2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
22 #define ATH_PCI_VERSION "0.1"
24 static char *dev_info = "ath9k";
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI */
33 { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI */
35 { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI */
36 { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
41 static void ath_detach(struct ath_softc *sc);
43 /* return bus cachesize in 4B word units */
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
49 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
53 * This check was put in to avoid "unplesant" consequences if
54 * the bootrom has not fully initialized all PCI devices.
55 * Sometimes the cache line size register is not set
59 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
64 sc->cur_rate_table = sc->hw_rate_table[mode];
66 * All protection frames are transmited at 2Mb/s for
67 * 11g, otherwise at 1Mb/s.
68 * XXX select protection rate index from rate table.
70 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
73 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
75 if (chan->chanmode == CHANNEL_A)
76 return ATH9K_MODE_11A;
77 else if (chan->chanmode == CHANNEL_G)
78 return ATH9K_MODE_11G;
79 else if (chan->chanmode == CHANNEL_B)
80 return ATH9K_MODE_11B;
81 else if (chan->chanmode == CHANNEL_A_HT20)
82 return ATH9K_MODE_11NA_HT20;
83 else if (chan->chanmode == CHANNEL_G_HT20)
84 return ATH9K_MODE_11NG_HT20;
85 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
86 return ATH9K_MODE_11NA_HT40PLUS;
87 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
88 return ATH9K_MODE_11NA_HT40MINUS;
89 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
90 return ATH9K_MODE_11NG_HT40PLUS;
91 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
92 return ATH9K_MODE_11NG_HT40MINUS;
94 WARN_ON(1); /* should not get here */
96 return ATH9K_MODE_11B;
99 static void ath_update_txpow(struct ath_softc *sc)
101 struct ath_hal *ah = sc->sc_ah;
104 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
105 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
106 /* read back in case value is clamped */
107 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
108 sc->sc_curtxpow = txpow;
112 static u8 parse_mpdudensity(u8 mpdudensity)
115 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
116 * 0 for no restriction
125 switch (mpdudensity) {
131 /* Our lower layer calculations limit our precision to
147 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
149 struct ath_rate_table *rate_table = NULL;
150 struct ieee80211_supported_band *sband;
151 struct ieee80211_rate *rate;
155 case IEEE80211_BAND_2GHZ:
156 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
158 case IEEE80211_BAND_5GHZ:
159 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
165 if (rate_table == NULL)
168 sband = &sc->sbands[band];
169 rate = sc->rates[band];
171 if (rate_table->rate_cnt > ATH_RATE_MAX)
172 maxrates = ATH_RATE_MAX;
174 maxrates = rate_table->rate_cnt;
176 for (i = 0; i < maxrates; i++) {
177 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
178 rate[i].hw_value = rate_table->info[i].ratecode;
180 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
181 rate[i].bitrate / 10, rate[i].hw_value);
185 static int ath_setup_channels(struct ath_softc *sc)
187 struct ath_hal *ah = sc->sc_ah;
188 int nchan, i, a = 0, b = 0;
189 u8 regclassids[ATH_REGCLASSIDS_MAX];
191 struct ieee80211_supported_band *band_2ghz;
192 struct ieee80211_supported_band *band_5ghz;
193 struct ieee80211_channel *chan_2ghz;
194 struct ieee80211_channel *chan_5ghz;
195 struct ath9k_channel *c;
197 /* Fill in ah->ah_channels */
198 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
199 regclassids, ATH_REGCLASSIDS_MAX,
200 &nregclass, CTRY_DEFAULT, false, 1)) {
201 u32 rd = ah->ah_currentRD;
202 DPRINTF(sc, ATH_DBG_FATAL,
203 "Unable to collect channel list; "
204 "regdomain likely %u country code %u\n",
209 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
210 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
211 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
212 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
214 for (i = 0; i < nchan; i++) {
215 c = &ah->ah_channels[i];
216 if (IS_CHAN_2GHZ(c)) {
217 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
218 chan_2ghz[a].center_freq = c->channel;
219 chan_2ghz[a].max_power = c->maxTxPower;
221 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
222 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
223 if (c->channelFlags & CHANNEL_PASSIVE)
224 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
226 band_2ghz->n_channels = ++a;
228 DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
229 "channelFlags: 0x%x\n",
230 c->channel, c->channelFlags);
231 } else if (IS_CHAN_5GHZ(c)) {
232 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
233 chan_5ghz[b].center_freq = c->channel;
234 chan_5ghz[b].max_power = c->maxTxPower;
236 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
237 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
238 if (c->channelFlags & CHANNEL_PASSIVE)
239 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
241 band_5ghz->n_channels = ++b;
243 DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
244 "channelFlags: 0x%x\n",
245 c->channel, c->channelFlags);
253 * Set/change channels. If the channel is really being changed, it's done
254 * by reseting the chip. To accomplish this we must first cleanup any pending
255 * DMA, then restart stuff.
257 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
259 struct ath_hal *ah = sc->sc_ah;
260 bool fastcc = true, stopped;
262 if (sc->sc_flags & SC_OP_INVALID)
265 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
266 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
267 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
268 (sc->sc_flags & SC_OP_FULL_RESET)) {
271 * This is only performed if the channel settings have
274 * To switch channels clear any pending DMA operations;
275 * wait long enough for the RX fifo to drain, reset the
276 * hardware at the new frequency, and then re-enable
277 * the relevant bits of the h/w.
279 ath9k_hw_set_interrupts(ah, 0);
280 ath_draintxq(sc, false);
281 stopped = ath_stoprecv(sc);
283 /* XXX: do not flush receive queue here. We don't want
284 * to flush data frames already in queue because of
285 * changing channel. */
287 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
290 DPRINTF(sc, ATH_DBG_CONFIG,
291 "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
292 sc->sc_ah->ah_curchan->channel,
293 hchan->channel, hchan->channelFlags, sc->tx_chan_width);
295 spin_lock_bh(&sc->sc_resetlock);
296 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
297 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
298 sc->sc_ht_extprotspacing, fastcc, &status)) {
299 DPRINTF(sc, ATH_DBG_FATAL,
300 "Unable to reset channel %u (%uMhz) "
301 "flags 0x%x hal status %u\n",
302 ath9k_hw_mhz2ieee(ah, hchan->channel,
303 hchan->channelFlags),
304 hchan->channel, hchan->channelFlags, status);
305 spin_unlock_bh(&sc->sc_resetlock);
308 spin_unlock_bh(&sc->sc_resetlock);
310 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311 sc->sc_flags &= ~SC_OP_FULL_RESET;
313 if (ath_startrecv(sc) != 0) {
314 DPRINTF(sc, ATH_DBG_FATAL,
315 "Unable to restart recv logic\n");
319 ath_setcurmode(sc, ath_chan2mode(hchan));
320 ath_update_txpow(sc);
321 ath9k_hw_set_interrupts(ah, sc->sc_imask);
327 * This routine performs the periodic noise floor calibration function
328 * that is used to adjust and optimize the chip performance. This
329 * takes environmental changes (location, temperature) into account.
330 * When the task is complete, it reschedules itself depending on the
331 * appropriate interval that was calculated.
333 static void ath_ani_calibrate(unsigned long data)
335 struct ath_softc *sc;
337 bool longcal = false;
338 bool shortcal = false;
339 bool aniflag = false;
340 unsigned int timestamp = jiffies_to_msecs(jiffies);
343 sc = (struct ath_softc *)data;
347 * don't calibrate when we're scanning.
348 * we are most likely not on our home channel.
350 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->sc_ani.sc_longcal_timer = timestamp;
360 /* Short calibration applies only while sc_caldone is false */
361 if (!sc->sc_ani.sc_caldone) {
362 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363 ATH_SHORT_CALINTERVAL) {
365 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366 sc->sc_ani.sc_shortcal_timer = timestamp;
367 sc->sc_ani.sc_resetcal_timer = timestamp;
370 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
371 ATH_RESTART_CALINTERVAL) {
372 ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
373 &sc->sc_ani.sc_caldone);
374 if (sc->sc_ani.sc_caldone)
375 sc->sc_ani.sc_resetcal_timer = timestamp;
379 /* Verify whether we must check ANI */
380 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
381 ATH_ANI_POLLINTERVAL) {
383 sc->sc_ani.sc_checkani_timer = timestamp;
386 /* Skip all processing if there's nothing to do. */
387 if (longcal || shortcal || aniflag) {
388 /* Call ANI routine if necessary */
390 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
393 /* Perform calibration if necessary */
394 if (longcal || shortcal) {
395 bool iscaldone = false;
397 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
398 sc->sc_rx_chainmask, longcal,
401 sc->sc_ani.sc_noise_floor =
402 ath9k_hw_getchan_noise(ah,
405 DPRINTF(sc, ATH_DBG_ANI,
406 "calibrate chan %u/%x nf: %d\n",
407 ah->ah_curchan->channel,
408 ah->ah_curchan->channelFlags,
409 sc->sc_ani.sc_noise_floor);
411 DPRINTF(sc, ATH_DBG_ANY,
412 "calibrate chan %u/%x failed\n",
413 ah->ah_curchan->channel,
414 ah->ah_curchan->channelFlags);
416 sc->sc_ani.sc_caldone = iscaldone;
421 * Set timer interval based on previous results.
422 * The interval must be the shortest necessary to satisfy ANI,
423 * short calibration and long calibration.
425 cal_interval = ATH_LONG_CALINTERVAL;
426 if (sc->sc_ah->ah_config.enable_ani)
427 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
428 if (!sc->sc_ani.sc_caldone)
429 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
431 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration.
439 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
443 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
446 sc->sc_tx_chainmask = 1;
447 sc->sc_rx_chainmask = 1;
450 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
458 an = (struct ath_node *)sta->drv_priv;
460 if (sc->sc_flags & SC_OP_TXAGGR)
461 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
470 struct ath_node *an = (struct ath_node *)sta->drv_priv;
472 if (sc->sc_flags & SC_OP_TXAGGR)
473 ath_tx_node_cleanup(sc, an);
476 static void ath9k_tasklet(unsigned long data)
478 struct ath_softc *sc = (struct ath_softc *)data;
479 u32 status = sc->sc_intrstatus;
481 if (status & ATH9K_INT_FATAL) {
482 /* need a chip reset */
483 ath_reset(sc, false);
488 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489 spin_lock_bh(&sc->rx.rxflushlock);
490 ath_rx_tasklet(sc, 0);
491 spin_unlock_bh(&sc->rx.rxflushlock);
493 /* XXX: optimize this */
494 if (status & ATH9K_INT_TX)
498 /* re-enable hardware interrupt */
499 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
502 static irqreturn_t ath_isr(int irq, void *dev)
504 struct ath_softc *sc = dev;
505 struct ath_hal *ah = sc->sc_ah;
506 enum ath9k_int status;
510 if (sc->sc_flags & SC_OP_INVALID) {
512 * The hardware is not ready/present, don't
513 * touch anything. Note this can happen early
514 * on if the IRQ is shared.
518 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
523 * Figure out the reason(s) for the interrupt. Note
524 * that the hal returns a pseudo-ISR that may include
525 * bits we haven't explicitly enabled so we mask the
526 * value to insure we only process bits we requested.
528 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
530 status &= sc->sc_imask; /* discard unasked-for bits */
533 * If there are no status bits set, then this interrupt was not
534 * for me (should have been caught above).
539 sc->sc_intrstatus = status;
541 if (status & ATH9K_INT_FATAL) {
542 /* need a chip reset */
544 } else if (status & ATH9K_INT_RXORN) {
545 /* need a chip reset */
548 if (status & ATH9K_INT_SWBA) {
549 /* schedule a tasklet for beacon handling */
550 tasklet_schedule(&sc->bcon_tasklet);
552 if (status & ATH9K_INT_RXEOL) {
554 * NB: the hardware should re-read the link when
555 * RXE bit is written, but it doesn't work
556 * at least on older hardware revs.
561 if (status & ATH9K_INT_TXURN)
562 /* bump tx trigger level */
563 ath9k_hw_updatetxtriglevel(ah, true);
564 /* XXX: optimize this */
565 if (status & ATH9K_INT_RX)
567 if (status & ATH9K_INT_TX)
569 if (status & ATH9K_INT_BMISS)
571 /* carrier sense timeout */
572 if (status & ATH9K_INT_CST)
574 if (status & ATH9K_INT_MIB) {
576 * Disable interrupts until we service the MIB
577 * interrupt; otherwise it will continue to
580 ath9k_hw_set_interrupts(ah, 0);
582 * Let the hal handle the event. We assume
583 * it will clear whatever condition caused
586 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587 ath9k_hw_set_interrupts(ah, sc->sc_imask);
589 if (status & ATH9K_INT_TIM_TIMER) {
590 if (!(ah->ah_caps.hw_caps &
591 ATH9K_HW_CAP_AUTOSLEEP)) {
592 /* Clear RxAbort bit so that we can
594 ath9k_hw_setrxabort(ah, 0);
601 ath_debug_stat_interrupt(sc, status);
604 /* turn off every interrupt except SWBA */
605 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606 tasklet_schedule(&sc->intr_tq);
612 static int ath_get_channel(struct ath_softc *sc,
613 struct ieee80211_channel *chan)
617 for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 struct ieee80211_channel *chan,
627 enum nl80211_channel_type channel_type)
631 switch (chan->band) {
632 case IEEE80211_BAND_2GHZ:
633 switch(channel_type) {
634 case NL80211_CHAN_NO_HT:
635 case NL80211_CHAN_HT20:
636 chanmode = CHANNEL_G_HT20;
638 case NL80211_CHAN_HT40PLUS:
639 chanmode = CHANNEL_G_HT40PLUS;
641 case NL80211_CHAN_HT40MINUS:
642 chanmode = CHANNEL_G_HT40MINUS;
646 case IEEE80211_BAND_5GHZ:
647 switch(channel_type) {
648 case NL80211_CHAN_NO_HT:
649 case NL80211_CHAN_HT20:
650 chanmode = CHANNEL_A_HT20;
652 case NL80211_CHAN_HT40PLUS:
653 chanmode = CHANNEL_A_HT40PLUS;
655 case NL80211_CHAN_HT40MINUS:
656 chanmode = CHANNEL_A_HT40MINUS;
667 static int ath_keyset(struct ath_softc *sc, u16 keyix,
668 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
672 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
673 keyix, hk, mac, false);
675 return status != false;
678 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
679 struct ath9k_keyval *hk,
685 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
686 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
689 /* Group key installation */
690 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
691 return ath_keyset(sc, keyix, hk, addr);
693 if (!sc->sc_splitmic) {
695 * data key goes at first index,
696 * the hal handles the MIC keys at index+64.
698 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
700 return ath_keyset(sc, keyix, hk, addr);
703 * TX key goes at first index, RX key at +32.
704 * The hal handles the MIC keys at index+64.
706 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
707 if (!ath_keyset(sc, keyix, hk, NULL)) {
708 /* Txmic entry failed. No need to proceed further */
709 DPRINTF(sc, ATH_DBG_KEYCACHE,
710 "Setting TX MIC Key Failed\n");
714 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
715 /* XXX delete tx key on failure? */
716 return ath_keyset(sc, keyix + 32, hk, addr);
719 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
723 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
724 if (test_bit(i, sc->sc_keymap) ||
725 test_bit(i + 64, sc->sc_keymap))
726 continue; /* At least one part of TKIP key allocated */
727 if (sc->sc_splitmic &&
728 (test_bit(i + 32, sc->sc_keymap) ||
729 test_bit(i + 64 + 32, sc->sc_keymap)))
730 continue; /* At least one part of TKIP key allocated */
732 /* Found a free slot for a TKIP key */
738 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
742 /* First, try to find slots that would not be available for TKIP. */
743 if (sc->sc_splitmic) {
744 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
745 if (!test_bit(i, sc->sc_keymap) &&
746 (test_bit(i + 32, sc->sc_keymap) ||
747 test_bit(i + 64, sc->sc_keymap) ||
748 test_bit(i + 64 + 32, sc->sc_keymap)))
750 if (!test_bit(i + 32, sc->sc_keymap) &&
751 (test_bit(i, sc->sc_keymap) ||
752 test_bit(i + 64, sc->sc_keymap) ||
753 test_bit(i + 64 + 32, sc->sc_keymap)))
755 if (!test_bit(i + 64, sc->sc_keymap) &&
756 (test_bit(i , sc->sc_keymap) ||
757 test_bit(i + 32, sc->sc_keymap) ||
758 test_bit(i + 64 + 32, sc->sc_keymap)))
760 if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
761 (test_bit(i, sc->sc_keymap) ||
762 test_bit(i + 32, sc->sc_keymap) ||
763 test_bit(i + 64, sc->sc_keymap)))
767 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
768 if (!test_bit(i, sc->sc_keymap) &&
769 test_bit(i + 64, sc->sc_keymap))
771 if (test_bit(i, sc->sc_keymap) &&
772 !test_bit(i + 64, sc->sc_keymap))
777 /* No partially used TKIP slots, pick any available slot */
778 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
779 /* Do not allow slots that could be needed for TKIP group keys
780 * to be used. This limitation could be removed if we know that
781 * TKIP will not be used. */
782 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
784 if (sc->sc_splitmic) {
785 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
787 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
791 if (!test_bit(i, sc->sc_keymap))
792 return i; /* Found a free slot for a key */
795 /* No free slot found */
799 static int ath_key_config(struct ath_softc *sc,
801 struct ieee80211_key_conf *key)
803 struct ath9k_keyval hk;
804 const u8 *mac = NULL;
808 memset(&hk, 0, sizeof(hk));
812 hk.kv_type = ATH9K_CIPHER_WEP;
815 hk.kv_type = ATH9K_CIPHER_TKIP;
818 hk.kv_type = ATH9K_CIPHER_AES_CCM;
824 hk.kv_len = key->keylen;
825 memcpy(hk.kv_val, key->key, key->keylen);
827 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
828 /* For now, use the default keys for broadcast keys. This may
829 * need to change with virtual interfaces. */
831 } else if (key->keyidx) {
832 struct ieee80211_vif *vif;
835 vif = sc->sc_vaps[0];
836 if (vif->type != NL80211_IFTYPE_AP) {
837 /* Only keyidx 0 should be used with unicast key, but
838 * allow this for client mode for now. */
844 if (key->alg == ALG_TKIP)
845 idx = ath_reserve_key_cache_slot_tkip(sc);
847 idx = ath_reserve_key_cache_slot(sc);
849 return -EIO; /* no free key cache entries */
852 if (key->alg == ALG_TKIP)
853 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
855 ret = ath_keyset(sc, idx, &hk, mac);
860 set_bit(idx, sc->sc_keymap);
861 if (key->alg == ALG_TKIP) {
862 set_bit(idx + 64, sc->sc_keymap);
863 if (sc->sc_splitmic) {
864 set_bit(idx + 32, sc->sc_keymap);
865 set_bit(idx + 64 + 32, sc->sc_keymap);
872 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
874 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
875 if (key->hw_key_idx < IEEE80211_WEP_NKID)
878 clear_bit(key->hw_key_idx, sc->sc_keymap);
879 if (key->alg != ALG_TKIP)
882 clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
883 if (sc->sc_splitmic) {
884 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
885 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
889 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
891 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
892 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
894 ht_info->ht_supported = true;
895 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
896 IEEE80211_HT_CAP_SM_PS |
897 IEEE80211_HT_CAP_SGI_40 |
898 IEEE80211_HT_CAP_DSSSCCK40;
900 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
901 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
902 /* set up supported mcs set */
903 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
904 ht_info->mcs.rx_mask[0] = 0xff;
905 ht_info->mcs.rx_mask[1] = 0xff;
906 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
909 static void ath9k_bss_assoc_info(struct ath_softc *sc,
910 struct ieee80211_vif *vif,
911 struct ieee80211_bss_conf *bss_conf)
913 struct ath_vap *avp = (void *)vif->drv_priv;
915 if (bss_conf->assoc) {
916 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
917 bss_conf->aid, sc->sc_curbssid);
919 /* New association, store aid */
920 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
921 sc->sc_curaid = bss_conf->aid;
922 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
926 /* Configure the beacon */
927 ath_beacon_config(sc, 0);
928 sc->sc_flags |= SC_OP_BEACONS;
930 /* Reset rssi stats */
931 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
932 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
933 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
934 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
937 mod_timer(&sc->sc_ani.timer,
938 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
941 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
946 /********************************/
948 /********************************/
950 static void ath_led_brightness(struct led_classdev *led_cdev,
951 enum led_brightness brightness)
953 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
954 struct ath_softc *sc = led->sc;
956 switch (brightness) {
958 if (led->led_type == ATH_LED_ASSOC ||
959 led->led_type == ATH_LED_RADIO)
960 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
961 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
962 (led->led_type == ATH_LED_RADIO) ? 1 :
963 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
966 if (led->led_type == ATH_LED_ASSOC)
967 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
968 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
975 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
981 led->led_cdev.name = led->name;
982 led->led_cdev.default_trigger = trigger;
983 led->led_cdev.brightness_set = ath_led_brightness;
985 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
987 DPRINTF(sc, ATH_DBG_FATAL,
988 "Failed to register led:%s", led->name);
994 static void ath_unregister_led(struct ath_led *led)
996 if (led->registered) {
997 led_classdev_unregister(&led->led_cdev);
1002 static void ath_deinit_leds(struct ath_softc *sc)
1004 ath_unregister_led(&sc->assoc_led);
1005 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1006 ath_unregister_led(&sc->tx_led);
1007 ath_unregister_led(&sc->rx_led);
1008 ath_unregister_led(&sc->radio_led);
1009 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1012 static void ath_init_leds(struct ath_softc *sc)
1017 /* Configure gpio 1 for output */
1018 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1019 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1020 /* LED off, active low */
1021 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1023 trigger = ieee80211_get_radio_led_name(sc->hw);
1024 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1025 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1026 ret = ath_register_led(sc, &sc->radio_led, trigger);
1027 sc->radio_led.led_type = ATH_LED_RADIO;
1031 trigger = ieee80211_get_assoc_led_name(sc->hw);
1032 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1033 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1034 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1035 sc->assoc_led.led_type = ATH_LED_ASSOC;
1039 trigger = ieee80211_get_tx_led_name(sc->hw);
1040 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1041 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1042 ret = ath_register_led(sc, &sc->tx_led, trigger);
1043 sc->tx_led.led_type = ATH_LED_TX;
1047 trigger = ieee80211_get_rx_led_name(sc->hw);
1048 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1049 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1050 ret = ath_register_led(sc, &sc->rx_led, trigger);
1051 sc->rx_led.led_type = ATH_LED_RX;
1058 ath_deinit_leds(sc);
1061 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1063 /*******************/
1065 /*******************/
1067 static void ath_radio_enable(struct ath_softc *sc)
1069 struct ath_hal *ah = sc->sc_ah;
1072 spin_lock_bh(&sc->sc_resetlock);
1073 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1075 sc->sc_tx_chainmask,
1076 sc->sc_rx_chainmask,
1077 sc->sc_ht_extprotspacing,
1079 DPRINTF(sc, ATH_DBG_FATAL,
1080 "Unable to reset channel %u (%uMhz) "
1081 "flags 0x%x hal status %u\n",
1082 ath9k_hw_mhz2ieee(ah,
1083 ah->ah_curchan->channel,
1084 ah->ah_curchan->channelFlags),
1085 ah->ah_curchan->channel,
1086 ah->ah_curchan->channelFlags, status);
1088 spin_unlock_bh(&sc->sc_resetlock);
1090 ath_update_txpow(sc);
1091 if (ath_startrecv(sc) != 0) {
1092 DPRINTF(sc, ATH_DBG_FATAL,
1093 "Unable to restart recv logic\n");
1097 if (sc->sc_flags & SC_OP_BEACONS)
1098 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1100 /* Re-Enable interrupts */
1101 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1104 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1105 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1106 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1108 ieee80211_wake_queues(sc->hw);
1111 static void ath_radio_disable(struct ath_softc *sc)
1113 struct ath_hal *ah = sc->sc_ah;
1117 ieee80211_stop_queues(sc->hw);
1120 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1121 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1123 /* Disable interrupts */
1124 ath9k_hw_set_interrupts(ah, 0);
1126 ath_draintxq(sc, false); /* clear pending tx frames */
1127 ath_stoprecv(sc); /* turn off frame recv */
1128 ath_flushrecv(sc); /* flush recv queue */
1130 spin_lock_bh(&sc->sc_resetlock);
1131 if (!ath9k_hw_reset(ah, ah->ah_curchan,
1133 sc->sc_tx_chainmask,
1134 sc->sc_rx_chainmask,
1135 sc->sc_ht_extprotspacing,
1137 DPRINTF(sc, ATH_DBG_FATAL,
1138 "Unable to reset channel %u (%uMhz) "
1139 "flags 0x%x hal status %u\n",
1140 ath9k_hw_mhz2ieee(ah,
1141 ah->ah_curchan->channel,
1142 ah->ah_curchan->channelFlags),
1143 ah->ah_curchan->channel,
1144 ah->ah_curchan->channelFlags, status);
1146 spin_unlock_bh(&sc->sc_resetlock);
1148 ath9k_hw_phy_disable(ah);
1149 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1152 static bool ath_is_rfkill_set(struct ath_softc *sc)
1154 struct ath_hal *ah = sc->sc_ah;
1156 return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1157 ah->ah_rfkill_polarity;
1160 /* h/w rfkill poll function */
1161 static void ath_rfkill_poll(struct work_struct *work)
1163 struct ath_softc *sc = container_of(work, struct ath_softc,
1164 rf_kill.rfkill_poll.work);
1167 if (sc->sc_flags & SC_OP_INVALID)
1170 radio_on = !ath_is_rfkill_set(sc);
1173 * enable/disable radio only when there is a
1174 * state change in RF switch
1176 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1177 enum rfkill_state state;
1179 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1180 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1181 : RFKILL_STATE_HARD_BLOCKED;
1182 } else if (radio_on) {
1183 ath_radio_enable(sc);
1184 state = RFKILL_STATE_UNBLOCKED;
1186 ath_radio_disable(sc);
1187 state = RFKILL_STATE_HARD_BLOCKED;
1190 if (state == RFKILL_STATE_HARD_BLOCKED)
1191 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1193 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1195 rfkill_force_state(sc->rf_kill.rfkill, state);
1198 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1199 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1202 /* s/w rfkill handler */
1203 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1205 struct ath_softc *sc = data;
1208 case RFKILL_STATE_SOFT_BLOCKED:
1209 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1210 SC_OP_RFKILL_SW_BLOCKED)))
1211 ath_radio_disable(sc);
1212 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1214 case RFKILL_STATE_UNBLOCKED:
1215 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1216 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1217 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1218 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1219 "radio as it is disabled by h/w\n");
1222 ath_radio_enable(sc);
1230 /* Init s/w rfkill */
1231 static int ath_init_sw_rfkill(struct ath_softc *sc)
1233 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1235 if (!sc->rf_kill.rfkill) {
1236 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1240 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1241 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1242 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1243 sc->rf_kill.rfkill->data = sc;
1244 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1245 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1246 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1251 /* Deinitialize rfkill */
1252 static void ath_deinit_rfkill(struct ath_softc *sc)
1254 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1255 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1257 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1258 rfkill_unregister(sc->rf_kill.rfkill);
1259 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1260 sc->rf_kill.rfkill = NULL;
1264 static int ath_start_rfkill_poll(struct ath_softc *sc)
1266 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1267 queue_delayed_work(sc->hw->workqueue,
1268 &sc->rf_kill.rfkill_poll, 0);
1270 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1271 if (rfkill_register(sc->rf_kill.rfkill)) {
1272 DPRINTF(sc, ATH_DBG_FATAL,
1273 "Unable to register rfkill\n");
1274 rfkill_free(sc->rf_kill.rfkill);
1276 /* Deinitialize the device */
1279 free_irq(sc->pdev->irq, sc);
1280 pci_iounmap(sc->pdev, sc->mem);
1281 pci_release_region(sc->pdev, 0);
1282 pci_disable_device(sc->pdev);
1283 ieee80211_free_hw(sc->hw);
1286 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1292 #endif /* CONFIG_RFKILL */
1294 static void ath_detach(struct ath_softc *sc)
1296 struct ieee80211_hw *hw = sc->hw;
1299 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1301 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1302 ath_deinit_rfkill(sc);
1304 ath_deinit_leds(sc);
1306 ieee80211_unregister_hw(hw);
1310 tasklet_kill(&sc->intr_tq);
1311 tasklet_kill(&sc->bcon_tasklet);
1313 if (!(sc->sc_flags & SC_OP_INVALID))
1314 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1316 /* cleanup tx queues */
1317 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1318 if (ATH_TXQ_SETUP(sc, i))
1319 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1321 ath9k_hw_detach(sc->sc_ah);
1322 ath9k_exit_debug(sc);
1325 static int ath_init(u16 devid, struct ath_softc *sc)
1327 struct ath_hal *ah = NULL;
1332 /* XXX: hardware will not be ready until ath_open() being called */
1333 sc->sc_flags |= SC_OP_INVALID;
1335 if (ath9k_init_debug(sc) < 0)
1336 printk(KERN_ERR "Unable to create debugfs files\n");
1338 spin_lock_init(&sc->sc_resetlock);
1339 mutex_init(&sc->mutex);
1340 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1341 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1345 * Cache line size is used to size and align various
1346 * structures used to communicate with the hardware.
1348 bus_read_cachesize(sc, &csz);
1349 /* XXX assert csz is non-zero */
1350 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1352 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1354 DPRINTF(sc, ATH_DBG_FATAL,
1355 "Unable to attach hardware; HAL status %u\n", status);
1361 /* Get the hardware key cache size. */
1362 sc->sc_keymax = ah->ah_caps.keycache_size;
1363 if (sc->sc_keymax > ATH_KEYMAX) {
1364 DPRINTF(sc, ATH_DBG_KEYCACHE,
1365 "Warning, using only %u entries in %u key cache\n",
1366 ATH_KEYMAX, sc->sc_keymax);
1367 sc->sc_keymax = ATH_KEYMAX;
1371 * Reset the key cache since some parts do not
1372 * reset the contents on initial power up.
1374 for (i = 0; i < sc->sc_keymax; i++)
1375 ath9k_hw_keyreset(ah, (u16) i);
1377 /* Collect the channel list using the default country code */
1379 error = ath_setup_channels(sc);
1383 /* default to MONITOR mode */
1384 sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1387 /* Setup rate tables */
1389 ath_rate_attach(sc);
1390 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1391 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1394 * Allocate hardware transmit queues: one queue for
1395 * beacon frames and one data queue for each QoS
1396 * priority. Note that the hal handles reseting
1397 * these queues at the needed time.
1399 sc->beacon.beaconq = ath_beaconq_setup(ah);
1400 if (sc->beacon.beaconq == -1) {
1401 DPRINTF(sc, ATH_DBG_FATAL,
1402 "Unable to setup a beacon xmit queue\n");
1406 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1407 if (sc->beacon.cabq == NULL) {
1408 DPRINTF(sc, ATH_DBG_FATAL,
1409 "Unable to setup CAB xmit queue\n");
1414 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1415 ath_cabq_update(sc);
1417 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1418 sc->tx.hwq_map[i] = -1;
1420 /* Setup data queues */
1421 /* NB: ensure BK queue is the lowest priority h/w queue */
1422 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1423 DPRINTF(sc, ATH_DBG_FATAL,
1424 "Unable to setup xmit queue for BK traffic\n");
1429 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1430 DPRINTF(sc, ATH_DBG_FATAL,
1431 "Unable to setup xmit queue for BE traffic\n");
1435 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1436 DPRINTF(sc, ATH_DBG_FATAL,
1437 "Unable to setup xmit queue for VI traffic\n");
1441 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1442 DPRINTF(sc, ATH_DBG_FATAL,
1443 "Unable to setup xmit queue for VO traffic\n");
1448 /* Initializes the noise floor to a reasonable default value.
1449 * Later on this will be updated during ANI processing. */
1451 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1452 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1454 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1455 ATH9K_CIPHER_TKIP, NULL)) {
1457 * Whether we should enable h/w TKIP MIC.
1458 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1459 * report WMM capable, so it's always safe to turn on
1460 * TKIP MIC in this case.
1462 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1467 * Check whether the separate key cache entries
1468 * are required to handle both tx+rx MIC keys.
1469 * With split mic keys the number of stations is limited
1470 * to 27 otherwise 59.
1472 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1473 ATH9K_CIPHER_TKIP, NULL)
1474 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1475 ATH9K_CIPHER_MIC, NULL)
1476 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1478 sc->sc_splitmic = 1;
1480 /* turn on mcast key search if possible */
1481 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1482 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1485 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1486 sc->sc_config.txpowlimit_override = 0;
1488 /* 11n Capabilities */
1489 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1490 sc->sc_flags |= SC_OP_TXAGGR;
1491 sc->sc_flags |= SC_OP_RXAGGR;
1494 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1495 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1497 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1498 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1500 ath9k_hw_getmac(ah, sc->sc_myaddr);
1501 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1502 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1503 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1504 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1507 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1509 /* initialize beacon slots */
1510 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1511 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1513 /* save MISC configurations */
1514 sc->sc_config.swBeaconProcess = 1;
1516 /* setup channels and rates */
1518 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1519 sc->channels[IEEE80211_BAND_2GHZ];
1520 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1521 sc->rates[IEEE80211_BAND_2GHZ];
1522 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1524 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1525 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1526 sc->channels[IEEE80211_BAND_5GHZ];
1527 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1528 sc->rates[IEEE80211_BAND_5GHZ];
1529 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1534 /* cleanup tx queues */
1535 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1536 if (ATH_TXQ_SETUP(sc, i))
1537 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1540 ath9k_hw_detach(ah);
1541 ath9k_exit_debug(sc);
1546 static int ath_attach(u16 devid, struct ath_softc *sc)
1548 struct ieee80211_hw *hw = sc->hw;
1551 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1553 error = ath_init(devid, sc);
1557 /* get mac address from hardware and set in mac80211 */
1559 SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1561 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1562 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1563 IEEE80211_HW_SIGNAL_DBM |
1564 IEEE80211_HW_AMPDU_AGGREGATION;
1566 hw->wiphy->interface_modes =
1567 BIT(NL80211_IFTYPE_AP) |
1568 BIT(NL80211_IFTYPE_STATION) |
1569 BIT(NL80211_IFTYPE_ADHOC);
1573 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1574 hw->sta_data_size = sizeof(struct ath_node);
1575 hw->vif_data_size = sizeof(struct ath_vap);
1577 hw->rate_control_algorithm = "ath9k_rate_control";
1579 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1580 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1581 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1582 setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1585 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1586 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1587 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1588 &sc->sbands[IEEE80211_BAND_5GHZ];
1590 /* initialize tx/rx engine */
1591 error = ath_tx_init(sc, ATH_TXBUF);
1595 error = ath_rx_init(sc, ATH_RXBUF);
1599 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1600 /* Initialze h/w Rfkill */
1601 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1602 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1604 /* Initialize s/w rfkill */
1605 error = ath_init_sw_rfkill(sc);
1610 error = ieee80211_register_hw(hw);
1612 /* Initialize LED control */
1618 /* cleanup tx queues */
1619 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1620 if (ATH_TXQ_SETUP(sc, i))
1621 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1623 ath9k_hw_detach(sc->sc_ah);
1624 ath9k_exit_debug(sc);
1629 int ath_reset(struct ath_softc *sc, bool retry_tx)
1631 struct ath_hal *ah = sc->sc_ah;
1635 ath9k_hw_set_interrupts(ah, 0);
1636 ath_draintxq(sc, retry_tx);
1640 spin_lock_bh(&sc->sc_resetlock);
1641 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1643 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1644 sc->sc_ht_extprotspacing, false, &status)) {
1645 DPRINTF(sc, ATH_DBG_FATAL,
1646 "Unable to reset hardware; hal status %u\n", status);
1649 spin_unlock_bh(&sc->sc_resetlock);
1651 if (ath_startrecv(sc) != 0)
1652 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1655 * We may be doing a reset in response to a request
1656 * that changes the channel so update any state that
1657 * might change as a result.
1659 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1661 ath_update_txpow(sc);
1663 if (sc->sc_flags & SC_OP_BEACONS)
1664 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1666 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1670 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1671 if (ATH_TXQ_SETUP(sc, i)) {
1672 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1673 ath_txq_schedule(sc, &sc->tx.txq[i]);
1674 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1683 * This function will allocate both the DMA descriptor structure, and the
1684 * buffers it contains. These are used to contain the descriptors used
1687 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1688 struct list_head *head, const char *name,
1689 int nbuf, int ndesc)
1691 #define DS2PHYS(_dd, _ds) \
1692 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1693 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1694 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1696 struct ath_desc *ds;
1698 int i, bsize, error;
1700 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1703 /* ath_desc must be a multiple of DWORDs */
1704 if ((sizeof(struct ath_desc) % 4) != 0) {
1705 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1706 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1712 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1715 * Need additional DMA memory because we can't use
1716 * descriptors that cross the 4K page boundary. Assume
1717 * one skipped descriptor per 4K page.
1719 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1721 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1724 while (ndesc_skipped) {
1725 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1726 dd->dd_desc_len += dma_len;
1728 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1732 /* allocate descriptors */
1733 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1735 &dd->dd_desc_paddr);
1736 if (dd->dd_desc == NULL) {
1741 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1742 dd->dd_name, ds, (u32) dd->dd_desc_len,
1743 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1745 /* allocate buffers */
1746 bsize = sizeof(struct ath_buf) * nbuf;
1747 bf = kmalloc(bsize, GFP_KERNEL);
1752 memset(bf, 0, bsize);
1755 INIT_LIST_HEAD(head);
1756 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1758 bf->bf_daddr = DS2PHYS(dd, ds);
1760 if (!(sc->sc_ah->ah_caps.hw_caps &
1761 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1763 * Skip descriptor addresses which can cause 4KB
1764 * boundary crossing (addr + length) with a 32 dword
1767 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1768 ASSERT((caddr_t) bf->bf_desc <
1769 ((caddr_t) dd->dd_desc +
1774 bf->bf_daddr = DS2PHYS(dd, ds);
1777 list_add_tail(&bf->list, head);
1781 pci_free_consistent(sc->pdev,
1782 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1784 memset(dd, 0, sizeof(*dd));
1786 #undef ATH_DESC_4KB_BOUND_CHECK
1787 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1791 void ath_descdma_cleanup(struct ath_softc *sc,
1792 struct ath_descdma *dd,
1793 struct list_head *head)
1795 pci_free_consistent(sc->pdev,
1796 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1798 INIT_LIST_HEAD(head);
1799 kfree(dd->dd_bufptr);
1800 memset(dd, 0, sizeof(*dd));
1803 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1809 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1812 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1815 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1818 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1821 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1828 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1833 case ATH9K_WME_AC_VO:
1836 case ATH9K_WME_AC_VI:
1839 case ATH9K_WME_AC_BE:
1842 case ATH9K_WME_AC_BK:
1853 /**********************/
1854 /* mac80211 callbacks */
1855 /**********************/
1857 static int ath9k_start(struct ieee80211_hw *hw)
1859 struct ath_softc *sc = hw->priv;
1860 struct ieee80211_channel *curchan = hw->conf.channel;
1861 struct ath9k_channel *init_channel;
1862 int error = 0, pos, status;
1864 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1865 "initial channel: %d MHz\n", curchan->center_freq);
1867 /* setup initial channel */
1869 pos = ath_get_channel(sc, curchan);
1871 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1876 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1877 sc->sc_ah->ah_channels[pos].chanmode =
1878 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1879 init_channel = &sc->sc_ah->ah_channels[pos];
1881 /* Reset SERDES registers */
1882 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1885 * The basic interface to setting the hardware in a good
1886 * state is ``reset''. On return the hardware is known to
1887 * be powered up and with interrupts disabled. This must
1888 * be followed by initialization of the appropriate bits
1889 * and then setup of the interrupt mask.
1891 spin_lock_bh(&sc->sc_resetlock);
1892 if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1894 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1895 sc->sc_ht_extprotspacing, false, &status)) {
1896 DPRINTF(sc, ATH_DBG_FATAL,
1897 "Unable to reset hardware; hal status %u "
1898 "(freq %u flags 0x%x)\n", status,
1899 init_channel->channel, init_channel->channelFlags);
1901 spin_unlock_bh(&sc->sc_resetlock);
1904 spin_unlock_bh(&sc->sc_resetlock);
1907 * This is needed only to setup initial state
1908 * but it's best done after a reset.
1910 ath_update_txpow(sc);
1913 * Setup the hardware after reset:
1914 * The receive engine is set going.
1915 * Frame transmit is handled entirely
1916 * in the frame output path; there's nothing to do
1917 * here except setup the interrupt mask.
1919 if (ath_startrecv(sc) != 0) {
1920 DPRINTF(sc, ATH_DBG_FATAL,
1921 "Unable to start recv logic\n");
1926 /* Setup our intr mask. */
1927 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1928 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1929 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1931 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1932 sc->sc_imask |= ATH9K_INT_GTT;
1934 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1935 sc->sc_imask |= ATH9K_INT_CST;
1938 * Enable MIB interrupts when there are hardware phy counters.
1939 * Note we only do this (at the moment) for station mode.
1941 if (ath9k_hw_phycounters(sc->sc_ah) &&
1942 ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1943 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1944 sc->sc_imask |= ATH9K_INT_MIB;
1946 * Some hardware processes the TIM IE and fires an
1947 * interrupt when the TIM bit is set. For hardware
1948 * that does, if not overridden by configuration,
1949 * enable the TIM interrupt when operating as station.
1951 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1952 (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1953 !sc->sc_config.swBeaconProcess)
1954 sc->sc_imask |= ATH9K_INT_TIM;
1956 ath_setcurmode(sc, ath_chan2mode(init_channel));
1958 sc->sc_flags &= ~SC_OP_INVALID;
1960 /* Disable BMISS interrupt when we're not associated */
1961 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1962 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1964 ieee80211_wake_queues(sc->hw);
1966 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1967 error = ath_start_rfkill_poll(sc);
1974 static int ath9k_tx(struct ieee80211_hw *hw,
1975 struct sk_buff *skb)
1977 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1978 struct ath_softc *sc = hw->priv;
1979 struct ath_tx_control txctl;
1980 int hdrlen, padsize;
1982 memset(&txctl, 0, sizeof(struct ath_tx_control));
1985 * As a temporary workaround, assign seq# here; this will likely need
1986 * to be cleaned up to work better with Beacon transmission and virtual
1989 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1990 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1991 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1992 sc->tx.seq_no += 0x10;
1993 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1994 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1997 /* Add the padding after the header if this is not already done */
1998 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2000 padsize = hdrlen % 4;
2001 if (skb_headroom(skb) < padsize)
2003 skb_push(skb, padsize);
2004 memmove(skb->data, skb->data + padsize, hdrlen);
2007 /* Check if a tx queue is available */
2009 txctl.txq = ath_test_get_txq(sc, skb);
2013 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2015 if (ath_tx_start(sc, skb, &txctl) != 0) {
2016 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2022 dev_kfree_skb_any(skb);
2026 static void ath9k_stop(struct ieee80211_hw *hw)
2028 struct ath_softc *sc = hw->priv;
2030 if (sc->sc_flags & SC_OP_INVALID) {
2031 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2035 DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2037 ieee80211_stop_queues(sc->hw);
2039 /* make sure h/w will not generate any interrupt
2040 * before setting the invalid flag. */
2041 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2043 if (!(sc->sc_flags & SC_OP_INVALID)) {
2044 ath_draintxq(sc, false);
2046 ath9k_hw_phy_disable(sc->sc_ah);
2048 sc->rx.rxlink = NULL;
2050 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2051 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2052 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2054 /* disable HAL and put h/w to sleep */
2055 ath9k_hw_disable(sc->sc_ah);
2056 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2058 sc->sc_flags |= SC_OP_INVALID;
2060 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2063 static int ath9k_add_interface(struct ieee80211_hw *hw,
2064 struct ieee80211_if_init_conf *conf)
2066 struct ath_softc *sc = hw->priv;
2067 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2068 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2070 /* Support only vap for now */
2075 switch (conf->type) {
2076 case NL80211_IFTYPE_STATION:
2077 ic_opmode = NL80211_IFTYPE_STATION;
2079 case NL80211_IFTYPE_ADHOC:
2080 ic_opmode = NL80211_IFTYPE_ADHOC;
2082 case NL80211_IFTYPE_AP:
2083 ic_opmode = NL80211_IFTYPE_AP;
2086 DPRINTF(sc, ATH_DBG_FATAL,
2087 "Interface type %d not yet supported\n", conf->type);
2091 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2093 /* Set the VAP opmode */
2094 avp->av_opmode = ic_opmode;
2097 if (ic_opmode == NL80211_IFTYPE_AP)
2098 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2100 sc->sc_vaps[0] = conf->vif;
2103 /* Set the device opmode */
2104 sc->sc_ah->ah_opmode = ic_opmode;
2106 if (conf->type == NL80211_IFTYPE_AP) {
2107 /* TODO: is this a suitable place to start ANI for AP mode? */
2109 mod_timer(&sc->sc_ani.timer,
2110 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2116 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2117 struct ieee80211_if_init_conf *conf)
2119 struct ath_softc *sc = hw->priv;
2120 struct ath_vap *avp = (void *)conf->vif->drv_priv;
2122 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2125 del_timer_sync(&sc->sc_ani.timer);
2127 /* Reclaim beacon resources */
2128 if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2129 sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2130 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2131 ath_beacon_return(sc, avp);
2134 sc->sc_flags &= ~SC_OP_BEACONS;
2136 sc->sc_vaps[0] = NULL;
2140 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2142 struct ath_softc *sc = hw->priv;
2143 struct ieee80211_conf *conf = &hw->conf;
2145 mutex_lock(&sc->mutex);
2146 if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2147 IEEE80211_CONF_CHANGE_HT)) {
2148 struct ieee80211_channel *curchan = hw->conf.channel;
2151 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2152 curchan->center_freq);
2154 pos = ath_get_channel(sc, curchan);
2156 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2157 curchan->center_freq);
2158 mutex_unlock(&sc->mutex);
2162 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2163 sc->sc_ah->ah_channels[pos].chanmode =
2164 (curchan->band == IEEE80211_BAND_2GHZ) ?
2165 CHANNEL_G : CHANNEL_A;
2167 if (conf->ht.enabled) {
2168 if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2169 conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2170 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2172 sc->sc_ah->ah_channels[pos].chanmode =
2173 ath_get_extchanmode(sc, curchan,
2174 conf->ht.channel_type);
2177 ath_update_chainmask(sc, conf->ht.enabled);
2179 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2180 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2181 mutex_unlock(&sc->mutex);
2186 if (changed & IEEE80211_CONF_CHANGE_POWER)
2187 sc->sc_config.txpowlimit = 2 * conf->power_level;
2189 mutex_unlock(&sc->mutex);
2193 static int ath9k_config_interface(struct ieee80211_hw *hw,
2194 struct ieee80211_vif *vif,
2195 struct ieee80211_if_conf *conf)
2197 struct ath_softc *sc = hw->priv;
2198 struct ath_hal *ah = sc->sc_ah;
2199 struct ath_vap *avp = (void *)vif->drv_priv;
2203 /* TODO: Need to decide which hw opmode to use for multi-interface
2205 if (vif->type == NL80211_IFTYPE_AP &&
2206 ah->ah_opmode != NL80211_IFTYPE_AP) {
2207 ah->ah_opmode = NL80211_IFTYPE_STATION;
2208 ath9k_hw_setopmode(ah);
2209 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2210 /* Request full reset to get hw opmode changed properly */
2211 sc->sc_flags |= SC_OP_FULL_RESET;
2214 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2215 !is_zero_ether_addr(conf->bssid)) {
2216 switch (vif->type) {
2217 case NL80211_IFTYPE_STATION:
2218 case NL80211_IFTYPE_ADHOC:
2220 memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2222 ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2225 /* Set aggregation protection mode parameters */
2226 sc->sc_config.ath_aggr_prot = 0;
2228 DPRINTF(sc, ATH_DBG_CONFIG,
2229 "RX filter 0x%x bssid %pM aid 0x%x\n",
2230 rfilt, sc->sc_curbssid, sc->sc_curaid);
2232 /* need to reconfigure the beacon */
2233 sc->sc_flags &= ~SC_OP_BEACONS ;
2241 if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2242 ((vif->type == NL80211_IFTYPE_ADHOC) ||
2243 (vif->type == NL80211_IFTYPE_AP))) {
2245 * Allocate and setup the beacon frame.
2247 * Stop any previous beacon DMA. This may be
2248 * necessary, for example, when an ibss merge
2249 * causes reconfiguration; we may be called
2250 * with beacon transmission active.
2252 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2254 error = ath_beacon_alloc(sc, 0);
2258 ath_beacon_sync(sc, 0);
2261 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2262 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2263 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2264 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2265 ath9k_hw_keysetmac(sc->sc_ah,
2270 /* Only legacy IBSS for now */
2271 if (vif->type == NL80211_IFTYPE_ADHOC)
2272 ath_update_chainmask(sc, 0);
2277 #define SUPPORTED_FILTERS \
2278 (FIF_PROMISC_IN_BSS | \
2282 FIF_BCN_PRBRESP_PROMISC | \
2285 /* FIXME: sc->sc_full_reset ? */
2286 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2287 unsigned int changed_flags,
2288 unsigned int *total_flags,
2290 struct dev_mc_list *mclist)
2292 struct ath_softc *sc = hw->priv;
2295 changed_flags &= SUPPORTED_FILTERS;
2296 *total_flags &= SUPPORTED_FILTERS;
2298 sc->rx.rxfilter = *total_flags;
2299 rfilt = ath_calcrxfilter(sc);
2300 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2302 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2303 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2304 ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2307 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2310 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2311 struct ieee80211_vif *vif,
2312 enum sta_notify_cmd cmd,
2313 struct ieee80211_sta *sta)
2315 struct ath_softc *sc = hw->priv;
2318 case STA_NOTIFY_ADD:
2319 ath_node_attach(sc, sta);
2321 case STA_NOTIFY_REMOVE:
2322 ath_node_detach(sc, sta);
2329 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2331 const struct ieee80211_tx_queue_params *params)
2333 struct ath_softc *sc = hw->priv;
2334 struct ath9k_tx_queue_info qi;
2337 if (queue >= WME_NUM_AC)
2340 qi.tqi_aifs = params->aifs;
2341 qi.tqi_cwmin = params->cw_min;
2342 qi.tqi_cwmax = params->cw_max;
2343 qi.tqi_burstTime = params->txop;
2344 qnum = ath_get_hal_qnum(queue, sc);
2346 DPRINTF(sc, ATH_DBG_CONFIG,
2347 "Configure tx [queue/halq] [%d/%d], "
2348 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2349 queue, qnum, params->aifs, params->cw_min,
2350 params->cw_max, params->txop);
2352 ret = ath_txq_update(sc, qnum, &qi);
2354 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2359 static int ath9k_set_key(struct ieee80211_hw *hw,
2360 enum set_key_cmd cmd,
2361 const u8 *local_addr,
2363 struct ieee80211_key_conf *key)
2365 struct ath_softc *sc = hw->priv;
2368 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2372 ret = ath_key_config(sc, addr, key);
2374 key->hw_key_idx = ret;
2375 /* push IV and Michael MIC generation to stack */
2376 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2377 if (key->alg == ALG_TKIP)
2378 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2383 ath_key_delete(sc, key);
2392 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2393 struct ieee80211_vif *vif,
2394 struct ieee80211_bss_conf *bss_conf,
2397 struct ath_softc *sc = hw->priv;
2399 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2400 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2401 bss_conf->use_short_preamble);
2402 if (bss_conf->use_short_preamble)
2403 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2405 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2408 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2409 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2410 bss_conf->use_cts_prot);
2411 if (bss_conf->use_cts_prot &&
2412 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2413 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2415 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2418 if (changed & BSS_CHANGED_ASSOC) {
2419 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2421 ath9k_bss_assoc_info(sc, vif, bss_conf);
2425 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2428 struct ath_softc *sc = hw->priv;
2429 struct ath_hal *ah = sc->sc_ah;
2431 tsf = ath9k_hw_gettsf64(ah);
2436 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2438 struct ath_softc *sc = hw->priv;
2439 struct ath_hal *ah = sc->sc_ah;
2441 ath9k_hw_reset_tsf(ah);
2444 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2445 enum ieee80211_ampdu_mlme_action action,
2446 struct ieee80211_sta *sta,
2449 struct ath_softc *sc = hw->priv;
2453 case IEEE80211_AMPDU_RX_START:
2454 if (!(sc->sc_flags & SC_OP_RXAGGR))
2457 case IEEE80211_AMPDU_RX_STOP:
2459 case IEEE80211_AMPDU_TX_START:
2460 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2462 DPRINTF(sc, ATH_DBG_FATAL,
2463 "Unable to start TX aggregation\n");
2465 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2467 case IEEE80211_AMPDU_TX_STOP:
2468 ret = ath_tx_aggr_stop(sc, sta, tid);
2470 DPRINTF(sc, ATH_DBG_FATAL,
2471 "Unable to stop TX aggregation\n");
2473 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2475 case IEEE80211_AMPDU_TX_RESUME:
2476 ath_tx_aggr_resume(sc, sta, tid);
2479 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2485 static struct ieee80211_ops ath9k_ops = {
2487 .start = ath9k_start,
2489 .add_interface = ath9k_add_interface,
2490 .remove_interface = ath9k_remove_interface,
2491 .config = ath9k_config,
2492 .config_interface = ath9k_config_interface,
2493 .configure_filter = ath9k_configure_filter,
2494 .sta_notify = ath9k_sta_notify,
2495 .conf_tx = ath9k_conf_tx,
2496 .bss_info_changed = ath9k_bss_info_changed,
2497 .set_key = ath9k_set_key,
2498 .get_tsf = ath9k_get_tsf,
2499 .reset_tsf = ath9k_reset_tsf,
2500 .ampdu_action = ath9k_ampdu_action,
2506 } ath_mac_bb_names[] = {
2507 { AR_SREV_VERSION_5416_PCI, "5416" },
2508 { AR_SREV_VERSION_5416_PCIE, "5418" },
2509 { AR_SREV_VERSION_9100, "9100" },
2510 { AR_SREV_VERSION_9160, "9160" },
2511 { AR_SREV_VERSION_9280, "9280" },
2512 { AR_SREV_VERSION_9285, "9285" }
2518 } ath_rf_names[] = {
2520 { AR_RAD5133_SREV_MAJOR, "5133" },
2521 { AR_RAD5122_SREV_MAJOR, "5122" },
2522 { AR_RAD2133_SREV_MAJOR, "2133" },
2523 { AR_RAD2122_SREV_MAJOR, "2122" }
2527 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2530 ath_mac_bb_name(u32 mac_bb_version)
2534 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2535 if (ath_mac_bb_names[i].version == mac_bb_version) {
2536 return ath_mac_bb_names[i].name;
2544 * Return the RF name. "????" is returned if the RF is unknown.
2547 ath_rf_name(u16 rf_version)
2551 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2552 if (ath_rf_names[i].version == rf_version) {
2553 return ath_rf_names[i].name;
2560 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2563 struct ath_softc *sc;
2564 struct ieee80211_hw *hw;
2570 if (pci_enable_device(pdev))
2573 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2576 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2580 ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2583 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2584 "DMA enable failed\n");
2589 * Cache line size is used to size and align various
2590 * structures used to communicate with the hardware.
2592 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2595 * Linux 2.4.18 (at least) writes the cache line size
2596 * register as a 16-bit wide register which is wrong.
2597 * We must have this setup properly for rx buffer
2598 * DMA to work so force a reasonable value here if it
2601 csz = L1_CACHE_BYTES / sizeof(u32);
2602 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2605 * The default setting of latency timer yields poor results,
2606 * set it to the value used by other systems. It may be worth
2607 * tweaking this setting more.
2609 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2611 pci_set_master(pdev);
2614 * Disable the RETRY_TIMEOUT register (0x41) to keep
2615 * PCI Tx retries from interfering with C3 CPU state.
2617 pci_read_config_dword(pdev, 0x40, &val);
2618 if ((val & 0x0000ff00) != 0)
2619 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2621 ret = pci_request_region(pdev, 0, "ath9k");
2623 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2628 mem = pci_iomap(pdev, 0, 0);
2630 printk(KERN_ERR "PCI memory map error\n") ;
2635 hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2637 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2641 SET_IEEE80211_DEV(hw, &pdev->dev);
2642 pci_set_drvdata(pdev, hw);
2649 if (ath_attach(id->device, sc) != 0) {
2654 /* setup interrupt service routine */
2656 if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2657 printk(KERN_ERR "%s: request_irq failed\n",
2658 wiphy_name(hw->wiphy));
2665 "%s: Atheros AR%s MAC/BB Rev:%x "
2666 "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2667 wiphy_name(hw->wiphy),
2668 ath_mac_bb_name(ah->ah_macVersion),
2670 ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2672 (unsigned long)mem, pdev->irq);
2678 ieee80211_free_hw(hw);
2680 pci_iounmap(pdev, mem);
2682 pci_release_region(pdev, 0);
2684 pci_disable_device(pdev);
2688 static void ath_pci_remove(struct pci_dev *pdev)
2690 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2691 struct ath_softc *sc = hw->priv;
2695 free_irq(pdev->irq, sc);
2696 pci_iounmap(pdev, sc->mem);
2697 pci_release_region(pdev, 0);
2698 pci_disable_device(pdev);
2699 ieee80211_free_hw(hw);
2704 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2706 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2707 struct ath_softc *sc = hw->priv;
2709 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2711 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2712 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2713 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2716 pci_save_state(pdev);
2717 pci_disable_device(pdev);
2718 pci_set_power_state(pdev, 3);
2723 static int ath_pci_resume(struct pci_dev *pdev)
2725 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2726 struct ath_softc *sc = hw->priv;
2730 err = pci_enable_device(pdev);
2733 pci_restore_state(pdev);
2735 * Suspend/Resume resets the PCI configuration space, so we have to
2736 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2737 * PCI Tx retries from interfering with C3 CPU state
2739 pci_read_config_dword(pdev, 0x40, &val);
2740 if ((val & 0x0000ff00) != 0)
2741 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2744 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2745 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2746 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2748 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2750 * check the h/w rfkill state on resume
2751 * and start the rfkill poll timer
2753 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2754 queue_delayed_work(sc->hw->workqueue,
2755 &sc->rf_kill.rfkill_poll, 0);
2761 #endif /* CONFIG_PM */
2763 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2765 static struct pci_driver ath_pci_driver = {
2767 .id_table = ath_pci_id_table,
2768 .probe = ath_pci_probe,
2769 .remove = ath_pci_remove,
2771 .suspend = ath_pci_suspend,
2772 .resume = ath_pci_resume,
2773 #endif /* CONFIG_PM */
2776 static int __init init_ath_pci(void)
2780 printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2782 /* Register rate control algorithm */
2783 error = ath_rate_control_register();
2786 "Unable to register rate control algorithm: %d\n",
2788 ath_rate_control_unregister();
2792 if (pci_register_driver(&ath_pci_driver) < 0) {
2794 "ath_pci: No devices found, driver not installed.\n");
2795 ath_rate_control_unregister();
2796 pci_unregister_driver(&ath_pci_driver);
2802 module_init(init_ath_pci);
2804 static void __exit exit_ath_pci(void)
2806 ath_rate_control_unregister();
2807 pci_unregister_driver(&ath_pci_driver);
2808 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2810 module_exit(exit_ath_pci);