2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param_named(fua, libata_fua, int, 0444);
83 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
101 * Inherited from caller.
104 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
123 fis[13] = tf->hob_nsect;
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 * Inherited from caller.
144 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
159 tf->hob_nsect = fis[13];
162 static const u8 ata_rw_cmds[] = {
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
189 ATA_CMD_WRITE_FUA_EXT
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
196 * Examine the device configuration and tf->flags to calculate
197 * the proper read/write commands and protocol to use.
202 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
208 int index, fua, lba48, write;
210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 8;
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
220 index = dev->multi_count ? 0 : 8;
222 tf->protocol = ATA_PROT_DMA;
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 static const char * const xfer_mode_str[] = {
254 * ata_udma_string - convert UDMA bit offset to string
255 * @mask: mask of bits supported; only highest bit counts.
257 * Determine string which represents the highest speed
258 * (highest bit in @udma_mask).
264 * Constant C string representing highest speed listed in
265 * @udma_mask, or the constant C string "<n/a>".
268 static const char *ata_mode_string(unsigned int mask)
272 for (i = 7; i >= 0; i--)
275 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
278 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
285 return xfer_mode_str[i];
289 * ata_pio_devchk - PATA device presence detection
290 * @ap: ATA channel to examine
291 * @device: Device to examine (starting at zero)
293 * This technique was originally described in
294 * Hale Landis's ATADRVR (www.ata-atapi.com), and
295 * later found its way into the ATA/ATAPI spec.
297 * Write a pattern to the ATA shadow registers,
298 * and if a device is present, it will respond by
299 * correctly storing and echoing back the
300 * ATA shadow register contents.
306 static unsigned int ata_pio_devchk(struct ata_port *ap,
309 struct ata_ioports *ioaddr = &ap->ioaddr;
312 ap->ops->dev_select(ap, device);
314 outb(0x55, ioaddr->nsect_addr);
315 outb(0xaa, ioaddr->lbal_addr);
317 outb(0xaa, ioaddr->nsect_addr);
318 outb(0x55, ioaddr->lbal_addr);
320 outb(0x55, ioaddr->nsect_addr);
321 outb(0xaa, ioaddr->lbal_addr);
323 nsect = inb(ioaddr->nsect_addr);
324 lbal = inb(ioaddr->lbal_addr);
326 if ((nsect == 0x55) && (lbal == 0xaa))
327 return 1; /* we found a device */
329 return 0; /* nothing found */
333 * ata_mmio_devchk - PATA device presence detection
334 * @ap: ATA channel to examine
335 * @device: Device to examine (starting at zero)
337 * This technique was originally described in
338 * Hale Landis's ATADRVR (www.ata-atapi.com), and
339 * later found its way into the ATA/ATAPI spec.
341 * Write a pattern to the ATA shadow registers,
342 * and if a device is present, it will respond by
343 * correctly storing and echoing back the
344 * ATA shadow register contents.
350 static unsigned int ata_mmio_devchk(struct ata_port *ap,
353 struct ata_ioports *ioaddr = &ap->ioaddr;
356 ap->ops->dev_select(ap, device);
358 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
359 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
362 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
364 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
365 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
367 nsect = readb((void __iomem *) ioaddr->nsect_addr);
368 lbal = readb((void __iomem *) ioaddr->lbal_addr);
370 if ((nsect == 0x55) && (lbal == 0xaa))
371 return 1; /* we found a device */
373 return 0; /* nothing found */
377 * ata_devchk - PATA device presence detection
378 * @ap: ATA channel to examine
379 * @device: Device to examine (starting at zero)
381 * Dispatch ATA device presence detection, depending
382 * on whether we are using PIO or MMIO to talk to the
383 * ATA shadow registers.
389 static unsigned int ata_devchk(struct ata_port *ap,
392 if (ap->flags & ATA_FLAG_MMIO)
393 return ata_mmio_devchk(ap, device);
394 return ata_pio_devchk(ap, device);
398 * ata_dev_classify - determine device type based on ATA-spec signature
399 * @tf: ATA taskfile register set for device to be identified
401 * Determine from taskfile register contents whether a device is
402 * ATA or ATAPI, as per "Signature and persistence" section
403 * of ATA/PI spec (volume 1, sect 5.14).
409 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
410 * the event of failure.
413 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
415 /* Apple's open source Darwin code hints that some devices only
416 * put a proper signature into the LBA mid/high registers,
417 * So, we only check those. It's sufficient for uniqueness.
420 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
421 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
422 DPRINTK("found ATA device by sig\n");
426 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
427 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
428 DPRINTK("found ATAPI device by sig\n");
429 return ATA_DEV_ATAPI;
432 DPRINTK("unknown device\n");
433 return ATA_DEV_UNKNOWN;
437 * ata_dev_try_classify - Parse returned ATA device signature
438 * @ap: ATA channel to examine
439 * @device: Device to examine (starting at zero)
440 * @r_err: Value of error register on completion
442 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
443 * an ATA/ATAPI-defined set of values is placed in the ATA
444 * shadow registers, indicating the results of device detection
447 * Select the ATA device, and read the values from the ATA shadow
448 * registers. Then parse according to the Error register value,
449 * and the spec-defined values examined by ata_dev_classify().
455 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
459 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
461 struct ata_taskfile tf;
465 ap->ops->dev_select(ap, device);
467 memset(&tf, 0, sizeof(tf));
469 ap->ops->tf_read(ap, &tf);
474 /* see if device passed diags */
477 else if ((device == 0) && (err == 0x81))
482 /* determine if device is ATA or ATAPI */
483 class = ata_dev_classify(&tf);
485 if (class == ATA_DEV_UNKNOWN)
487 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
493 * ata_id_string - Convert IDENTIFY DEVICE page into string
494 * @id: IDENTIFY DEVICE results we will examine
495 * @s: string into which data is output
496 * @ofs: offset into identify device page
497 * @len: length of string to return. must be an even number.
499 * The strings in the IDENTIFY DEVICE page are broken up into
500 * 16-bit chunks. Run through the string, and output each
501 * 8-bit chunk linearly, regardless of platform.
507 void ata_id_string(const u16 *id, unsigned char *s,
508 unsigned int ofs, unsigned int len)
527 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
528 * @id: IDENTIFY DEVICE results we will examine
529 * @s: string into which data is output
530 * @ofs: offset into identify device page
531 * @len: length of string to return. must be an odd number.
533 * This function is identical to ata_id_string except that it
534 * trims trailing spaces and terminates the resulting string with
535 * null. @len must be actual maximum length (even number) + 1.
540 void ata_id_c_string(const u16 *id, unsigned char *s,
541 unsigned int ofs, unsigned int len)
547 ata_id_string(id, s, ofs, len - 1);
549 p = s + strnlen(s, len - 1);
550 while (p > s && p[-1] == ' ')
555 static u64 ata_id_n_sectors(const u16 *id)
557 if (ata_id_has_lba(id)) {
558 if (ata_id_has_lba48(id))
559 return ata_id_u64(id, 100);
561 return ata_id_u32(id, 60);
563 if (ata_id_current_chs_valid(id))
564 return ata_id_u32(id, 57);
566 return id[1] * id[3] * id[6];
571 * ata_noop_dev_select - Select device 0/1 on ATA bus
572 * @ap: ATA channel to manipulate
573 * @device: ATA device (numbered from zero) to select
575 * This function performs no actual function.
577 * May be used as the dev_select() entry in ata_port_operations.
582 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
588 * ata_std_dev_select - Select device 0/1 on ATA bus
589 * @ap: ATA channel to manipulate
590 * @device: ATA device (numbered from zero) to select
592 * Use the method defined in the ATA specification to
593 * make either device 0, or device 1, active on the
594 * ATA channel. Works with both PIO and MMIO.
596 * May be used as the dev_select() entry in ata_port_operations.
602 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
607 tmp = ATA_DEVICE_OBS;
609 tmp = ATA_DEVICE_OBS | ATA_DEV1;
611 if (ap->flags & ATA_FLAG_MMIO) {
612 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
614 outb(tmp, ap->ioaddr.device_addr);
616 ata_pause(ap); /* needed; also flushes, for mmio */
620 * ata_dev_select - Select device 0/1 on ATA bus
621 * @ap: ATA channel to manipulate
622 * @device: ATA device (numbered from zero) to select
623 * @wait: non-zero to wait for Status register BSY bit to clear
624 * @can_sleep: non-zero if context allows sleeping
626 * Use the method defined in the ATA specification to
627 * make either device 0, or device 1, active on the
630 * This is a high-level version of ata_std_dev_select(),
631 * which additionally provides the services of inserting
632 * the proper pauses and status polling, where needed.
638 void ata_dev_select(struct ata_port *ap, unsigned int device,
639 unsigned int wait, unsigned int can_sleep)
641 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
642 ap->id, device, wait);
647 ap->ops->dev_select(ap, device);
650 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
657 * ata_dump_id - IDENTIFY DEVICE info debugging output
658 * @id: IDENTIFY DEVICE page to dump
660 * Dump selected 16-bit words from the given IDENTIFY DEVICE
667 static inline void ata_dump_id(const u16 *id)
669 DPRINTK("49==0x%04x "
679 DPRINTK("80==0x%04x "
689 DPRINTK("88==0x%04x "
696 * Compute the PIO modes available for this device. This is not as
697 * trivial as it seems if we must consider early devices correctly.
699 * FIXME: pre IDE drive timing (do we care ?).
702 static unsigned int ata_pio_modes(const struct ata_device *adev)
706 /* Usual case. Word 53 indicates word 64 is valid */
707 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
708 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
714 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
715 number for the maximum. Turn it into a mask and return it */
716 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
718 /* But wait.. there's more. Design your standards by committee and
719 you too can get a free iordy field to process. However its the
720 speeds not the modes that are supported... Note drivers using the
721 timing API will get this right anyway */
725 ata_queue_packet_task(struct ata_port *ap)
727 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
728 queue_work(ata_wq, &ap->packet_task);
732 ata_queue_pio_task(struct ata_port *ap)
734 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
735 queue_work(ata_wq, &ap->pio_task);
739 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
741 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
742 queue_delayed_work(ata_wq, &ap->pio_task, delay);
746 * ata_flush_pio_tasks - Flush pio_task and packet_task
747 * @ap: the target ata_port
749 * After this function completes, pio_task and packet_task are
750 * guranteed not to be running or scheduled.
753 * Kernel thread context (may sleep)
756 static void ata_flush_pio_tasks(struct ata_port *ap)
763 spin_lock_irqsave(&ap->host_set->lock, flags);
764 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
765 spin_unlock_irqrestore(&ap->host_set->lock, flags);
767 DPRINTK("flush #1\n");
768 flush_workqueue(ata_wq);
771 * At this point, if a task is running, it's guaranteed to see
772 * the FLUSH flag; thus, it will never queue pio tasks again.
775 tmp |= cancel_delayed_work(&ap->pio_task);
776 tmp |= cancel_delayed_work(&ap->packet_task);
778 DPRINTK("flush #2\n");
779 flush_workqueue(ata_wq);
782 spin_lock_irqsave(&ap->host_set->lock, flags);
783 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
784 spin_unlock_irqrestore(&ap->host_set->lock, flags);
789 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
791 struct completion *waiting = qc->private_data;
793 qc->ap->ops->tf_read(qc->ap, &qc->tf);
798 * ata_exec_internal - execute libata internal command
799 * @ap: Port to which the command is sent
800 * @dev: Device to which the command is sent
801 * @tf: Taskfile registers for the command and the result
802 * @dma_dir: Data tranfer direction of the command
803 * @buf: Data buffer of the command
804 * @buflen: Length of data buffer
806 * Executes libata internal command with timeout. @tf contains
807 * command on entry and result on return. Timeout and error
808 * conditions are reported via return value. No recovery action
809 * is taken after a command times out. It's caller's duty to
810 * clean up after timeout.
813 * None. Should be called with kernel context, might sleep.
817 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
818 struct ata_taskfile *tf,
819 int dma_dir, void *buf, unsigned int buflen)
821 u8 command = tf->command;
822 struct ata_queued_cmd *qc;
823 DECLARE_COMPLETION(wait);
825 unsigned int err_mask;
827 spin_lock_irqsave(&ap->host_set->lock, flags);
829 qc = ata_qc_new_init(ap, dev);
833 qc->dma_dir = dma_dir;
834 if (dma_dir != DMA_NONE) {
835 ata_sg_init_one(qc, buf, buflen);
836 qc->nsect = buflen / ATA_SECT_SIZE;
839 qc->private_data = &wait;
840 qc->complete_fn = ata_qc_complete_internal;
842 qc->err_mask = ata_qc_issue(qc);
846 spin_unlock_irqrestore(&ap->host_set->lock, flags);
848 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
849 spin_lock_irqsave(&ap->host_set->lock, flags);
851 /* We're racing with irq here. If we lose, the
852 * following test prevents us from completing the qc
853 * again. If completion irq occurs after here but
854 * before the caller cleans up, it will result in a
855 * spurious interrupt. We can live with that.
857 if (qc->flags & ATA_QCFLAG_ACTIVE) {
858 qc->err_mask = AC_ERR_TIMEOUT;
860 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
864 spin_unlock_irqrestore(&ap->host_set->lock, flags);
868 err_mask = qc->err_mask;
876 * ata_pio_need_iordy - check if iordy needed
879 * Check if the current speed of the device requires IORDY. Used
880 * by various controllers for chip configuration.
883 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
886 int speed = adev->pio_mode - XFER_PIO_0;
893 /* If we have no drive specific rule, then PIO 2 is non IORDY */
895 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
896 pio = adev->id[ATA_ID_EIDE_PIO];
897 /* Is the speed faster than the drive allows non IORDY ? */
899 /* This is cycle times not frequency - watch the logic! */
900 if (pio > 240) /* PIO2 is 240nS per cycle */
909 * ata_dev_read_id - Read ID data from the specified device
910 * @ap: port on which target device resides
911 * @dev: target device
912 * @p_class: pointer to class of the target device (may be changed)
913 * @post_reset: is this read ID post-reset?
914 * @p_id: read IDENTIFY page (newly allocated)
916 * Read ID data from the specified device. ATA_CMD_ID_ATA is
917 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
918 * devices. This function also takes care of EDD signature
919 * misreporting (to be removed once EDD support is gone) and
920 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
923 * Kernel thread context (may sleep)
926 * 0 on success, -errno otherwise.
928 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
929 unsigned int *p_class, int post_reset, u16 **p_id)
931 unsigned int class = *p_class;
932 unsigned int using_edd;
933 struct ata_taskfile tf;
934 unsigned int err_mask = 0;
939 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
941 if (ap->ops->probe_reset ||
942 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
947 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
949 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
952 reason = "out of memory";
957 ata_tf_init(ap, &tf, dev->devno);
961 tf.command = ATA_CMD_ID_ATA;
964 tf.command = ATA_CMD_ID_ATAPI;
968 reason = "unsupported class";
972 tf.protocol = ATA_PROT_PIO;
974 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
975 id, sizeof(id[0]) * ATA_ID_WORDS);
979 reason = "I/O error";
981 if (err_mask & ~AC_ERR_DEV)
985 * arg! EDD works for all test cases, but seems to return
986 * the ATA signature for some ATAPI devices. Until the
987 * reason for this is found and fixed, we fix up the mess
988 * here. If IDENTIFY DEVICE returns command aborted
989 * (as ATAPI devices do), then we issue an
990 * IDENTIFY PACKET DEVICE.
992 * ATA software reset (SRST, the default) does not appear
993 * to have this problem.
995 if ((using_edd) && (class == ATA_DEV_ATA)) {
997 if (err & ATA_ABORTED) {
998 class = ATA_DEV_ATAPI;
1005 swap_buf_le16(id, ATA_ID_WORDS);
1007 /* print device capabilities */
1008 printk(KERN_DEBUG "ata%u: dev %u cfg "
1009 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1011 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1014 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1016 reason = "device reports illegal type";
1020 if (post_reset && class == ATA_DEV_ATA) {
1022 * The exact sequence expected by certain pre-ATA4 drives is:
1025 * INITIALIZE DEVICE PARAMETERS
1027 * Some drives were very specific about that exact sequence.
1029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1030 err_mask = ata_dev_init_params(ap, dev);
1033 reason = "INIT_DEV_PARAMS failed";
1037 /* current CHS translation info (id[53-58]) might be
1038 * changed. reread the identify device info.
1050 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1051 ap->id, dev->devno, reason);
1056 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1057 struct ata_device *dev)
1059 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1063 * ata_dev_configure - Configure the specified ATA/ATAPI device
1064 * @ap: Port on which target device resides
1065 * @dev: Target device to configure
1067 * Configure @dev according to @dev->id. Generic and low-level
1068 * driver specific fixups are also applied.
1071 * Kernel thread context (may sleep)
1074 * 0 on success, -errno otherwise
1076 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev)
1078 unsigned long xfer_modes;
1081 if (!ata_dev_present(dev)) {
1082 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1083 ap->id, dev->devno);
1087 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1090 * common ATA, ATAPI feature tests
1093 /* we require DMA support (bits 8 of word 49) */
1094 if (!ata_id_has_dma(dev->id)) {
1095 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1100 /* quick-n-dirty find max transfer mode; for printk only */
1101 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1103 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1105 xfer_modes = ata_pio_modes(dev);
1107 ata_dump_id(dev->id);
1109 /* ATA-specific feature tests */
1110 if (dev->class == ATA_DEV_ATA) {
1111 dev->n_sectors = ata_id_n_sectors(dev->id);
1113 if (ata_id_has_lba(dev->id)) {
1114 dev->flags |= ATA_DFLAG_LBA;
1116 if (ata_id_has_lba48(dev->id))
1117 dev->flags |= ATA_DFLAG_LBA48;
1119 /* print device info to dmesg */
1120 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1122 ata_id_major_version(dev->id),
1123 ata_mode_string(xfer_modes),
1124 (unsigned long long)dev->n_sectors,
1125 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1129 /* Default translation */
1130 dev->cylinders = dev->id[1];
1131 dev->heads = dev->id[3];
1132 dev->sectors = dev->id[6];
1134 if (ata_id_current_chs_valid(dev->id)) {
1135 /* Current CHS translation is valid. */
1136 dev->cylinders = dev->id[54];
1137 dev->heads = dev->id[55];
1138 dev->sectors = dev->id[56];
1141 /* print device info to dmesg */
1142 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1144 ata_id_major_version(dev->id),
1145 ata_mode_string(xfer_modes),
1146 (unsigned long long)dev->n_sectors,
1147 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1154 /* ATAPI-specific feature tests */
1155 else if (dev->class == ATA_DEV_ATAPI) {
1156 rc = atapi_cdb_len(dev->id);
1157 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1158 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1162 dev->cdb_len = (unsigned int) rc;
1164 /* print device info to dmesg */
1165 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1167 ata_mode_string(xfer_modes));
1170 ap->host->max_cmd_len = 0;
1171 for (i = 0; i < ATA_MAX_DEVICES; i++)
1172 ap->host->max_cmd_len = max_t(unsigned int,
1173 ap->host->max_cmd_len,
1174 ap->device[i].cdb_len);
1176 /* limit bridge transfers to udma5, 200 sectors */
1177 if (ata_dev_knobble(ap, dev)) {
1178 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1179 ap->id, dev->devno);
1180 ap->udma_mask &= ATA_UDMA5;
1181 dev->max_sectors = ATA_MAX_SECTORS;
1184 if (ap->ops->dev_config)
1185 ap->ops->dev_config(ap, dev);
1187 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1191 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1192 ap->id, dev->devno);
1193 DPRINTK("EXIT, err\n");
1198 * ata_bus_probe - Reset and probe ATA bus
1201 * Master ATA bus probing function. Initiates a hardware-dependent
1202 * bus reset, then attempts to identify any devices found on
1206 * PCI/etc. bus probe sem.
1209 * Zero on success, non-zero on error.
1212 static int ata_bus_probe(struct ata_port *ap)
1214 unsigned int i, found = 0;
1216 if (ap->ops->probe_reset) {
1217 unsigned int classes[ATA_MAX_DEVICES];
1222 rc = ap->ops->probe_reset(ap, classes);
1224 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1225 if (classes[i] == ATA_DEV_UNKNOWN)
1226 classes[i] = ATA_DEV_NONE;
1227 ap->device[i].class = classes[i];
1230 printk(KERN_ERR "ata%u: probe reset failed, "
1231 "disabling port\n", ap->id);
1232 ata_port_disable(ap);
1235 ap->ops->phy_reset(ap);
1237 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1240 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1241 struct ata_device *dev = &ap->device[i];
1243 if (!ata_dev_present(dev))
1246 WARN_ON(dev->id != NULL);
1247 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1248 dev->class = ATA_DEV_NONE;
1252 if (ata_dev_configure(ap, dev)) {
1253 dev->class++; /* disable device */
1260 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1261 goto err_out_disable;
1264 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1265 goto err_out_disable;
1270 ap->ops->port_disable(ap);
1276 * ata_port_probe - Mark port as enabled
1277 * @ap: Port for which we indicate enablement
1279 * Modify @ap data structure such that the system
1280 * thinks that the entire port is enabled.
1282 * LOCKING: host_set lock, or some other form of
1286 void ata_port_probe(struct ata_port *ap)
1288 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1292 * sata_print_link_status - Print SATA link status
1293 * @ap: SATA port to printk link status about
1295 * This function prints link speed and status of a SATA link.
1300 static void sata_print_link_status(struct ata_port *ap)
1305 if (!ap->ops->scr_read)
1308 sstatus = scr_read(ap, SCR_STATUS);
1310 if (sata_dev_present(ap)) {
1311 tmp = (sstatus >> 4) & 0xf;
1314 else if (tmp & (1 << 1))
1317 speed = "<unknown>";
1318 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1319 ap->id, speed, sstatus);
1321 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1327 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1328 * @ap: SATA port associated with target SATA PHY.
1330 * This function issues commands to standard SATA Sxxx
1331 * PHY registers, to wake up the phy (and device), and
1332 * clear any reset condition.
1335 * PCI/etc. bus probe sem.
1338 void __sata_phy_reset(struct ata_port *ap)
1341 unsigned long timeout = jiffies + (HZ * 5);
1343 if (ap->flags & ATA_FLAG_SATA_RESET) {
1344 /* issue phy wake/reset */
1345 scr_write_flush(ap, SCR_CONTROL, 0x301);
1346 /* Couldn't find anything in SATA I/II specs, but
1347 * AHCI-1.1 10.4.2 says at least 1 ms. */
1350 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1352 /* wait for phy to become ready, if necessary */
1355 sstatus = scr_read(ap, SCR_STATUS);
1356 if ((sstatus & 0xf) != 1)
1358 } while (time_before(jiffies, timeout));
1360 /* print link status */
1361 sata_print_link_status(ap);
1363 /* TODO: phy layer with polling, timeouts, etc. */
1364 if (sata_dev_present(ap))
1367 ata_port_disable(ap);
1369 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1372 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1373 ata_port_disable(ap);
1377 ap->cbl = ATA_CBL_SATA;
1381 * sata_phy_reset - Reset SATA bus.
1382 * @ap: SATA port associated with target SATA PHY.
1384 * This function resets the SATA bus, and then probes
1385 * the bus for devices.
1388 * PCI/etc. bus probe sem.
1391 void sata_phy_reset(struct ata_port *ap)
1393 __sata_phy_reset(ap);
1394 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1400 * ata_port_disable - Disable port.
1401 * @ap: Port to be disabled.
1403 * Modify @ap data structure such that the system
1404 * thinks that the entire port is disabled, and should
1405 * never attempt to probe or communicate with devices
1408 * LOCKING: host_set lock, or some other form of
1412 void ata_port_disable(struct ata_port *ap)
1414 ap->device[0].class = ATA_DEV_NONE;
1415 ap->device[1].class = ATA_DEV_NONE;
1416 ap->flags |= ATA_FLAG_PORT_DISABLED;
1420 * This mode timing computation functionality is ported over from
1421 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1424 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1425 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1426 * for PIO 5, which is a nonstandard extension and UDMA6, which
1427 * is currently supported only by Maxtor drives.
1430 static const struct ata_timing ata_timing[] = {
1432 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1433 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1434 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1435 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1437 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1438 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1439 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1441 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1443 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1444 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1445 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1447 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1448 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1449 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1451 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1452 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1453 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1455 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1456 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1457 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1459 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1464 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1465 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1467 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1469 q->setup = EZ(t->setup * 1000, T);
1470 q->act8b = EZ(t->act8b * 1000, T);
1471 q->rec8b = EZ(t->rec8b * 1000, T);
1472 q->cyc8b = EZ(t->cyc8b * 1000, T);
1473 q->active = EZ(t->active * 1000, T);
1474 q->recover = EZ(t->recover * 1000, T);
1475 q->cycle = EZ(t->cycle * 1000, T);
1476 q->udma = EZ(t->udma * 1000, UT);
1479 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1480 struct ata_timing *m, unsigned int what)
1482 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1483 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1484 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1485 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1486 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1487 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1488 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1489 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1492 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1494 const struct ata_timing *t;
1496 for (t = ata_timing; t->mode != speed; t++)
1497 if (t->mode == 0xFF)
1502 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1503 struct ata_timing *t, int T, int UT)
1505 const struct ata_timing *s;
1506 struct ata_timing p;
1512 if (!(s = ata_timing_find_mode(speed)))
1515 memcpy(t, s, sizeof(*s));
1518 * If the drive is an EIDE drive, it can tell us it needs extended
1519 * PIO/MW_DMA cycle timing.
1522 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1523 memset(&p, 0, sizeof(p));
1524 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1525 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1526 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1527 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1528 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1530 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1534 * Convert the timing to bus clock counts.
1537 ata_timing_quantize(t, t, T, UT);
1540 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1541 * S.M.A.R.T * and some other commands. We have to ensure that the
1542 * DMA cycle timing is slower/equal than the fastest PIO timing.
1545 if (speed > XFER_PIO_4) {
1546 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1547 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1551 * Lengthen active & recovery time so that cycle time is correct.
1554 if (t->act8b + t->rec8b < t->cyc8b) {
1555 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1556 t->rec8b = t->cyc8b - t->act8b;
1559 if (t->active + t->recover < t->cycle) {
1560 t->active += (t->cycle - (t->active + t->recover)) / 2;
1561 t->recover = t->cycle - t->active;
1567 static const struct {
1570 } xfer_mode_classes[] = {
1571 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1572 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1573 { ATA_SHIFT_PIO, XFER_PIO_0 },
1576 static u8 base_from_shift(unsigned int shift)
1580 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1581 if (xfer_mode_classes[i].shift == shift)
1582 return xfer_mode_classes[i].base;
1587 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1592 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1595 if (dev->xfer_shift == ATA_SHIFT_PIO)
1596 dev->flags |= ATA_DFLAG_PIO;
1598 ata_dev_set_xfermode(ap, dev);
1600 base = base_from_shift(dev->xfer_shift);
1601 ofs = dev->xfer_mode - base;
1602 idx = ofs + dev->xfer_shift;
1603 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1605 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1606 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1608 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1609 ap->id, dev->devno, xfer_mode_str[idx]);
1612 static int ata_host_set_pio(struct ata_port *ap)
1618 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1621 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1625 base = base_from_shift(ATA_SHIFT_PIO);
1626 xfer_mode = base + x;
1628 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1629 (int)base, (int)xfer_mode, mask, x);
1631 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1632 struct ata_device *dev = &ap->device[i];
1633 if (ata_dev_present(dev)) {
1634 dev->pio_mode = xfer_mode;
1635 dev->xfer_mode = xfer_mode;
1636 dev->xfer_shift = ATA_SHIFT_PIO;
1637 if (ap->ops->set_piomode)
1638 ap->ops->set_piomode(ap, dev);
1645 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1646 unsigned int xfer_shift)
1650 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1651 struct ata_device *dev = &ap->device[i];
1652 if (ata_dev_present(dev)) {
1653 dev->dma_mode = xfer_mode;
1654 dev->xfer_mode = xfer_mode;
1655 dev->xfer_shift = xfer_shift;
1656 if (ap->ops->set_dmamode)
1657 ap->ops->set_dmamode(ap, dev);
1663 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1664 * @ap: port on which timings will be programmed
1666 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1669 * PCI/etc. bus probe sem.
1671 static void ata_set_mode(struct ata_port *ap)
1673 unsigned int xfer_shift;
1677 /* step 1: always set host PIO timings */
1678 rc = ata_host_set_pio(ap);
1682 /* step 2: choose the best data xfer mode */
1683 xfer_mode = xfer_shift = 0;
1684 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1688 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1689 if (xfer_shift != ATA_SHIFT_PIO)
1690 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1692 /* step 4: update devices' xfer mode */
1693 ata_dev_set_mode(ap, &ap->device[0]);
1694 ata_dev_set_mode(ap, &ap->device[1]);
1696 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1699 if (ap->ops->post_set_mode)
1700 ap->ops->post_set_mode(ap);
1705 ata_port_disable(ap);
1709 * ata_tf_to_host - issue ATA taskfile to host controller
1710 * @ap: port to which command is being issued
1711 * @tf: ATA taskfile register set
1713 * Issues ATA taskfile register set to ATA host controller,
1714 * with proper synchronization with interrupt handler and
1718 * spin_lock_irqsave(host_set lock)
1721 static inline void ata_tf_to_host(struct ata_port *ap,
1722 const struct ata_taskfile *tf)
1724 ap->ops->tf_load(ap, tf);
1725 ap->ops->exec_command(ap, tf);
1729 * ata_busy_sleep - sleep until BSY clears, or timeout
1730 * @ap: port containing status register to be polled
1731 * @tmout_pat: impatience timeout
1732 * @tmout: overall timeout
1734 * Sleep until ATA Status register bit BSY clears,
1735 * or a timeout occurs.
1740 unsigned int ata_busy_sleep (struct ata_port *ap,
1741 unsigned long tmout_pat, unsigned long tmout)
1743 unsigned long timer_start, timeout;
1746 status = ata_busy_wait(ap, ATA_BUSY, 300);
1747 timer_start = jiffies;
1748 timeout = timer_start + tmout_pat;
1749 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1751 status = ata_busy_wait(ap, ATA_BUSY, 3);
1754 if (status & ATA_BUSY)
1755 printk(KERN_WARNING "ata%u is slow to respond, "
1756 "please be patient\n", ap->id);
1758 timeout = timer_start + tmout;
1759 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1761 status = ata_chk_status(ap);
1764 if (status & ATA_BUSY) {
1765 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1766 ap->id, tmout / HZ);
1773 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1775 struct ata_ioports *ioaddr = &ap->ioaddr;
1776 unsigned int dev0 = devmask & (1 << 0);
1777 unsigned int dev1 = devmask & (1 << 1);
1778 unsigned long timeout;
1780 /* if device 0 was found in ata_devchk, wait for its
1784 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1786 /* if device 1 was found in ata_devchk, wait for
1787 * register access, then wait for BSY to clear
1789 timeout = jiffies + ATA_TMOUT_BOOT;
1793 ap->ops->dev_select(ap, 1);
1794 if (ap->flags & ATA_FLAG_MMIO) {
1795 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1796 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1798 nsect = inb(ioaddr->nsect_addr);
1799 lbal = inb(ioaddr->lbal_addr);
1801 if ((nsect == 1) && (lbal == 1))
1803 if (time_after(jiffies, timeout)) {
1807 msleep(50); /* give drive a breather */
1810 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1812 /* is all this really necessary? */
1813 ap->ops->dev_select(ap, 0);
1815 ap->ops->dev_select(ap, 1);
1817 ap->ops->dev_select(ap, 0);
1821 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1822 * @ap: Port to reset and probe
1824 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1825 * probe the bus. Not often used these days.
1828 * PCI/etc. bus probe sem.
1829 * Obtains host_set lock.
1833 static unsigned int ata_bus_edd(struct ata_port *ap)
1835 struct ata_taskfile tf;
1836 unsigned long flags;
1838 /* set up execute-device-diag (bus reset) taskfile */
1839 /* also, take interrupts to a known state (disabled) */
1840 DPRINTK("execute-device-diag\n");
1841 ata_tf_init(ap, &tf, 0);
1843 tf.command = ATA_CMD_EDD;
1844 tf.protocol = ATA_PROT_NODATA;
1847 spin_lock_irqsave(&ap->host_set->lock, flags);
1848 ata_tf_to_host(ap, &tf);
1849 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1851 /* spec says at least 2ms. but who knows with those
1852 * crazy ATAPI devices...
1856 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1859 static unsigned int ata_bus_softreset(struct ata_port *ap,
1860 unsigned int devmask)
1862 struct ata_ioports *ioaddr = &ap->ioaddr;
1864 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1866 /* software reset. causes dev0 to be selected */
1867 if (ap->flags & ATA_FLAG_MMIO) {
1868 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1869 udelay(20); /* FIXME: flush */
1870 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1871 udelay(20); /* FIXME: flush */
1872 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1874 outb(ap->ctl, ioaddr->ctl_addr);
1876 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1878 outb(ap->ctl, ioaddr->ctl_addr);
1881 /* spec mandates ">= 2ms" before checking status.
1882 * We wait 150ms, because that was the magic delay used for
1883 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1884 * between when the ATA command register is written, and then
1885 * status is checked. Because waiting for "a while" before
1886 * checking status is fine, post SRST, we perform this magic
1887 * delay here as well.
1891 ata_bus_post_reset(ap, devmask);
1897 * ata_bus_reset - reset host port and associated ATA channel
1898 * @ap: port to reset
1900 * This is typically the first time we actually start issuing
1901 * commands to the ATA channel. We wait for BSY to clear, then
1902 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1903 * result. Determine what devices, if any, are on the channel
1904 * by looking at the device 0/1 error register. Look at the signature
1905 * stored in each device's taskfile registers, to determine if
1906 * the device is ATA or ATAPI.
1909 * PCI/etc. bus probe sem.
1910 * Obtains host_set lock.
1913 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1916 void ata_bus_reset(struct ata_port *ap)
1918 struct ata_ioports *ioaddr = &ap->ioaddr;
1919 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1921 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1923 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1925 /* determine if device 0/1 are present */
1926 if (ap->flags & ATA_FLAG_SATA_RESET)
1929 dev0 = ata_devchk(ap, 0);
1931 dev1 = ata_devchk(ap, 1);
1935 devmask |= (1 << 0);
1937 devmask |= (1 << 1);
1939 /* select device 0 again */
1940 ap->ops->dev_select(ap, 0);
1942 /* issue bus reset */
1943 if (ap->flags & ATA_FLAG_SRST)
1944 rc = ata_bus_softreset(ap, devmask);
1945 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1946 /* set up device control */
1947 if (ap->flags & ATA_FLAG_MMIO)
1948 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1950 outb(ap->ctl, ioaddr->ctl_addr);
1951 rc = ata_bus_edd(ap);
1958 * determine by signature whether we have ATA or ATAPI devices
1960 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1961 if ((slave_possible) && (err != 0x81))
1962 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1964 /* re-enable interrupts */
1965 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1968 /* is double-select really necessary? */
1969 if (ap->device[1].class != ATA_DEV_NONE)
1970 ap->ops->dev_select(ap, 1);
1971 if (ap->device[0].class != ATA_DEV_NONE)
1972 ap->ops->dev_select(ap, 0);
1974 /* if no devices were detected, disable this port */
1975 if ((ap->device[0].class == ATA_DEV_NONE) &&
1976 (ap->device[1].class == ATA_DEV_NONE))
1979 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1980 /* set up device control for ATA_FLAG_SATA_RESET */
1981 if (ap->flags & ATA_FLAG_MMIO)
1982 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1984 outb(ap->ctl, ioaddr->ctl_addr);
1991 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1992 ap->ops->port_disable(ap);
1997 static int sata_phy_resume(struct ata_port *ap)
1999 unsigned long timeout = jiffies + (HZ * 5);
2002 scr_write_flush(ap, SCR_CONTROL, 0x300);
2004 /* Wait for phy to become ready, if necessary. */
2007 sstatus = scr_read(ap, SCR_STATUS);
2008 if ((sstatus & 0xf) != 1)
2010 } while (time_before(jiffies, timeout));
2016 * ata_std_probeinit - initialize probing
2017 * @ap: port to be probed
2019 * @ap is about to be probed. Initialize it. This function is
2020 * to be used as standard callback for ata_drive_probe_reset().
2022 * NOTE!!! Do not use this function as probeinit if a low level
2023 * driver implements only hardreset. Just pass NULL as probeinit
2024 * in that case. Using this function is probably okay but doing
2025 * so makes reset sequence different from the original
2026 * ->phy_reset implementation and Jeff nervous. :-P
2028 extern void ata_std_probeinit(struct ata_port *ap)
2030 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2031 sata_phy_resume(ap);
2032 if (sata_dev_present(ap))
2033 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2038 * ata_std_softreset - reset host port via ATA SRST
2039 * @ap: port to reset
2040 * @verbose: fail verbosely
2041 * @classes: resulting classes of attached devices
2043 * Reset host port using ATA SRST. This function is to be used
2044 * as standard callback for ata_drive_*_reset() functions.
2047 * Kernel thread context (may sleep)
2050 * 0 on success, -errno otherwise.
2052 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2054 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2055 unsigned int devmask = 0, err_mask;
2060 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2061 classes[0] = ATA_DEV_NONE;
2065 /* determine if device 0/1 are present */
2066 if (ata_devchk(ap, 0))
2067 devmask |= (1 << 0);
2068 if (slave_possible && ata_devchk(ap, 1))
2069 devmask |= (1 << 1);
2071 /* select device 0 again */
2072 ap->ops->dev_select(ap, 0);
2074 /* issue bus reset */
2075 DPRINTK("about to softreset, devmask=%x\n", devmask);
2076 err_mask = ata_bus_softreset(ap, devmask);
2079 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2082 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2087 /* determine by signature whether we have ATA or ATAPI devices */
2088 classes[0] = ata_dev_try_classify(ap, 0, &err);
2089 if (slave_possible && err != 0x81)
2090 classes[1] = ata_dev_try_classify(ap, 1, &err);
2093 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2098 * sata_std_hardreset - reset host port via SATA phy reset
2099 * @ap: port to reset
2100 * @verbose: fail verbosely
2101 * @class: resulting class of attached device
2103 * SATA phy-reset host port using DET bits of SControl register.
2104 * This function is to be used as standard callback for
2105 * ata_drive_*_reset().
2108 * Kernel thread context (may sleep)
2111 * 0 on success, -errno otherwise.
2113 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2117 /* Issue phy wake/reset */
2118 scr_write_flush(ap, SCR_CONTROL, 0x301);
2121 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2122 * 10.4.2 says at least 1 ms.
2126 /* Bring phy back */
2127 sata_phy_resume(ap);
2129 /* TODO: phy layer with polling, timeouts, etc. */
2130 if (!sata_dev_present(ap)) {
2131 *class = ATA_DEV_NONE;
2132 DPRINTK("EXIT, link offline\n");
2136 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2138 printk(KERN_ERR "ata%u: COMRESET failed "
2139 "(device not ready)\n", ap->id);
2141 DPRINTK("EXIT, device not ready\n");
2145 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2147 *class = ata_dev_try_classify(ap, 0, NULL);
2149 DPRINTK("EXIT, class=%u\n", *class);
2154 * ata_std_postreset - standard postreset callback
2155 * @ap: the target ata_port
2156 * @classes: classes of attached devices
2158 * This function is invoked after a successful reset. Note that
2159 * the device might have been reset more than once using
2160 * different reset methods before postreset is invoked.
2162 * This function is to be used as standard callback for
2163 * ata_drive_*_reset().
2166 * Kernel thread context (may sleep)
2168 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2172 /* set cable type if it isn't already set */
2173 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2174 ap->cbl = ATA_CBL_SATA;
2176 /* print link status */
2177 if (ap->cbl == ATA_CBL_SATA)
2178 sata_print_link_status(ap);
2180 /* re-enable interrupts */
2181 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2184 /* is double-select really necessary? */
2185 if (classes[0] != ATA_DEV_NONE)
2186 ap->ops->dev_select(ap, 1);
2187 if (classes[1] != ATA_DEV_NONE)
2188 ap->ops->dev_select(ap, 0);
2190 /* bail out if no device is present */
2191 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2192 DPRINTK("EXIT, no device\n");
2196 /* set up device control */
2197 if (ap->ioaddr.ctl_addr) {
2198 if (ap->flags & ATA_FLAG_MMIO)
2199 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2201 outb(ap->ctl, ap->ioaddr.ctl_addr);
2208 * ata_std_probe_reset - standard probe reset method
2209 * @ap: prot to perform probe-reset
2210 * @classes: resulting classes of attached devices
2212 * The stock off-the-shelf ->probe_reset method.
2215 * Kernel thread context (may sleep)
2218 * 0 on success, -errno otherwise.
2220 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2222 ata_reset_fn_t hardreset;
2225 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2226 hardreset = sata_std_hardreset;
2228 return ata_drive_probe_reset(ap, ata_std_probeinit,
2229 ata_std_softreset, hardreset,
2230 ata_std_postreset, classes);
2233 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2234 ata_postreset_fn_t postreset,
2235 unsigned int *classes)
2239 for (i = 0; i < ATA_MAX_DEVICES; i++)
2240 classes[i] = ATA_DEV_UNKNOWN;
2242 rc = reset(ap, 0, classes);
2246 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2247 * is complete and convert all ATA_DEV_UNKNOWN to
2250 for (i = 0; i < ATA_MAX_DEVICES; i++)
2251 if (classes[i] != ATA_DEV_UNKNOWN)
2254 if (i < ATA_MAX_DEVICES)
2255 for (i = 0; i < ATA_MAX_DEVICES; i++)
2256 if (classes[i] == ATA_DEV_UNKNOWN)
2257 classes[i] = ATA_DEV_NONE;
2260 postreset(ap, classes);
2262 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2266 * ata_drive_probe_reset - Perform probe reset with given methods
2267 * @ap: port to reset
2268 * @probeinit: probeinit method (can be NULL)
2269 * @softreset: softreset method (can be NULL)
2270 * @hardreset: hardreset method (can be NULL)
2271 * @postreset: postreset method (can be NULL)
2272 * @classes: resulting classes of attached devices
2274 * Reset the specified port and classify attached devices using
2275 * given methods. This function prefers softreset but tries all
2276 * possible reset sequences to reset and classify devices. This
2277 * function is intended to be used for constructing ->probe_reset
2278 * callback by low level drivers.
2280 * Reset methods should follow the following rules.
2282 * - Return 0 on sucess, -errno on failure.
2283 * - If classification is supported, fill classes[] with
2284 * recognized class codes.
2285 * - If classification is not supported, leave classes[] alone.
2286 * - If verbose is non-zero, print error message on failure;
2287 * otherwise, shut up.
2290 * Kernel thread context (may sleep)
2293 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2294 * if classification fails, and any error code from reset
2297 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2298 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2299 ata_postreset_fn_t postreset, unsigned int *classes)
2307 rc = do_probe_reset(ap, softreset, postreset, classes);
2315 rc = do_probe_reset(ap, hardreset, postreset, classes);
2316 if (rc == 0 || rc != -ENODEV)
2320 rc = do_probe_reset(ap, softreset, postreset, classes);
2325 static void ata_pr_blacklisted(const struct ata_port *ap,
2326 const struct ata_device *dev)
2328 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2329 ap->id, dev->devno);
2332 static const char * const ata_dma_blacklist [] = {
2351 "Toshiba CD-ROM XM-6202B",
2352 "TOSHIBA CD-ROM XM-1702BC",
2354 "E-IDE CD-ROM CR-840",
2357 "SAMSUNG CD-ROM SC-148C",
2358 "SAMSUNG CD-ROM SC",
2360 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2364 static int ata_dma_blacklisted(const struct ata_device *dev)
2366 unsigned char model_num[41];
2369 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2371 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2372 if (!strcmp(ata_dma_blacklist[i], model_num))
2378 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2380 const struct ata_device *master, *slave;
2383 master = &ap->device[0];
2384 slave = &ap->device[1];
2386 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2388 if (shift == ATA_SHIFT_UDMA) {
2389 mask = ap->udma_mask;
2390 if (ata_dev_present(master)) {
2391 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2392 if (ata_dma_blacklisted(master)) {
2394 ata_pr_blacklisted(ap, master);
2397 if (ata_dev_present(slave)) {
2398 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2399 if (ata_dma_blacklisted(slave)) {
2401 ata_pr_blacklisted(ap, slave);
2405 else if (shift == ATA_SHIFT_MWDMA) {
2406 mask = ap->mwdma_mask;
2407 if (ata_dev_present(master)) {
2408 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2409 if (ata_dma_blacklisted(master)) {
2411 ata_pr_blacklisted(ap, master);
2414 if (ata_dev_present(slave)) {
2415 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2416 if (ata_dma_blacklisted(slave)) {
2418 ata_pr_blacklisted(ap, slave);
2422 else if (shift == ATA_SHIFT_PIO) {
2423 mask = ap->pio_mask;
2424 if (ata_dev_present(master)) {
2425 /* spec doesn't return explicit support for
2426 * PIO0-2, so we fake it
2428 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2433 if (ata_dev_present(slave)) {
2434 /* spec doesn't return explicit support for
2435 * PIO0-2, so we fake it
2437 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2444 mask = 0xffffffff; /* shut up compiler warning */
2451 /* find greatest bit */
2452 static int fgb(u32 bitmap)
2457 for (i = 0; i < 32; i++)
2458 if (bitmap & (1 << i))
2465 * ata_choose_xfer_mode - attempt to find best transfer mode
2466 * @ap: Port for which an xfer mode will be selected
2467 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2468 * @xfer_shift_out: (output) bit shift that selects this mode
2470 * Based on host and device capabilities, determine the
2471 * maximum transfer mode that is amenable to all.
2474 * PCI/etc. bus probe sem.
2477 * Zero on success, negative on error.
2480 static int ata_choose_xfer_mode(const struct ata_port *ap,
2482 unsigned int *xfer_shift_out)
2484 unsigned int mask, shift;
2487 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2488 shift = xfer_mode_classes[i].shift;
2489 mask = ata_get_mode_mask(ap, shift);
2493 *xfer_mode_out = xfer_mode_classes[i].base + x;
2494 *xfer_shift_out = shift;
2503 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2504 * @ap: Port associated with device @dev
2505 * @dev: Device to which command will be sent
2507 * Issue SET FEATURES - XFER MODE command to device @dev
2511 * PCI/etc. bus probe sem.
2514 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2516 struct ata_taskfile tf;
2518 /* set up set-features taskfile */
2519 DPRINTK("set features - xfer mode\n");
2521 ata_tf_init(ap, &tf, dev->devno);
2522 tf.command = ATA_CMD_SET_FEATURES;
2523 tf.feature = SETFEATURES_XFER;
2524 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2525 tf.protocol = ATA_PROT_NODATA;
2526 tf.nsect = dev->xfer_mode;
2528 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2529 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2531 ata_port_disable(ap);
2538 * ata_dev_init_params - Issue INIT DEV PARAMS command
2539 * @ap: Port associated with device @dev
2540 * @dev: Device to which command will be sent
2543 * Kernel thread context (may sleep)
2546 * 0 on success, AC_ERR_* mask otherwise.
2549 static unsigned int ata_dev_init_params(struct ata_port *ap,
2550 struct ata_device *dev)
2552 struct ata_taskfile tf;
2553 unsigned int err_mask;
2554 u16 sectors = dev->id[6];
2555 u16 heads = dev->id[3];
2557 /* Number of sectors per track 1-255. Number of heads 1-16 */
2558 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2561 /* set up init dev params taskfile */
2562 DPRINTK("init dev params \n");
2564 ata_tf_init(ap, &tf, dev->devno);
2565 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2566 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2567 tf.protocol = ATA_PROT_NODATA;
2569 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2571 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2573 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2578 * ata_sg_clean - Unmap DMA memory associated with command
2579 * @qc: Command containing DMA memory to be released
2581 * Unmap all mapped DMA memory associated with this command.
2584 * spin_lock_irqsave(host_set lock)
2587 static void ata_sg_clean(struct ata_queued_cmd *qc)
2589 struct ata_port *ap = qc->ap;
2590 struct scatterlist *sg = qc->__sg;
2591 int dir = qc->dma_dir;
2592 void *pad_buf = NULL;
2594 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2595 WARN_ON(sg == NULL);
2597 if (qc->flags & ATA_QCFLAG_SINGLE)
2598 WARN_ON(qc->n_elem > 1);
2600 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2602 /* if we padded the buffer out to 32-bit bound, and data
2603 * xfer direction is from-device, we must copy from the
2604 * pad buffer back into the supplied buffer
2606 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2607 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2609 if (qc->flags & ATA_QCFLAG_SG) {
2611 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2612 /* restore last sg */
2613 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2615 struct scatterlist *psg = &qc->pad_sgent;
2616 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2617 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2618 kunmap_atomic(addr, KM_IRQ0);
2622 dma_unmap_single(ap->host_set->dev,
2623 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2626 sg->length += qc->pad_len;
2628 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2629 pad_buf, qc->pad_len);
2632 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2637 * ata_fill_sg - Fill PCI IDE PRD table
2638 * @qc: Metadata associated with taskfile to be transferred
2640 * Fill PCI IDE PRD (scatter-gather) table with segments
2641 * associated with the current disk command.
2644 * spin_lock_irqsave(host_set lock)
2647 static void ata_fill_sg(struct ata_queued_cmd *qc)
2649 struct ata_port *ap = qc->ap;
2650 struct scatterlist *sg;
2653 WARN_ON(qc->__sg == NULL);
2654 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2657 ata_for_each_sg(sg, qc) {
2661 /* determine if physical DMA addr spans 64K boundary.
2662 * Note h/w doesn't support 64-bit, so we unconditionally
2663 * truncate dma_addr_t to u32.
2665 addr = (u32) sg_dma_address(sg);
2666 sg_len = sg_dma_len(sg);
2669 offset = addr & 0xffff;
2671 if ((offset + sg_len) > 0x10000)
2672 len = 0x10000 - offset;
2674 ap->prd[idx].addr = cpu_to_le32(addr);
2675 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2676 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2685 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2688 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2689 * @qc: Metadata associated with taskfile to check
2691 * Allow low-level driver to filter ATA PACKET commands, returning
2692 * a status indicating whether or not it is OK to use DMA for the
2693 * supplied PACKET command.
2696 * spin_lock_irqsave(host_set lock)
2698 * RETURNS: 0 when ATAPI DMA can be used
2701 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2703 struct ata_port *ap = qc->ap;
2704 int rc = 0; /* Assume ATAPI DMA is OK by default */
2706 if (ap->ops->check_atapi_dma)
2707 rc = ap->ops->check_atapi_dma(qc);
2712 * ata_qc_prep - Prepare taskfile for submission
2713 * @qc: Metadata associated with taskfile to be prepared
2715 * Prepare ATA taskfile for submission.
2718 * spin_lock_irqsave(host_set lock)
2720 void ata_qc_prep(struct ata_queued_cmd *qc)
2722 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2729 * ata_sg_init_one - Associate command with memory buffer
2730 * @qc: Command to be associated
2731 * @buf: Memory buffer
2732 * @buflen: Length of memory buffer, in bytes.
2734 * Initialize the data-related elements of queued_cmd @qc
2735 * to point to a single memory buffer, @buf of byte length @buflen.
2738 * spin_lock_irqsave(host_set lock)
2741 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2743 struct scatterlist *sg;
2745 qc->flags |= ATA_QCFLAG_SINGLE;
2747 memset(&qc->sgent, 0, sizeof(qc->sgent));
2748 qc->__sg = &qc->sgent;
2750 qc->orig_n_elem = 1;
2754 sg_init_one(sg, buf, buflen);
2758 * ata_sg_init - Associate command with scatter-gather table.
2759 * @qc: Command to be associated
2760 * @sg: Scatter-gather table.
2761 * @n_elem: Number of elements in s/g table.
2763 * Initialize the data-related elements of queued_cmd @qc
2764 * to point to a scatter-gather table @sg, containing @n_elem
2768 * spin_lock_irqsave(host_set lock)
2771 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2772 unsigned int n_elem)
2774 qc->flags |= ATA_QCFLAG_SG;
2776 qc->n_elem = n_elem;
2777 qc->orig_n_elem = n_elem;
2781 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2782 * @qc: Command with memory buffer to be mapped.
2784 * DMA-map the memory buffer associated with queued_cmd @qc.
2787 * spin_lock_irqsave(host_set lock)
2790 * Zero on success, negative on error.
2793 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2795 struct ata_port *ap = qc->ap;
2796 int dir = qc->dma_dir;
2797 struct scatterlist *sg = qc->__sg;
2798 dma_addr_t dma_address;
2801 /* we must lengthen transfers to end on a 32-bit boundary */
2802 qc->pad_len = sg->length & 3;
2804 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2805 struct scatterlist *psg = &qc->pad_sgent;
2807 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2809 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2811 if (qc->tf.flags & ATA_TFLAG_WRITE)
2812 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2815 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2816 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2818 sg->length -= qc->pad_len;
2819 if (sg->length == 0)
2822 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2823 sg->length, qc->pad_len);
2831 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2833 if (dma_mapping_error(dma_address)) {
2835 sg->length += qc->pad_len;
2839 sg_dma_address(sg) = dma_address;
2840 sg_dma_len(sg) = sg->length;
2843 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2844 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2850 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2851 * @qc: Command with scatter-gather table to be mapped.
2853 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2856 * spin_lock_irqsave(host_set lock)
2859 * Zero on success, negative on error.
2863 static int ata_sg_setup(struct ata_queued_cmd *qc)
2865 struct ata_port *ap = qc->ap;
2866 struct scatterlist *sg = qc->__sg;
2867 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2868 int n_elem, pre_n_elem, dir, trim_sg = 0;
2870 VPRINTK("ENTER, ata%u\n", ap->id);
2871 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
2873 /* we must lengthen transfers to end on a 32-bit boundary */
2874 qc->pad_len = lsg->length & 3;
2876 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2877 struct scatterlist *psg = &qc->pad_sgent;
2878 unsigned int offset;
2880 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2882 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2885 * psg->page/offset are used to copy to-be-written
2886 * data in this function or read data in ata_sg_clean.
2888 offset = lsg->offset + lsg->length - qc->pad_len;
2889 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2890 psg->offset = offset_in_page(offset);
2892 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2893 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2894 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2895 kunmap_atomic(addr, KM_IRQ0);
2898 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2899 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2901 lsg->length -= qc->pad_len;
2902 if (lsg->length == 0)
2905 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2906 qc->n_elem - 1, lsg->length, qc->pad_len);
2909 pre_n_elem = qc->n_elem;
2910 if (trim_sg && pre_n_elem)
2919 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2921 /* restore last sg */
2922 lsg->length += qc->pad_len;
2926 DPRINTK("%d sg elements mapped\n", n_elem);
2929 qc->n_elem = n_elem;
2935 * ata_poll_qc_complete - turn irq back on and finish qc
2936 * @qc: Command to complete
2937 * @err_mask: ATA status register content
2940 * None. (grabs host lock)
2943 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2945 struct ata_port *ap = qc->ap;
2946 unsigned long flags;
2948 spin_lock_irqsave(&ap->host_set->lock, flags);
2949 ap->flags &= ~ATA_FLAG_NOINTR;
2951 ata_qc_complete(qc);
2952 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2956 * ata_pio_poll - poll using PIO, depending on current state
2957 * @ap: the target ata_port
2960 * None. (executing in kernel thread context)
2963 * timeout value to use
2966 static unsigned long ata_pio_poll(struct ata_port *ap)
2968 struct ata_queued_cmd *qc;
2970 unsigned int poll_state = HSM_ST_UNKNOWN;
2971 unsigned int reg_state = HSM_ST_UNKNOWN;
2973 qc = ata_qc_from_tag(ap, ap->active_tag);
2974 WARN_ON(qc == NULL);
2976 switch (ap->hsm_task_state) {
2979 poll_state = HSM_ST_POLL;
2983 case HSM_ST_LAST_POLL:
2984 poll_state = HSM_ST_LAST_POLL;
2985 reg_state = HSM_ST_LAST;
2992 status = ata_chk_status(ap);
2993 if (status & ATA_BUSY) {
2994 if (time_after(jiffies, ap->pio_task_timeout)) {
2995 qc->err_mask |= AC_ERR_TIMEOUT;
2996 ap->hsm_task_state = HSM_ST_TMOUT;
2999 ap->hsm_task_state = poll_state;
3000 return ATA_SHORT_PAUSE;
3003 ap->hsm_task_state = reg_state;
3008 * ata_pio_complete - check if drive is busy or idle
3009 * @ap: the target ata_port
3012 * None. (executing in kernel thread context)
3015 * Non-zero if qc completed, zero otherwise.
3018 static int ata_pio_complete (struct ata_port *ap)
3020 struct ata_queued_cmd *qc;
3024 * This is purely heuristic. This is a fast path. Sometimes when
3025 * we enter, BSY will be cleared in a chk-status or two. If not,
3026 * the drive is probably seeking or something. Snooze for a couple
3027 * msecs, then chk-status again. If still busy, fall back to
3028 * HSM_ST_POLL state.
3030 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3031 if (drv_stat & ATA_BUSY) {
3033 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3034 if (drv_stat & ATA_BUSY) {
3035 ap->hsm_task_state = HSM_ST_LAST_POLL;
3036 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3041 qc = ata_qc_from_tag(ap, ap->active_tag);
3042 WARN_ON(qc == NULL);
3044 drv_stat = ata_wait_idle(ap);
3045 if (!ata_ok(drv_stat)) {
3046 qc->err_mask |= __ac_err_mask(drv_stat);
3047 ap->hsm_task_state = HSM_ST_ERR;
3051 ap->hsm_task_state = HSM_ST_IDLE;
3053 WARN_ON(qc->err_mask);
3054 ata_poll_qc_complete(qc);
3056 /* another command may start at this point */
3063 * swap_buf_le16 - swap halves of 16-bit words in place
3064 * @buf: Buffer to swap
3065 * @buf_words: Number of 16-bit words in buffer.
3067 * Swap halves of 16-bit words if needed to convert from
3068 * little-endian byte order to native cpu byte order, or
3072 * Inherited from caller.
3074 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3079 for (i = 0; i < buf_words; i++)
3080 buf[i] = le16_to_cpu(buf[i]);
3081 #endif /* __BIG_ENDIAN */
3085 * ata_mmio_data_xfer - Transfer data by MMIO
3086 * @ap: port to read/write
3088 * @buflen: buffer length
3089 * @write_data: read/write
3091 * Transfer data from/to the device data register by MMIO.
3094 * Inherited from caller.
3097 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3098 unsigned int buflen, int write_data)
3101 unsigned int words = buflen >> 1;
3102 u16 *buf16 = (u16 *) buf;
3103 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3105 /* Transfer multiple of 2 bytes */
3107 for (i = 0; i < words; i++)
3108 writew(le16_to_cpu(buf16[i]), mmio);
3110 for (i = 0; i < words; i++)
3111 buf16[i] = cpu_to_le16(readw(mmio));
3114 /* Transfer trailing 1 byte, if any. */
3115 if (unlikely(buflen & 0x01)) {
3116 u16 align_buf[1] = { 0 };
3117 unsigned char *trailing_buf = buf + buflen - 1;
3120 memcpy(align_buf, trailing_buf, 1);
3121 writew(le16_to_cpu(align_buf[0]), mmio);
3123 align_buf[0] = cpu_to_le16(readw(mmio));
3124 memcpy(trailing_buf, align_buf, 1);
3130 * ata_pio_data_xfer - Transfer data by PIO
3131 * @ap: port to read/write
3133 * @buflen: buffer length
3134 * @write_data: read/write
3136 * Transfer data from/to the device data register by PIO.
3139 * Inherited from caller.
3142 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3143 unsigned int buflen, int write_data)
3145 unsigned int words = buflen >> 1;
3147 /* Transfer multiple of 2 bytes */
3149 outsw(ap->ioaddr.data_addr, buf, words);
3151 insw(ap->ioaddr.data_addr, buf, words);
3153 /* Transfer trailing 1 byte, if any. */
3154 if (unlikely(buflen & 0x01)) {
3155 u16 align_buf[1] = { 0 };
3156 unsigned char *trailing_buf = buf + buflen - 1;
3159 memcpy(align_buf, trailing_buf, 1);
3160 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3162 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3163 memcpy(trailing_buf, align_buf, 1);
3169 * ata_data_xfer - Transfer data from/to the data register.
3170 * @ap: port to read/write
3172 * @buflen: buffer length
3173 * @do_write: read/write
3175 * Transfer data from/to the device data register.
3178 * Inherited from caller.
3181 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3182 unsigned int buflen, int do_write)
3184 /* Make the crap hardware pay the costs not the good stuff */
3185 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3186 unsigned long flags;
3187 local_irq_save(flags);
3188 if (ap->flags & ATA_FLAG_MMIO)
3189 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3191 ata_pio_data_xfer(ap, buf, buflen, do_write);
3192 local_irq_restore(flags);
3194 if (ap->flags & ATA_FLAG_MMIO)
3195 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3197 ata_pio_data_xfer(ap, buf, buflen, do_write);
3202 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3203 * @qc: Command on going
3205 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3208 * Inherited from caller.
3211 static void ata_pio_sector(struct ata_queued_cmd *qc)
3213 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3214 struct scatterlist *sg = qc->__sg;
3215 struct ata_port *ap = qc->ap;
3217 unsigned int offset;
3220 if (qc->cursect == (qc->nsect - 1))
3221 ap->hsm_task_state = HSM_ST_LAST;
3223 page = sg[qc->cursg].page;
3224 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3226 /* get the current page and offset */
3227 page = nth_page(page, (offset >> PAGE_SHIFT));
3228 offset %= PAGE_SIZE;
3230 buf = kmap(page) + offset;
3235 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3240 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3242 /* do the actual data transfer */
3243 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3244 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3250 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3251 * @qc: Command on going
3252 * @bytes: number of bytes
3254 * Transfer Transfer data from/to the ATAPI device.
3257 * Inherited from caller.
3261 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3263 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3264 struct scatterlist *sg = qc->__sg;
3265 struct ata_port *ap = qc->ap;
3268 unsigned int offset, count;
3270 if (qc->curbytes + bytes >= qc->nbytes)
3271 ap->hsm_task_state = HSM_ST_LAST;
3274 if (unlikely(qc->cursg >= qc->n_elem)) {
3276 * The end of qc->sg is reached and the device expects
3277 * more data to transfer. In order not to overrun qc->sg
3278 * and fulfill length specified in the byte count register,
3279 * - for read case, discard trailing data from the device
3280 * - for write case, padding zero data to the device
3282 u16 pad_buf[1] = { 0 };
3283 unsigned int words = bytes >> 1;
3286 if (words) /* warning if bytes > 1 */
3287 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3290 for (i = 0; i < words; i++)
3291 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3293 ap->hsm_task_state = HSM_ST_LAST;
3297 sg = &qc->__sg[qc->cursg];
3300 offset = sg->offset + qc->cursg_ofs;
3302 /* get the current page and offset */
3303 page = nth_page(page, (offset >> PAGE_SHIFT));
3304 offset %= PAGE_SIZE;
3306 /* don't overrun current sg */
3307 count = min(sg->length - qc->cursg_ofs, bytes);
3309 /* don't cross page boundaries */
3310 count = min(count, (unsigned int)PAGE_SIZE - offset);
3312 buf = kmap(page) + offset;
3315 qc->curbytes += count;
3316 qc->cursg_ofs += count;
3318 if (qc->cursg_ofs == sg->length) {
3323 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3325 /* do the actual data transfer */
3326 ata_data_xfer(ap, buf, count, do_write);
3335 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3336 * @qc: Command on going
3338 * Transfer Transfer data from/to the ATAPI device.
3341 * Inherited from caller.
3344 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3346 struct ata_port *ap = qc->ap;
3347 struct ata_device *dev = qc->dev;
3348 unsigned int ireason, bc_lo, bc_hi, bytes;
3349 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3351 ap->ops->tf_read(ap, &qc->tf);
3352 ireason = qc->tf.nsect;
3353 bc_lo = qc->tf.lbam;
3354 bc_hi = qc->tf.lbah;
3355 bytes = (bc_hi << 8) | bc_lo;
3357 /* shall be cleared to zero, indicating xfer of data */
3358 if (ireason & (1 << 0))
3361 /* make sure transfer direction matches expected */
3362 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3363 if (do_write != i_write)
3366 __atapi_pio_bytes(qc, bytes);
3371 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3372 ap->id, dev->devno);
3373 qc->err_mask |= AC_ERR_HSM;
3374 ap->hsm_task_state = HSM_ST_ERR;
3378 * ata_pio_block - start PIO on a block
3379 * @ap: the target ata_port
3382 * None. (executing in kernel thread context)
3385 static void ata_pio_block(struct ata_port *ap)
3387 struct ata_queued_cmd *qc;
3391 * This is purely heuristic. This is a fast path.
3392 * Sometimes when we enter, BSY will be cleared in
3393 * a chk-status or two. If not, the drive is probably seeking
3394 * or something. Snooze for a couple msecs, then
3395 * chk-status again. If still busy, fall back to
3396 * HSM_ST_POLL state.
3398 status = ata_busy_wait(ap, ATA_BUSY, 5);
3399 if (status & ATA_BUSY) {
3401 status = ata_busy_wait(ap, ATA_BUSY, 10);
3402 if (status & ATA_BUSY) {
3403 ap->hsm_task_state = HSM_ST_POLL;
3404 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3409 qc = ata_qc_from_tag(ap, ap->active_tag);
3410 WARN_ON(qc == NULL);
3413 if (status & (ATA_ERR | ATA_DF)) {
3414 qc->err_mask |= AC_ERR_DEV;
3415 ap->hsm_task_state = HSM_ST_ERR;
3419 /* transfer data if any */
3420 if (is_atapi_taskfile(&qc->tf)) {
3421 /* DRQ=0 means no more data to transfer */
3422 if ((status & ATA_DRQ) == 0) {
3423 ap->hsm_task_state = HSM_ST_LAST;
3427 atapi_pio_bytes(qc);
3429 /* handle BSY=0, DRQ=0 as error */
3430 if ((status & ATA_DRQ) == 0) {
3431 qc->err_mask |= AC_ERR_HSM;
3432 ap->hsm_task_state = HSM_ST_ERR;
3440 static void ata_pio_error(struct ata_port *ap)
3442 struct ata_queued_cmd *qc;
3444 qc = ata_qc_from_tag(ap, ap->active_tag);
3445 WARN_ON(qc == NULL);
3447 if (qc->tf.command != ATA_CMD_PACKET)
3448 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3450 /* make sure qc->err_mask is available to
3451 * know what's wrong and recover
3453 WARN_ON(qc->err_mask == 0);
3455 ap->hsm_task_state = HSM_ST_IDLE;
3457 ata_poll_qc_complete(qc);
3460 static void ata_pio_task(void *_data)
3462 struct ata_port *ap = _data;
3463 unsigned long timeout;
3470 switch (ap->hsm_task_state) {
3479 qc_completed = ata_pio_complete(ap);
3483 case HSM_ST_LAST_POLL:
3484 timeout = ata_pio_poll(ap);
3494 ata_queue_delayed_pio_task(ap, timeout);
3495 else if (!qc_completed)
3500 * ata_qc_timeout - Handle timeout of queued command
3501 * @qc: Command that timed out
3503 * Some part of the kernel (currently, only the SCSI layer)
3504 * has noticed that the active command on port @ap has not
3505 * completed after a specified length of time. Handle this
3506 * condition by disabling DMA (if necessary) and completing
3507 * transactions, with error if necessary.
3509 * This also handles the case of the "lost interrupt", where
3510 * for some reason (possibly hardware bug, possibly driver bug)
3511 * an interrupt was not delivered to the driver, even though the
3512 * transaction completed successfully.
3515 * Inherited from SCSI layer (none, can sleep)
3518 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3520 struct ata_port *ap = qc->ap;
3521 struct ata_host_set *host_set = ap->host_set;
3522 u8 host_stat = 0, drv_stat;
3523 unsigned long flags;
3527 ata_flush_pio_tasks(ap);
3528 ap->hsm_task_state = HSM_ST_IDLE;
3530 spin_lock_irqsave(&host_set->lock, flags);
3532 switch (qc->tf.protocol) {
3535 case ATA_PROT_ATAPI_DMA:
3536 host_stat = ap->ops->bmdma_status(ap);
3538 /* before we do anything else, clear DMA-Start bit */
3539 ap->ops->bmdma_stop(qc);
3545 drv_stat = ata_chk_status(ap);
3547 /* ack bmdma irq events */
3548 ap->ops->irq_clear(ap);
3550 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3551 ap->id, qc->tf.command, drv_stat, host_stat);
3553 /* complete taskfile transaction */
3554 qc->err_mask |= ac_err_mask(drv_stat);
3558 spin_unlock_irqrestore(&host_set->lock, flags);
3560 ata_eh_qc_complete(qc);
3566 * ata_eng_timeout - Handle timeout of queued command
3567 * @ap: Port on which timed-out command is active
3569 * Some part of the kernel (currently, only the SCSI layer)
3570 * has noticed that the active command on port @ap has not
3571 * completed after a specified length of time. Handle this
3572 * condition by disabling DMA (if necessary) and completing
3573 * transactions, with error if necessary.
3575 * This also handles the case of the "lost interrupt", where
3576 * for some reason (possibly hardware bug, possibly driver bug)
3577 * an interrupt was not delivered to the driver, even though the
3578 * transaction completed successfully.
3581 * Inherited from SCSI layer (none, can sleep)
3584 void ata_eng_timeout(struct ata_port *ap)
3588 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3594 * ata_qc_new - Request an available ATA command, for queueing
3595 * @ap: Port associated with device @dev
3596 * @dev: Device from whom we request an available command structure
3602 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3604 struct ata_queued_cmd *qc = NULL;
3607 for (i = 0; i < ATA_MAX_QUEUE; i++)
3608 if (!test_and_set_bit(i, &ap->qactive)) {
3609 qc = ata_qc_from_tag(ap, i);
3620 * ata_qc_new_init - Request an available ATA command, and initialize it
3621 * @ap: Port associated with device @dev
3622 * @dev: Device from whom we request an available command structure
3628 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3629 struct ata_device *dev)
3631 struct ata_queued_cmd *qc;
3633 qc = ata_qc_new(ap);
3646 * ata_qc_free - free unused ata_queued_cmd
3647 * @qc: Command to complete
3649 * Designed to free unused ata_queued_cmd object
3650 * in case something prevents using it.
3653 * spin_lock_irqsave(host_set lock)
3655 void ata_qc_free(struct ata_queued_cmd *qc)
3657 struct ata_port *ap = qc->ap;
3660 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3664 if (likely(ata_tag_valid(tag))) {
3665 if (tag == ap->active_tag)
3666 ap->active_tag = ATA_TAG_POISON;
3667 qc->tag = ATA_TAG_POISON;
3668 clear_bit(tag, &ap->qactive);
3672 void __ata_qc_complete(struct ata_queued_cmd *qc)
3674 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3675 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3677 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3680 /* atapi: mark qc as inactive to prevent the interrupt handler
3681 * from completing the command twice later, before the error handler
3682 * is called. (when rc != 0 and atapi request sense is needed)
3684 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3686 /* call completion callback */
3687 qc->complete_fn(qc);
3690 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3692 struct ata_port *ap = qc->ap;
3694 switch (qc->tf.protocol) {
3696 case ATA_PROT_ATAPI_DMA:
3699 case ATA_PROT_ATAPI:
3701 case ATA_PROT_PIO_MULT:
3702 if (ap->flags & ATA_FLAG_PIO_DMA)
3715 * ata_qc_issue - issue taskfile to device
3716 * @qc: command to issue to device
3718 * Prepare an ATA command to submission to device.
3719 * This includes mapping the data into a DMA-able
3720 * area, filling in the S/G table, and finally
3721 * writing the taskfile to hardware, starting the command.
3724 * spin_lock_irqsave(host_set lock)
3727 * Zero on success, AC_ERR_* mask on failure
3730 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3732 struct ata_port *ap = qc->ap;
3734 if (ata_should_dma_map(qc)) {
3735 if (qc->flags & ATA_QCFLAG_SG) {
3736 if (ata_sg_setup(qc))
3738 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3739 if (ata_sg_setup_one(qc))
3743 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3746 ap->ops->qc_prep(qc);
3748 qc->ap->active_tag = qc->tag;
3749 qc->flags |= ATA_QCFLAG_ACTIVE;
3751 return ap->ops->qc_issue(qc);
3754 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3755 return AC_ERR_SYSTEM;
3760 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3761 * @qc: command to issue to device
3763 * Using various libata functions and hooks, this function
3764 * starts an ATA command. ATA commands are grouped into
3765 * classes called "protocols", and issuing each type of protocol
3766 * is slightly different.
3768 * May be used as the qc_issue() entry in ata_port_operations.
3771 * spin_lock_irqsave(host_set lock)
3774 * Zero on success, AC_ERR_* mask on failure
3777 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3779 struct ata_port *ap = qc->ap;
3781 ata_dev_select(ap, qc->dev->devno, 1, 0);
3783 switch (qc->tf.protocol) {
3784 case ATA_PROT_NODATA:
3785 ata_tf_to_host(ap, &qc->tf);
3789 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3790 ap->ops->bmdma_setup(qc); /* set up bmdma */
3791 ap->ops->bmdma_start(qc); /* initiate bmdma */
3794 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3795 ata_qc_set_polling(qc);
3796 ata_tf_to_host(ap, &qc->tf);
3797 ap->hsm_task_state = HSM_ST;
3798 ata_queue_pio_task(ap);
3801 case ATA_PROT_ATAPI:
3802 ata_qc_set_polling(qc);
3803 ata_tf_to_host(ap, &qc->tf);
3804 ata_queue_packet_task(ap);
3807 case ATA_PROT_ATAPI_NODATA:
3808 ap->flags |= ATA_FLAG_NOINTR;
3809 ata_tf_to_host(ap, &qc->tf);
3810 ata_queue_packet_task(ap);
3813 case ATA_PROT_ATAPI_DMA:
3814 ap->flags |= ATA_FLAG_NOINTR;
3815 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3816 ap->ops->bmdma_setup(qc); /* set up bmdma */
3817 ata_queue_packet_task(ap);
3822 return AC_ERR_SYSTEM;
3829 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3830 * @qc: Info associated with this ATA transaction.
3833 * spin_lock_irqsave(host_set lock)
3836 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3838 struct ata_port *ap = qc->ap;
3839 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3841 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3843 /* load PRD table addr. */
3844 mb(); /* make sure PRD table writes are visible to controller */
3845 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3847 /* specify data direction, triple-check start bit is clear */
3848 dmactl = readb(mmio + ATA_DMA_CMD);
3849 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3851 dmactl |= ATA_DMA_WR;
3852 writeb(dmactl, mmio + ATA_DMA_CMD);
3854 /* issue r/w command */
3855 ap->ops->exec_command(ap, &qc->tf);
3859 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3860 * @qc: Info associated with this ATA transaction.
3863 * spin_lock_irqsave(host_set lock)
3866 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3868 struct ata_port *ap = qc->ap;
3869 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3872 /* start host DMA transaction */
3873 dmactl = readb(mmio + ATA_DMA_CMD);
3874 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3876 /* Strictly, one may wish to issue a readb() here, to
3877 * flush the mmio write. However, control also passes
3878 * to the hardware at this point, and it will interrupt
3879 * us when we are to resume control. So, in effect,
3880 * we don't care when the mmio write flushes.
3881 * Further, a read of the DMA status register _immediately_
3882 * following the write may not be what certain flaky hardware
3883 * is expected, so I think it is best to not add a readb()
3884 * without first all the MMIO ATA cards/mobos.
3885 * Or maybe I'm just being paranoid.
3890 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3891 * @qc: Info associated with this ATA transaction.
3894 * spin_lock_irqsave(host_set lock)
3897 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3899 struct ata_port *ap = qc->ap;
3900 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3903 /* load PRD table addr. */
3904 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3906 /* specify data direction, triple-check start bit is clear */
3907 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3908 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3910 dmactl |= ATA_DMA_WR;
3911 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3913 /* issue r/w command */
3914 ap->ops->exec_command(ap, &qc->tf);
3918 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3919 * @qc: Info associated with this ATA transaction.
3922 * spin_lock_irqsave(host_set lock)
3925 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3927 struct ata_port *ap = qc->ap;
3930 /* start host DMA transaction */
3931 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3932 outb(dmactl | ATA_DMA_START,
3933 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3938 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3939 * @qc: Info associated with this ATA transaction.
3941 * Writes the ATA_DMA_START flag to the DMA command register.
3943 * May be used as the bmdma_start() entry in ata_port_operations.
3946 * spin_lock_irqsave(host_set lock)
3948 void ata_bmdma_start(struct ata_queued_cmd *qc)
3950 if (qc->ap->flags & ATA_FLAG_MMIO)
3951 ata_bmdma_start_mmio(qc);
3953 ata_bmdma_start_pio(qc);
3958 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3959 * @qc: Info associated with this ATA transaction.
3961 * Writes address of PRD table to device's PRD Table Address
3962 * register, sets the DMA control register, and calls
3963 * ops->exec_command() to start the transfer.
3965 * May be used as the bmdma_setup() entry in ata_port_operations.
3968 * spin_lock_irqsave(host_set lock)
3970 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3972 if (qc->ap->flags & ATA_FLAG_MMIO)
3973 ata_bmdma_setup_mmio(qc);
3975 ata_bmdma_setup_pio(qc);
3980 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3981 * @ap: Port associated with this ATA transaction.
3983 * Clear interrupt and error flags in DMA status register.
3985 * May be used as the irq_clear() entry in ata_port_operations.
3988 * spin_lock_irqsave(host_set lock)
3991 void ata_bmdma_irq_clear(struct ata_port *ap)
3993 if (ap->flags & ATA_FLAG_MMIO) {
3994 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3995 writeb(readb(mmio), mmio);
3997 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3998 outb(inb(addr), addr);
4005 * ata_bmdma_status - Read PCI IDE BMDMA status
4006 * @ap: Port associated with this ATA transaction.
4008 * Read and return BMDMA status register.
4010 * May be used as the bmdma_status() entry in ata_port_operations.
4013 * spin_lock_irqsave(host_set lock)
4016 u8 ata_bmdma_status(struct ata_port *ap)
4019 if (ap->flags & ATA_FLAG_MMIO) {
4020 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4021 host_stat = readb(mmio + ATA_DMA_STATUS);
4023 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4029 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4030 * @qc: Command we are ending DMA for
4032 * Clears the ATA_DMA_START flag in the dma control register
4034 * May be used as the bmdma_stop() entry in ata_port_operations.
4037 * spin_lock_irqsave(host_set lock)
4040 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4042 struct ata_port *ap = qc->ap;
4043 if (ap->flags & ATA_FLAG_MMIO) {
4044 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4046 /* clear start/stop bit */
4047 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4048 mmio + ATA_DMA_CMD);
4050 /* clear start/stop bit */
4051 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4052 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4055 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4056 ata_altstatus(ap); /* dummy read */
4060 * ata_host_intr - Handle host interrupt for given (port, task)
4061 * @ap: Port on which interrupt arrived (possibly...)
4062 * @qc: Taskfile currently active in engine
4064 * Handle host interrupt for given queued command. Currently,
4065 * only DMA interrupts are handled. All other commands are
4066 * handled via polling with interrupts disabled (nIEN bit).
4069 * spin_lock_irqsave(host_set lock)
4072 * One if interrupt was handled, zero if not (shared irq).
4075 inline unsigned int ata_host_intr (struct ata_port *ap,
4076 struct ata_queued_cmd *qc)
4078 u8 status, host_stat;
4080 switch (qc->tf.protocol) {
4083 case ATA_PROT_ATAPI_DMA:
4084 case ATA_PROT_ATAPI:
4085 /* check status of DMA engine */
4086 host_stat = ap->ops->bmdma_status(ap);
4087 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4089 /* if it's not our irq... */
4090 if (!(host_stat & ATA_DMA_INTR))
4093 /* before we do anything else, clear DMA-Start bit */
4094 ap->ops->bmdma_stop(qc);
4098 case ATA_PROT_ATAPI_NODATA:
4099 case ATA_PROT_NODATA:
4100 /* check altstatus */
4101 status = ata_altstatus(ap);
4102 if (status & ATA_BUSY)
4105 /* check main status, clearing INTRQ */
4106 status = ata_chk_status(ap);
4107 if (unlikely(status & ATA_BUSY))
4109 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4110 ap->id, qc->tf.protocol, status);
4112 /* ack bmdma irq events */
4113 ap->ops->irq_clear(ap);
4115 /* complete taskfile transaction */
4116 qc->err_mask |= ac_err_mask(status);
4117 ata_qc_complete(qc);
4124 return 1; /* irq handled */
4127 ap->stats.idle_irq++;
4130 if ((ap->stats.idle_irq % 1000) == 0) {
4132 ata_irq_ack(ap, 0); /* debug trap */
4133 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4136 return 0; /* irq not handled */
4140 * ata_interrupt - Default ATA host interrupt handler
4141 * @irq: irq line (unused)
4142 * @dev_instance: pointer to our ata_host_set information structure
4145 * Default interrupt handler for PCI IDE devices. Calls
4146 * ata_host_intr() for each port that is not disabled.
4149 * Obtains host_set lock during operation.
4152 * IRQ_NONE or IRQ_HANDLED.
4155 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4157 struct ata_host_set *host_set = dev_instance;
4159 unsigned int handled = 0;
4160 unsigned long flags;
4162 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4163 spin_lock_irqsave(&host_set->lock, flags);
4165 for (i = 0; i < host_set->n_ports; i++) {
4166 struct ata_port *ap;
4168 ap = host_set->ports[i];
4170 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4171 struct ata_queued_cmd *qc;
4173 qc = ata_qc_from_tag(ap, ap->active_tag);
4174 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4175 (qc->flags & ATA_QCFLAG_ACTIVE))
4176 handled |= ata_host_intr(ap, qc);
4180 spin_unlock_irqrestore(&host_set->lock, flags);
4182 return IRQ_RETVAL(handled);
4186 * atapi_packet_task - Write CDB bytes to hardware
4187 * @_data: Port to which ATAPI device is attached.
4189 * When device has indicated its readiness to accept
4190 * a CDB, this function is called. Send the CDB.
4191 * If DMA is to be performed, exit immediately.
4192 * Otherwise, we are in polling mode, so poll
4193 * status under operation succeeds or fails.
4196 * Kernel thread context (may sleep)
4199 static void atapi_packet_task(void *_data)
4201 struct ata_port *ap = _data;
4202 struct ata_queued_cmd *qc;
4205 qc = ata_qc_from_tag(ap, ap->active_tag);
4206 WARN_ON(qc == NULL);
4207 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4209 /* sleep-wait for BSY to clear */
4210 DPRINTK("busy wait\n");
4211 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4212 qc->err_mask |= AC_ERR_TIMEOUT;
4216 /* make sure DRQ is set */
4217 status = ata_chk_status(ap);
4218 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4219 qc->err_mask |= AC_ERR_HSM;
4224 DPRINTK("send cdb\n");
4225 WARN_ON(qc->dev->cdb_len < 12);
4227 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4228 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4229 unsigned long flags;
4231 /* Once we're done issuing command and kicking bmdma,
4232 * irq handler takes over. To not lose irq, we need
4233 * to clear NOINTR flag before sending cdb, but
4234 * interrupt handler shouldn't be invoked before we're
4235 * finished. Hence, the following locking.
4237 spin_lock_irqsave(&ap->host_set->lock, flags);
4238 ap->flags &= ~ATA_FLAG_NOINTR;
4239 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4240 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4241 ap->ops->bmdma_start(qc); /* initiate bmdma */
4242 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4244 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4246 /* PIO commands are handled by polling */
4247 ap->hsm_task_state = HSM_ST;
4248 ata_queue_pio_task(ap);
4254 ata_poll_qc_complete(qc);
4259 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4260 * without filling any other registers
4262 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4265 struct ata_taskfile tf;
4268 ata_tf_init(ap, &tf, dev->devno);
4271 tf.flags |= ATA_TFLAG_DEVICE;
4272 tf.protocol = ATA_PROT_NODATA;
4274 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4276 printk(KERN_ERR "%s: ata command failed: %d\n",
4282 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4286 if (!ata_try_flush_cache(dev))
4289 if (ata_id_has_flush_ext(dev->id))
4290 cmd = ATA_CMD_FLUSH_EXT;
4292 cmd = ATA_CMD_FLUSH;
4294 return ata_do_simple_cmd(ap, dev, cmd);
4297 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4299 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4302 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4304 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4308 * ata_device_resume - wakeup a previously suspended devices
4309 * @ap: port the device is connected to
4310 * @dev: the device to resume
4312 * Kick the drive back into action, by sending it an idle immediate
4313 * command and making sure its transfer mode matches between drive
4317 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4319 if (ap->flags & ATA_FLAG_SUSPENDED) {
4320 ap->flags &= ~ATA_FLAG_SUSPENDED;
4323 if (!ata_dev_present(dev))
4325 if (dev->class == ATA_DEV_ATA)
4326 ata_start_drive(ap, dev);
4332 * ata_device_suspend - prepare a device for suspend
4333 * @ap: port the device is connected to
4334 * @dev: the device to suspend
4336 * Flush the cache on the drive, if appropriate, then issue a
4337 * standbynow command.
4339 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4341 if (!ata_dev_present(dev))
4343 if (dev->class == ATA_DEV_ATA)
4344 ata_flush_cache(ap, dev);
4346 ata_standby_drive(ap, dev);
4347 ap->flags |= ATA_FLAG_SUSPENDED;
4352 * ata_port_start - Set port up for dma.
4353 * @ap: Port to initialize
4355 * Called just after data structures for each port are
4356 * initialized. Allocates space for PRD table.
4358 * May be used as the port_start() entry in ata_port_operations.
4361 * Inherited from caller.
4364 int ata_port_start (struct ata_port *ap)
4366 struct device *dev = ap->host_set->dev;
4369 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4373 rc = ata_pad_alloc(ap, dev);
4375 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4379 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4386 * ata_port_stop - Undo ata_port_start()
4387 * @ap: Port to shut down
4389 * Frees the PRD table.
4391 * May be used as the port_stop() entry in ata_port_operations.
4394 * Inherited from caller.
4397 void ata_port_stop (struct ata_port *ap)
4399 struct device *dev = ap->host_set->dev;
4401 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4402 ata_pad_free(ap, dev);
4405 void ata_host_stop (struct ata_host_set *host_set)
4407 if (host_set->mmio_base)
4408 iounmap(host_set->mmio_base);
4413 * ata_host_remove - Unregister SCSI host structure with upper layers
4414 * @ap: Port to unregister
4415 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4418 * Inherited from caller.
4421 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4423 struct Scsi_Host *sh = ap->host;
4428 scsi_remove_host(sh);
4430 ap->ops->port_stop(ap);
4434 * ata_host_init - Initialize an ata_port structure
4435 * @ap: Structure to initialize
4436 * @host: associated SCSI mid-layer structure
4437 * @host_set: Collection of hosts to which @ap belongs
4438 * @ent: Probe information provided by low-level driver
4439 * @port_no: Port number associated with this ata_port
4441 * Initialize a new ata_port structure, and its associated
4445 * Inherited from caller.
4448 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4449 struct ata_host_set *host_set,
4450 const struct ata_probe_ent *ent, unsigned int port_no)
4456 host->max_channel = 1;
4457 host->unique_id = ata_unique_id++;
4458 host->max_cmd_len = 12;
4460 ap->flags = ATA_FLAG_PORT_DISABLED;
4461 ap->id = host->unique_id;
4463 ap->ctl = ATA_DEVCTL_OBS;
4464 ap->host_set = host_set;
4465 ap->port_no = port_no;
4467 ent->legacy_mode ? ent->hard_port_no : port_no;
4468 ap->pio_mask = ent->pio_mask;
4469 ap->mwdma_mask = ent->mwdma_mask;
4470 ap->udma_mask = ent->udma_mask;
4471 ap->flags |= ent->host_flags;
4472 ap->ops = ent->port_ops;
4473 ap->cbl = ATA_CBL_NONE;
4474 ap->active_tag = ATA_TAG_POISON;
4475 ap->last_ctl = 0xFF;
4477 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4478 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4479 INIT_LIST_HEAD(&ap->eh_done_q);
4481 for (i = 0; i < ATA_MAX_DEVICES; i++)
4482 ap->device[i].devno = i;
4485 ap->stats.unhandled_irq = 1;
4486 ap->stats.idle_irq = 1;
4489 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4493 * ata_host_add - Attach low-level ATA driver to system
4494 * @ent: Information provided by low-level driver
4495 * @host_set: Collections of ports to which we add
4496 * @port_no: Port number associated with this host
4498 * Attach low-level ATA driver to system.
4501 * PCI/etc. bus probe sem.
4504 * New ata_port on success, for NULL on error.
4507 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4508 struct ata_host_set *host_set,
4509 unsigned int port_no)
4511 struct Scsi_Host *host;
4512 struct ata_port *ap;
4516 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4520 ap = (struct ata_port *) &host->hostdata[0];
4522 ata_host_init(ap, host, host_set, ent, port_no);
4524 rc = ap->ops->port_start(ap);
4531 scsi_host_put(host);
4536 * ata_device_add - Register hardware device with ATA and SCSI layers
4537 * @ent: Probe information describing hardware device to be registered
4539 * This function processes the information provided in the probe
4540 * information struct @ent, allocates the necessary ATA and SCSI
4541 * host information structures, initializes them, and registers
4542 * everything with requisite kernel subsystems.
4544 * This function requests irqs, probes the ATA bus, and probes
4548 * PCI/etc. bus probe sem.
4551 * Number of ports registered. Zero on error (no ports registered).
4554 int ata_device_add(const struct ata_probe_ent *ent)
4556 unsigned int count = 0, i;
4557 struct device *dev = ent->dev;
4558 struct ata_host_set *host_set;
4561 /* alloc a container for our list of ATA ports (buses) */
4562 host_set = kzalloc(sizeof(struct ata_host_set) +
4563 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4566 spin_lock_init(&host_set->lock);
4568 host_set->dev = dev;
4569 host_set->n_ports = ent->n_ports;
4570 host_set->irq = ent->irq;
4571 host_set->mmio_base = ent->mmio_base;
4572 host_set->private_data = ent->private_data;
4573 host_set->ops = ent->port_ops;
4575 /* register each port bound to this device */
4576 for (i = 0; i < ent->n_ports; i++) {
4577 struct ata_port *ap;
4578 unsigned long xfer_mode_mask;
4580 ap = ata_host_add(ent, host_set, i);
4584 host_set->ports[i] = ap;
4585 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4586 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4587 (ap->pio_mask << ATA_SHIFT_PIO);
4589 /* print per-port info to dmesg */
4590 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4591 "bmdma 0x%lX irq %lu\n",
4593 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4594 ata_mode_string(xfer_mode_mask),
4595 ap->ioaddr.cmd_addr,
4596 ap->ioaddr.ctl_addr,
4597 ap->ioaddr.bmdma_addr,
4601 host_set->ops->irq_clear(ap);
4608 /* obtain irq, that is shared between channels */
4609 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4610 DRV_NAME, host_set))
4613 /* perform each probe synchronously */
4614 DPRINTK("probe begin\n");
4615 for (i = 0; i < count; i++) {
4616 struct ata_port *ap;
4619 ap = host_set->ports[i];
4621 DPRINTK("ata%u: bus probe begin\n", ap->id);
4622 rc = ata_bus_probe(ap);
4623 DPRINTK("ata%u: bus probe end\n", ap->id);
4626 /* FIXME: do something useful here?
4627 * Current libata behavior will
4628 * tear down everything when
4629 * the module is removed
4630 * or the h/w is unplugged.
4634 rc = scsi_add_host(ap->host, dev);
4636 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4638 /* FIXME: do something useful here */
4639 /* FIXME: handle unconditional calls to
4640 * scsi_scan_host and ata_host_remove, below,
4646 /* probes are done, now scan each port's disk(s) */
4647 DPRINTK("host probe begin\n");
4648 for (i = 0; i < count; i++) {
4649 struct ata_port *ap = host_set->ports[i];
4651 ata_scsi_scan_host(ap);
4654 dev_set_drvdata(dev, host_set);
4656 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4657 return ent->n_ports; /* success */
4660 for (i = 0; i < count; i++) {
4661 ata_host_remove(host_set->ports[i], 1);
4662 scsi_host_put(host_set->ports[i]->host);
4666 VPRINTK("EXIT, returning 0\n");
4671 * ata_host_set_remove - PCI layer callback for device removal
4672 * @host_set: ATA host set that was removed
4674 * Unregister all objects associated with this host set. Free those
4678 * Inherited from calling layer (may sleep).
4681 void ata_host_set_remove(struct ata_host_set *host_set)
4683 struct ata_port *ap;
4686 for (i = 0; i < host_set->n_ports; i++) {
4687 ap = host_set->ports[i];
4688 scsi_remove_host(ap->host);
4691 free_irq(host_set->irq, host_set);
4693 for (i = 0; i < host_set->n_ports; i++) {
4694 ap = host_set->ports[i];
4696 ata_scsi_release(ap->host);
4698 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4699 struct ata_ioports *ioaddr = &ap->ioaddr;
4701 if (ioaddr->cmd_addr == 0x1f0)
4702 release_region(0x1f0, 8);
4703 else if (ioaddr->cmd_addr == 0x170)
4704 release_region(0x170, 8);
4707 scsi_host_put(ap->host);
4710 if (host_set->ops->host_stop)
4711 host_set->ops->host_stop(host_set);
4717 * ata_scsi_release - SCSI layer callback hook for host unload
4718 * @host: libata host to be unloaded
4720 * Performs all duties necessary to shut down a libata port...
4721 * Kill port kthread, disable port, and release resources.
4724 * Inherited from SCSI layer.
4730 int ata_scsi_release(struct Scsi_Host *host)
4732 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4737 ap->ops->port_disable(ap);
4738 ata_host_remove(ap, 0);
4739 for (i = 0; i < ATA_MAX_DEVICES; i++)
4740 kfree(ap->device[i].id);
4747 * ata_std_ports - initialize ioaddr with standard port offsets.
4748 * @ioaddr: IO address structure to be initialized
4750 * Utility function which initializes data_addr, error_addr,
4751 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4752 * device_addr, status_addr, and command_addr to standard offsets
4753 * relative to cmd_addr.
4755 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4758 void ata_std_ports(struct ata_ioports *ioaddr)
4760 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4761 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4762 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4763 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4764 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4765 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4766 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4767 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4768 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4769 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4775 void ata_pci_host_stop (struct ata_host_set *host_set)
4777 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4779 pci_iounmap(pdev, host_set->mmio_base);
4783 * ata_pci_remove_one - PCI layer callback for device removal
4784 * @pdev: PCI device that was removed
4786 * PCI layer indicates to libata via this hook that
4787 * hot-unplug or module unload event has occurred.
4788 * Handle this by unregistering all objects associated
4789 * with this PCI device. Free those objects. Then finally
4790 * release PCI resources and disable device.
4793 * Inherited from PCI layer (may sleep).
4796 void ata_pci_remove_one (struct pci_dev *pdev)
4798 struct device *dev = pci_dev_to_dev(pdev);
4799 struct ata_host_set *host_set = dev_get_drvdata(dev);
4801 ata_host_set_remove(host_set);
4802 pci_release_regions(pdev);
4803 pci_disable_device(pdev);
4804 dev_set_drvdata(dev, NULL);
4807 /* move to PCI subsystem */
4808 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4810 unsigned long tmp = 0;
4812 switch (bits->width) {
4815 pci_read_config_byte(pdev, bits->reg, &tmp8);
4821 pci_read_config_word(pdev, bits->reg, &tmp16);
4827 pci_read_config_dword(pdev, bits->reg, &tmp32);
4838 return (tmp == bits->val) ? 1 : 0;
4841 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4843 pci_save_state(pdev);
4844 pci_disable_device(pdev);
4845 pci_set_power_state(pdev, PCI_D3hot);
4849 int ata_pci_device_resume(struct pci_dev *pdev)
4851 pci_set_power_state(pdev, PCI_D0);
4852 pci_restore_state(pdev);
4853 pci_enable_device(pdev);
4854 pci_set_master(pdev);
4857 #endif /* CONFIG_PCI */
4860 static int __init ata_init(void)
4862 ata_wq = create_workqueue("ata");
4866 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4870 static void __exit ata_exit(void)
4872 destroy_workqueue(ata_wq);
4875 module_init(ata_init);
4876 module_exit(ata_exit);
4878 static unsigned long ratelimit_time;
4879 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4881 int ata_ratelimit(void)
4884 unsigned long flags;
4886 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4888 if (time_after(jiffies, ratelimit_time)) {
4890 ratelimit_time = jiffies + (HZ/5);
4894 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4900 * libata is essentially a library of internal helper functions for
4901 * low-level ATA host controller drivers. As such, the API/ABI is
4902 * likely to change as new drivers are added and updated.
4903 * Do not depend on ABI/API stability.
4906 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4907 EXPORT_SYMBOL_GPL(ata_std_ports);
4908 EXPORT_SYMBOL_GPL(ata_device_add);
4909 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4910 EXPORT_SYMBOL_GPL(ata_sg_init);
4911 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4912 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4913 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4914 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4915 EXPORT_SYMBOL_GPL(ata_tf_load);
4916 EXPORT_SYMBOL_GPL(ata_tf_read);
4917 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4918 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4919 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4920 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4921 EXPORT_SYMBOL_GPL(ata_check_status);
4922 EXPORT_SYMBOL_GPL(ata_altstatus);
4923 EXPORT_SYMBOL_GPL(ata_exec_command);
4924 EXPORT_SYMBOL_GPL(ata_port_start);
4925 EXPORT_SYMBOL_GPL(ata_port_stop);
4926 EXPORT_SYMBOL_GPL(ata_host_stop);
4927 EXPORT_SYMBOL_GPL(ata_interrupt);
4928 EXPORT_SYMBOL_GPL(ata_qc_prep);
4929 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4930 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4931 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4932 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4933 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4934 EXPORT_SYMBOL_GPL(ata_port_probe);
4935 EXPORT_SYMBOL_GPL(sata_phy_reset);
4936 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4937 EXPORT_SYMBOL_GPL(ata_bus_reset);
4938 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4939 EXPORT_SYMBOL_GPL(ata_std_softreset);
4940 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4941 EXPORT_SYMBOL_GPL(ata_std_postreset);
4942 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4943 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4944 EXPORT_SYMBOL_GPL(ata_port_disable);
4945 EXPORT_SYMBOL_GPL(ata_ratelimit);
4946 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4947 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4948 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4949 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
4950 EXPORT_SYMBOL_GPL(ata_scsi_error);
4951 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4952 EXPORT_SYMBOL_GPL(ata_scsi_release);
4953 EXPORT_SYMBOL_GPL(ata_host_intr);
4954 EXPORT_SYMBOL_GPL(ata_dev_classify);
4955 EXPORT_SYMBOL_GPL(ata_id_string);
4956 EXPORT_SYMBOL_GPL(ata_id_c_string);
4957 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4958 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4959 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4961 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4962 EXPORT_SYMBOL_GPL(ata_timing_compute);
4963 EXPORT_SYMBOL_GPL(ata_timing_merge);
4966 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4967 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4968 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4969 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4970 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4971 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4972 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4973 #endif /* CONFIG_PCI */
4975 EXPORT_SYMBOL_GPL(ata_device_suspend);
4976 EXPORT_SYMBOL_GPL(ata_device_resume);
4977 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4978 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);