udf: fix coding style
[linux-2.6] / fs / ecryptfs / super.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2006 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/key.h>
29 #include <linux/seq_file.h>
30 #include <linux/file.h>
31 #include <linux/crypto.h>
32 #include "ecryptfs_kernel.h"
33
34 struct kmem_cache *ecryptfs_inode_info_cache;
35
36 /**
37  * ecryptfs_alloc_inode - allocate an ecryptfs inode
38  * @sb: Pointer to the ecryptfs super block
39  *
40  * Called to bring an inode into existence.
41  *
42  * Only handle allocation, setting up structures should be done in
43  * ecryptfs_read_inode. This is because the kernel, between now and
44  * then, will 0 out the private data pointer.
45  *
46  * Returns a pointer to a newly allocated inode, NULL otherwise
47  */
48 static struct inode *ecryptfs_alloc_inode(struct super_block *sb)
49 {
50         struct ecryptfs_inode_info *inode_info;
51         struct inode *inode = NULL;
52
53         inode_info = kmem_cache_alloc(ecryptfs_inode_info_cache, GFP_KERNEL);
54         if (unlikely(!inode_info))
55                 goto out;
56         ecryptfs_init_crypt_stat(&inode_info->crypt_stat);
57         mutex_init(&inode_info->lower_file_mutex);
58         inode_info->lower_file = NULL;
59         inode = &inode_info->vfs_inode;
60 out:
61         return inode;
62 }
63
64 /**
65  * ecryptfs_destroy_inode
66  * @inode: The ecryptfs inode
67  *
68  * This is used during the final destruction of the inode.  All
69  * allocation of memory related to the inode, including allocated
70  * memory in the crypt_stat struct, will be released here. This
71  * function also fput()'s the persistent file for the lower inode.
72  * There should be no chance that this deallocation will be missed.
73  */
74 static void ecryptfs_destroy_inode(struct inode *inode)
75 {
76         struct ecryptfs_inode_info *inode_info;
77
78         inode_info = ecryptfs_inode_to_private(inode);
79         mutex_lock(&inode_info->lower_file_mutex);
80         if (inode_info->lower_file) {
81                 struct dentry *lower_dentry =
82                         inode_info->lower_file->f_dentry;
83
84                 BUG_ON(!lower_dentry);
85                 if (lower_dentry->d_inode) {
86                         fput(inode_info->lower_file);
87                         inode_info->lower_file = NULL;
88                         d_drop(lower_dentry);
89                 }
90         }
91         mutex_unlock(&inode_info->lower_file_mutex);
92         ecryptfs_destroy_crypt_stat(&inode_info->crypt_stat);
93         kmem_cache_free(ecryptfs_inode_info_cache, inode_info);
94 }
95
96 /**
97  * ecryptfs_init_inode
98  * @inode: The ecryptfs inode
99  *
100  * Set up the ecryptfs inode.
101  */
102 void ecryptfs_init_inode(struct inode *inode, struct inode *lower_inode)
103 {
104         ecryptfs_set_inode_lower(inode, lower_inode);
105         inode->i_ino = lower_inode->i_ino;
106         inode->i_version++;
107         inode->i_op = &ecryptfs_main_iops;
108         inode->i_fop = &ecryptfs_main_fops;
109         inode->i_mapping->a_ops = &ecryptfs_aops;
110 }
111
112 /**
113  * ecryptfs_put_super
114  * @sb: Pointer to the ecryptfs super block
115  *
116  * Final actions when unmounting a file system.
117  * This will handle deallocation and release of our private data.
118  */
119 static void ecryptfs_put_super(struct super_block *sb)
120 {
121         struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
122
123         ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
124         kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
125         ecryptfs_set_superblock_private(sb, NULL);
126 }
127
128 /**
129  * ecryptfs_statfs
130  * @sb: The ecryptfs super block
131  * @buf: The struct kstatfs to fill in with stats
132  *
133  * Get the filesystem statistics. Currently, we let this pass right through
134  * to the lower filesystem and take no action ourselves.
135  */
136 static int ecryptfs_statfs(struct dentry *dentry, struct kstatfs *buf)
137 {
138         return vfs_statfs(ecryptfs_dentry_to_lower(dentry), buf);
139 }
140
141 /**
142  * ecryptfs_clear_inode
143  * @inode - The ecryptfs inode
144  *
145  * Called by iput() when the inode reference count reached zero
146  * and the inode is not hashed anywhere.  Used to clear anything
147  * that needs to be, before the inode is completely destroyed and put
148  * on the inode free list. We use this to drop out reference to the
149  * lower inode.
150  */
151 static void ecryptfs_clear_inode(struct inode *inode)
152 {
153         iput(ecryptfs_inode_to_lower(inode));
154 }
155
156 /**
157  * ecryptfs_show_options
158  *
159  * Prints the mount options for a given superblock.
160  * Returns zero; does not fail.
161  */
162 static int ecryptfs_show_options(struct seq_file *m, struct vfsmount *mnt)
163 {
164         struct super_block *sb = mnt->mnt_sb;
165         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
166                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
167         struct ecryptfs_global_auth_tok *walker;
168
169         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
170         list_for_each_entry(walker,
171                             &mount_crypt_stat->global_auth_tok_list,
172                             mount_crypt_stat_list) {
173                 seq_printf(m, ",ecryptfs_sig=%s", walker->sig);
174         }
175         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
176
177         seq_printf(m, ",ecryptfs_cipher=%s",
178                 mount_crypt_stat->global_default_cipher_name);
179
180         if (mount_crypt_stat->global_default_cipher_key_size)
181                 seq_printf(m, ",ecryptfs_key_bytes=%zd",
182                            mount_crypt_stat->global_default_cipher_key_size);
183         if (mount_crypt_stat->flags & ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED)
184                 seq_printf(m, ",ecryptfs_passthrough");
185         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
186                 seq_printf(m, ",ecryptfs_xattr_metadata");
187         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
188                 seq_printf(m, ",ecryptfs_encrypted_view");
189
190         return 0;
191 }
192
193 const struct super_operations ecryptfs_sops = {
194         .alloc_inode = ecryptfs_alloc_inode,
195         .destroy_inode = ecryptfs_destroy_inode,
196         .drop_inode = generic_delete_inode,
197         .put_super = ecryptfs_put_super,
198         .statfs = ecryptfs_statfs,
199         .remount_fs = NULL,
200         .clear_inode = ecryptfs_clear_inode,
201         .show_options = ecryptfs_show_options
202 };