[XFS] Update valid fields in xfs_mount_log_sb()
[linux-2.6] / fs / xfs / xfs_mount.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47
48 STATIC int      xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int      xfs_uuid_mount(xfs_mount_t *);
50 STATIC void     xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void     xfs_unmountfs_wait(xfs_mount_t *);
52
53
54 #ifdef HAVE_PERCPU_SB
55 STATIC void     xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void     xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
57                                                 int);
58 STATIC void     xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
59                                                 int);
60 STATIC int      xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
61                                                 int64_t, int);
62 STATIC void     xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
63
64 #else
65
66 #define xfs_icsb_destroy_counters(mp)                   do { } while (0)
67 #define xfs_icsb_balance_counter(mp, a, b)              do { } while (0)
68 #define xfs_icsb_balance_counter_locked(mp, a, b)       do { } while (0)
69 #define xfs_icsb_modify_counters(mp, a, b, c)           do { } while (0)
70
71 #endif
72
73 static const struct {
74         short offset;
75         short type;     /* 0 = integer
76                          * 1 = binary / string (no translation)
77                          */
78 } xfs_sb_info[] = {
79     { offsetof(xfs_sb_t, sb_magicnum),   0 },
80     { offsetof(xfs_sb_t, sb_blocksize),  0 },
81     { offsetof(xfs_sb_t, sb_dblocks),    0 },
82     { offsetof(xfs_sb_t, sb_rblocks),    0 },
83     { offsetof(xfs_sb_t, sb_rextents),   0 },
84     { offsetof(xfs_sb_t, sb_uuid),       1 },
85     { offsetof(xfs_sb_t, sb_logstart),   0 },
86     { offsetof(xfs_sb_t, sb_rootino),    0 },
87     { offsetof(xfs_sb_t, sb_rbmino),     0 },
88     { offsetof(xfs_sb_t, sb_rsumino),    0 },
89     { offsetof(xfs_sb_t, sb_rextsize),   0 },
90     { offsetof(xfs_sb_t, sb_agblocks),   0 },
91     { offsetof(xfs_sb_t, sb_agcount),    0 },
92     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
93     { offsetof(xfs_sb_t, sb_logblocks),  0 },
94     { offsetof(xfs_sb_t, sb_versionnum), 0 },
95     { offsetof(xfs_sb_t, sb_sectsize),   0 },
96     { offsetof(xfs_sb_t, sb_inodesize),  0 },
97     { offsetof(xfs_sb_t, sb_inopblock),  0 },
98     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
99     { offsetof(xfs_sb_t, sb_blocklog),   0 },
100     { offsetof(xfs_sb_t, sb_sectlog),    0 },
101     { offsetof(xfs_sb_t, sb_inodelog),   0 },
102     { offsetof(xfs_sb_t, sb_inopblog),   0 },
103     { offsetof(xfs_sb_t, sb_agblklog),   0 },
104     { offsetof(xfs_sb_t, sb_rextslog),   0 },
105     { offsetof(xfs_sb_t, sb_inprogress), 0 },
106     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
107     { offsetof(xfs_sb_t, sb_icount),     0 },
108     { offsetof(xfs_sb_t, sb_ifree),      0 },
109     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
110     { offsetof(xfs_sb_t, sb_frextents),  0 },
111     { offsetof(xfs_sb_t, sb_uquotino),   0 },
112     { offsetof(xfs_sb_t, sb_gquotino),   0 },
113     { offsetof(xfs_sb_t, sb_qflags),     0 },
114     { offsetof(xfs_sb_t, sb_flags),      0 },
115     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
116     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
117     { offsetof(xfs_sb_t, sb_unit),       0 },
118     { offsetof(xfs_sb_t, sb_width),      0 },
119     { offsetof(xfs_sb_t, sb_dirblklog),  0 },
120     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
121     { offsetof(xfs_sb_t, sb_logsectsize),0 },
122     { offsetof(xfs_sb_t, sb_logsunit),   0 },
123     { offsetof(xfs_sb_t, sb_features2),  0 },
124     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
125     { sizeof(xfs_sb_t),                  0 }
126 };
127
128 /*
129  * Return a pointer to an initialized xfs_mount structure.
130  */
131 xfs_mount_t *
132 xfs_mount_init(void)
133 {
134         xfs_mount_t *mp;
135
136         mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
137
138         if (xfs_icsb_init_counters(mp)) {
139                 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
140         }
141
142         spin_lock_init(&mp->m_sb_lock);
143         mutex_init(&mp->m_ilock);
144         mutex_init(&mp->m_growlock);
145         atomic_set(&mp->m_active_trans, 0);
146
147         return mp;
148 }
149
150 /*
151  * Free up the resources associated with a mount structure.  Assume that
152  * the structure was initially zeroed, so we can tell which fields got
153  * initialized.
154  */
155 void
156 xfs_mount_free(
157         xfs_mount_t     *mp)
158 {
159         if (mp->m_perag) {
160                 int     agno;
161
162                 for (agno = 0; agno < mp->m_maxagi; agno++)
163                         if (mp->m_perag[agno].pagb_list)
164                                 kmem_free(mp->m_perag[agno].pagb_list);
165                 kmem_free(mp->m_perag);
166         }
167
168         spinlock_destroy(&mp->m_ail_lock);
169         spinlock_destroy(&mp->m_sb_lock);
170         mutex_destroy(&mp->m_ilock);
171         mutex_destroy(&mp->m_growlock);
172         if (mp->m_quotainfo)
173                 XFS_QM_DONE(mp);
174
175         if (mp->m_fsname != NULL)
176                 kmem_free(mp->m_fsname);
177         if (mp->m_rtname != NULL)
178                 kmem_free(mp->m_rtname);
179         if (mp->m_logname != NULL)
180                 kmem_free(mp->m_logname);
181
182         xfs_icsb_destroy_counters(mp);
183 }
184
185 /*
186  * Check size of device based on the (data/realtime) block count.
187  * Note: this check is used by the growfs code as well as mount.
188  */
189 int
190 xfs_sb_validate_fsb_count(
191         xfs_sb_t        *sbp,
192         __uint64_t      nblocks)
193 {
194         ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
195         ASSERT(sbp->sb_blocklog >= BBSHIFT);
196
197 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
198         if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
199                 return E2BIG;
200 #else                  /* Limited by UINT_MAX of sectors */
201         if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
202                 return E2BIG;
203 #endif
204         return 0;
205 }
206
207 /*
208  * Check the validity of the SB found.
209  */
210 STATIC int
211 xfs_mount_validate_sb(
212         xfs_mount_t     *mp,
213         xfs_sb_t        *sbp,
214         int             flags)
215 {
216         /*
217          * If the log device and data device have the
218          * same device number, the log is internal.
219          * Consequently, the sb_logstart should be non-zero.  If
220          * we have a zero sb_logstart in this case, we may be trying to mount
221          * a volume filesystem in a non-volume manner.
222          */
223         if (sbp->sb_magicnum != XFS_SB_MAGIC) {
224                 xfs_fs_mount_cmn_err(flags, "bad magic number");
225                 return XFS_ERROR(EWRONGFS);
226         }
227
228         if (!xfs_sb_good_version(sbp)) {
229                 xfs_fs_mount_cmn_err(flags, "bad version");
230                 return XFS_ERROR(EWRONGFS);
231         }
232
233         if (unlikely(
234             sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
235                 xfs_fs_mount_cmn_err(flags,
236                         "filesystem is marked as having an external log; "
237                         "specify logdev on the\nmount command line.");
238                 return XFS_ERROR(EINVAL);
239         }
240
241         if (unlikely(
242             sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
243                 xfs_fs_mount_cmn_err(flags,
244                         "filesystem is marked as having an internal log; "
245                         "do not specify logdev on\nthe mount command line.");
246                 return XFS_ERROR(EINVAL);
247         }
248
249         /*
250          * More sanity checking. These were stolen directly from
251          * xfs_repair.
252          */
253         if (unlikely(
254             sbp->sb_agcount <= 0                                        ||
255             sbp->sb_sectsize < XFS_MIN_SECTORSIZE                       ||
256             sbp->sb_sectsize > XFS_MAX_SECTORSIZE                       ||
257             sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG                    ||
258             sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG                    ||
259             sbp->sb_blocksize < XFS_MIN_BLOCKSIZE                       ||
260             sbp->sb_blocksize > XFS_MAX_BLOCKSIZE                       ||
261             sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG                    ||
262             sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG                    ||
263             sbp->sb_inodesize < XFS_DINODE_MIN_SIZE                     ||
264             sbp->sb_inodesize > XFS_DINODE_MAX_SIZE                     ||
265             sbp->sb_inodelog < XFS_DINODE_MIN_LOG                       ||
266             sbp->sb_inodelog > XFS_DINODE_MAX_LOG                       ||
267             (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)   ||
268             (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)  ||
269             (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)  ||
270             (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
271                 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
272                 return XFS_ERROR(EFSCORRUPTED);
273         }
274
275         /*
276          * Sanity check AG count, size fields against data size field
277          */
278         if (unlikely(
279             sbp->sb_dblocks == 0 ||
280             sbp->sb_dblocks >
281              (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
282             sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
283                               sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
284                 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
285                 return XFS_ERROR(EFSCORRUPTED);
286         }
287
288         if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
289             xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
290                 xfs_fs_mount_cmn_err(flags,
291                         "file system too large to be mounted on this system.");
292                 return XFS_ERROR(E2BIG);
293         }
294
295         if (unlikely(sbp->sb_inprogress)) {
296                 xfs_fs_mount_cmn_err(flags, "file system busy");
297                 return XFS_ERROR(EFSCORRUPTED);
298         }
299
300         /*
301          * Version 1 directory format has never worked on Linux.
302          */
303         if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
304                 xfs_fs_mount_cmn_err(flags,
305                         "file system using version 1 directory format");
306                 return XFS_ERROR(ENOSYS);
307         }
308
309         /*
310          * Until this is fixed only page-sized or smaller data blocks work.
311          */
312         if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
313                 xfs_fs_mount_cmn_err(flags,
314                         "file system with blocksize %d bytes",
315                         sbp->sb_blocksize);
316                 xfs_fs_mount_cmn_err(flags,
317                         "only pagesize (%ld) or less will currently work.",
318                         PAGE_SIZE);
319                 return XFS_ERROR(ENOSYS);
320         }
321
322         return 0;
323 }
324
325 STATIC void
326 xfs_initialize_perag_icache(
327         xfs_perag_t     *pag)
328 {
329         if (!pag->pag_ici_init) {
330                 rwlock_init(&pag->pag_ici_lock);
331                 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
332                 pag->pag_ici_init = 1;
333         }
334 }
335
336 xfs_agnumber_t
337 xfs_initialize_perag(
338         xfs_mount_t     *mp,
339         xfs_agnumber_t  agcount)
340 {
341         xfs_agnumber_t  index, max_metadata;
342         xfs_perag_t     *pag;
343         xfs_agino_t     agino;
344         xfs_ino_t       ino;
345         xfs_sb_t        *sbp = &mp->m_sb;
346         xfs_ino_t       max_inum = XFS_MAXINUMBER_32;
347
348         /* Check to see if the filesystem can overflow 32 bit inodes */
349         agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
350         ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
351
352         /* Clear the mount flag if no inode can overflow 32 bits
353          * on this filesystem, or if specifically requested..
354          */
355         if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
356                 mp->m_flags |= XFS_MOUNT_32BITINODES;
357         } else {
358                 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
359         }
360
361         /* If we can overflow then setup the ag headers accordingly */
362         if (mp->m_flags & XFS_MOUNT_32BITINODES) {
363                 /* Calculate how much should be reserved for inodes to
364                  * meet the max inode percentage.
365                  */
366                 if (mp->m_maxicount) {
367                         __uint64_t      icount;
368
369                         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
370                         do_div(icount, 100);
371                         icount += sbp->sb_agblocks - 1;
372                         do_div(icount, sbp->sb_agblocks);
373                         max_metadata = icount;
374                 } else {
375                         max_metadata = agcount;
376                 }
377                 for (index = 0; index < agcount; index++) {
378                         ino = XFS_AGINO_TO_INO(mp, index, agino);
379                         if (ino > max_inum) {
380                                 index++;
381                                 break;
382                         }
383
384                         /* This ag is preferred for inodes */
385                         pag = &mp->m_perag[index];
386                         pag->pagi_inodeok = 1;
387                         if (index < max_metadata)
388                                 pag->pagf_metadata = 1;
389                         xfs_initialize_perag_icache(pag);
390                 }
391         } else {
392                 /* Setup default behavior for smaller filesystems */
393                 for (index = 0; index < agcount; index++) {
394                         pag = &mp->m_perag[index];
395                         pag->pagi_inodeok = 1;
396                         xfs_initialize_perag_icache(pag);
397                 }
398         }
399         return index;
400 }
401
402 void
403 xfs_sb_from_disk(
404         xfs_sb_t        *to,
405         xfs_dsb_t       *from)
406 {
407         to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
408         to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
409         to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
410         to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
411         to->sb_rextents = be64_to_cpu(from->sb_rextents);
412         memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
413         to->sb_logstart = be64_to_cpu(from->sb_logstart);
414         to->sb_rootino = be64_to_cpu(from->sb_rootino);
415         to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
416         to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
417         to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
418         to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
419         to->sb_agcount = be32_to_cpu(from->sb_agcount);
420         to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
421         to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
422         to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
423         to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
424         to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
425         to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
426         memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
427         to->sb_blocklog = from->sb_blocklog;
428         to->sb_sectlog = from->sb_sectlog;
429         to->sb_inodelog = from->sb_inodelog;
430         to->sb_inopblog = from->sb_inopblog;
431         to->sb_agblklog = from->sb_agblklog;
432         to->sb_rextslog = from->sb_rextslog;
433         to->sb_inprogress = from->sb_inprogress;
434         to->sb_imax_pct = from->sb_imax_pct;
435         to->sb_icount = be64_to_cpu(from->sb_icount);
436         to->sb_ifree = be64_to_cpu(from->sb_ifree);
437         to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
438         to->sb_frextents = be64_to_cpu(from->sb_frextents);
439         to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
440         to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
441         to->sb_qflags = be16_to_cpu(from->sb_qflags);
442         to->sb_flags = from->sb_flags;
443         to->sb_shared_vn = from->sb_shared_vn;
444         to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
445         to->sb_unit = be32_to_cpu(from->sb_unit);
446         to->sb_width = be32_to_cpu(from->sb_width);
447         to->sb_dirblklog = from->sb_dirblklog;
448         to->sb_logsectlog = from->sb_logsectlog;
449         to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
450         to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
451         to->sb_features2 = be32_to_cpu(from->sb_features2);
452         to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
453 }
454
455 /*
456  * Copy in core superblock to ondisk one.
457  *
458  * The fields argument is mask of superblock fields to copy.
459  */
460 void
461 xfs_sb_to_disk(
462         xfs_dsb_t       *to,
463         xfs_sb_t        *from,
464         __int64_t       fields)
465 {
466         xfs_caddr_t     to_ptr = (xfs_caddr_t)to;
467         xfs_caddr_t     from_ptr = (xfs_caddr_t)from;
468         xfs_sb_field_t  f;
469         int             first;
470         int             size;
471
472         ASSERT(fields);
473         if (!fields)
474                 return;
475
476         while (fields) {
477                 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
478                 first = xfs_sb_info[f].offset;
479                 size = xfs_sb_info[f + 1].offset - first;
480
481                 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
482
483                 if (size == 1 || xfs_sb_info[f].type == 1) {
484                         memcpy(to_ptr + first, from_ptr + first, size);
485                 } else {
486                         switch (size) {
487                         case 2:
488                                 *(__be16 *)(to_ptr + first) =
489                                         cpu_to_be16(*(__u16 *)(from_ptr + first));
490                                 break;
491                         case 4:
492                                 *(__be32 *)(to_ptr + first) =
493                                         cpu_to_be32(*(__u32 *)(from_ptr + first));
494                                 break;
495                         case 8:
496                                 *(__be64 *)(to_ptr + first) =
497                                         cpu_to_be64(*(__u64 *)(from_ptr + first));
498                                 break;
499                         default:
500                                 ASSERT(0);
501                         }
502                 }
503
504                 fields &= ~(1LL << f);
505         }
506 }
507
508 /*
509  * xfs_readsb
510  *
511  * Does the initial read of the superblock.
512  */
513 int
514 xfs_readsb(xfs_mount_t *mp, int flags)
515 {
516         unsigned int    sector_size;
517         unsigned int    extra_flags;
518         xfs_buf_t       *bp;
519         int             error;
520
521         ASSERT(mp->m_sb_bp == NULL);
522         ASSERT(mp->m_ddev_targp != NULL);
523
524         /*
525          * Allocate a (locked) buffer to hold the superblock.
526          * This will be kept around at all times to optimize
527          * access to the superblock.
528          */
529         sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
530         extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
531
532         bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
533                                 BTOBB(sector_size), extra_flags);
534         if (!bp || XFS_BUF_ISERROR(bp)) {
535                 xfs_fs_mount_cmn_err(flags, "SB read failed");
536                 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
537                 goto fail;
538         }
539         ASSERT(XFS_BUF_ISBUSY(bp));
540         ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
541
542         /*
543          * Initialize the mount structure from the superblock.
544          * But first do some basic consistency checking.
545          */
546         xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
547
548         error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
549         if (error) {
550                 xfs_fs_mount_cmn_err(flags, "SB validate failed");
551                 goto fail;
552         }
553
554         /*
555          * We must be able to do sector-sized and sector-aligned IO.
556          */
557         if (sector_size > mp->m_sb.sb_sectsize) {
558                 xfs_fs_mount_cmn_err(flags,
559                         "device supports only %u byte sectors (not %u)",
560                         sector_size, mp->m_sb.sb_sectsize);
561                 error = ENOSYS;
562                 goto fail;
563         }
564
565         /*
566          * If device sector size is smaller than the superblock size,
567          * re-read the superblock so the buffer is correctly sized.
568          */
569         if (sector_size < mp->m_sb.sb_sectsize) {
570                 XFS_BUF_UNMANAGE(bp);
571                 xfs_buf_relse(bp);
572                 sector_size = mp->m_sb.sb_sectsize;
573                 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
574                                         BTOBB(sector_size), extra_flags);
575                 if (!bp || XFS_BUF_ISERROR(bp)) {
576                         xfs_fs_mount_cmn_err(flags, "SB re-read failed");
577                         error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
578                         goto fail;
579                 }
580                 ASSERT(XFS_BUF_ISBUSY(bp));
581                 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
582         }
583
584         /* Initialize per-cpu counters */
585         xfs_icsb_reinit_counters(mp);
586
587         mp->m_sb_bp = bp;
588         xfs_buf_relse(bp);
589         ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
590         return 0;
591
592  fail:
593         if (bp) {
594                 XFS_BUF_UNMANAGE(bp);
595                 xfs_buf_relse(bp);
596         }
597         return error;
598 }
599
600
601 /*
602  * xfs_mount_common
603  *
604  * Mount initialization code establishing various mount
605  * fields from the superblock associated with the given
606  * mount structure
607  */
608 STATIC void
609 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
610 {
611         int     i;
612
613         mp->m_agfrotor = mp->m_agirotor = 0;
614         spin_lock_init(&mp->m_agirotor_lock);
615         mp->m_maxagi = mp->m_sb.sb_agcount;
616         mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
617         mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
618         mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
619         mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
620         mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
621         mp->m_litino = sbp->sb_inodesize -
622                 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
623         mp->m_blockmask = sbp->sb_blocksize - 1;
624         mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
625         mp->m_blockwmask = mp->m_blockwsize - 1;
626         INIT_LIST_HEAD(&mp->m_del_inodes);
627
628         /*
629          * Setup for attributes, in case they get created.
630          * This value is for inodes getting attributes for the first time,
631          * the per-inode value is for old attribute values.
632          */
633         ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
634         switch (sbp->sb_inodesize) {
635         case 256:
636                 mp->m_attroffset = XFS_LITINO(mp) -
637                                    XFS_BMDR_SPACE_CALC(MINABTPTRS);
638                 break;
639         case 512:
640         case 1024:
641         case 2048:
642                 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
643                 break;
644         default:
645                 ASSERT(0);
646         }
647         ASSERT(mp->m_attroffset < XFS_LITINO(mp));
648
649         for (i = 0; i < 2; i++) {
650                 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
651                         xfs_alloc, i == 0);
652                 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
653                         xfs_alloc, i == 0);
654         }
655         for (i = 0; i < 2; i++) {
656                 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
657                         xfs_bmbt, i == 0);
658                 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
659                         xfs_bmbt, i == 0);
660         }
661         for (i = 0; i < 2; i++) {
662                 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
663                         xfs_inobt, i == 0);
664                 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
665                         xfs_inobt, i == 0);
666         }
667
668         mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
669         mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
670                                         sbp->sb_inopblock);
671         mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
672 }
673
674 /*
675  * xfs_initialize_perag_data
676  *
677  * Read in each per-ag structure so we can count up the number of
678  * allocated inodes, free inodes and used filesystem blocks as this
679  * information is no longer persistent in the superblock. Once we have
680  * this information, write it into the in-core superblock structure.
681  */
682 STATIC int
683 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
684 {
685         xfs_agnumber_t  index;
686         xfs_perag_t     *pag;
687         xfs_sb_t        *sbp = &mp->m_sb;
688         uint64_t        ifree = 0;
689         uint64_t        ialloc = 0;
690         uint64_t        bfree = 0;
691         uint64_t        bfreelst = 0;
692         uint64_t        btree = 0;
693         int             error;
694
695         for (index = 0; index < agcount; index++) {
696                 /*
697                  * read the agf, then the agi. This gets us
698                  * all the inforamtion we need and populates the
699                  * per-ag structures for us.
700                  */
701                 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
702                 if (error)
703                         return error;
704
705                 error = xfs_ialloc_pagi_init(mp, NULL, index);
706                 if (error)
707                         return error;
708                 pag = &mp->m_perag[index];
709                 ifree += pag->pagi_freecount;
710                 ialloc += pag->pagi_count;
711                 bfree += pag->pagf_freeblks;
712                 bfreelst += pag->pagf_flcount;
713                 btree += pag->pagf_btreeblks;
714         }
715         /*
716          * Overwrite incore superblock counters with just-read data
717          */
718         spin_lock(&mp->m_sb_lock);
719         sbp->sb_ifree = ifree;
720         sbp->sb_icount = ialloc;
721         sbp->sb_fdblocks = bfree + bfreelst + btree;
722         spin_unlock(&mp->m_sb_lock);
723
724         /* Fixup the per-cpu counters as well. */
725         xfs_icsb_reinit_counters(mp);
726
727         return 0;
728 }
729
730 /*
731  * Update alignment values based on mount options and sb values
732  */
733 STATIC int
734 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
735 {
736         xfs_sb_t        *sbp = &(mp->m_sb);
737
738         if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
739                 /*
740                  * If stripe unit and stripe width are not multiples
741                  * of the fs blocksize turn off alignment.
742                  */
743                 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
744                     (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
745                         if (mp->m_flags & XFS_MOUNT_RETERR) {
746                                 cmn_err(CE_WARN,
747                                         "XFS: alignment check 1 failed");
748                                 return XFS_ERROR(EINVAL);
749                         }
750                         mp->m_dalign = mp->m_swidth = 0;
751                 } else {
752                         /*
753                          * Convert the stripe unit and width to FSBs.
754                          */
755                         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
756                         if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
757                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
758                                         return XFS_ERROR(EINVAL);
759                                 }
760                                 xfs_fs_cmn_err(CE_WARN, mp,
761 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
762                                         mp->m_dalign, mp->m_swidth,
763                                         sbp->sb_agblocks);
764
765                                 mp->m_dalign = 0;
766                                 mp->m_swidth = 0;
767                         } else if (mp->m_dalign) {
768                                 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
769                         } else {
770                                 if (mp->m_flags & XFS_MOUNT_RETERR) {
771                                         xfs_fs_cmn_err(CE_WARN, mp,
772 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
773                                                 mp->m_dalign,
774                                                 mp->m_blockmask +1);
775                                         return XFS_ERROR(EINVAL);
776                                 }
777                                 mp->m_swidth = 0;
778                         }
779                 }
780
781                 /*
782                  * Update superblock with new values
783                  * and log changes
784                  */
785                 if (xfs_sb_version_hasdalign(sbp)) {
786                         if (sbp->sb_unit != mp->m_dalign) {
787                                 sbp->sb_unit = mp->m_dalign;
788                                 *update_flags |= XFS_SB_UNIT;
789                         }
790                         if (sbp->sb_width != mp->m_swidth) {
791                                 sbp->sb_width = mp->m_swidth;
792                                 *update_flags |= XFS_SB_WIDTH;
793                         }
794                 }
795         } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
796                     xfs_sb_version_hasdalign(&mp->m_sb)) {
797                         mp->m_dalign = sbp->sb_unit;
798                         mp->m_swidth = sbp->sb_width;
799         }
800
801         return 0;
802 }
803
804 /*
805  * Set the maximum inode count for this filesystem
806  */
807 STATIC void
808 xfs_set_maxicount(xfs_mount_t *mp)
809 {
810         xfs_sb_t        *sbp = &(mp->m_sb);
811         __uint64_t      icount;
812
813         if (sbp->sb_imax_pct) {
814                 /*
815                  * Make sure the maximum inode count is a multiple
816                  * of the units we allocate inodes in.
817                  */
818                 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
819                 do_div(icount, 100);
820                 do_div(icount, mp->m_ialloc_blks);
821                 mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
822                                    sbp->sb_inopblog;
823         } else {
824                 mp->m_maxicount = 0;
825         }
826 }
827
828 /*
829  * Set the default minimum read and write sizes unless
830  * already specified in a mount option.
831  * We use smaller I/O sizes when the file system
832  * is being used for NFS service (wsync mount option).
833  */
834 STATIC void
835 xfs_set_rw_sizes(xfs_mount_t *mp)
836 {
837         xfs_sb_t        *sbp = &(mp->m_sb);
838         int             readio_log, writeio_log;
839
840         if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
841                 if (mp->m_flags & XFS_MOUNT_WSYNC) {
842                         readio_log = XFS_WSYNC_READIO_LOG;
843                         writeio_log = XFS_WSYNC_WRITEIO_LOG;
844                 } else {
845                         readio_log = XFS_READIO_LOG_LARGE;
846                         writeio_log = XFS_WRITEIO_LOG_LARGE;
847                 }
848         } else {
849                 readio_log = mp->m_readio_log;
850                 writeio_log = mp->m_writeio_log;
851         }
852
853         if (sbp->sb_blocklog > readio_log) {
854                 mp->m_readio_log = sbp->sb_blocklog;
855         } else {
856                 mp->m_readio_log = readio_log;
857         }
858         mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
859         if (sbp->sb_blocklog > writeio_log) {
860                 mp->m_writeio_log = sbp->sb_blocklog;
861         } else {
862                 mp->m_writeio_log = writeio_log;
863         }
864         mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
865 }
866
867 /*
868  * Set whether we're using inode alignment.
869  */
870 STATIC void
871 xfs_set_inoalignment(xfs_mount_t *mp)
872 {
873         if (xfs_sb_version_hasalign(&mp->m_sb) &&
874             mp->m_sb.sb_inoalignmt >=
875             XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
876                 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
877         else
878                 mp->m_inoalign_mask = 0;
879         /*
880          * If we are using stripe alignment, check whether
881          * the stripe unit is a multiple of the inode alignment
882          */
883         if (mp->m_dalign && mp->m_inoalign_mask &&
884             !(mp->m_dalign & mp->m_inoalign_mask))
885                 mp->m_sinoalign = mp->m_dalign;
886         else
887                 mp->m_sinoalign = 0;
888 }
889
890 /*
891  * Check that the data (and log if separate) are an ok size.
892  */
893 STATIC int
894 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
895 {
896         xfs_buf_t       *bp;
897         xfs_daddr_t     d;
898         int             error;
899
900         d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
901         if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
902                 cmn_err(CE_WARN, "XFS: size check 1 failed");
903                 return XFS_ERROR(E2BIG);
904         }
905         error = xfs_read_buf(mp, mp->m_ddev_targp,
906                              d - XFS_FSS_TO_BB(mp, 1),
907                              XFS_FSS_TO_BB(mp, 1), 0, &bp);
908         if (!error) {
909                 xfs_buf_relse(bp);
910         } else {
911                 cmn_err(CE_WARN, "XFS: size check 2 failed");
912                 if (error == ENOSPC)
913                         error = XFS_ERROR(E2BIG);
914                 return error;
915         }
916
917         if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
918             mp->m_logdev_targp != mp->m_ddev_targp) {
919                 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
920                 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
921                         cmn_err(CE_WARN, "XFS: size check 3 failed");
922                         return XFS_ERROR(E2BIG);
923                 }
924                 error = xfs_read_buf(mp, mp->m_logdev_targp,
925                                      d - XFS_FSB_TO_BB(mp, 1),
926                                      XFS_FSB_TO_BB(mp, 1), 0, &bp);
927                 if (!error) {
928                         xfs_buf_relse(bp);
929                 } else {
930                         cmn_err(CE_WARN, "XFS: size check 3 failed");
931                         if (error == ENOSPC)
932                                 error = XFS_ERROR(E2BIG);
933                         return error;
934                 }
935         }
936         return 0;
937 }
938
939 /*
940  * xfs_mountfs
941  *
942  * This function does the following on an initial mount of a file system:
943  *      - reads the superblock from disk and init the mount struct
944  *      - if we're a 32-bit kernel, do a size check on the superblock
945  *              so we don't mount terabyte filesystems
946  *      - init mount struct realtime fields
947  *      - allocate inode hash table for fs
948  *      - init directory manager
949  *      - perform recovery and init the log manager
950  */
951 int
952 xfs_mountfs(
953         xfs_mount_t     *mp,
954         int             mfsi_flags)
955 {
956         xfs_sb_t        *sbp = &(mp->m_sb);
957         xfs_inode_t     *rip;
958         __uint64_t      resblks;
959         __int64_t       update_flags = 0LL;
960         uint            quotamount, quotaflags;
961         int             agno;
962         int             uuid_mounted = 0;
963         int             error = 0;
964
965         xfs_mount_common(mp, sbp);
966
967         /*
968          * Check for a mismatched features2 values.  Older kernels
969          * read & wrote into the wrong sb offset for sb_features2
970          * on some platforms due to xfs_sb_t not being 64bit size aligned
971          * when sb_features2 was added, which made older superblock
972          * reading/writing routines swap it as a 64-bit value.
973          *
974          * For backwards compatibility, we make both slots equal.
975          *
976          * If we detect a mismatched field, we OR the set bits into the
977          * existing features2 field in case it has already been modified; we
978          * don't want to lose any features.  We then update the bad location
979          * with the ORed value so that older kernels will see any features2
980          * flags, and mark the two fields as needing updates once the
981          * transaction subsystem is online.
982          */
983         if (xfs_sb_has_mismatched_features2(sbp)) {
984                 cmn_err(CE_WARN,
985                         "XFS: correcting sb_features alignment problem");
986                 sbp->sb_features2 |= sbp->sb_bad_features2;
987                 sbp->sb_bad_features2 = sbp->sb_features2;
988                 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
989
990                 /*
991                  * Re-check for ATTR2 in case it was found in bad_features2
992                  * slot.
993                  */
994                 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
995                    !(mp->m_flags & XFS_MOUNT_NOATTR2))
996                         mp->m_flags |= XFS_MOUNT_ATTR2;
997         }
998
999         if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1000            (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1001                 xfs_sb_version_removeattr2(&mp->m_sb);
1002                 update_flags |= XFS_SB_FEATURES2;
1003
1004                 /* update sb_versionnum for the clearing of the morebits */
1005                 if (!sbp->sb_features2)
1006                         update_flags |= XFS_SB_VERSIONNUM;
1007         }
1008
1009         /*
1010          * Check if sb_agblocks is aligned at stripe boundary
1011          * If sb_agblocks is NOT aligned turn off m_dalign since
1012          * allocator alignment is within an ag, therefore ag has
1013          * to be aligned at stripe boundary.
1014          */
1015         error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1016         if (error)
1017                 goto error1;
1018
1019         xfs_alloc_compute_maxlevels(mp);
1020         xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1021         xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1022         xfs_ialloc_compute_maxlevels(mp);
1023
1024         xfs_set_maxicount(mp);
1025
1026         mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1027
1028         /*
1029          * XFS uses the uuid from the superblock as the unique
1030          * identifier for fsid.  We can not use the uuid from the volume
1031          * since a single partition filesystem is identical to a single
1032          * partition volume/filesystem.
1033          */
1034         if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1035             (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1036                 if (xfs_uuid_mount(mp)) {
1037                         error = XFS_ERROR(EINVAL);
1038                         goto error1;
1039                 }
1040                 uuid_mounted=1;
1041         }
1042
1043         /*
1044          * Set the minimum read and write sizes
1045          */
1046         xfs_set_rw_sizes(mp);
1047
1048         /*
1049          * Set the inode cluster size.
1050          * This may still be overridden by the file system
1051          * block size if it is larger than the chosen cluster size.
1052          */
1053         mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1054
1055         /*
1056          * Set inode alignment fields
1057          */
1058         xfs_set_inoalignment(mp);
1059
1060         /*
1061          * Check that the data (and log if separate) are an ok size.
1062          */
1063         error = xfs_check_sizes(mp, mfsi_flags);
1064         if (error)
1065                 goto error1;
1066
1067         /*
1068          * Initialize realtime fields in the mount structure
1069          */
1070         error = xfs_rtmount_init(mp);
1071         if (error) {
1072                 cmn_err(CE_WARN, "XFS: RT mount failed");
1073                 goto error1;
1074         }
1075
1076         /*
1077          * For client case we are done now
1078          */
1079         if (mfsi_flags & XFS_MFSI_CLIENT) {
1080                 return 0;
1081         }
1082
1083         /*
1084          *  Copies the low order bits of the timestamp and the randomly
1085          *  set "sequence" number out of a UUID.
1086          */
1087         uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1088
1089         mp->m_dmevmask = 0;     /* not persistent; set after each mount */
1090
1091         xfs_dir_mount(mp);
1092
1093         /*
1094          * Initialize the attribute manager's entries.
1095          */
1096         mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1097
1098         /*
1099          * Initialize the precomputed transaction reservations values.
1100          */
1101         xfs_trans_init(mp);
1102
1103         /*
1104          * Allocate and initialize the per-ag data.
1105          */
1106         init_rwsem(&mp->m_peraglock);
1107         mp->m_perag =
1108                 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1109
1110         mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1111
1112         /*
1113          * log's mount-time initialization. Perform 1st part recovery if needed
1114          */
1115         if (likely(sbp->sb_logblocks > 0)) {    /* check for volume case */
1116                 error = xfs_log_mount(mp, mp->m_logdev_targp,
1117                                       XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1118                                       XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1119                 if (error) {
1120                         cmn_err(CE_WARN, "XFS: log mount failed");
1121                         goto error2;
1122                 }
1123         } else {        /* No log has been defined */
1124                 cmn_err(CE_WARN, "XFS: no log defined");
1125                 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1126                 error = XFS_ERROR(EFSCORRUPTED);
1127                 goto error2;
1128         }
1129
1130         /*
1131          * Now the log is mounted, we know if it was an unclean shutdown or
1132          * not. If it was, with the first phase of recovery has completed, we
1133          * have consistent AG blocks on disk. We have not recovered EFIs yet,
1134          * but they are recovered transactionally in the second recovery phase
1135          * later.
1136          *
1137          * Hence we can safely re-initialise incore superblock counters from
1138          * the per-ag data. These may not be correct if the filesystem was not
1139          * cleanly unmounted, so we need to wait for recovery to finish before
1140          * doing this.
1141          *
1142          * If the filesystem was cleanly unmounted, then we can trust the
1143          * values in the superblock to be correct and we don't need to do
1144          * anything here.
1145          *
1146          * If we are currently making the filesystem, the initialisation will
1147          * fail as the perag data is in an undefined state.
1148          */
1149
1150         if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1151             !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1152              !mp->m_sb.sb_inprogress) {
1153                 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1154                 if (error) {
1155                         goto error2;
1156                 }
1157         }
1158         /*
1159          * Get and sanity-check the root inode.
1160          * Save the pointer to it in the mount structure.
1161          */
1162         error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1163         if (error) {
1164                 cmn_err(CE_WARN, "XFS: failed to read root inode");
1165                 goto error3;
1166         }
1167
1168         ASSERT(rip != NULL);
1169
1170         if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1171                 cmn_err(CE_WARN, "XFS: corrupted root inode");
1172                 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1173                         XFS_BUFTARG_NAME(mp->m_ddev_targp),
1174                         (unsigned long long)rip->i_ino);
1175                 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1176                 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1177                                  mp);
1178                 error = XFS_ERROR(EFSCORRUPTED);
1179                 goto error4;
1180         }
1181         mp->m_rootip = rip;     /* save it */
1182
1183         xfs_iunlock(rip, XFS_ILOCK_EXCL);
1184
1185         /*
1186          * Initialize realtime inode pointers in the mount structure
1187          */
1188         error = xfs_rtmount_inodes(mp);
1189         if (error) {
1190                 /*
1191                  * Free up the root inode.
1192                  */
1193                 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1194                 goto error4;
1195         }
1196
1197         /*
1198          * If fs is not mounted readonly, then update the superblock changes.
1199          */
1200         if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1201                 error = xfs_mount_log_sb(mp, update_flags);
1202                 if (error) {
1203                         cmn_err(CE_WARN, "XFS: failed to write sb changes");
1204                         goto error4;
1205                 }
1206         }
1207
1208         /*
1209          * Initialise the XFS quota management subsystem for this mount
1210          */
1211         error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1212         if (error)
1213                 goto error4;
1214
1215         /*
1216          * Finish recovering the file system.  This part needed to be
1217          * delayed until after the root and real-time bitmap inodes
1218          * were consistently read in.
1219          */
1220         error = xfs_log_mount_finish(mp, mfsi_flags);
1221         if (error) {
1222                 cmn_err(CE_WARN, "XFS: log mount finish failed");
1223                 goto error4;
1224         }
1225
1226         /*
1227          * Complete the quota initialisation, post-log-replay component.
1228          */
1229         error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1230         if (error)
1231                 goto error4;
1232
1233         /*
1234          * Now we are mounted, reserve a small amount of unused space for
1235          * privileged transactions. This is needed so that transaction
1236          * space required for critical operations can dip into this pool
1237          * when at ENOSPC. This is needed for operations like create with
1238          * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1239          * are not allowed to use this reserved space.
1240          *
1241          * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1242          * This may drive us straight to ENOSPC on mount, but that implies
1243          * we were already there on the last unmount. Warn if this occurs.
1244          */
1245         resblks = mp->m_sb.sb_dblocks;
1246         do_div(resblks, 20);
1247         resblks = min_t(__uint64_t, resblks, 1024);
1248         error = xfs_reserve_blocks(mp, &resblks, NULL);
1249         if (error)
1250                 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1251                                 "Continuing without a reserve pool.");
1252
1253         return 0;
1254
1255  error4:
1256         /*
1257          * Free up the root inode.
1258          */
1259         IRELE(rip);
1260  error3:
1261         xfs_log_unmount_dealloc(mp);
1262  error2:
1263         for (agno = 0; agno < sbp->sb_agcount; agno++)
1264                 if (mp->m_perag[agno].pagb_list)
1265                         kmem_free(mp->m_perag[agno].pagb_list);
1266         kmem_free(mp->m_perag);
1267         mp->m_perag = NULL;
1268         /* FALLTHROUGH */
1269  error1:
1270         if (uuid_mounted)
1271                 xfs_uuid_unmount(mp);
1272         xfs_freesb(mp);
1273         return error;
1274 }
1275
1276 /*
1277  * xfs_unmountfs
1278  *
1279  * This flushes out the inodes,dquots and the superblock, unmounts the
1280  * log and makes sure that incore structures are freed.
1281  */
1282 int
1283 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1284 {
1285         __uint64_t      resblks;
1286         int             error = 0;
1287
1288         /*
1289          * We can potentially deadlock here if we have an inode cluster
1290          * that has been freed has it's buffer still pinned in memory because
1291          * the transaction is still sitting in a iclog. The stale inodes
1292          * on that buffer will have their flush locks held until the
1293          * transaction hits the disk and the callbacks run. the inode
1294          * flush takes the flush lock unconditionally and with nothing to
1295          * push out the iclog we will never get that unlocked. hence we
1296          * need to force the log first.
1297          */
1298         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1299         xfs_iflush_all(mp);
1300
1301         XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1302
1303         /*
1304          * Flush out the log synchronously so that we know for sure
1305          * that nothing is pinned.  This is important because bflush()
1306          * will skip pinned buffers.
1307          */
1308         xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1309
1310         xfs_binval(mp->m_ddev_targp);
1311         if (mp->m_rtdev_targp) {
1312                 xfs_binval(mp->m_rtdev_targp);
1313         }
1314
1315         /*
1316          * Unreserve any blocks we have so that when we unmount we don't account
1317          * the reserved free space as used. This is really only necessary for
1318          * lazy superblock counting because it trusts the incore superblock
1319          * counters to be aboslutely correct on clean unmount.
1320          *
1321          * We don't bother correcting this elsewhere for lazy superblock
1322          * counting because on mount of an unclean filesystem we reconstruct the
1323          * correct counter value and this is irrelevant.
1324          *
1325          * For non-lazy counter filesystems, this doesn't matter at all because
1326          * we only every apply deltas to the superblock and hence the incore
1327          * value does not matter....
1328          */
1329         resblks = 0;
1330         error = xfs_reserve_blocks(mp, &resblks, NULL);
1331         if (error)
1332                 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1333                                 "Freespace may not be correct on next mount.");
1334
1335         error = xfs_log_sbcount(mp, 1);
1336         if (error)
1337                 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1338                                 "Freespace may not be correct on next mount.");
1339         xfs_unmountfs_writesb(mp);
1340         xfs_unmountfs_wait(mp);                 /* wait for async bufs */
1341         xfs_log_unmount(mp);                    /* Done! No more fs ops. */
1342
1343         xfs_freesb(mp);
1344
1345         /*
1346          * All inodes from this mount point should be freed.
1347          */
1348         ASSERT(mp->m_inodes == NULL);
1349
1350         xfs_unmountfs_close(mp, cr);
1351         if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1352                 xfs_uuid_unmount(mp);
1353
1354 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1355         xfs_errortag_clearall(mp, 0);
1356 #endif
1357         xfs_mount_free(mp);
1358         return 0;
1359 }
1360
1361 void
1362 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1363 {
1364         if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1365                 xfs_free_buftarg(mp->m_logdev_targp, 1);
1366         if (mp->m_rtdev_targp)
1367                 xfs_free_buftarg(mp->m_rtdev_targp, 1);
1368         xfs_free_buftarg(mp->m_ddev_targp, 0);
1369 }
1370
1371 STATIC void
1372 xfs_unmountfs_wait(xfs_mount_t *mp)
1373 {
1374         if (mp->m_logdev_targp != mp->m_ddev_targp)
1375                 xfs_wait_buftarg(mp->m_logdev_targp);
1376         if (mp->m_rtdev_targp)
1377                 xfs_wait_buftarg(mp->m_rtdev_targp);
1378         xfs_wait_buftarg(mp->m_ddev_targp);
1379 }
1380
1381 int
1382 xfs_fs_writable(xfs_mount_t *mp)
1383 {
1384         return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1385                 (mp->m_flags & XFS_MOUNT_RDONLY));
1386 }
1387
1388 /*
1389  * xfs_log_sbcount
1390  *
1391  * Called either periodically to keep the on disk superblock values
1392  * roughly up to date or from unmount to make sure the values are
1393  * correct on a clean unmount.
1394  *
1395  * Note this code can be called during the process of freezing, so
1396  * we may need to use the transaction allocator which does not not
1397  * block when the transaction subsystem is in its frozen state.
1398  */
1399 int
1400 xfs_log_sbcount(
1401         xfs_mount_t     *mp,
1402         uint            sync)
1403 {
1404         xfs_trans_t     *tp;
1405         int             error;
1406
1407         if (!xfs_fs_writable(mp))
1408                 return 0;
1409
1410         xfs_icsb_sync_counters(mp, 0);
1411
1412         /*
1413          * we don't need to do this if we are updating the superblock
1414          * counters on every modification.
1415          */
1416         if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1417                 return 0;
1418
1419         tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1420         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1421                                         XFS_DEFAULT_LOG_COUNT);
1422         if (error) {
1423                 xfs_trans_cancel(tp, 0);
1424                 return error;
1425         }
1426
1427         xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1428         if (sync)
1429                 xfs_trans_set_sync(tp);
1430         error = xfs_trans_commit(tp, 0);
1431         return error;
1432 }
1433
1434 STATIC void
1435 xfs_mark_shared_ro(
1436         xfs_mount_t     *mp,
1437         xfs_buf_t       *bp)
1438 {
1439         xfs_dsb_t       *sb = XFS_BUF_TO_SBP(bp);
1440         __uint16_t      version;
1441
1442         if (!(sb->sb_flags & XFS_SBF_READONLY))
1443                 sb->sb_flags |= XFS_SBF_READONLY;
1444
1445         version = be16_to_cpu(sb->sb_versionnum);
1446         if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1447             !(version & XFS_SB_VERSION_SHAREDBIT))
1448                 version |= XFS_SB_VERSION_SHAREDBIT;
1449         sb->sb_versionnum = cpu_to_be16(version);
1450 }
1451
1452 int
1453 xfs_unmountfs_writesb(xfs_mount_t *mp)
1454 {
1455         xfs_buf_t       *sbp;
1456         int             error = 0;
1457
1458         /*
1459          * skip superblock write if fs is read-only, or
1460          * if we are doing a forced umount.
1461          */
1462         if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1463                 XFS_FORCED_SHUTDOWN(mp))) {
1464
1465                 sbp = xfs_getsb(mp, 0);
1466
1467                 /*
1468                  * mark shared-readonly if desired
1469                  */
1470                 if (mp->m_mk_sharedro)
1471                         xfs_mark_shared_ro(mp, sbp);
1472
1473                 XFS_BUF_UNDONE(sbp);
1474                 XFS_BUF_UNREAD(sbp);
1475                 XFS_BUF_UNDELAYWRITE(sbp);
1476                 XFS_BUF_WRITE(sbp);
1477                 XFS_BUF_UNASYNC(sbp);
1478                 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1479                 xfsbdstrat(mp, sbp);
1480                 error = xfs_iowait(sbp);
1481                 if (error)
1482                         xfs_ioerror_alert("xfs_unmountfs_writesb",
1483                                           mp, sbp, XFS_BUF_ADDR(sbp));
1484                 if (error && mp->m_mk_sharedro)
1485                         xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1486                 xfs_buf_relse(sbp);
1487         }
1488         return error;
1489 }
1490
1491 /*
1492  * xfs_mod_sb() can be used to copy arbitrary changes to the
1493  * in-core superblock into the superblock buffer to be logged.
1494  * It does not provide the higher level of locking that is
1495  * needed to protect the in-core superblock from concurrent
1496  * access.
1497  */
1498 void
1499 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1500 {
1501         xfs_buf_t       *bp;
1502         int             first;
1503         int             last;
1504         xfs_mount_t     *mp;
1505         xfs_sb_field_t  f;
1506
1507         ASSERT(fields);
1508         if (!fields)
1509                 return;
1510         mp = tp->t_mountp;
1511         bp = xfs_trans_getsb(tp, mp, 0);
1512         first = sizeof(xfs_sb_t);
1513         last = 0;
1514
1515         /* translate/copy */
1516
1517         xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1518
1519         /* find modified range */
1520
1521         f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1522         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1523         first = xfs_sb_info[f].offset;
1524
1525         f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1526         ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1527         last = xfs_sb_info[f + 1].offset - 1;
1528
1529         xfs_trans_log_buf(tp, bp, first, last);
1530 }
1531
1532
1533 /*
1534  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1535  * a delta to a specified field in the in-core superblock.  Simply
1536  * switch on the field indicated and apply the delta to that field.
1537  * Fields are not allowed to dip below zero, so if the delta would
1538  * do this do not apply it and return EINVAL.
1539  *
1540  * The m_sb_lock must be held when this routine is called.
1541  */
1542 int
1543 xfs_mod_incore_sb_unlocked(
1544         xfs_mount_t     *mp,
1545         xfs_sb_field_t  field,
1546         int64_t         delta,
1547         int             rsvd)
1548 {
1549         int             scounter;       /* short counter for 32 bit fields */
1550         long long       lcounter;       /* long counter for 64 bit fields */
1551         long long       res_used, rem;
1552
1553         /*
1554          * With the in-core superblock spin lock held, switch
1555          * on the indicated field.  Apply the delta to the
1556          * proper field.  If the fields value would dip below
1557          * 0, then do not apply the delta and return EINVAL.
1558          */
1559         switch (field) {
1560         case XFS_SBS_ICOUNT:
1561                 lcounter = (long long)mp->m_sb.sb_icount;
1562                 lcounter += delta;
1563                 if (lcounter < 0) {
1564                         ASSERT(0);
1565                         return XFS_ERROR(EINVAL);
1566                 }
1567                 mp->m_sb.sb_icount = lcounter;
1568                 return 0;
1569         case XFS_SBS_IFREE:
1570                 lcounter = (long long)mp->m_sb.sb_ifree;
1571                 lcounter += delta;
1572                 if (lcounter < 0) {
1573                         ASSERT(0);
1574                         return XFS_ERROR(EINVAL);
1575                 }
1576                 mp->m_sb.sb_ifree = lcounter;
1577                 return 0;
1578         case XFS_SBS_FDBLOCKS:
1579                 lcounter = (long long)
1580                         mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1581                 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1582
1583                 if (delta > 0) {                /* Putting blocks back */
1584                         if (res_used > delta) {
1585                                 mp->m_resblks_avail += delta;
1586                         } else {
1587                                 rem = delta - res_used;
1588                                 mp->m_resblks_avail = mp->m_resblks;
1589                                 lcounter += rem;
1590                         }
1591                 } else {                                /* Taking blocks away */
1592
1593                         lcounter += delta;
1594
1595                 /*
1596                  * If were out of blocks, use any available reserved blocks if
1597                  * were allowed to.
1598                  */
1599
1600                         if (lcounter < 0) {
1601                                 if (rsvd) {
1602                                         lcounter = (long long)mp->m_resblks_avail + delta;
1603                                         if (lcounter < 0) {
1604                                                 return XFS_ERROR(ENOSPC);
1605                                         }
1606                                         mp->m_resblks_avail = lcounter;
1607                                         return 0;
1608                                 } else {        /* not reserved */
1609                                         return XFS_ERROR(ENOSPC);
1610                                 }
1611                         }
1612                 }
1613
1614                 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1615                 return 0;
1616         case XFS_SBS_FREXTENTS:
1617                 lcounter = (long long)mp->m_sb.sb_frextents;
1618                 lcounter += delta;
1619                 if (lcounter < 0) {
1620                         return XFS_ERROR(ENOSPC);
1621                 }
1622                 mp->m_sb.sb_frextents = lcounter;
1623                 return 0;
1624         case XFS_SBS_DBLOCKS:
1625                 lcounter = (long long)mp->m_sb.sb_dblocks;
1626                 lcounter += delta;
1627                 if (lcounter < 0) {
1628                         ASSERT(0);
1629                         return XFS_ERROR(EINVAL);
1630                 }
1631                 mp->m_sb.sb_dblocks = lcounter;
1632                 return 0;
1633         case XFS_SBS_AGCOUNT:
1634                 scounter = mp->m_sb.sb_agcount;
1635                 scounter += delta;
1636                 if (scounter < 0) {
1637                         ASSERT(0);
1638                         return XFS_ERROR(EINVAL);
1639                 }
1640                 mp->m_sb.sb_agcount = scounter;
1641                 return 0;
1642         case XFS_SBS_IMAX_PCT:
1643                 scounter = mp->m_sb.sb_imax_pct;
1644                 scounter += delta;
1645                 if (scounter < 0) {
1646                         ASSERT(0);
1647                         return XFS_ERROR(EINVAL);
1648                 }
1649                 mp->m_sb.sb_imax_pct = scounter;
1650                 return 0;
1651         case XFS_SBS_REXTSIZE:
1652                 scounter = mp->m_sb.sb_rextsize;
1653                 scounter += delta;
1654                 if (scounter < 0) {
1655                         ASSERT(0);
1656                         return XFS_ERROR(EINVAL);
1657                 }
1658                 mp->m_sb.sb_rextsize = scounter;
1659                 return 0;
1660         case XFS_SBS_RBMBLOCKS:
1661                 scounter = mp->m_sb.sb_rbmblocks;
1662                 scounter += delta;
1663                 if (scounter < 0) {
1664                         ASSERT(0);
1665                         return XFS_ERROR(EINVAL);
1666                 }
1667                 mp->m_sb.sb_rbmblocks = scounter;
1668                 return 0;
1669         case XFS_SBS_RBLOCKS:
1670                 lcounter = (long long)mp->m_sb.sb_rblocks;
1671                 lcounter += delta;
1672                 if (lcounter < 0) {
1673                         ASSERT(0);
1674                         return XFS_ERROR(EINVAL);
1675                 }
1676                 mp->m_sb.sb_rblocks = lcounter;
1677                 return 0;
1678         case XFS_SBS_REXTENTS:
1679                 lcounter = (long long)mp->m_sb.sb_rextents;
1680                 lcounter += delta;
1681                 if (lcounter < 0) {
1682                         ASSERT(0);
1683                         return XFS_ERROR(EINVAL);
1684                 }
1685                 mp->m_sb.sb_rextents = lcounter;
1686                 return 0;
1687         case XFS_SBS_REXTSLOG:
1688                 scounter = mp->m_sb.sb_rextslog;
1689                 scounter += delta;
1690                 if (scounter < 0) {
1691                         ASSERT(0);
1692                         return XFS_ERROR(EINVAL);
1693                 }
1694                 mp->m_sb.sb_rextslog = scounter;
1695                 return 0;
1696         default:
1697                 ASSERT(0);
1698                 return XFS_ERROR(EINVAL);
1699         }
1700 }
1701
1702 /*
1703  * xfs_mod_incore_sb() is used to change a field in the in-core
1704  * superblock structure by the specified delta.  This modification
1705  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1706  * routine to do the work.
1707  */
1708 int
1709 xfs_mod_incore_sb(
1710         xfs_mount_t     *mp,
1711         xfs_sb_field_t  field,
1712         int64_t         delta,
1713         int             rsvd)
1714 {
1715         int     status;
1716
1717         /* check for per-cpu counters */
1718         switch (field) {
1719 #ifdef HAVE_PERCPU_SB
1720         case XFS_SBS_ICOUNT:
1721         case XFS_SBS_IFREE:
1722         case XFS_SBS_FDBLOCKS:
1723                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1724                         status = xfs_icsb_modify_counters(mp, field,
1725                                                         delta, rsvd);
1726                         break;
1727                 }
1728                 /* FALLTHROUGH */
1729 #endif
1730         default:
1731                 spin_lock(&mp->m_sb_lock);
1732                 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1733                 spin_unlock(&mp->m_sb_lock);
1734                 break;
1735         }
1736
1737         return status;
1738 }
1739
1740 /*
1741  * xfs_mod_incore_sb_batch() is used to change more than one field
1742  * in the in-core superblock structure at a time.  This modification
1743  * is protected by a lock internal to this module.  The fields and
1744  * changes to those fields are specified in the array of xfs_mod_sb
1745  * structures passed in.
1746  *
1747  * Either all of the specified deltas will be applied or none of
1748  * them will.  If any modified field dips below 0, then all modifications
1749  * will be backed out and EINVAL will be returned.
1750  */
1751 int
1752 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1753 {
1754         int             status=0;
1755         xfs_mod_sb_t    *msbp;
1756
1757         /*
1758          * Loop through the array of mod structures and apply each
1759          * individually.  If any fail, then back out all those
1760          * which have already been applied.  Do all of this within
1761          * the scope of the m_sb_lock so that all of the changes will
1762          * be atomic.
1763          */
1764         spin_lock(&mp->m_sb_lock);
1765         msbp = &msb[0];
1766         for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1767                 /*
1768                  * Apply the delta at index n.  If it fails, break
1769                  * from the loop so we'll fall into the undo loop
1770                  * below.
1771                  */
1772                 switch (msbp->msb_field) {
1773 #ifdef HAVE_PERCPU_SB
1774                 case XFS_SBS_ICOUNT:
1775                 case XFS_SBS_IFREE:
1776                 case XFS_SBS_FDBLOCKS:
1777                         if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1778                                 spin_unlock(&mp->m_sb_lock);
1779                                 status = xfs_icsb_modify_counters(mp,
1780                                                         msbp->msb_field,
1781                                                         msbp->msb_delta, rsvd);
1782                                 spin_lock(&mp->m_sb_lock);
1783                                 break;
1784                         }
1785                         /* FALLTHROUGH */
1786 #endif
1787                 default:
1788                         status = xfs_mod_incore_sb_unlocked(mp,
1789                                                 msbp->msb_field,
1790                                                 msbp->msb_delta, rsvd);
1791                         break;
1792                 }
1793
1794                 if (status != 0) {
1795                         break;
1796                 }
1797         }
1798
1799         /*
1800          * If we didn't complete the loop above, then back out
1801          * any changes made to the superblock.  If you add code
1802          * between the loop above and here, make sure that you
1803          * preserve the value of status. Loop back until
1804          * we step below the beginning of the array.  Make sure
1805          * we don't touch anything back there.
1806          */
1807         if (status != 0) {
1808                 msbp--;
1809                 while (msbp >= msb) {
1810                         switch (msbp->msb_field) {
1811 #ifdef HAVE_PERCPU_SB
1812                         case XFS_SBS_ICOUNT:
1813                         case XFS_SBS_IFREE:
1814                         case XFS_SBS_FDBLOCKS:
1815                                 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1816                                         spin_unlock(&mp->m_sb_lock);
1817                                         status = xfs_icsb_modify_counters(mp,
1818                                                         msbp->msb_field,
1819                                                         -(msbp->msb_delta),
1820                                                         rsvd);
1821                                         spin_lock(&mp->m_sb_lock);
1822                                         break;
1823                                 }
1824                                 /* FALLTHROUGH */
1825 #endif
1826                         default:
1827                                 status = xfs_mod_incore_sb_unlocked(mp,
1828                                                         msbp->msb_field,
1829                                                         -(msbp->msb_delta),
1830                                                         rsvd);
1831                                 break;
1832                         }
1833                         ASSERT(status == 0);
1834                         msbp--;
1835                 }
1836         }
1837         spin_unlock(&mp->m_sb_lock);
1838         return status;
1839 }
1840
1841 /*
1842  * xfs_getsb() is called to obtain the buffer for the superblock.
1843  * The buffer is returned locked and read in from disk.
1844  * The buffer should be released with a call to xfs_brelse().
1845  *
1846  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1847  * the superblock buffer if it can be locked without sleeping.
1848  * If it can't then we'll return NULL.
1849  */
1850 xfs_buf_t *
1851 xfs_getsb(
1852         xfs_mount_t     *mp,
1853         int             flags)
1854 {
1855         xfs_buf_t       *bp;
1856
1857         ASSERT(mp->m_sb_bp != NULL);
1858         bp = mp->m_sb_bp;
1859         if (flags & XFS_BUF_TRYLOCK) {
1860                 if (!XFS_BUF_CPSEMA(bp)) {
1861                         return NULL;
1862                 }
1863         } else {
1864                 XFS_BUF_PSEMA(bp, PRIBIO);
1865         }
1866         XFS_BUF_HOLD(bp);
1867         ASSERT(XFS_BUF_ISDONE(bp));
1868         return bp;
1869 }
1870
1871 /*
1872  * Used to free the superblock along various error paths.
1873  */
1874 void
1875 xfs_freesb(
1876         xfs_mount_t     *mp)
1877 {
1878         xfs_buf_t       *bp;
1879
1880         /*
1881          * Use xfs_getsb() so that the buffer will be locked
1882          * when we call xfs_buf_relse().
1883          */
1884         bp = xfs_getsb(mp, 0);
1885         XFS_BUF_UNMANAGE(bp);
1886         xfs_buf_relse(bp);
1887         mp->m_sb_bp = NULL;
1888 }
1889
1890 /*
1891  * See if the UUID is unique among mounted XFS filesystems.
1892  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1893  */
1894 STATIC int
1895 xfs_uuid_mount(
1896         xfs_mount_t     *mp)
1897 {
1898         if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1899                 cmn_err(CE_WARN,
1900                         "XFS: Filesystem %s has nil UUID - can't mount",
1901                         mp->m_fsname);
1902                 return -1;
1903         }
1904         if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1905                 cmn_err(CE_WARN,
1906                         "XFS: Filesystem %s has duplicate UUID - can't mount",
1907                         mp->m_fsname);
1908                 return -1;
1909         }
1910         return 0;
1911 }
1912
1913 /*
1914  * Remove filesystem from the UUID table.
1915  */
1916 STATIC void
1917 xfs_uuid_unmount(
1918         xfs_mount_t     *mp)
1919 {
1920         uuid_table_remove(&mp->m_sb.sb_uuid);
1921 }
1922
1923 /*
1924  * Used to log changes to the superblock unit and width fields which could
1925  * be altered by the mount options, as well as any potential sb_features2
1926  * fixup. Only the first superblock is updated.
1927  */
1928 STATIC int
1929 xfs_mount_log_sb(
1930         xfs_mount_t     *mp,
1931         __int64_t       fields)
1932 {
1933         xfs_trans_t     *tp;
1934         int             error;
1935
1936         ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1937                          XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1938                          XFS_SB_VERSIONNUM));
1939
1940         tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1941         error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1942                                 XFS_DEFAULT_LOG_COUNT);
1943         if (error) {
1944                 xfs_trans_cancel(tp, 0);
1945                 return error;
1946         }
1947         xfs_mod_sb(tp, fields);
1948         error = xfs_trans_commit(tp, 0);
1949         return error;
1950 }
1951
1952
1953 #ifdef HAVE_PERCPU_SB
1954 /*
1955  * Per-cpu incore superblock counters
1956  *
1957  * Simple concept, difficult implementation
1958  *
1959  * Basically, replace the incore superblock counters with a distributed per cpu
1960  * counter for contended fields (e.g.  free block count).
1961  *
1962  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1963  * hence needs to be accurately read when we are running low on space. Hence
1964  * there is a method to enable and disable the per-cpu counters based on how
1965  * much "stuff" is available in them.
1966  *
1967  * Basically, a counter is enabled if there is enough free resource to justify
1968  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1969  * ENOSPC), then we disable the counters to synchronise all callers and
1970  * re-distribute the available resources.
1971  *
1972  * If, once we redistributed the available resources, we still get a failure,
1973  * we disable the per-cpu counter and go through the slow path.
1974  *
1975  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1976  * when we disable a per-cpu counter, we need to drain it's resources back to
1977  * the global superblock. We do this after disabling the counter to prevent
1978  * more threads from queueing up on the counter.
1979  *
1980  * Essentially, this means that we still need a lock in the fast path to enable
1981  * synchronisation between the global counters and the per-cpu counters. This
1982  * is not a problem because the lock will be local to a CPU almost all the time
1983  * and have little contention except when we get to ENOSPC conditions.
1984  *
1985  * Basically, this lock becomes a barrier that enables us to lock out the fast
1986  * path while we do things like enabling and disabling counters and
1987  * synchronising the counters.
1988  *
1989  * Locking rules:
1990  *
1991  *      1. m_sb_lock before picking up per-cpu locks
1992  *      2. per-cpu locks always picked up via for_each_online_cpu() order
1993  *      3. accurate counter sync requires m_sb_lock + per cpu locks
1994  *      4. modifying per-cpu counters requires holding per-cpu lock
1995  *      5. modifying global counters requires holding m_sb_lock
1996  *      6. enabling or disabling a counter requires holding the m_sb_lock 
1997  *         and _none_ of the per-cpu locks.
1998  *
1999  * Disabled counters are only ever re-enabled by a balance operation
2000  * that results in more free resources per CPU than a given threshold.
2001  * To ensure counters don't remain disabled, they are rebalanced when
2002  * the global resource goes above a higher threshold (i.e. some hysteresis
2003  * is present to prevent thrashing).
2004  */
2005
2006 #ifdef CONFIG_HOTPLUG_CPU
2007 /*
2008  * hot-plug CPU notifier support.
2009  *
2010  * We need a notifier per filesystem as we need to be able to identify
2011  * the filesystem to balance the counters out. This is achieved by
2012  * having a notifier block embedded in the xfs_mount_t and doing pointer
2013  * magic to get the mount pointer from the notifier block address.
2014  */
2015 STATIC int
2016 xfs_icsb_cpu_notify(
2017         struct notifier_block *nfb,
2018         unsigned long action,
2019         void *hcpu)
2020 {
2021         xfs_icsb_cnts_t *cntp;
2022         xfs_mount_t     *mp;
2023
2024         mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2025         cntp = (xfs_icsb_cnts_t *)
2026                         per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2027         switch (action) {
2028         case CPU_UP_PREPARE:
2029         case CPU_UP_PREPARE_FROZEN:
2030                 /* Easy Case - initialize the area and locks, and
2031                  * then rebalance when online does everything else for us. */
2032                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2033                 break;
2034         case CPU_ONLINE:
2035         case CPU_ONLINE_FROZEN:
2036                 xfs_icsb_lock(mp);
2037                 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2038                 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2039                 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2040                 xfs_icsb_unlock(mp);
2041                 break;
2042         case CPU_DEAD:
2043         case CPU_DEAD_FROZEN:
2044                 /* Disable all the counters, then fold the dead cpu's
2045                  * count into the total on the global superblock and
2046                  * re-enable the counters. */
2047                 xfs_icsb_lock(mp);
2048                 spin_lock(&mp->m_sb_lock);
2049                 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2050                 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2051                 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2052
2053                 mp->m_sb.sb_icount += cntp->icsb_icount;
2054                 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2055                 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2056
2057                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2058
2059                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2060                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2061                 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2062                 spin_unlock(&mp->m_sb_lock);
2063                 xfs_icsb_unlock(mp);
2064                 break;
2065         }
2066
2067         return NOTIFY_OK;
2068 }
2069 #endif /* CONFIG_HOTPLUG_CPU */
2070
2071 int
2072 xfs_icsb_init_counters(
2073         xfs_mount_t     *mp)
2074 {
2075         xfs_icsb_cnts_t *cntp;
2076         int             i;
2077
2078         mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2079         if (mp->m_sb_cnts == NULL)
2080                 return -ENOMEM;
2081
2082 #ifdef CONFIG_HOTPLUG_CPU
2083         mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2084         mp->m_icsb_notifier.priority = 0;
2085         register_hotcpu_notifier(&mp->m_icsb_notifier);
2086 #endif /* CONFIG_HOTPLUG_CPU */
2087
2088         for_each_online_cpu(i) {
2089                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2090                 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2091         }
2092
2093         mutex_init(&mp->m_icsb_mutex);
2094
2095         /*
2096          * start with all counters disabled so that the
2097          * initial balance kicks us off correctly
2098          */
2099         mp->m_icsb_counters = -1;
2100         return 0;
2101 }
2102
2103 void
2104 xfs_icsb_reinit_counters(
2105         xfs_mount_t     *mp)
2106 {
2107         xfs_icsb_lock(mp);
2108         /*
2109          * start with all counters disabled so that the
2110          * initial balance kicks us off correctly
2111          */
2112         mp->m_icsb_counters = -1;
2113         xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2114         xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2115         xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2116         xfs_icsb_unlock(mp);
2117 }
2118
2119 STATIC void
2120 xfs_icsb_destroy_counters(
2121         xfs_mount_t     *mp)
2122 {
2123         if (mp->m_sb_cnts) {
2124                 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2125                 free_percpu(mp->m_sb_cnts);
2126         }
2127         mutex_destroy(&mp->m_icsb_mutex);
2128 }
2129
2130 STATIC_INLINE void
2131 xfs_icsb_lock_cntr(
2132         xfs_icsb_cnts_t *icsbp)
2133 {
2134         while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2135                 ndelay(1000);
2136         }
2137 }
2138
2139 STATIC_INLINE void
2140 xfs_icsb_unlock_cntr(
2141         xfs_icsb_cnts_t *icsbp)
2142 {
2143         clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2144 }
2145
2146
2147 STATIC_INLINE void
2148 xfs_icsb_lock_all_counters(
2149         xfs_mount_t     *mp)
2150 {
2151         xfs_icsb_cnts_t *cntp;
2152         int             i;
2153
2154         for_each_online_cpu(i) {
2155                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2156                 xfs_icsb_lock_cntr(cntp);
2157         }
2158 }
2159
2160 STATIC_INLINE void
2161 xfs_icsb_unlock_all_counters(
2162         xfs_mount_t     *mp)
2163 {
2164         xfs_icsb_cnts_t *cntp;
2165         int             i;
2166
2167         for_each_online_cpu(i) {
2168                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2169                 xfs_icsb_unlock_cntr(cntp);
2170         }
2171 }
2172
2173 STATIC void
2174 xfs_icsb_count(
2175         xfs_mount_t     *mp,
2176         xfs_icsb_cnts_t *cnt,
2177         int             flags)
2178 {
2179         xfs_icsb_cnts_t *cntp;
2180         int             i;
2181
2182         memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2183
2184         if (!(flags & XFS_ICSB_LAZY_COUNT))
2185                 xfs_icsb_lock_all_counters(mp);
2186
2187         for_each_online_cpu(i) {
2188                 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2189                 cnt->icsb_icount += cntp->icsb_icount;
2190                 cnt->icsb_ifree += cntp->icsb_ifree;
2191                 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2192         }
2193
2194         if (!(flags & XFS_ICSB_LAZY_COUNT))
2195                 xfs_icsb_unlock_all_counters(mp);
2196 }
2197
2198 STATIC int
2199 xfs_icsb_counter_disabled(
2200         xfs_mount_t     *mp,
2201         xfs_sb_field_t  field)
2202 {
2203         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2204         return test_bit(field, &mp->m_icsb_counters);
2205 }
2206
2207 STATIC void
2208 xfs_icsb_disable_counter(
2209         xfs_mount_t     *mp,
2210         xfs_sb_field_t  field)
2211 {
2212         xfs_icsb_cnts_t cnt;
2213
2214         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2215
2216         /*
2217          * If we are already disabled, then there is nothing to do
2218          * here. We check before locking all the counters to avoid
2219          * the expensive lock operation when being called in the
2220          * slow path and the counter is already disabled. This is
2221          * safe because the only time we set or clear this state is under
2222          * the m_icsb_mutex.
2223          */
2224         if (xfs_icsb_counter_disabled(mp, field))
2225                 return;
2226
2227         xfs_icsb_lock_all_counters(mp);
2228         if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2229                 /* drain back to superblock */
2230
2231                 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2232                 switch(field) {
2233                 case XFS_SBS_ICOUNT:
2234                         mp->m_sb.sb_icount = cnt.icsb_icount;
2235                         break;
2236                 case XFS_SBS_IFREE:
2237                         mp->m_sb.sb_ifree = cnt.icsb_ifree;
2238                         break;
2239                 case XFS_SBS_FDBLOCKS:
2240                         mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2241                         break;
2242                 default:
2243                         BUG();
2244                 }
2245         }
2246
2247         xfs_icsb_unlock_all_counters(mp);
2248 }
2249
2250 STATIC void
2251 xfs_icsb_enable_counter(
2252         xfs_mount_t     *mp,
2253         xfs_sb_field_t  field,
2254         uint64_t        count,
2255         uint64_t        resid)
2256 {
2257         xfs_icsb_cnts_t *cntp;
2258         int             i;
2259
2260         ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2261
2262         xfs_icsb_lock_all_counters(mp);
2263         for_each_online_cpu(i) {
2264                 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2265                 switch (field) {
2266                 case XFS_SBS_ICOUNT:
2267                         cntp->icsb_icount = count + resid;
2268                         break;
2269                 case XFS_SBS_IFREE:
2270                         cntp->icsb_ifree = count + resid;
2271                         break;
2272                 case XFS_SBS_FDBLOCKS:
2273                         cntp->icsb_fdblocks = count + resid;
2274                         break;
2275                 default:
2276                         BUG();
2277                         break;
2278                 }
2279                 resid = 0;
2280         }
2281         clear_bit(field, &mp->m_icsb_counters);
2282         xfs_icsb_unlock_all_counters(mp);
2283 }
2284
2285 void
2286 xfs_icsb_sync_counters_locked(
2287         xfs_mount_t     *mp,
2288         int             flags)
2289 {
2290         xfs_icsb_cnts_t cnt;
2291
2292         xfs_icsb_count(mp, &cnt, flags);
2293
2294         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2295                 mp->m_sb.sb_icount = cnt.icsb_icount;
2296         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2297                 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2298         if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2299                 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2300 }
2301
2302 /*
2303  * Accurate update of per-cpu counters to incore superblock
2304  */
2305 void
2306 xfs_icsb_sync_counters(
2307         xfs_mount_t     *mp,
2308         int             flags)
2309 {
2310         spin_lock(&mp->m_sb_lock);
2311         xfs_icsb_sync_counters_locked(mp, flags);
2312         spin_unlock(&mp->m_sb_lock);
2313 }
2314
2315 /*
2316  * Balance and enable/disable counters as necessary.
2317  *
2318  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2319  * chosen to be the same number as single on disk allocation chunk per CPU, and
2320  * free blocks is something far enough zero that we aren't going thrash when we
2321  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2322  * prevent looping endlessly when xfs_alloc_space asks for more than will
2323  * be distributed to a single CPU but each CPU has enough blocks to be
2324  * reenabled.
2325  *
2326  * Note that we can be called when counters are already disabled.
2327  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2328  * prevent locking every per-cpu counter needlessly.
2329  */
2330
2331 #define XFS_ICSB_INO_CNTR_REENABLE      (uint64_t)64
2332 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2333                 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2334 STATIC void
2335 xfs_icsb_balance_counter_locked(
2336         xfs_mount_t     *mp,
2337         xfs_sb_field_t  field,
2338         int             min_per_cpu)
2339 {
2340         uint64_t        count, resid;
2341         int             weight = num_online_cpus();
2342         uint64_t        min = (uint64_t)min_per_cpu;
2343
2344         /* disable counter and sync counter */
2345         xfs_icsb_disable_counter(mp, field);
2346
2347         /* update counters  - first CPU gets residual*/
2348         switch (field) {
2349         case XFS_SBS_ICOUNT:
2350                 count = mp->m_sb.sb_icount;
2351                 resid = do_div(count, weight);
2352                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2353                         return;
2354                 break;
2355         case XFS_SBS_IFREE:
2356                 count = mp->m_sb.sb_ifree;
2357                 resid = do_div(count, weight);
2358                 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2359                         return;
2360                 break;
2361         case XFS_SBS_FDBLOCKS:
2362                 count = mp->m_sb.sb_fdblocks;
2363                 resid = do_div(count, weight);
2364                 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2365                         return;
2366                 break;
2367         default:
2368                 BUG();
2369                 count = resid = 0;      /* quiet, gcc */
2370                 break;
2371         }
2372
2373         xfs_icsb_enable_counter(mp, field, count, resid);
2374 }
2375
2376 STATIC void
2377 xfs_icsb_balance_counter(
2378         xfs_mount_t     *mp,
2379         xfs_sb_field_t  fields,
2380         int             min_per_cpu)
2381 {
2382         spin_lock(&mp->m_sb_lock);
2383         xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2384         spin_unlock(&mp->m_sb_lock);
2385 }
2386
2387 STATIC int
2388 xfs_icsb_modify_counters(
2389         xfs_mount_t     *mp,
2390         xfs_sb_field_t  field,
2391         int64_t         delta,
2392         int             rsvd)
2393 {
2394         xfs_icsb_cnts_t *icsbp;
2395         long long       lcounter;       /* long counter for 64 bit fields */
2396         int             cpu, ret = 0;
2397
2398         might_sleep();
2399 again:
2400         cpu = get_cpu();
2401         icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2402
2403         /*
2404          * if the counter is disabled, go to slow path
2405          */
2406         if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2407                 goto slow_path;
2408         xfs_icsb_lock_cntr(icsbp);
2409         if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2410                 xfs_icsb_unlock_cntr(icsbp);
2411                 goto slow_path;
2412         }
2413
2414         switch (field) {
2415         case XFS_SBS_ICOUNT:
2416                 lcounter = icsbp->icsb_icount;
2417                 lcounter += delta;
2418                 if (unlikely(lcounter < 0))
2419                         goto balance_counter;
2420                 icsbp->icsb_icount = lcounter;
2421                 break;
2422
2423         case XFS_SBS_IFREE:
2424                 lcounter = icsbp->icsb_ifree;
2425                 lcounter += delta;
2426                 if (unlikely(lcounter < 0))
2427                         goto balance_counter;
2428                 icsbp->icsb_ifree = lcounter;
2429                 break;
2430
2431         case XFS_SBS_FDBLOCKS:
2432                 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2433
2434                 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2435                 lcounter += delta;
2436                 if (unlikely(lcounter < 0))
2437                         goto balance_counter;
2438                 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2439                 break;
2440         default:
2441                 BUG();
2442                 break;
2443         }
2444         xfs_icsb_unlock_cntr(icsbp);
2445         put_cpu();
2446         return 0;
2447
2448 slow_path:
2449         put_cpu();
2450
2451         /*
2452          * serialise with a mutex so we don't burn lots of cpu on
2453          * the superblock lock. We still need to hold the superblock
2454          * lock, however, when we modify the global structures.
2455          */
2456         xfs_icsb_lock(mp);
2457
2458         /*
2459          * Now running atomically.
2460          *
2461          * If the counter is enabled, someone has beaten us to rebalancing.
2462          * Drop the lock and try again in the fast path....
2463          */
2464         if (!(xfs_icsb_counter_disabled(mp, field))) {
2465                 xfs_icsb_unlock(mp);
2466                 goto again;
2467         }
2468
2469         /*
2470          * The counter is currently disabled. Because we are
2471          * running atomically here, we know a rebalance cannot
2472          * be in progress. Hence we can go straight to operating
2473          * on the global superblock. We do not call xfs_mod_incore_sb()
2474          * here even though we need to get the m_sb_lock. Doing so
2475          * will cause us to re-enter this function and deadlock.
2476          * Hence we get the m_sb_lock ourselves and then call
2477          * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2478          * directly on the global counters.
2479          */
2480         spin_lock(&mp->m_sb_lock);
2481         ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2482         spin_unlock(&mp->m_sb_lock);
2483
2484         /*
2485          * Now that we've modified the global superblock, we
2486          * may be able to re-enable the distributed counters
2487          * (e.g. lots of space just got freed). After that
2488          * we are done.
2489          */
2490         if (ret != ENOSPC)
2491                 xfs_icsb_balance_counter(mp, field, 0);
2492         xfs_icsb_unlock(mp);
2493         return ret;
2494
2495 balance_counter:
2496         xfs_icsb_unlock_cntr(icsbp);
2497         put_cpu();
2498
2499         /*
2500          * We may have multiple threads here if multiple per-cpu
2501          * counters run dry at the same time. This will mean we can
2502          * do more balances than strictly necessary but it is not
2503          * the common slowpath case.
2504          */
2505         xfs_icsb_lock(mp);
2506
2507         /*
2508          * running atomically.
2509          *
2510          * This will leave the counter in the correct state for future
2511          * accesses. After the rebalance, we simply try again and our retry
2512          * will either succeed through the fast path or slow path without
2513          * another balance operation being required.
2514          */
2515         xfs_icsb_balance_counter(mp, field, delta);
2516         xfs_icsb_unlock(mp);
2517         goto again;
2518 }
2519
2520 #endif