(PGMAJFAULT);
1349 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1353 if (vmf->pgoff > ra_pages / 2)
1354 start = vmf->pgoff - ra_pages / 2;
1355 do_page_cache_readahead(mapping, file, start, ra_pages);
1357 page = find_lock_page(mapping, vmf->pgoff);
1359 goto no_cached_page;
1362 if (!did_readaround)
1366 * We have a locked page in the page cache, now we need to check
1367 * that it's up-to-date. If not, it is going to be due to an error.
1369 if (unlikely(!PageUptodate(page)))
1370 goto page_not_uptodate;
1372 /* Must recheck i_size under page lock */
1373 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1374 if (unlikely(vmf->pgoff >= size)) {
1376 page_cache_release(page);
1377 goto outside_data_content;
1381 * Found the page and have a reference on it.
1383 mark_page_accessed(page);
1384 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1386 return ret | VM_FAULT_LOCKED;
1388 outside_data_content:
1390 * An external ptracer can access pages that normally aren't
1393 if (vma->vm_mm == current->mm)
1394 return VM_FAULT_SIGBUS;
1396 /* Fall through to the non-read-ahead case */
1399 * We're only likely to ever get here if MADV_RANDOM is in
1402 error = page_cache_read(file, vmf->pgoff);
1405 * The page we want has now been added to the page cache.
1406 * In the unlikely event that someone removed it in the
1407 * meantime, we'll just come back here and read it again.
1413 * An error return from page_cache_read can result if the
1414 * system is low on memory, or a problem occurs while trying
1417 if (error == -ENOMEM)
1418 return VM_FAULT_OOM;
1419 return VM_FAULT_SIGBUS;
1423 if (!did_readaround) {
1424 ret = VM_FAULT_MAJOR;
1425 count_vm_event(PGMAJFAULT);
1429 * Umm, take care of errors if the page isn't up-to-date.
1430 * Try to re-read it _once_. We do this synchronously,
1431 * because there really aren't any performance issues here
1432 * and we need to check for errors.
1434 ClearPageError(page);
1435 error = mapping->a_ops->readpage(file, page);
1436 page_cache_release(page);
1438 if (!error || error == AOP_TRUNCATED_PAGE)
1441 /* Things didn't work out. Return zero to tell the mm layer so. */
1442 shrink_readahead_size_eio(file, ra);
1443 return VM_FAULT_SIGBUS;
1445 EXPORT_SYMBOL(filemap_fault);
1447 struct vm_operations_struct generic_file_vm_ops = {
1448 .fault = filemap_fault,
1451 /* This is used for a general mmap of a disk file */
1453 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1455 struct address_space *mapping = file->f_mapping;
1457 if (!mapping->a_ops->readpage)
1459 file_accessed(file);
1460 vma->vm_ops = &generic_file_vm_ops;
1461 vma->vm_flags |= VM_CAN_NONLINEAR;
1466 * This is for filesystems which do not implement ->writepage.
1468 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1470 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1472 return generic_file_mmap(file, vma);
1475 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1479 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1483 #endif /* CONFIG_MMU */
1485 EXPORT_SYMBOL(generic_file_mmap);
1486 EXPORT_SYMBOL(generic_file_readonly_mmap);
1488 static struct page *__read_cache_page(struct address_space *mapping,
1490 int (*filler)(void *,struct page*),
1496 page = find_get_page(mapping, index);
1498 page = page_cache_alloc_cold(mapping);
1500 return ERR_PTR(-ENOMEM);
1501 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1502 if (unlikely(err)) {
1503 page_cache_release(page);
1506 /* Presumably ENOMEM for radix tree node */
1507 return ERR_PTR(err);
1509 err = filler(data, page);
1511 page_cache_release(page);
1512 page = ERR_PTR(err);
1519 * Same as read_cache_page, but don't wait for page to become unlocked
1520 * after submitting it to the filler.
1522 struct page *read_cache_page_async(struct address_space *mapping,
1524 int (*filler)(void *,struct page*),
1531 page = __read_cache_page(mapping, index, filler, data);
1534 if (PageUptodate(page))
1538 if (!page->mapping) {
1540 page_cache_release(page);
1543 if (PageUptodate(page)) {
1547 err = filler(data, page);
1549 page_cache_release(page);
1550 return ERR_PTR(err);
1553 mark_page_accessed(page);
1556 EXPORT_SYMBOL(read_cache_page_async);
1559 * read_cache_page - read into page cache, fill it if needed
1560 * @mapping: the page's address_space
1561 * @index: the page index
1562 * @filler: function to perform the read
1563 * @data: destination for read data
1565 * Read into the page cache. If a page already exists, and PageUptodate() is
1566 * not set, try to fill the page then wait for it to become unlocked.
1568 * If the page does not get brought uptodate, return -EIO.
1570 struct page *read_cache_page(struct address_space *mapping,
1572 int (*filler)(void *,struct page*),
1577 page = read_cache_page_async(mapping, index, filler, data);
1580 wait_on_page_locked(page);
1581 if (!PageUptodate(page)) {
1582 page_cache_release(page);
1583 page = ERR_PTR(-EIO);
1588 EXPORT_SYMBOL(read_cache_page);
1591 * The logic we want is
1593 * if suid or (sgid and xgrp)
1596 int should_remove_suid(struct dentry *dentry)
1598 mode_t mode = dentry->d_inode->i_mode;
1601 /* suid always must be killed */
1602 if (unlikely(mode & S_ISUID))
1603 kill = ATTR_KILL_SUID;
1606 * sgid without any exec bits is just a mandatory locking mark; leave
1607 * it alone. If some exec bits are set, it's a real sgid; kill it.
1609 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1610 kill |= ATTR_KILL_SGID;
1612 if (unlikely(kill && !capable(CAP_FSETID)))
1617 EXPORT_SYMBOL(should_remove_suid);
1619 int __remove_suid(struct dentry *dentry, int kill)
1621 struct iattr newattrs;
1623 newattrs.ia_valid = ATTR_FORCE | kill;
1624 return notify_change(dentry, &newattrs);
1627 int remove_suid(struct dentry *dentry)
1629 int kill = should_remove_suid(dentry);
1632 return __remove_suid(dentry, kill);
1636 EXPORT_SYMBOL(remove_suid);
1638 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1639 const struct iovec *iov, size_t base, size_t bytes)
1641 size_t copied = 0, left = 0;
1644 char __user *buf = iov->iov_base + base;
1645 int copy = min(bytes, iov->iov_len - base);
1648 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1657 return copied - left;
1661 * Copy as much as we can into the page and return the number of bytes which
1662 * were sucessfully copied. If a fault is encountered then return the number of
1663 * bytes which were copied.
1665 size_t iov_iter_copy_from_user_atomic(struct page *page,
1666 struct iov_iter *i, unsigned long offset, size_t bytes)
1671 BUG_ON(!in_atomic());
1672 kaddr = kmap_atomic(page, KM_USER0);
1673 if (likely(i->nr_segs == 1)) {
1675 char __user *buf = i->iov->iov_base + i->iov_offset;
1676 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1678 copied = bytes - left;
1680 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1681 i->iov, i->iov_offset, bytes);
1683 kunmap_atomic(kaddr, KM_USER0);
1687 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1690 * This has the same sideeffects and return value as
1691 * iov_iter_copy_from_user_atomic().
1692 * The difference is that it attempts to resolve faults.
1693 * Page must not be locked.
1695 size_t iov_iter_copy_from_user(struct page *page,
1696 struct iov_iter *i, unsigned long offset, size_t bytes)
1702 if (likely(i->nr_segs == 1)) {
1704 char __user *buf = i->iov->iov_base + i->iov_offset;
1705 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1706 copied = bytes - left;
1708 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709 i->iov, i->iov_offset, bytes);
1714 EXPORT_SYMBOL(iov_iter_copy_from_user);
1716 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1718 if (likely(i->nr_segs == 1)) {
1719 i->iov_offset += bytes;
1721 const struct iovec *iov = i->iov;
1722 size_t base = i->iov_offset;
1725 int copy = min(bytes, iov->iov_len - base);
1729 if (iov->iov_len == base) {
1735 i->iov_offset = base;
1739 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1741 BUG_ON(i->count < bytes);
1743 __iov_iter_advance_iov(i, bytes);
1746 EXPORT_SYMBOL(iov_iter_advance);
1749 * Fault in the first iovec of the given iov_iter, to a maximum length
1750 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1751 * accessed (ie. because it is an invalid address).
1753 * writev-intensive code may want this to prefault several iovecs -- that
1754 * would be possible (callers must not rely on the fact that _only_ the
1755 * first iovec will be faulted with the current implementation).
1757 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1759 char __user *buf = i->iov->iov_base + i->iov_offset;
1760 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1761 return fault_in_pages_readable(buf, bytes);
1763 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1766 * Return the count of just the current iov_iter segment.
1768 size_t iov_iter_single_seg_count(struct iov_iter *i)
1770 const struct iovec *iov = i->iov;
1771 if (i->nr_segs == 1)
1774 return min(i->count, iov->iov_len - i->iov_offset);
1776 EXPORT_SYMBOL(iov_iter_single_seg_count);
1779 * Performs necessary checks before doing a write
1781 * Can adjust writing position or amount of bytes to write.
1782 * Returns appropriate error code that caller should return or
1783 * zero in case that write should be allowed.
1785 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1787 struct inode *inode = file->f_mapping->host;
1788 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1790 if (unlikely(*pos < 0))
1794 /* FIXME: this is for backwards compatibility with 2.4 */
1795 if (file->f_flags & O_APPEND)
1796 *pos = i_size_read(inode);
1798 if (limit != RLIM_INFINITY) {
1799 if (*pos >= limit) {
1800 send_sig(SIGXFSZ, current, 0);
1803 if (*count > limit - (typeof(limit))*pos) {
1804 *count = limit - (typeof(limit))*pos;
1812 if (unlikely(*pos + *count > MAX_NON_LFS &&
1813 !(file->f_flags & O_LARGEFILE))) {
1814 if (*pos >= MAX_NON_LFS) {
1817 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1818 *count = MAX_NON_LFS - (unsigned long)*pos;
1823 * Are we about to exceed the fs block limit ?
1825 * If we have written data it becomes a short write. If we have
1826 * exceeded without writing data we send a signal and return EFBIG.
1827 * Linus frestrict idea will clean these up nicely..
1829 if (likely(!isblk)) {
1830 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1831 if (*count || *pos > inode->i_sb->s_maxbytes) {
1834 /* zero-length writes at ->s_maxbytes are OK */
1837 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1838 *count = inode->i_sb->s_maxbytes - *pos;
1842 if (bdev_read_only(I_BDEV(inode)))
1844 isize = i_size_read(inode);
1845 if (*pos >= isize) {
1846 if (*count || *pos > isize)
1850 if (*pos + *count > isize)
1851 *count = isize - *pos;
1858 EXPORT_SYMBOL(generic_write_checks);
1860 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1861 loff_t pos, unsigned len, unsigned flags,
1862 struct page **pagep, void **fsdata)
1864 const struct address_space_operations *aops = mapping->a_ops;
1866 if (aops->write_begin) {
1867 return aops->write_begin(file, mapping, pos, len, flags,
1871 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1872 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1873 struct inode *inode = mapping->host;
1876 page = __grab_cache_page(mapping, index);
1881 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1883 * There is no way to resolve a short write situation
1884 * for a !Uptodate page (except by double copying in
1885 * the caller done by generic_perform_write_2copy).
1887 * Instead, we have to bring it uptodate here.
1889 ret = aops->readpage(file, page);
1890 page_cache_release(page);
1892 if (ret == AOP_TRUNCATED_PAGE)
1899 ret = aops->prepare_write(file, page, offset, offset+len);
1902 page_cache_release(page);
1903 if (pos + len > inode->i_size)
1904 vmtruncate(inode, inode->i_size);
1909 EXPORT_SYMBOL(pagecache_write_begin);
1911 int pagecache_write_end(struct file *file, struct address_space *mapping,
1912 loff_t pos, unsigned len, unsigned copied,
1913 struct page *page, void *fsdata)
1915 const struct address_space_operations *aops = mapping->a_ops;
1918 if (aops->write_end) {
1919 mark_page_accessed(page);
1920 ret = aops->write_end(file, mapping, pos, len, copied,
1923 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1924 struct inode *inode = mapping->host;
1926 flush_dcache_page(page);
1927 ret = aops->commit_write(file, page, offset, offset+len);
1929 mark_page_accessed(page);
1930 page_cache_release(page);
1933 if (pos + len > inode->i_size)
1934 vmtruncate(inode, inode->i_size);
1936 ret = min_t(size_t, copied, ret);
1943 EXPORT_SYMBOL(pagecache_write_end);
1946 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1947 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1948 size_t count, size_t ocount)
1950 struct file *file = iocb->ki_filp;
1951 struct address_space *mapping = file->f_mapping;
1952 struct inode *inode = mapping->host;
1955 if (count != ocount)
1956 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1958 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1960 loff_t end = pos + written;
1961 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1962 i_size_write(inode, end);
1963 mark_inode_dirty(inode);
1969 * Sync the fs metadata but not the minor inode changes and
1970 * of course not the data as we did direct DMA for the IO.
1971 * i_mutex is held, which protects generic_osync_inode() from
1972 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1974 if ((written >= 0 || written == -EIOCBQUEUED) &&
1975 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1976 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1982 EXPORT_SYMBOL(generic_file_direct_write);
1985 * Find or create a page at the given pagecache position. Return the locked
1986 * page. This function is specifically for buffered writes.
1988 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1993 page = find_lock_page(mapping, index);
1997 page = page_cache_alloc(mapping);
2000 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2001 if (unlikely(status)) {
2002 page_cache_release(page);
2003 if (status == -EEXIST)
2009 EXPORT_SYMBOL(__grab_cache_page);
2011 static ssize_t generic_perform_write_2copy(struct file *file,
2012 struct iov_iter *i, loff_t pos)
2014 struct address_space *mapping = file->f_mapping;
2015 const struct address_space_operations *a_ops = mapping->a_ops;
2016 struct inode *inode = mapping->host;
2018 ssize_t written = 0;
2021 struct page *src_page;
2023 pgoff_t index; /* Pagecache index for current page */
2024 unsigned long offset; /* Offset into pagecache page */
2025 unsigned long bytes; /* Bytes to write to page */
2026 size_t copied; /* Bytes copied from user */
2028 offset = (pos & (PAGE_CACHE_SIZE - 1));
2029 index = pos >> PAGE_CACHE_SHIFT;
2030 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2034 * a non-NULL src_page indicates that we're doing the
2035 * copy via get_user_pages and kmap.
2040 * Bring in the user page that we will copy from _first_.
2041 * Otherwise there's a nasty deadlock on copying from the
2042 * same page as we're writing to, without it being marked
2045 * Not only is this an optimisation, but it is also required
2046 * to check that the address is actually valid, when atomic
2047 * usercopies are used, below.
2049 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2054 page = __grab_cache_page(mapping, index);
2061 * non-uptodate pages cannot cope with short copies, and we
2062 * cannot take a pagefault with the destination page locked.
2063 * So pin the source page to copy it.
2065 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2068 src_page = alloc_page(GFP_KERNEL);
2070 page_cache_release(page);
2076 * Cannot get_user_pages with a page locked for the
2077 * same reason as we can't take a page fault with a
2078 * page locked (as explained below).
2080 copied = iov_iter_copy_from_user(src_page, i,
2082 if (unlikely(copied == 0)) {
2084 page_cache_release(page);
2085 page_cache_release(src_page);
2092 * Can't handle the page going uptodate here, because
2093 * that means we would use non-atomic usercopies, which
2094 * zero out the tail of the page, which can cause
2095 * zeroes to become transiently visible. We could just
2096 * use a non-zeroing copy, but the APIs aren't too
2099 if (unlikely(!page->mapping || PageUptodate(page))) {
2101 page_cache_release(page);
2102 page_cache_release(src_page);
2107 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2108 if (unlikely(status))
2109 goto fs_write_aop_error;
2113 * Must not enter the pagefault handler here, because
2114 * we hold the page lock, so we might recursively
2115 * deadlock on the same lock, or get an ABBA deadlock
2116 * against a different lock, or against the mmap_sem
2117 * (which nests outside the page lock). So increment
2118 * preempt count, and use _atomic usercopies.
2120 * The page is uptodate so we are OK to encounter a
2121 * short copy: if unmodified parts of the page are
2122 * marked dirty and written out to disk, it doesn't
2125 pagefault_disable();
2126 copied = iov_iter_copy_from_user_atomic(page, i,
2131 src = kmap_atomic(src_page, KM_USER0);
2132 dst = kmap_atomic(page, KM_USER1);
2133 memcpy(dst + offset, src + offset, bytes);
2134 kunmap_atomic(dst, KM_USER1);
2135 kunmap_atomic(src, KM_USER0);
2138 flush_dcache_page(page);
2140 status = a_ops->commit_write(file, page, offset, offset+bytes);
2141 if (unlikely(status < 0))
2142 goto fs_write_aop_error;
2143 if (unlikely(status > 0)) /* filesystem did partial write */
2144 copied = min_t(size_t, copied, status);
2147 mark_page_accessed(page);
2148 page_cache_release(page);
2150 page_cache_release(src_page);
2152 iov_iter_advance(i, copied);
2156 balance_dirty_pages_ratelimited(mapping);
2162 page_cache_release(page);
2164 page_cache_release(src_page);
2167 * prepare_write() may have instantiated a few blocks
2168 * outside i_size. Trim these off again. Don't need
2169 * i_size_read because we hold i_mutex.
2171 if (pos + bytes > inode->i_size)
2172 vmtruncate(inode, inode->i_size);
2174 } while (iov_iter_count(i));
2176 return written ? written : status;
2179 static ssize_t generic_perform_write(struct file *file,
2180 struct iov_iter *i, loff_t pos)
2182 struct address_space *mapping = file->f_mapping;
2183 const struct address_space_operations *a_ops = mapping->a_ops;
2185 ssize_t written = 0;
2186 unsigned int flags = 0;
2189 * Copies from kernel address space cannot fail (NFSD is a big user).
2191 if (segment_eq(get_fs(), KERNEL_DS))
2192 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2196 pgoff_t index; /* Pagecache index for current page */
2197 unsigned long offset; /* Offset into pagecache page */
2198 unsigned long bytes; /* Bytes to write to page */
2199 size_t copied; /* Bytes copied from user */
2202 offset = (pos & (PAGE_CACHE_SIZE - 1));
2203 index = pos >> PAGE_CACHE_SHIFT;
2204 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2210 * Bring in the user page that we will copy from _first_.
2211 * Otherwise there's a nasty deadlock on copying from the
2212 * same page as we're writing to, without it being marked
2215 * Not only is this an optimisation, but it is also required
2216 * to check that the address is actually valid, when atomic
2217 * usercopies are used, below.
2219 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2224 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2226 if (unlikely(status))
2229 pagefault_disable();
2230 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2232 flush_dcache_page(page);
2234 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2236 if (unlikely(status < 0))
2242 if (unlikely(copied == 0)) {
2244 * If we were unable to copy any data at all, we must
2245 * fall back to a single segment length write.
2247 * If we didn't fallback here, we could livelock
2248 * because not all segments in the iov can be copied at
2249 * once without a pagefault.
2251 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 iov_iter_single_seg_count(i));
2255 iov_iter_advance(i, copied);
2259 balance_dirty_pages_ratelimited(mapping);
2261 } while (iov_iter_count(i));
2263 return written ? written : status;
2267 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2268 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2269 size_t count, ssize_t written)
2271 struct file *file = iocb->ki_filp;
2272 struct address_space *mapping = file->f_mapping;
2273 const struct address_space_operations *a_ops = mapping->a_ops;
2274 struct inode *inode = mapping->host;
2278 iov_iter_init(&i, iov, nr_segs, count, written);
2279 if (a_ops->write_begin)
2280 status = generic_perform_write(file, &i, pos);
2282 status = generic_perform_write_2copy(file, &i, pos);
2284 if (likely(status >= 0)) {
2286 *ppos = pos + status;
2289 * For now, when the user asks for O_SYNC, we'll actually give
2292 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2293 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2294 status = generic_osync_inode(inode, mapping,
2295 OSYNC_METADATA|OSYNC_DATA);
2300 * If we get here for O_DIRECT writes then we must have fallen through
2301 * to buffered writes (block instantiation inside i_size). So we sync
2302 * the file data here, to try to honour O_DIRECT expectations.
2304 if (unlikely(file->f_flags & O_DIRECT) && written)
2305 status = filemap_write_and_wait(mapping);
2307 return written ? written : status;
2309 EXPORT_SYMBOL(generic_file_buffered_write);
2312 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2313 unsigned long nr_segs, loff_t *ppos)
2315 struct file *file = iocb->ki_filp;
2316 struct address_space * mapping = file->f_mapping;
2317 size_t ocount; /* original count */
2318 size_t count; /* after file limit checks */
2319 struct inode *inode = mapping->host;
2325 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2332 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2334 /* We can write back this queue in page reclaim */
2335 current->backing_dev_info = mapping->backing_dev_info;
2338 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2345 err = remove_suid(file->f_path.dentry);
2349 file_update_time(file);
2351 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2352 if (unlikely(file->f_flags & O_DIRECT)) {
2354 ssize_t written_buffered;
2356 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2357 ppos, count, ocount);
2358 if (written < 0 || written == count)
2361 * direct-io write to a hole: fall through to buffered I/O
2362 * for completing the rest of the request.
2366 written_buffered = generic_file_buffered_write(iocb, iov,
2367 nr_segs, pos, ppos, count,
2370 * If generic_file_buffered_write() retuned a synchronous error
2371 * then we want to return the number of bytes which were
2372 * direct-written, or the error code if that was zero. Note
2373 * that this differs from normal direct-io semantics, which
2374 * will return -EFOO even if some bytes were written.
2376 if (written_buffered < 0) {
2377 err = written_buffered;
2382 * We need to ensure that the page cache pages are written to
2383 * disk and invalidated to preserve the expected O_DIRECT
2386 endbyte = pos + written_buffered - written - 1;
2387 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2388 SYNC_FILE_RANGE_WAIT_BEFORE|
2389 SYNC_FILE_RANGE_WRITE|
2390 SYNC_FILE_RANGE_WAIT_AFTER);
2392 written = written_buffered;
2393 invalidate_mapping_pages(mapping,
2394 pos >> PAGE_CACHE_SHIFT,
2395 endbyte >> PAGE_CACHE_SHIFT);
2398 * We don't know how much we wrote, so just return
2399 * the number of bytes which were direct-written
2403 written = generic_file_buffered_write(iocb, iov, nr_segs,
2404 pos, ppos, count, written);
2407 current->backing_dev_info = NULL;
2408 return written ? written : err;
2411 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2412 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2414 struct file *file = iocb->ki_filp;
2415 struct address_space *mapping = file->f_mapping;
2416 struct inode *inode = mapping->host;
2419 BUG_ON(iocb->ki_pos != pos);
2421 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2424 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2427 err = sync_page_range_nolock(inode, mapping, pos, ret);
2433 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2435 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2436 unsigned long nr_segs, loff_t pos)
2438 struct file *file = iocb->ki_filp;
2439 struct address_space *mapping = file->f_mapping;
2440 struct inode *inode = mapping->host;
2443 BUG_ON(iocb->ki_pos != pos);
2445 mutex_lock(&inode->i_mutex);
2446 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2448 mutex_unlock(&inode->i_mutex);
2450 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2453 err = sync_page_range(inode, mapping, pos, ret);
2459 EXPORT_SYMBOL(generic_file_aio_write);
2462 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2463 * went wrong during pagecache shootdown.
2466 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2467 loff_t offset, unsigned long nr_segs)
2469 struct file *file = iocb->ki_filp;
2470 struct address_space *mapping = file->f_mapping;
2473 pgoff_t end = 0; /* silence gcc */
2476 * If it's a write, unmap all mmappings of the file up-front. This
2477 * will cause any pte dirty bits to be propagated into the pageframes
2478 * for the subsequent filemap_write_and_wait().
2481 write_len = iov_length(iov, nr_segs);
2482 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2483 if (mapping_mapped(mapping))
2484 unmap_mapping_range(mapping, offset, write_len, 0);
2487 retval = filemap_write_and_wait(mapping);
2492 * After a write we want buffered reads to be sure to go to disk to get
2493 * the new data. We invalidate clean cached page from the region we're
2494 * about to write. We do this *before* the write so that we can return
2495 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2497 if (rw == WRITE && mapping->nrpages) {
2498 retval = invalidate_inode_pages2_range(mapping,
2499 offset >> PAGE_CACHE_SHIFT, end);
2504 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2509 * Finally, try again to invalidate clean pages which might have been
2510 * faulted in by get_user_pages() if the source of the write was an
2511 * mmap()ed region of the file we're writing. That's a pretty crazy
2512 * thing to do, so we don't support it 100%. If this invalidation
2513 * fails and we have -EIOCBQUEUED we ignore the failure.
2515 if (rw == WRITE && mapping->nrpages) {
2516 int err = invalidate_inode_pages2_range(mapping,
2517 offset >> PAGE_CACHE_SHIFT, end);
2518 if (err && retval >= 0)
2526 * try_to_release_page() - release old fs-specific metadata on a page
2528 * @page: the page which the kernel is trying to free
2529 * @gfp_mask: memory allocation flags (and I/O mode)
2531 * The address_space is to try to release any data against the page
2532 * (presumably at page->private). If the release was successful, return `1'.
2533 * Otherwise return zero.
2535 * The @gfp_mask argument specifies whether I/O may be performed to release
2536 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2538 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2540 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2542 struct address_space * const mapping = page->mapping;
2544 BUG_ON(!PageLocked(page));
2545 if (PageWriteback(page))
2548 if (mapping && mapping->a_ops->releasepage)
2549 return mapping->a_ops->releasepage(page, gfp_mask);
2550 return try_to_free_buffers(page);
2553 EXPORT_SYMBOL(try_to_release_page);