[S390] sclp: convert channel path configure code to use sync interface.
[linux-2.6] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15
16 /*
17  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
18  * allocation mode flags.
19  */
20 #define AS_EIO          (__GFP_BITS_SHIFT + 0)  /* IO error on async write */
21 #define AS_ENOSPC       (__GFP_BITS_SHIFT + 1)  /* ENOSPC on async write */
22
23 static inline void mapping_set_error(struct address_space *mapping, int error)
24 {
25         if (error) {
26                 if (error == -ENOSPC)
27                         set_bit(AS_ENOSPC, &mapping->flags);
28                 else
29                         set_bit(AS_EIO, &mapping->flags);
30         }
31 }
32
33 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
34 {
35         return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
36 }
37
38 /*
39  * This is non-atomic.  Only to be used before the mapping is activated.
40  * Probably needs a barrier...
41  */
42 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
43 {
44         m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
45                                 (__force unsigned long)mask;
46 }
47
48 /*
49  * The page cache can done in larger chunks than
50  * one page, because it allows for more efficient
51  * throughput (it can then be mapped into user
52  * space in smaller chunks for same flexibility).
53  *
54  * Or rather, it _will_ be done in larger chunks.
55  */
56 #define PAGE_CACHE_SHIFT        PAGE_SHIFT
57 #define PAGE_CACHE_SIZE         PAGE_SIZE
58 #define PAGE_CACHE_MASK         PAGE_MASK
59 #define PAGE_CACHE_ALIGN(addr)  (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
60
61 #define page_cache_get(page)            get_page(page)
62 #define page_cache_release(page)        put_page(page)
63 void release_pages(struct page **pages, int nr, int cold);
64
65 #ifdef CONFIG_NUMA
66 extern struct page *__page_cache_alloc(gfp_t gfp);
67 #else
68 static inline struct page *__page_cache_alloc(gfp_t gfp)
69 {
70         return alloc_pages(gfp, 0);
71 }
72 #endif
73
74 static inline struct page *page_cache_alloc(struct address_space *x)
75 {
76         return __page_cache_alloc(mapping_gfp_mask(x));
77 }
78
79 static inline struct page *page_cache_alloc_cold(struct address_space *x)
80 {
81         return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
82 }
83
84 typedef int filler_t(void *, struct page *);
85
86 extern struct page * find_get_page(struct address_space *mapping,
87                                 pgoff_t index);
88 extern struct page * find_lock_page(struct address_space *mapping,
89                                 pgoff_t index);
90 extern struct page * find_or_create_page(struct address_space *mapping,
91                                 pgoff_t index, gfp_t gfp_mask);
92 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
93                         unsigned int nr_pages, struct page **pages);
94 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
95                                unsigned int nr_pages, struct page **pages);
96 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
97                         int tag, unsigned int nr_pages, struct page **pages);
98
99 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
100
101 /*
102  * Returns locked page at given index in given cache, creating it if needed.
103  */
104 static inline struct page *grab_cache_page(struct address_space *mapping,
105                                                                 pgoff_t index)
106 {
107         return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
108 }
109
110 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
111                                 pgoff_t index);
112 extern struct page * read_cache_page_async(struct address_space *mapping,
113                                 pgoff_t index, filler_t *filler,
114                                 void *data);
115 extern struct page * read_cache_page(struct address_space *mapping,
116                                 pgoff_t index, filler_t *filler,
117                                 void *data);
118 extern int read_cache_pages(struct address_space *mapping,
119                 struct list_head *pages, filler_t *filler, void *data);
120
121 static inline struct page *read_mapping_page_async(
122                                                 struct address_space *mapping,
123                                                      pgoff_t index, void *data)
124 {
125         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
126         return read_cache_page_async(mapping, index, filler, data);
127 }
128
129 static inline struct page *read_mapping_page(struct address_space *mapping,
130                                              pgoff_t index, void *data)
131 {
132         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
133         return read_cache_page(mapping, index, filler, data);
134 }
135
136 int add_to_page_cache(struct page *page, struct address_space *mapping,
137                                 pgoff_t index, gfp_t gfp_mask);
138 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
139                                 pgoff_t index, gfp_t gfp_mask);
140 extern void remove_from_page_cache(struct page *page);
141 extern void __remove_from_page_cache(struct page *page);
142
143 /*
144  * Return byte-offset into filesystem object for page.
145  */
146 static inline loff_t page_offset(struct page *page)
147 {
148         return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
149 }
150
151 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
152                                         unsigned long address)
153 {
154         pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
155         pgoff += vma->vm_pgoff;
156         return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
157 }
158
159 extern void FASTCALL(__lock_page(struct page *page));
160 extern void FASTCALL(__lock_page_nosync(struct page *page));
161 extern void FASTCALL(unlock_page(struct page *page));
162
163 /*
164  * lock_page may only be called if we have the page's inode pinned.
165  */
166 static inline void lock_page(struct page *page)
167 {
168         might_sleep();
169         if (TestSetPageLocked(page))
170                 __lock_page(page);
171 }
172
173 /*
174  * lock_page_nosync should only be used if we can't pin the page's inode.
175  * Doesn't play quite so well with block device plugging.
176  */
177 static inline void lock_page_nosync(struct page *page)
178 {
179         might_sleep();
180         if (TestSetPageLocked(page))
181                 __lock_page_nosync(page);
182 }
183         
184 /*
185  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
186  * Never use this directly!
187  */
188 extern void FASTCALL(wait_on_page_bit(struct page *page, int bit_nr));
189
190 /* 
191  * Wait for a page to be unlocked.
192  *
193  * This must be called with the caller "holding" the page,
194  * ie with increased "page->count" so that the page won't
195  * go away during the wait..
196  */
197 static inline void wait_on_page_locked(struct page *page)
198 {
199         if (PageLocked(page))
200                 wait_on_page_bit(page, PG_locked);
201 }
202
203 /* 
204  * Wait for a page to complete writeback
205  */
206 static inline void wait_on_page_writeback(struct page *page)
207 {
208         if (PageWriteback(page))
209                 wait_on_page_bit(page, PG_writeback);
210 }
211
212 extern void end_page_writeback(struct page *page);
213
214 /*
215  * Fault a userspace page into pagetables.  Return non-zero on a fault.
216  *
217  * This assumes that two userspace pages are always sufficient.  That's
218  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
219  */
220 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
221 {
222         int ret;
223
224         if (unlikely(size == 0))
225                 return 0;
226
227         /*
228          * Writing zeroes into userspace here is OK, because we know that if
229          * the zero gets there, we'll be overwriting it.
230          */
231         ret = __put_user(0, uaddr);
232         if (ret == 0) {
233                 char __user *end = uaddr + size - 1;
234
235                 /*
236                  * If the page was already mapped, this will get a cache miss
237                  * for sure, so try to avoid doing it.
238                  */
239                 if (((unsigned long)uaddr & PAGE_MASK) !=
240                                 ((unsigned long)end & PAGE_MASK))
241                         ret = __put_user(0, end);
242         }
243         return ret;
244 }
245
246 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
247 {
248         volatile char c;
249         int ret;
250
251         if (unlikely(size == 0))
252                 return 0;
253
254         ret = __get_user(c, uaddr);
255         if (ret == 0) {
256                 const char __user *end = uaddr + size - 1;
257
258                 if (((unsigned long)uaddr & PAGE_MASK) !=
259                                 ((unsigned long)end & PAGE_MASK))
260                         ret = __get_user(c, end);
261         }
262         return ret;
263 }
264
265 #endif /* _LINUX_PAGEMAP_H */