2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
111 struct ata_force_ent {
114 struct ata_force_param param;
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
167 static bool ata_sstatus_online(u32 sstatus)
169 return (sstatus & 0xf) == 0x3;
173 * ata_link_next - link iteration helper
174 * @link: the previous link, NULL to start
175 * @ap: ATA port containing links to iterate
176 * @mode: iteration mode, one of ATA_LITER_*
179 * Host lock or EH context.
182 * Pointer to the next link.
184 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
185 enum ata_link_iter_mode mode)
187 BUG_ON(mode != ATA_LITER_EDGE &&
188 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190 /* NULL link indicates start of iteration */
194 case ATA_LITER_PMP_FIRST:
195 if (sata_pmp_attached(ap))
198 case ATA_LITER_HOST_FIRST:
202 /* we just iterated over the host link, what's next? */
203 if (link == &ap->link)
205 case ATA_LITER_HOST_FIRST:
206 if (sata_pmp_attached(ap))
209 case ATA_LITER_PMP_FIRST:
210 if (unlikely(ap->slave_link))
211 return ap->slave_link;
217 /* slave_link excludes PMP */
218 if (unlikely(link == ap->slave_link))
221 /* we were over a PMP link */
222 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 if (mode == ATA_LITER_PMP_FIRST)
232 * ata_dev_next - device iteration helper
233 * @dev: the previous device, NULL to start
234 * @link: ATA link containing devices to iterate
235 * @mode: iteration mode, one of ATA_DITER_*
238 * Host lock or EH context.
241 * Pointer to the next device.
243 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
244 enum ata_dev_iter_mode mode)
246 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
247 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249 /* NULL dev indicates start of iteration */
252 case ATA_DITER_ENABLED:
256 case ATA_DITER_ENABLED_REVERSE:
257 case ATA_DITER_ALL_REVERSE:
258 dev = link->device + ata_link_max_devices(link) - 1;
263 /* move to the next one */
265 case ATA_DITER_ENABLED:
267 if (++dev < link->device + ata_link_max_devices(link))
270 case ATA_DITER_ENABLED_REVERSE:
271 case ATA_DITER_ALL_REVERSE:
272 if (--dev >= link->device)
278 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
279 !ata_dev_enabled(dev))
285 * ata_dev_phys_link - find physical link for a device
286 * @dev: ATA device to look up physical link for
288 * Look up physical link which @dev is attached to. Note that
289 * this is different from @dev->link only when @dev is on slave
290 * link. For all other cases, it's the same as @dev->link.
296 * Pointer to the found physical link.
298 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300 struct ata_port *ap = dev->link->ap;
306 return ap->slave_link;
310 * ata_force_cbl - force cable type according to libata.force
311 * @ap: ATA port of interest
313 * Force cable type according to libata.force and whine about it.
314 * The last entry which has matching port number is used, so it
315 * can be specified as part of device force parameters. For
316 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
322 void ata_force_cbl(struct ata_port *ap)
326 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
327 const struct ata_force_ent *fe = &ata_force_tbl[i];
329 if (fe->port != -1 && fe->port != ap->print_id)
332 if (fe->param.cbl == ATA_CBL_NONE)
335 ap->cbl = fe->param.cbl;
336 ata_port_printk(ap, KERN_NOTICE,
337 "FORCE: cable set to %s\n", fe->param.name);
343 * ata_force_link_limits - force link limits according to libata.force
344 * @link: ATA link of interest
346 * Force link flags and SATA spd limit according to libata.force
347 * and whine about it. When only the port part is specified
348 * (e.g. 1:), the limit applies to all links connected to both
349 * the host link and all fan-out ports connected via PMP. If the
350 * device part is specified as 0 (e.g. 1.00:), it specifies the
351 * first fan-out link not the host link. Device number 15 always
352 * points to the host link whether PMP is attached or not. If the
353 * controller has slave link, device number 16 points to it.
358 static void ata_force_link_limits(struct ata_link *link)
360 bool did_spd = false;
361 int linkno = link->pmp;
364 if (ata_is_host_link(link))
367 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
368 const struct ata_force_ent *fe = &ata_force_tbl[i];
370 if (fe->port != -1 && fe->port != link->ap->print_id)
373 if (fe->device != -1 && fe->device != linkno)
376 /* only honor the first spd limit */
377 if (!did_spd && fe->param.spd_limit) {
378 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
379 ata_link_printk(link, KERN_NOTICE,
380 "FORCE: PHY spd limit set to %s\n",
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_printk(link, KERN_NOTICE,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
406 static void ata_force_xfermask(struct ata_device *dev)
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
427 if (!fe->param.xfer_mask)
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
436 dev->mwdma_mask = mwdma_mask;
440 dev->pio_mask = pio_mask;
443 ata_dev_printk(dev, KERN_NOTICE,
444 "FORCE: xfer_mask set to %s\n", fe->param.name);
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
460 static void ata_force_horkage(struct ata_device *dev)
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
487 ata_dev_printk(dev, KERN_NOTICE,
488 "FORCE: horkage modified (%s)\n", fe->param.name);
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
496 * Determine ATAPI command type from @opcode.
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 int atapi_cmd_type(u8 opcode)
513 case GPCMD_WRITE_AND_VERIFY_10:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
541 * Inherited from caller.
543 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
564 fis[13] = tf->hob_nsect;
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * Inherited from caller.
585 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
600 tf->hob_nsect = fis[13];
603 static const u8 ata_rw_cmds[] = {
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
630 ATA_CMD_WRITE_FUA_EXT
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
644 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
648 int index, fua, lba48, write;
650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
656 index = dev->multi_count ? 0 : 8;
657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
662 tf->protocol = ATA_PROT_DMA;
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
687 * Block address read from @tf.
689 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
697 block |= (u64)tf->hob_lbal << 24;
699 block |= (tf->device & 0xf) << 24;
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
711 block = (cyl * dev->heads + head) * dev->sectors + sect;
718 * ata_build_rw_tf - Build ATA taskfile for given read/write request
719 * @tf: Target ATA taskfile
720 * @dev: ATA device @tf belongs to
721 * @block: Block address
722 * @n_block: Number of blocks
723 * @tf_flags: RW/FUA etc...
729 * Build ATA taskfile @tf for read/write request described by
730 * @block, @n_block, @tf_flags and @tag on @dev.
734 * 0 on success, -ERANGE if the request is too large for @dev,
735 * -EINVAL if the request is invalid.
737 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
738 u64 block, u32 n_block, unsigned int tf_flags,
741 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
742 tf->flags |= tf_flags;
744 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 if (!lba_48_ok(block, n_block))
749 tf->protocol = ATA_PROT_NCQ;
750 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752 if (tf->flags & ATA_TFLAG_WRITE)
753 tf->command = ATA_CMD_FPDMA_WRITE;
755 tf->command = ATA_CMD_FPDMA_READ;
757 tf->nsect = tag << 3;
758 tf->hob_feature = (n_block >> 8) & 0xff;
759 tf->feature = n_block & 0xff;
761 tf->hob_lbah = (block >> 40) & 0xff;
762 tf->hob_lbam = (block >> 32) & 0xff;
763 tf->hob_lbal = (block >> 24) & 0xff;
764 tf->lbah = (block >> 16) & 0xff;
765 tf->lbam = (block >> 8) & 0xff;
766 tf->lbal = block & 0xff;
769 if (tf->flags & ATA_TFLAG_FUA)
770 tf->device |= 1 << 7;
771 } else if (dev->flags & ATA_DFLAG_LBA) {
772 tf->flags |= ATA_TFLAG_LBA;
774 if (lba_28_ok(block, n_block)) {
776 tf->device |= (block >> 24) & 0xf;
777 } else if (lba_48_ok(block, n_block)) {
778 if (!(dev->flags & ATA_DFLAG_LBA48))
782 tf->flags |= ATA_TFLAG_LBA48;
784 tf->hob_nsect = (n_block >> 8) & 0xff;
786 tf->hob_lbah = (block >> 40) & 0xff;
787 tf->hob_lbam = (block >> 32) & 0xff;
788 tf->hob_lbal = (block >> 24) & 0xff;
790 /* request too large even for LBA48 */
793 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
796 tf->nsect = n_block & 0xff;
798 tf->lbah = (block >> 16) & 0xff;
799 tf->lbam = (block >> 8) & 0xff;
800 tf->lbal = block & 0xff;
802 tf->device |= ATA_LBA;
805 u32 sect, head, cyl, track;
807 /* The request -may- be too large for CHS addressing. */
808 if (!lba_28_ok(block, n_block))
811 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
814 /* Convert LBA to CHS */
815 track = (u32)block / dev->sectors;
816 cyl = track / dev->heads;
817 head = track % dev->heads;
818 sect = (u32)block % dev->sectors + 1;
820 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
821 (u32)block, track, cyl, head, sect);
823 /* Check whether the converted CHS can fit.
827 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
830 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
842 * @pio_mask: pio_mask
843 * @mwdma_mask: mwdma_mask
844 * @udma_mask: udma_mask
846 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
847 * unsigned int xfer_mask.
855 unsigned long ata_pack_xfermask(unsigned long pio_mask,
856 unsigned long mwdma_mask,
857 unsigned long udma_mask)
859 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
860 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
861 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
866 * @xfer_mask: xfer_mask to unpack
867 * @pio_mask: resulting pio_mask
868 * @mwdma_mask: resulting mwdma_mask
869 * @udma_mask: resulting udma_mask
871 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
872 * Any NULL distination masks will be ignored.
874 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
875 unsigned long *mwdma_mask, unsigned long *udma_mask)
878 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
885 static const struct ata_xfer_ent {
889 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
890 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
891 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
897 * @xfer_mask: xfer_mask of interest
899 * Return matching XFER_* value for @xfer_mask. Only the highest
900 * bit of @xfer_mask is considered.
906 * Matching XFER_* value, 0xff if no match found.
908 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
910 int highbit = fls(xfer_mask) - 1;
911 const struct ata_xfer_ent *ent;
913 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
914 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
915 return ent->base + highbit - ent->shift;
920 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
921 * @xfer_mode: XFER_* of interest
923 * Return matching xfer_mask for @xfer_mode.
929 * Matching xfer_mask, 0 if no match found.
931 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
933 const struct ata_xfer_ent *ent;
935 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
936 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
937 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
938 & ~((1 << ent->shift) - 1);
943 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
944 * @xfer_mode: XFER_* of interest
946 * Return matching xfer_shift for @xfer_mode.
952 * Matching xfer_shift, -1 if no match found.
954 int ata_xfer_mode2shift(unsigned long xfer_mode)
956 const struct ata_xfer_ent *ent;
958 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
959 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
965 * ata_mode_string - convert xfer_mask to string
966 * @xfer_mask: mask of bits supported; only highest bit counts.
968 * Determine string which represents the highest speed
969 * (highest bit in @modemask).
975 * Constant C string representing highest speed listed in
976 * @mode_mask, or the constant C string "<n/a>".
978 const char *ata_mode_string(unsigned long xfer_mask)
980 static const char * const xfer_mode_str[] = {
1004 highbit = fls(xfer_mask) - 1;
1005 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1006 return xfer_mode_str[highbit];
1010 static const char *sata_spd_string(unsigned int spd)
1012 static const char * const spd_str[] = {
1018 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return spd_str[spd - 1];
1023 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025 struct ata_link *link = dev->link;
1026 struct ata_port *ap = link->ap;
1028 unsigned int err_mask;
1032 * disallow DIPM for drivers which haven't set
1033 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1034 * phy ready will be set in the interrupt status on
1035 * state changes, which will cause some drivers to
1036 * think there are errors - additionally drivers will
1037 * need to disable hot plug.
1039 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1040 ap->pm_policy = NOT_AVAILABLE;
1045 * For DIPM, we will only enable it for the
1046 * min_power setting.
1048 * Why? Because Disks are too stupid to know that
1049 * If the host rejects a request to go to SLUMBER
1050 * they should retry at PARTIAL, and instead it
1051 * just would give up. So, for medium_power to
1052 * work at all, we need to only allow HIPM.
1054 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1060 /* no restrictions on IPM transitions */
1061 scontrol &= ~(0x3 << 8);
1062 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1067 if (dev->flags & ATA_DFLAG_DIPM)
1068 err_mask = ata_dev_set_feature(dev,
1069 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1072 /* allow IPM to PARTIAL */
1073 scontrol &= ~(0x1 << 8);
1074 scontrol |= (0x2 << 8);
1075 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1080 * we don't have to disable DIPM since IPM flags
1081 * disallow transitions to SLUMBER, which effectively
1082 * disable DIPM if it does not support PARTIAL
1086 case MAX_PERFORMANCE:
1087 /* disable all IPM transitions */
1088 scontrol |= (0x3 << 8);
1089 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1094 * we don't have to disable DIPM since IPM flags
1095 * disallow all transitions which effectively
1096 * disable DIPM anyway.
1101 /* FIXME: handle SET FEATURES failure */
1108 * ata_dev_enable_pm - enable SATA interface power management
1109 * @dev: device to enable power management
1110 * @policy: the link power management policy
1112 * Enable SATA Interface power management. This will enable
1113 * Device Interface Power Management (DIPM) for min_power
1114 * policy, and then call driver specific callbacks for
1115 * enabling Host Initiated Power management.
1118 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1123 struct ata_port *ap = dev->link->ap;
1125 /* set HIPM first, then DIPM */
1126 if (ap->ops->enable_pm)
1127 rc = ap->ops->enable_pm(ap, policy);
1130 rc = ata_dev_set_dipm(dev, policy);
1134 ap->pm_policy = MAX_PERFORMANCE;
1136 ap->pm_policy = policy;
1137 return /* rc */; /* hopefully we can use 'rc' eventually */
1142 * ata_dev_disable_pm - disable SATA interface power management
1143 * @dev: device to disable power management
1145 * Disable SATA Interface power management. This will disable
1146 * Device Interface Power Management (DIPM) without changing
1147 * policy, call driver specific callbacks for disabling Host
1148 * Initiated Power management.
1153 static void ata_dev_disable_pm(struct ata_device *dev)
1155 struct ata_port *ap = dev->link->ap;
1157 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1158 if (ap->ops->disable_pm)
1159 ap->ops->disable_pm(ap);
1161 #endif /* CONFIG_PM */
1163 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165 ap->pm_policy = policy;
1166 ap->link.eh_info.action |= ATA_EH_LPM;
1167 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1168 ata_port_schedule_eh(ap);
1172 static void ata_lpm_enable(struct ata_host *host)
1174 struct ata_link *link;
1175 struct ata_port *ap;
1176 struct ata_device *dev;
1179 for (i = 0; i < host->n_ports; i++) {
1180 ap = host->ports[i];
1181 ata_for_each_link(link, ap, EDGE) {
1182 ata_for_each_dev(dev, link, ALL)
1183 ata_dev_disable_pm(dev);
1188 static void ata_lpm_disable(struct ata_host *host)
1192 for (i = 0; i < host->n_ports; i++) {
1193 struct ata_port *ap = host->ports[i];
1194 ata_lpm_schedule(ap, ap->pm_policy);
1197 #endif /* CONFIG_PM */
1200 * ata_dev_classify - determine device type based on ATA-spec signature
1201 * @tf: ATA taskfile register set for device to be identified
1203 * Determine from taskfile register contents whether a device is
1204 * ATA or ATAPI, as per "Signature and persistence" section
1205 * of ATA/PI spec (volume 1, sect 5.14).
1211 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1212 * %ATA_DEV_UNKNOWN the event of failure.
1214 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1216 /* Apple's open source Darwin code hints that some devices only
1217 * put a proper signature into the LBA mid/high registers,
1218 * So, we only check those. It's sufficient for uniqueness.
1220 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1221 * signatures for ATA and ATAPI devices attached on SerialATA,
1222 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1223 * spec has never mentioned about using different signatures
1224 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1225 * Multiplier specification began to use 0x69/0x96 to identify
1226 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1227 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1228 * 0x69/0x96 shortly and described them as reserved for
1231 * We follow the current spec and consider that 0x69/0x96
1232 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1235 DPRINTK("found ATA device by sig\n");
1239 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1240 DPRINTK("found ATAPI device by sig\n");
1241 return ATA_DEV_ATAPI;
1244 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1245 DPRINTK("found PMP device by sig\n");
1249 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1250 printk(KERN_INFO "ata: SEMB device ignored\n");
1251 return ATA_DEV_SEMB_UNSUP; /* not yet */
1254 DPRINTK("unknown device\n");
1255 return ATA_DEV_UNKNOWN;
1259 * ata_id_string - Convert IDENTIFY DEVICE page into string
1260 * @id: IDENTIFY DEVICE results we will examine
1261 * @s: string into which data is output
1262 * @ofs: offset into identify device page
1263 * @len: length of string to return. must be an even number.
1265 * The strings in the IDENTIFY DEVICE page are broken up into
1266 * 16-bit chunks. Run through the string, and output each
1267 * 8-bit chunk linearly, regardless of platform.
1273 void ata_id_string(const u16 *id, unsigned char *s,
1274 unsigned int ofs, unsigned int len)
1295 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1296 * @id: IDENTIFY DEVICE results we will examine
1297 * @s: string into which data is output
1298 * @ofs: offset into identify device page
1299 * @len: length of string to return. must be an odd number.
1301 * This function is identical to ata_id_string except that it
1302 * trims trailing spaces and terminates the resulting string with
1303 * null. @len must be actual maximum length (even number) + 1.
1308 void ata_id_c_string(const u16 *id, unsigned char *s,
1309 unsigned int ofs, unsigned int len)
1313 ata_id_string(id, s, ofs, len - 1);
1315 p = s + strnlen(s, len - 1);
1316 while (p > s && p[-1] == ' ')
1321 static u64 ata_id_n_sectors(const u16 *id)
1323 if (ata_id_has_lba(id)) {
1324 if (ata_id_has_lba48(id))
1325 return ata_id_u64(id, 100);
1327 return ata_id_u32(id, 60);
1329 if (ata_id_current_chs_valid(id))
1330 return ata_id_u32(id, 57);
1332 return id[1] * id[3] * id[6];
1336 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1340 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1341 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1342 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1343 sectors |= (tf->lbah & 0xff) << 16;
1344 sectors |= (tf->lbam & 0xff) << 8;
1345 sectors |= (tf->lbal & 0xff);
1350 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1354 sectors |= (tf->device & 0x0f) << 24;
1355 sectors |= (tf->lbah & 0xff) << 16;
1356 sectors |= (tf->lbam & 0xff) << 8;
1357 sectors |= (tf->lbal & 0xff);
1363 * ata_read_native_max_address - Read native max address
1364 * @dev: target device
1365 * @max_sectors: out parameter for the result native max address
1367 * Perform an LBA48 or LBA28 native size query upon the device in
1371 * 0 on success, -EACCES if command is aborted by the drive.
1372 * -EIO on other errors.
1374 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1376 unsigned int err_mask;
1377 struct ata_taskfile tf;
1378 int lba48 = ata_id_has_lba48(dev->id);
1380 ata_tf_init(dev, &tf);
1382 /* always clear all address registers */
1383 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1386 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1387 tf.flags |= ATA_TFLAG_LBA48;
1389 tf.command = ATA_CMD_READ_NATIVE_MAX;
1391 tf.protocol |= ATA_PROT_NODATA;
1392 tf.device |= ATA_LBA;
1394 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1396 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1397 "max address (err_mask=0x%x)\n", err_mask);
1398 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1404 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1406 *max_sectors = ata_tf_to_lba(&tf) + 1;
1407 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1413 * ata_set_max_sectors - Set max sectors
1414 * @dev: target device
1415 * @new_sectors: new max sectors value to set for the device
1417 * Set max sectors of @dev to @new_sectors.
1420 * 0 on success, -EACCES if command is aborted or denied (due to
1421 * previous non-volatile SET_MAX) by the drive. -EIO on other
1424 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1426 unsigned int err_mask;
1427 struct ata_taskfile tf;
1428 int lba48 = ata_id_has_lba48(dev->id);
1432 ata_tf_init(dev, &tf);
1434 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1437 tf.command = ATA_CMD_SET_MAX_EXT;
1438 tf.flags |= ATA_TFLAG_LBA48;
1440 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1441 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1442 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1444 tf.command = ATA_CMD_SET_MAX;
1446 tf.device |= (new_sectors >> 24) & 0xf;
1449 tf.protocol |= ATA_PROT_NODATA;
1450 tf.device |= ATA_LBA;
1452 tf.lbal = (new_sectors >> 0) & 0xff;
1453 tf.lbam = (new_sectors >> 8) & 0xff;
1454 tf.lbah = (new_sectors >> 16) & 0xff;
1456 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1458 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1459 "max address (err_mask=0x%x)\n", err_mask);
1460 if (err_mask == AC_ERR_DEV &&
1461 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1470 * ata_hpa_resize - Resize a device with an HPA set
1471 * @dev: Device to resize
1473 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1474 * it if required to the full size of the media. The caller must check
1475 * the drive has the HPA feature set enabled.
1478 * 0 on success, -errno on failure.
1480 static int ata_hpa_resize(struct ata_device *dev)
1482 struct ata_eh_context *ehc = &dev->link->eh_context;
1483 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1484 u64 sectors = ata_id_n_sectors(dev->id);
1488 /* do we need to do it? */
1489 if (dev->class != ATA_DEV_ATA ||
1490 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1491 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1494 /* read native max address */
1495 rc = ata_read_native_max_address(dev, &native_sectors);
1497 /* If device aborted the command or HPA isn't going to
1498 * be unlocked, skip HPA resizing.
1500 if (rc == -EACCES || !ata_ignore_hpa) {
1501 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1502 "broken, skipping HPA handling\n");
1503 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1505 /* we can continue if device aborted the command */
1513 /* nothing to do? */
1514 if (native_sectors <= sectors || !ata_ignore_hpa) {
1515 if (!print_info || native_sectors == sectors)
1518 if (native_sectors > sectors)
1519 ata_dev_printk(dev, KERN_INFO,
1520 "HPA detected: current %llu, native %llu\n",
1521 (unsigned long long)sectors,
1522 (unsigned long long)native_sectors);
1523 else if (native_sectors < sectors)
1524 ata_dev_printk(dev, KERN_WARNING,
1525 "native sectors (%llu) is smaller than "
1527 (unsigned long long)native_sectors,
1528 (unsigned long long)sectors);
1532 /* let's unlock HPA */
1533 rc = ata_set_max_sectors(dev, native_sectors);
1534 if (rc == -EACCES) {
1535 /* if device aborted the command, skip HPA resizing */
1536 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1537 "(%llu -> %llu), skipping HPA handling\n",
1538 (unsigned long long)sectors,
1539 (unsigned long long)native_sectors);
1540 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1545 /* re-read IDENTIFY data */
1546 rc = ata_dev_reread_id(dev, 0);
1548 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1549 "data after HPA resizing\n");
1554 u64 new_sectors = ata_id_n_sectors(dev->id);
1555 ata_dev_printk(dev, KERN_INFO,
1556 "HPA unlocked: %llu -> %llu, native %llu\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)new_sectors,
1559 (unsigned long long)native_sectors);
1566 * ata_dump_id - IDENTIFY DEVICE info debugging output
1567 * @id: IDENTIFY DEVICE page to dump
1569 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 static inline void ata_dump_id(const u16 *id)
1578 DPRINTK("49==0x%04x "
1588 DPRINTK("80==0x%04x "
1598 DPRINTK("88==0x%04x "
1605 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1606 * @id: IDENTIFY data to compute xfer mask from
1608 * Compute the xfermask for this device. This is not as trivial
1609 * as it seems if we must consider early devices correctly.
1611 * FIXME: pre IDE drive timing (do we care ?).
1619 unsigned long ata_id_xfermask(const u16 *id)
1621 unsigned long pio_mask, mwdma_mask, udma_mask;
1623 /* Usual case. Word 53 indicates word 64 is valid */
1624 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1625 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1629 /* If word 64 isn't valid then Word 51 high byte holds
1630 * the PIO timing number for the maximum. Turn it into
1633 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1634 if (mode < 5) /* Valid PIO range */
1635 pio_mask = (2 << mode) - 1;
1639 /* But wait.. there's more. Design your standards by
1640 * committee and you too can get a free iordy field to
1641 * process. However its the speeds not the modes that
1642 * are supported... Note drivers using the timing API
1643 * will get this right anyway
1647 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1649 if (ata_id_is_cfa(id)) {
1651 * Process compact flash extended modes
1653 int pio = id[163] & 0x7;
1654 int dma = (id[163] >> 3) & 7;
1657 pio_mask |= (1 << 5);
1659 pio_mask |= (1 << 6);
1661 mwdma_mask |= (1 << 3);
1663 mwdma_mask |= (1 << 4);
1667 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1668 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1670 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1674 * ata_pio_queue_task - Queue port_task
1675 * @ap: The ata_port to queue port_task for
1676 * @data: data for @fn to use
1677 * @delay: delay time in msecs for workqueue function
1679 * Schedule @fn(@data) for execution after @delay jiffies using
1680 * port_task. There is one port_task per port and it's the
1681 * user(low level driver)'s responsibility to make sure that only
1682 * one task is active at any given time.
1684 * libata core layer takes care of synchronization between
1685 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1689 * Inherited from caller.
1691 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1693 ap->port_task_data = data;
1695 /* may fail if ata_port_flush_task() in progress */
1696 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1700 * ata_port_flush_task - Flush port_task
1701 * @ap: The ata_port to flush port_task for
1703 * After this function completes, port_task is guranteed not to
1704 * be running or scheduled.
1707 * Kernel thread context (may sleep)
1709 void ata_port_flush_task(struct ata_port *ap)
1713 cancel_rearming_delayed_work(&ap->port_task);
1715 if (ata_msg_ctl(ap))
1716 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1719 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1721 struct completion *waiting = qc->private_data;
1727 * ata_exec_internal_sg - execute libata internal command
1728 * @dev: Device to which the command is sent
1729 * @tf: Taskfile registers for the command and the result
1730 * @cdb: CDB for packet command
1731 * @dma_dir: Data tranfer direction of the command
1732 * @sgl: sg list for the data buffer of the command
1733 * @n_elem: Number of sg entries
1734 * @timeout: Timeout in msecs (0 for default)
1736 * Executes libata internal command with timeout. @tf contains
1737 * command on entry and result on return. Timeout and error
1738 * conditions are reported via return value. No recovery action
1739 * is taken after a command times out. It's caller's duty to
1740 * clean up after timeout.
1743 * None. Should be called with kernel context, might sleep.
1746 * Zero on success, AC_ERR_* mask on failure
1748 unsigned ata_exec_internal_sg(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, struct scatterlist *sgl,
1751 unsigned int n_elem, unsigned long timeout)
1753 struct ata_link *link = dev->link;
1754 struct ata_port *ap = link->ap;
1755 u8 command = tf->command;
1756 int auto_timeout = 0;
1757 struct ata_queued_cmd *qc;
1758 unsigned int tag, preempted_tag;
1759 u32 preempted_sactive, preempted_qc_active;
1760 int preempted_nr_active_links;
1761 DECLARE_COMPLETION_ONSTACK(wait);
1762 unsigned long flags;
1763 unsigned int err_mask;
1766 spin_lock_irqsave(ap->lock, flags);
1768 /* no internal command while frozen */
1769 if (ap->pflags & ATA_PFLAG_FROZEN) {
1770 spin_unlock_irqrestore(ap->lock, flags);
1771 return AC_ERR_SYSTEM;
1774 /* initialize internal qc */
1776 /* XXX: Tag 0 is used for drivers with legacy EH as some
1777 * drivers choke if any other tag is given. This breaks
1778 * ata_tag_internal() test for those drivers. Don't use new
1779 * EH stuff without converting to it.
1781 if (ap->ops->error_handler)
1782 tag = ATA_TAG_INTERNAL;
1786 if (test_and_set_bit(tag, &ap->qc_allocated))
1788 qc = __ata_qc_from_tag(ap, tag);
1796 preempted_tag = link->active_tag;
1797 preempted_sactive = link->sactive;
1798 preempted_qc_active = ap->qc_active;
1799 preempted_nr_active_links = ap->nr_active_links;
1800 link->active_tag = ATA_TAG_POISON;
1803 ap->nr_active_links = 0;
1805 /* prepare & issue qc */
1808 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1809 qc->flags |= ATA_QCFLAG_RESULT_TF;
1810 qc->dma_dir = dma_dir;
1811 if (dma_dir != DMA_NONE) {
1812 unsigned int i, buflen = 0;
1813 struct scatterlist *sg;
1815 for_each_sg(sgl, sg, n_elem, i)
1816 buflen += sg->length;
1818 ata_sg_init(qc, sgl, n_elem);
1819 qc->nbytes = buflen;
1822 qc->private_data = &wait;
1823 qc->complete_fn = ata_qc_complete_internal;
1827 spin_unlock_irqrestore(ap->lock, flags);
1830 if (ata_probe_timeout)
1831 timeout = ata_probe_timeout * 1000;
1833 timeout = ata_internal_cmd_timeout(dev, command);
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1840 ata_port_flush_task(ap);
1843 spin_lock_irqsave(ap->lock, flags);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1856 ata_qc_complete(qc);
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
1860 "qc timeout (cmd 0x%x)\n", command);
1863 spin_unlock_irqrestore(ap->lock, flags);
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1876 qc->err_mask |= AC_ERR_OTHER;
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
1883 spin_lock_irqsave(ap->lock, flags);
1885 *tf = qc->result_tf;
1886 err_mask = qc->err_mask;
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
1891 ap->qc_active = preempted_qc_active;
1892 ap->nr_active_links = preempted_nr_active_links;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap->flags & ATA_FLAG_DISABLED) {
1906 err_mask |= AC_ERR_SYSTEM;
1910 spin_unlock_irqrestore(ap->lock, flags);
1912 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1913 ata_internal_cmd_timed_out(dev, command);
1919 * ata_exec_internal - execute libata internal command
1920 * @dev: Device to which the command is sent
1921 * @tf: Taskfile registers for the command and the result
1922 * @cdb: CDB for packet command
1923 * @dma_dir: Data tranfer direction of the command
1924 * @buf: Data buffer of the command
1925 * @buflen: Length of data buffer
1926 * @timeout: Timeout in msecs (0 for default)
1928 * Wrapper around ata_exec_internal_sg() which takes simple
1929 * buffer instead of sg list.
1932 * None. Should be called with kernel context, might sleep.
1935 * Zero on success, AC_ERR_* mask on failure
1937 unsigned ata_exec_internal(struct ata_device *dev,
1938 struct ata_taskfile *tf, const u8 *cdb,
1939 int dma_dir, void *buf, unsigned int buflen,
1940 unsigned long timeout)
1942 struct scatterlist *psg = NULL, sg;
1943 unsigned int n_elem = 0;
1945 if (dma_dir != DMA_NONE) {
1947 sg_init_one(&sg, buf, buflen);
1952 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1957 * ata_do_simple_cmd - execute simple internal command
1958 * @dev: Device to which the command is sent
1959 * @cmd: Opcode to execute
1961 * Execute a 'simple' command, that only consists of the opcode
1962 * 'cmd' itself, without filling any other registers
1965 * Kernel thread context (may sleep).
1968 * Zero on success, AC_ERR_* mask on failure
1970 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1972 struct ata_taskfile tf;
1974 ata_tf_init(dev, &tf);
1977 tf.flags |= ATA_TFLAG_DEVICE;
1978 tf.protocol = ATA_PROT_NODATA;
1980 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1984 * ata_pio_need_iordy - check if iordy needed
1987 * Check if the current speed of the device requires IORDY. Used
1988 * by various controllers for chip configuration.
1991 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1993 /* Controller doesn't support IORDY. Probably a pointless check
1994 as the caller should know this */
1995 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1997 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1998 if (ata_id_is_cfa(adev->id)
1999 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2001 /* PIO3 and higher it is mandatory */
2002 if (adev->pio_mode > XFER_PIO_2)
2004 /* We turn it on when possible */
2005 if (ata_id_has_iordy(adev->id))
2011 * ata_pio_mask_no_iordy - Return the non IORDY mask
2014 * Compute the highest mode possible if we are not using iordy. Return
2015 * -1 if no iordy mode is available.
2018 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2020 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2021 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2022 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2023 /* Is the speed faster than the drive allows non IORDY ? */
2025 /* This is cycle times not frequency - watch the logic! */
2026 if (pio > 240) /* PIO2 is 240nS per cycle */
2027 return 3 << ATA_SHIFT_PIO;
2028 return 7 << ATA_SHIFT_PIO;
2031 return 3 << ATA_SHIFT_PIO;
2035 * ata_do_dev_read_id - default ID read method
2037 * @tf: proposed taskfile
2040 * Issue the identify taskfile and hand back the buffer containing
2041 * identify data. For some RAID controllers and for pre ATA devices
2042 * this function is wrapped or replaced by the driver
2044 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2045 struct ata_taskfile *tf, u16 *id)
2047 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2048 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2052 * ata_dev_read_id - Read ID data from the specified device
2053 * @dev: target device
2054 * @p_class: pointer to class of the target device (may be changed)
2055 * @flags: ATA_READID_* flags
2056 * @id: buffer to read IDENTIFY data into
2058 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2059 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2060 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2061 * for pre-ATA4 drives.
2063 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2064 * now we abort if we hit that case.
2067 * Kernel thread context (may sleep)
2070 * 0 on success, -errno otherwise.
2072 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2073 unsigned int flags, u16 *id)
2075 struct ata_port *ap = dev->link->ap;
2076 unsigned int class = *p_class;
2077 struct ata_taskfile tf;
2078 unsigned int err_mask = 0;
2080 int may_fallback = 1, tried_spinup = 0;
2083 if (ata_msg_ctl(ap))
2084 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2087 ata_tf_init(dev, &tf);
2091 tf.command = ATA_CMD_ID_ATA;
2094 tf.command = ATA_CMD_ID_ATAPI;
2098 reason = "unsupported class";
2102 tf.protocol = ATA_PROT_PIO;
2104 /* Some devices choke if TF registers contain garbage. Make
2105 * sure those are properly initialized.
2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2109 /* Device presence detection is unreliable on some
2110 * controllers. Always poll IDENTIFY if available.
2112 tf.flags |= ATA_TFLAG_POLLING;
2114 if (ap->ops->read_id)
2115 err_mask = ap->ops->read_id(dev, &tf, id);
2117 err_mask = ata_do_dev_read_id(dev, &tf, id);
2120 if (err_mask & AC_ERR_NODEV_HINT) {
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "NODEV after polling detection\n");
2126 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2127 /* Device or controller might have reported
2128 * the wrong device class. Give a shot at the
2129 * other IDENTIFY if the current one is
2130 * aborted by the device.
2135 if (class == ATA_DEV_ATA)
2136 class = ATA_DEV_ATAPI;
2138 class = ATA_DEV_ATA;
2142 /* Control reaches here iff the device aborted
2143 * both flavors of IDENTIFYs which happens
2144 * sometimes with phantom devices.
2146 ata_dev_printk(dev, KERN_DEBUG,
2147 "both IDENTIFYs aborted, assuming NODEV\n");
2152 reason = "I/O error";
2156 /* Falling back doesn't make sense if ID data was read
2157 * successfully at least once.
2161 swap_buf_le16(id, ATA_ID_WORDS);
2165 reason = "device reports invalid type";
2167 if (class == ATA_DEV_ATA) {
2168 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2171 if (ata_id_is_ata(id))
2175 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2178 * Drive powered-up in standby mode, and requires a specific
2179 * SET_FEATURES spin-up subcommand before it will accept
2180 * anything other than the original IDENTIFY command.
2182 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2183 if (err_mask && id[2] != 0x738c) {
2185 reason = "SPINUP failed";
2189 * If the drive initially returned incomplete IDENTIFY info,
2190 * we now must reissue the IDENTIFY command.
2192 if (id[2] == 0x37c8)
2196 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2198 * The exact sequence expected by certain pre-ATA4 drives is:
2200 * IDENTIFY (optional in early ATA)
2201 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2203 * Some drives were very specific about that exact sequence.
2205 * Note that ATA4 says lba is mandatory so the second check
2206 * shoud never trigger.
2208 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2209 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2212 reason = "INIT_DEV_PARAMS failed";
2216 /* current CHS translation info (id[53-58]) might be
2217 * changed. reread the identify device info.
2219 flags &= ~ATA_READID_POSTRESET;
2229 if (ata_msg_warn(ap))
2230 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2231 "(%s, err_mask=0x%x)\n", reason, err_mask);
2235 static int ata_do_link_spd_horkage(struct ata_device *dev)
2237 struct ata_link *plink = ata_dev_phys_link(dev);
2238 u32 target, target_limit;
2240 if (!sata_scr_valid(plink))
2243 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2248 target_limit = (1 << target) - 1;
2250 /* if already on stricter limit, no need to push further */
2251 if (plink->sata_spd_limit <= target_limit)
2254 plink->sata_spd_limit = target_limit;
2256 /* Request another EH round by returning -EAGAIN if link is
2257 * going faster than the target speed. Forward progress is
2258 * guaranteed by setting sata_spd_limit to target_limit above.
2260 if (plink->sata_spd > target) {
2261 ata_dev_printk(dev, KERN_INFO,
2262 "applying link speed limit horkage to %s\n",
2263 sata_spd_string(target));
2269 static inline u8 ata_dev_knobble(struct ata_device *dev)
2271 struct ata_port *ap = dev->link->ap;
2273 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2276 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2279 static void ata_dev_config_ncq(struct ata_device *dev,
2280 char *desc, size_t desc_sz)
2282 struct ata_port *ap = dev->link->ap;
2283 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2285 if (!ata_id_has_ncq(dev->id)) {
2289 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2290 snprintf(desc, desc_sz, "NCQ (not used)");
2293 if (ap->flags & ATA_FLAG_NCQ) {
2294 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2295 dev->flags |= ATA_DFLAG_NCQ;
2298 if (hdepth >= ddepth)
2299 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2301 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2305 * ata_dev_configure - Configure the specified ATA/ATAPI device
2306 * @dev: Target device to configure
2308 * Configure @dev according to @dev->id. Generic and low-level
2309 * driver specific fixups are also applied.
2312 * Kernel thread context (may sleep)
2315 * 0 on success, -errno otherwise
2317 int ata_dev_configure(struct ata_device *dev)
2319 struct ata_port *ap = dev->link->ap;
2320 struct ata_eh_context *ehc = &dev->link->eh_context;
2321 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2322 const u16 *id = dev->id;
2323 unsigned long xfer_mask;
2324 char revbuf[7]; /* XYZ-99\0 */
2325 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2326 char modelbuf[ATA_ID_PROD_LEN+1];
2329 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2330 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2335 if (ata_msg_probe(ap))
2336 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2339 dev->horkage |= ata_dev_blacklisted(dev);
2340 ata_force_horkage(dev);
2342 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2343 ata_dev_printk(dev, KERN_INFO,
2344 "unsupported device, disabling\n");
2345 ata_dev_disable(dev);
2349 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2350 dev->class == ATA_DEV_ATAPI) {
2351 ata_dev_printk(dev, KERN_WARNING,
2352 "WARNING: ATAPI is %s, device ignored.\n",
2353 atapi_enabled ? "not supported with this driver"
2355 ata_dev_disable(dev);
2359 rc = ata_do_link_spd_horkage(dev);
2363 /* let ACPI work its magic */
2364 rc = ata_acpi_on_devcfg(dev);
2368 /* massage HPA, do it early as it might change IDENTIFY data */
2369 rc = ata_hpa_resize(dev);
2373 /* print device capabilities */
2374 if (ata_msg_probe(ap))
2375 ata_dev_printk(dev, KERN_DEBUG,
2376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2379 id[49], id[82], id[83], id[84],
2380 id[85], id[86], id[87], id[88]);
2382 /* initialize to-be-configured parameters */
2383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2384 dev->max_sectors = 0;
2392 * common ATA, ATAPI feature tests
2395 /* find max transfer mode; for printk only */
2396 xfer_mask = ata_id_xfermask(id);
2398 if (ata_msg_probe(ap))
2401 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2402 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 /* ATA-specific feature tests */
2409 if (dev->class == ATA_DEV_ATA) {
2410 if (ata_id_is_cfa(id)) {
2411 if (id[162] & 1) /* CPRM may make this media unusable */
2412 ata_dev_printk(dev, KERN_WARNING,
2413 "supports DRM functions and may "
2414 "not be fully accessable.\n");
2415 snprintf(revbuf, 7, "CFA");
2417 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2418 /* Warn the user if the device has TPM extensions */
2419 if (ata_id_has_tpm(id))
2420 ata_dev_printk(dev, KERN_WARNING,
2421 "supports DRM functions and may "
2422 "not be fully accessable.\n");
2425 dev->n_sectors = ata_id_n_sectors(id);
2427 if (dev->id[59] & 0x100)
2428 dev->multi_count = dev->id[59] & 0xff;
2430 if (ata_id_has_lba(id)) {
2431 const char *lba_desc;
2435 dev->flags |= ATA_DFLAG_LBA;
2436 if (ata_id_has_lba48(id)) {
2437 dev->flags |= ATA_DFLAG_LBA48;
2440 if (dev->n_sectors >= (1UL << 28) &&
2441 ata_id_has_flush_ext(id))
2442 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2446 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2448 /* print device info to dmesg */
2449 if (ata_msg_drv(ap) && print_info) {
2450 ata_dev_printk(dev, KERN_INFO,
2451 "%s: %s, %s, max %s\n",
2452 revbuf, modelbuf, fwrevbuf,
2453 ata_mode_string(xfer_mask));
2454 ata_dev_printk(dev, KERN_INFO,
2455 "%Lu sectors, multi %u: %s %s\n",
2456 (unsigned long long)dev->n_sectors,
2457 dev->multi_count, lba_desc, ncq_desc);
2462 /* Default translation */
2463 dev->cylinders = id[1];
2465 dev->sectors = id[6];
2467 if (ata_id_current_chs_valid(id)) {
2468 /* Current CHS translation is valid. */
2469 dev->cylinders = id[54];
2470 dev->heads = id[55];
2471 dev->sectors = id[56];
2474 /* print device info to dmesg */
2475 if (ata_msg_drv(ap) && print_info) {
2476 ata_dev_printk(dev, KERN_INFO,
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
2480 ata_dev_printk(dev, KERN_INFO,
2481 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2482 (unsigned long long)dev->n_sectors,
2483 dev->multi_count, dev->cylinders,
2484 dev->heads, dev->sectors);
2491 /* ATAPI-specific feature tests */
2492 else if (dev->class == ATA_DEV_ATAPI) {
2493 const char *cdb_intr_string = "";
2494 const char *atapi_an_string = "";
2495 const char *dma_dir_string = "";
2498 rc = atapi_cdb_len(id);
2499 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2500 if (ata_msg_warn(ap))
2501 ata_dev_printk(dev, KERN_WARNING,
2502 "unsupported CDB len\n");
2506 dev->cdb_len = (unsigned int) rc;
2508 /* Enable ATAPI AN if both the host and device have
2509 * the support. If PMP is attached, SNTF is required
2510 * to enable ATAPI AN to discern between PHY status
2511 * changed notifications and ATAPI ANs.
2513 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2514 (!sata_pmp_attached(ap) ||
2515 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2516 unsigned int err_mask;
2518 /* issue SET feature command to turn this on */
2519 err_mask = ata_dev_set_feature(dev,
2520 SETFEATURES_SATA_ENABLE, SATA_AN);
2522 ata_dev_printk(dev, KERN_ERR,
2523 "failed to enable ATAPI AN "
2524 "(err_mask=0x%x)\n", err_mask);
2526 dev->flags |= ATA_DFLAG_AN;
2527 atapi_an_string = ", ATAPI AN";
2531 if (ata_id_cdb_intr(dev->id)) {
2532 dev->flags |= ATA_DFLAG_CDB_INTR;
2533 cdb_intr_string = ", CDB intr";
2536 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2537 dev->flags |= ATA_DFLAG_DMADIR;
2538 dma_dir_string = ", DMADIR";
2541 /* print device info to dmesg */
2542 if (ata_msg_drv(ap) && print_info)
2543 ata_dev_printk(dev, KERN_INFO,
2544 "ATAPI: %s, %s, max %s%s%s%s\n",
2546 ata_mode_string(xfer_mask),
2547 cdb_intr_string, atapi_an_string,
2551 /* determine max_sectors */
2552 dev->max_sectors = ATA_MAX_SECTORS;
2553 if (dev->flags & ATA_DFLAG_LBA48)
2554 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2556 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2557 if (ata_id_has_hipm(dev->id))
2558 dev->flags |= ATA_DFLAG_HIPM;
2559 if (ata_id_has_dipm(dev->id))
2560 dev->flags |= ATA_DFLAG_DIPM;
2563 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2565 if (ata_dev_knobble(dev)) {
2566 if (ata_msg_drv(ap) && print_info)
2567 ata_dev_printk(dev, KERN_INFO,
2568 "applying bridge limits\n");
2569 dev->udma_mask &= ATA_UDMA5;
2570 dev->max_sectors = ATA_MAX_SECTORS;
2573 if ((dev->class == ATA_DEV_ATAPI) &&
2574 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2575 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2576 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2579 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2580 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2583 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2584 dev->horkage |= ATA_HORKAGE_IPM;
2586 /* reset link pm_policy for this port to no pm */
2587 ap->pm_policy = MAX_PERFORMANCE;
2590 if (ap->ops->dev_config)
2591 ap->ops->dev_config(dev);
2593 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2594 /* Let the user know. We don't want to disallow opens for
2595 rescue purposes, or in case the vendor is just a blithering
2596 idiot. Do this after the dev_config call as some controllers
2597 with buggy firmware may want to avoid reporting false device
2601 ata_dev_printk(dev, KERN_WARNING,
2602 "Drive reports diagnostics failure. This may indicate a drive\n");
2603 ata_dev_printk(dev, KERN_WARNING,
2604 "fault or invalid emulation. Contact drive vendor for information.\n");
2608 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2609 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2610 "firmware update to be fully functional.\n");
2611 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2612 "or visit http://ata.wiki.kernel.org.\n");
2618 if (ata_msg_probe(ap))
2619 ata_dev_printk(dev, KERN_DEBUG,
2620 "%s: EXIT, err\n", __func__);
2625 * ata_cable_40wire - return 40 wire cable type
2628 * Helper method for drivers which want to hardwire 40 wire cable
2632 int ata_cable_40wire(struct ata_port *ap)
2634 return ATA_CBL_PATA40;
2638 * ata_cable_80wire - return 80 wire cable type
2641 * Helper method for drivers which want to hardwire 80 wire cable
2645 int ata_cable_80wire(struct ata_port *ap)
2647 return ATA_CBL_PATA80;
2651 * ata_cable_unknown - return unknown PATA cable.
2654 * Helper method for drivers which have no PATA cable detection.
2657 int ata_cable_unknown(struct ata_port *ap)
2659 return ATA_CBL_PATA_UNK;
2663 * ata_cable_ignore - return ignored PATA cable.
2666 * Helper method for drivers which don't use cable type to limit
2669 int ata_cable_ignore(struct ata_port *ap)
2671 return ATA_CBL_PATA_IGN;
2675 * ata_cable_sata - return SATA cable type
2678 * Helper method for drivers which have SATA cables
2681 int ata_cable_sata(struct ata_port *ap)
2683 return ATA_CBL_SATA;
2687 * ata_bus_probe - Reset and probe ATA bus
2690 * Master ATA bus probing function. Initiates a hardware-dependent
2691 * bus reset, then attempts to identify any devices found on
2695 * PCI/etc. bus probe sem.
2698 * Zero on success, negative errno otherwise.
2701 int ata_bus_probe(struct ata_port *ap)
2703 unsigned int classes[ATA_MAX_DEVICES];
2704 int tries[ATA_MAX_DEVICES];
2706 struct ata_device *dev;
2710 ata_for_each_dev(dev, &ap->link, ALL)
2711 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2714 ata_for_each_dev(dev, &ap->link, ALL) {
2715 /* If we issue an SRST then an ATA drive (not ATAPI)
2716 * may change configuration and be in PIO0 timing. If
2717 * we do a hard reset (or are coming from power on)
2718 * this is true for ATA or ATAPI. Until we've set a
2719 * suitable controller mode we should not touch the
2720 * bus as we may be talking too fast.
2722 dev->pio_mode = XFER_PIO_0;
2724 /* If the controller has a pio mode setup function
2725 * then use it to set the chipset to rights. Don't
2726 * touch the DMA setup as that will be dealt with when
2727 * configuring devices.
2729 if (ap->ops->set_piomode)
2730 ap->ops->set_piomode(ap, dev);
2733 /* reset and determine device classes */
2734 ap->ops->phy_reset(ap);
2736 ata_for_each_dev(dev, &ap->link, ALL) {
2737 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2738 dev->class != ATA_DEV_UNKNOWN)
2739 classes[dev->devno] = dev->class;
2741 classes[dev->devno] = ATA_DEV_NONE;
2743 dev->class = ATA_DEV_UNKNOWN;
2748 /* read IDENTIFY page and configure devices. We have to do the identify
2749 specific sequence bass-ackwards so that PDIAG- is released by
2752 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2753 if (tries[dev->devno])
2754 dev->class = classes[dev->devno];
2756 if (!ata_dev_enabled(dev))
2759 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2765 /* Now ask for the cable type as PDIAG- should have been released */
2766 if (ap->ops->cable_detect)
2767 ap->cbl = ap->ops->cable_detect(ap);
2769 /* We may have SATA bridge glue hiding here irrespective of
2770 * the reported cable types and sensed types. When SATA
2771 * drives indicate we have a bridge, we don't know which end
2772 * of the link the bridge is which is a problem.
2774 ata_for_each_dev(dev, &ap->link, ENABLED)
2775 if (ata_id_is_sata(dev->id))
2776 ap->cbl = ATA_CBL_SATA;
2778 /* After the identify sequence we can now set up the devices. We do
2779 this in the normal order so that the user doesn't get confused */
2781 ata_for_each_dev(dev, &ap->link, ENABLED) {
2782 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2783 rc = ata_dev_configure(dev);
2784 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2789 /* configure transfer mode */
2790 rc = ata_set_mode(&ap->link, &dev);
2794 ata_for_each_dev(dev, &ap->link, ENABLED)
2797 /* no device present, disable port */
2798 ata_port_disable(ap);
2802 tries[dev->devno]--;
2806 /* eeek, something went very wrong, give up */
2807 tries[dev->devno] = 0;
2811 /* give it just one more chance */
2812 tries[dev->devno] = min(tries[dev->devno], 1);
2814 if (tries[dev->devno] == 1) {
2815 /* This is the last chance, better to slow
2816 * down than lose it.
2818 sata_down_spd_limit(&ap->link, 0);
2819 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2823 if (!tries[dev->devno])
2824 ata_dev_disable(dev);
2830 * ata_port_probe - Mark port as enabled
2831 * @ap: Port for which we indicate enablement
2833 * Modify @ap data structure such that the system
2834 * thinks that the entire port is enabled.
2836 * LOCKING: host lock, or some other form of
2840 void ata_port_probe(struct ata_port *ap)
2842 ap->flags &= ~ATA_FLAG_DISABLED;
2846 * sata_print_link_status - Print SATA link status
2847 * @link: SATA link to printk link status about
2849 * This function prints link speed and status of a SATA link.
2854 static void sata_print_link_status(struct ata_link *link)
2856 u32 sstatus, scontrol, tmp;
2858 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2860 sata_scr_read(link, SCR_CONTROL, &scontrol);
2862 if (ata_phys_link_online(link)) {
2863 tmp = (sstatus >> 4) & 0xf;
2864 ata_link_printk(link, KERN_INFO,
2865 "SATA link up %s (SStatus %X SControl %X)\n",
2866 sata_spd_string(tmp), sstatus, scontrol);
2868 ata_link_printk(link, KERN_INFO,
2869 "SATA link down (SStatus %X SControl %X)\n",
2875 * ata_dev_pair - return other device on cable
2878 * Obtain the other device on the same cable, or if none is
2879 * present NULL is returned
2882 struct ata_device *ata_dev_pair(struct ata_device *adev)
2884 struct ata_link *link = adev->link;
2885 struct ata_device *pair = &link->device[1 - adev->devno];
2886 if (!ata_dev_enabled(pair))
2892 * ata_port_disable - Disable port.
2893 * @ap: Port to be disabled.
2895 * Modify @ap data structure such that the system
2896 * thinks that the entire port is disabled, and should
2897 * never attempt to probe or communicate with devices
2900 * LOCKING: host lock, or some other form of
2904 void ata_port_disable(struct ata_port *ap)
2906 ap->link.device[0].class = ATA_DEV_NONE;
2907 ap->link.device[1].class = ATA_DEV_NONE;
2908 ap->flags |= ATA_FLAG_DISABLED;
2912 * sata_down_spd_limit - adjust SATA spd limit downward
2913 * @link: Link to adjust SATA spd limit for
2914 * @spd_limit: Additional limit
2916 * Adjust SATA spd limit of @link downward. Note that this
2917 * function only adjusts the limit. The change must be applied
2918 * using sata_set_spd().
2920 * If @spd_limit is non-zero, the speed is limited to equal to or
2921 * lower than @spd_limit if such speed is supported. If
2922 * @spd_limit is slower than any supported speed, only the lowest
2923 * supported speed is allowed.
2926 * Inherited from caller.
2929 * 0 on success, negative errno on failure
2931 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2933 u32 sstatus, spd, mask;
2936 if (!sata_scr_valid(link))
2939 /* If SCR can be read, use it to determine the current SPD.
2940 * If not, use cached value in link->sata_spd.
2942 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2943 if (rc == 0 && ata_sstatus_online(sstatus))
2944 spd = (sstatus >> 4) & 0xf;
2946 spd = link->sata_spd;
2948 mask = link->sata_spd_limit;
2952 /* unconditionally mask off the highest bit */
2953 bit = fls(mask) - 1;
2954 mask &= ~(1 << bit);
2956 /* Mask off all speeds higher than or equal to the current
2957 * one. Force 1.5Gbps if current SPD is not available.
2960 mask &= (1 << (spd - 1)) - 1;
2964 /* were we already at the bottom? */
2969 if (mask & ((1 << spd_limit) - 1))
2970 mask &= (1 << spd_limit) - 1;
2972 bit = ffs(mask) - 1;
2977 link->sata_spd_limit = mask;
2979 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2980 sata_spd_string(fls(mask)));
2985 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2987 struct ata_link *host_link = &link->ap->link;
2988 u32 limit, target, spd;
2990 limit = link->sata_spd_limit;
2992 /* Don't configure downstream link faster than upstream link.
2993 * It doesn't speed up anything and some PMPs choke on such
2996 if (!ata_is_host_link(link) && host_link->sata_spd)
2997 limit &= (1 << host_link->sata_spd) - 1;
2999 if (limit == UINT_MAX)
3002 target = fls(limit);
3004 spd = (*scontrol >> 4) & 0xf;
3005 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3007 return spd != target;
3011 * sata_set_spd_needed - is SATA spd configuration needed
3012 * @link: Link in question
3014 * Test whether the spd limit in SControl matches
3015 * @link->sata_spd_limit. This function is used to determine
3016 * whether hardreset is necessary to apply SATA spd
3020 * Inherited from caller.
3023 * 1 if SATA spd configuration is needed, 0 otherwise.
3025 static int sata_set_spd_needed(struct ata_link *link)
3029 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3032 return __sata_set_spd_needed(link, &scontrol);
3036 * sata_set_spd - set SATA spd according to spd limit
3037 * @link: Link to set SATA spd for
3039 * Set SATA spd of @link according to sata_spd_limit.
3042 * Inherited from caller.
3045 * 0 if spd doesn't need to be changed, 1 if spd has been
3046 * changed. Negative errno if SCR registers are inaccessible.
3048 int sata_set_spd(struct ata_link *link)
3053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3056 if (!__sata_set_spd_needed(link, &scontrol))
3059 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3066 * This mode timing computation functionality is ported over from
3067 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3070 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3071 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3072 * for UDMA6, which is currently supported only by Maxtor drives.
3074 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3077 static const struct ata_timing ata_timing[] = {
3078 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3079 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3080 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3081 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3082 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3083 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3084 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3085 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3087 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3088 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3089 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3091 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3092 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3093 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3094 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3095 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3097 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3098 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3099 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3100 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3101 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3102 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3103 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3104 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3109 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3110 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3112 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3114 q->setup = EZ(t->setup * 1000, T);
3115 q->act8b = EZ(t->act8b * 1000, T);
3116 q->rec8b = EZ(t->rec8b * 1000, T);
3117 q->cyc8b = EZ(t->cyc8b * 1000, T);
3118 q->active = EZ(t->active * 1000, T);
3119 q->recover = EZ(t->recover * 1000, T);
3120 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3121 q->cycle = EZ(t->cycle * 1000, T);
3122 q->udma = EZ(t->udma * 1000, UT);
3125 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3126 struct ata_timing *m, unsigned int what)
3128 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3129 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3130 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3131 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3132 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3133 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3134 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3135 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3136 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3139 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3141 const struct ata_timing *t = ata_timing;
3143 while (xfer_mode > t->mode)
3146 if (xfer_mode == t->mode)
3151 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3152 struct ata_timing *t, int T, int UT)
3154 const struct ata_timing *s;
3155 struct ata_timing p;
3161 if (!(s = ata_timing_find_mode(speed)))
3164 memcpy(t, s, sizeof(*s));
3167 * If the drive is an EIDE drive, it can tell us it needs extended
3168 * PIO/MW_DMA cycle timing.
3171 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3172 memset(&p, 0, sizeof(p));
3173 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3174 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3175 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3176 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3177 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3179 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3183 * Convert the timing to bus clock counts.
3186 ata_timing_quantize(t, t, T, UT);
3189 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3190 * S.M.A.R.T * and some other commands. We have to ensure that the
3191 * DMA cycle timing is slower/equal than the fastest PIO timing.
3194 if (speed > XFER_PIO_6) {
3195 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3196 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3200 * Lengthen active & recovery time so that cycle time is correct.
3203 if (t->act8b + t->rec8b < t->cyc8b) {
3204 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3205 t->rec8b = t->cyc8b - t->act8b;
3208 if (t->active + t->recover < t->cycle) {
3209 t->active += (t->cycle - (t->active + t->recover)) / 2;
3210 t->recover = t->cycle - t->active;
3213 /* In a few cases quantisation may produce enough errors to
3214 leave t->cycle too low for the sum of active and recovery
3215 if so we must correct this */
3216 if (t->active + t->recover > t->cycle)
3217 t->cycle = t->active + t->recover;
3223 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3224 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3225 * @cycle: cycle duration in ns
3227 * Return matching xfer mode for @cycle. The returned mode is of
3228 * the transfer type specified by @xfer_shift. If @cycle is too
3229 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3230 * than the fastest known mode, the fasted mode is returned.
3236 * Matching xfer_mode, 0xff if no match found.
3238 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3240 u8 base_mode = 0xff, last_mode = 0xff;
3241 const struct ata_xfer_ent *ent;
3242 const struct ata_timing *t;
3244 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3245 if (ent->shift == xfer_shift)
3246 base_mode = ent->base;
3248 for (t = ata_timing_find_mode(base_mode);
3249 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3250 unsigned short this_cycle;
3252 switch (xfer_shift) {
3254 case ATA_SHIFT_MWDMA:
3255 this_cycle = t->cycle;
3257 case ATA_SHIFT_UDMA:
3258 this_cycle = t->udma;
3264 if (cycle > this_cycle)
3267 last_mode = t->mode;
3274 * ata_down_xfermask_limit - adjust dev xfer masks downward
3275 * @dev: Device to adjust xfer masks
3276 * @sel: ATA_DNXFER_* selector
3278 * Adjust xfer masks of @dev downward. Note that this function
3279 * does not apply the change. Invoking ata_set_mode() afterwards
3280 * will apply the limit.
3283 * Inherited from caller.
3286 * 0 on success, negative errno on failure
3288 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3291 unsigned long orig_mask, xfer_mask;
3292 unsigned long pio_mask, mwdma_mask, udma_mask;
3295 quiet = !!(sel & ATA_DNXFER_QUIET);
3296 sel &= ~ATA_DNXFER_QUIET;
3298 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3301 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3304 case ATA_DNXFER_PIO:
3305 highbit = fls(pio_mask) - 1;
3306 pio_mask &= ~(1 << highbit);
3309 case ATA_DNXFER_DMA:
3311 highbit = fls(udma_mask) - 1;
3312 udma_mask &= ~(1 << highbit);
3315 } else if (mwdma_mask) {
3316 highbit = fls(mwdma_mask) - 1;
3317 mwdma_mask &= ~(1 << highbit);
3323 case ATA_DNXFER_40C:
3324 udma_mask &= ATA_UDMA_MASK_40C;
3327 case ATA_DNXFER_FORCE_PIO0:
3329 case ATA_DNXFER_FORCE_PIO:
3338 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3340 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3344 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3345 snprintf(buf, sizeof(buf), "%s:%s",
3346 ata_mode_string(xfer_mask),
3347 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3349 snprintf(buf, sizeof(buf), "%s",
3350 ata_mode_string(xfer_mask));
3352 ata_dev_printk(dev, KERN_WARNING,
3353 "limiting speed to %s\n", buf);
3356 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3362 static int ata_dev_set_mode(struct ata_device *dev)
3364 struct ata_eh_context *ehc = &dev->link->eh_context;
3365 const char *dev_err_whine = "";
3366 int ign_dev_err = 0;
3367 unsigned int err_mask;
3370 dev->flags &= ~ATA_DFLAG_PIO;
3371 if (dev->xfer_shift == ATA_SHIFT_PIO)
3372 dev->flags |= ATA_DFLAG_PIO;
3374 err_mask = ata_dev_set_xfermode(dev);
3376 if (err_mask & ~AC_ERR_DEV)
3380 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3381 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3382 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3386 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3387 /* Old CFA may refuse this command, which is just fine */
3388 if (ata_id_is_cfa(dev->id))
3390 /* Catch several broken garbage emulations plus some pre
3392 if (ata_id_major_version(dev->id) == 0 &&
3393 dev->pio_mode <= XFER_PIO_2)
3395 /* Some very old devices and some bad newer ones fail
3396 any kind of SET_XFERMODE request but support PIO0-2
3397 timings and no IORDY */
3398 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3401 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3402 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3403 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3404 dev->dma_mode == XFER_MW_DMA_0 &&
3405 (dev->id[63] >> 8) & 1)
3408 /* if the device is actually configured correctly, ignore dev err */
3409 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3412 if (err_mask & AC_ERR_DEV) {
3416 dev_err_whine = " (device error ignored)";
3419 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3420 dev->xfer_shift, (int)dev->xfer_mode);
3422 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3423 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3429 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3430 "(err_mask=0x%x)\n", err_mask);
3435 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3436 * @link: link on which timings will be programmed
3437 * @r_failed_dev: out parameter for failed device
3439 * Standard implementation of the function used to tune and set
3440 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3441 * ata_dev_set_mode() fails, pointer to the failing device is
3442 * returned in @r_failed_dev.
3445 * PCI/etc. bus probe sem.
3448 * 0 on success, negative errno otherwise
3451 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3453 struct ata_port *ap = link->ap;
3454 struct ata_device *dev;
3455 int rc = 0, used_dma = 0, found = 0;
3457 /* step 1: calculate xfer_mask */
3458 ata_for_each_dev(dev, link, ENABLED) {
3459 unsigned long pio_mask, dma_mask;
3460 unsigned int mode_mask;
3462 mode_mask = ATA_DMA_MASK_ATA;
3463 if (dev->class == ATA_DEV_ATAPI)
3464 mode_mask = ATA_DMA_MASK_ATAPI;
3465 else if (ata_id_is_cfa(dev->id))
3466 mode_mask = ATA_DMA_MASK_CFA;
3468 ata_dev_xfermask(dev);
3469 ata_force_xfermask(dev);
3471 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3472 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3474 if (libata_dma_mask & mode_mask)
3475 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3479 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3480 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3483 if (ata_dma_enabled(dev))
3489 /* step 2: always set host PIO timings */
3490 ata_for_each_dev(dev, link, ENABLED) {
3491 if (dev->pio_mode == 0xff) {
3492 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3497 dev->xfer_mode = dev->pio_mode;
3498 dev->xfer_shift = ATA_SHIFT_PIO;
3499 if (ap->ops->set_piomode)
3500 ap->ops->set_piomode(ap, dev);
3503 /* step 3: set host DMA timings */
3504 ata_for_each_dev(dev, link, ENABLED) {
3505 if (!ata_dma_enabled(dev))
3508 dev->xfer_mode = dev->dma_mode;
3509 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3510 if (ap->ops->set_dmamode)
3511 ap->ops->set_dmamode(ap, dev);
3514 /* step 4: update devices' xfer mode */
3515 ata_for_each_dev(dev, link, ENABLED) {
3516 rc = ata_dev_set_mode(dev);
3521 /* Record simplex status. If we selected DMA then the other
3522 * host channels are not permitted to do so.
3524 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3525 ap->host->simplex_claimed = ap;
3529 *r_failed_dev = dev;
3534 * ata_wait_ready - wait for link to become ready
3535 * @link: link to be waited on
3536 * @deadline: deadline jiffies for the operation
3537 * @check_ready: callback to check link readiness
3539 * Wait for @link to become ready. @check_ready should return
3540 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3541 * link doesn't seem to be occupied, other errno for other error
3544 * Transient -ENODEV conditions are allowed for
3545 * ATA_TMOUT_FF_WAIT.
3551 * 0 if @linke is ready before @deadline; otherwise, -errno.
3553 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3554 int (*check_ready)(struct ata_link *link))
3556 unsigned long start = jiffies;
3557 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3560 /* Slave readiness can't be tested separately from master. On
3561 * M/S emulation configuration, this function should be called
3562 * only on the master and it will handle both master and slave.
3564 WARN_ON(link == link->ap->slave_link);
3566 if (time_after(nodev_deadline, deadline))
3567 nodev_deadline = deadline;
3570 unsigned long now = jiffies;
3573 ready = tmp = check_ready(link);
3577 /* -ENODEV could be transient. Ignore -ENODEV if link
3578 * is online. Also, some SATA devices take a long
3579 * time to clear 0xff after reset. For example,
3580 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3581 * GoVault needs even more than that. Wait for
3582 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3584 * Note that some PATA controllers (pata_ali) explode
3585 * if status register is read more than once when
3586 * there's no device attached.
3588 if (ready == -ENODEV) {
3589 if (ata_link_online(link))
3591 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3592 !ata_link_offline(link) &&
3593 time_before(now, nodev_deadline))
3599 if (time_after(now, deadline))
3602 if (!warned && time_after(now, start + 5 * HZ) &&
3603 (deadline - now > 3 * HZ)) {
3604 ata_link_printk(link, KERN_WARNING,
3605 "link is slow to respond, please be patient "
3606 "(ready=%d)\n", tmp);
3615 * ata_wait_after_reset - wait for link to become ready after reset
3616 * @link: link to be waited on
3617 * @deadline: deadline jiffies for the operation
3618 * @check_ready: callback to check link readiness
3620 * Wait for @link to become ready after reset.
3626 * 0 if @linke is ready before @deadline; otherwise, -errno.
3628 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3629 int (*check_ready)(struct ata_link *link))
3631 msleep(ATA_WAIT_AFTER_RESET);
3633 return ata_wait_ready(link, deadline, check_ready);
3637 * sata_link_debounce - debounce SATA phy status
3638 * @link: ATA link to debounce SATA phy status for
3639 * @params: timing parameters { interval, duratinon, timeout } in msec
3640 * @deadline: deadline jiffies for the operation
3642 * Make sure SStatus of @link reaches stable state, determined by
3643 * holding the same value where DET is not 1 for @duration polled
3644 * every @interval, before @timeout. Timeout constraints the
3645 * beginning of the stable state. Because DET gets stuck at 1 on
3646 * some controllers after hot unplugging, this functions waits
3647 * until timeout then returns 0 if DET is stable at 1.
3649 * @timeout is further limited by @deadline. The sooner of the
3653 * Kernel thread context (may sleep)
3656 * 0 on success, -errno on failure.
3658 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3659 unsigned long deadline)
3661 unsigned long interval = params[0];
3662 unsigned long duration = params[1];
3663 unsigned long last_jiffies, t;
3667 t = ata_deadline(jiffies, params[2]);
3668 if (time_before(t, deadline))
3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3676 last_jiffies = jiffies;
3680 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3686 if (cur == 1 && time_before(jiffies, deadline))
3688 if (time_after(jiffies,
3689 ata_deadline(last_jiffies, duration)))
3694 /* unstable, start over */
3696 last_jiffies = jiffies;
3698 /* Check deadline. If debouncing failed, return
3699 * -EPIPE to tell upper layer to lower link speed.
3701 if (time_after(jiffies, deadline))
3707 * sata_link_resume - resume SATA link
3708 * @link: ATA link to resume SATA
3709 * @params: timing parameters { interval, duratinon, timeout } in msec
3710 * @deadline: deadline jiffies for the operation
3712 * Resume SATA phy @link and debounce it.
3715 * Kernel thread context (may sleep)
3718 * 0 on success, -errno on failure.
3720 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3721 unsigned long deadline)
3723 u32 scontrol, serror;
3726 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3729 scontrol = (scontrol & 0x0f0) | 0x300;
3731 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3734 /* Some PHYs react badly if SStatus is pounded immediately
3735 * after resuming. Delay 200ms before debouncing.
3739 if ((rc = sata_link_debounce(link, params, deadline)))
3742 /* clear SError, some PHYs require this even for SRST to work */
3743 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3744 rc = sata_scr_write(link, SCR_ERROR, serror);
3746 return rc != -EINVAL ? rc : 0;
3750 * ata_std_prereset - prepare for reset
3751 * @link: ATA link to be reset
3752 * @deadline: deadline jiffies for the operation
3754 * @link is about to be reset. Initialize it. Failure from
3755 * prereset makes libata abort whole reset sequence and give up
3756 * that port, so prereset should be best-effort. It does its
3757 * best to prepare for reset sequence but if things go wrong, it
3758 * should just whine, not fail.
3761 * Kernel thread context (may sleep)
3764 * 0 on success, -errno otherwise.
3766 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3768 struct ata_port *ap = link->ap;
3769 struct ata_eh_context *ehc = &link->eh_context;
3770 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3773 /* if we're about to do hardreset, nothing more to do */
3774 if (ehc->i.action & ATA_EH_HARDRESET)
3777 /* if SATA, resume link */
3778 if (ap->flags & ATA_FLAG_SATA) {
3779 rc = sata_link_resume(link, timing, deadline);
3780 /* whine about phy resume failure but proceed */
3781 if (rc && rc != -EOPNOTSUPP)
3782 ata_link_printk(link, KERN_WARNING, "failed to resume "
3783 "link for reset (errno=%d)\n", rc);
3786 /* no point in trying softreset on offline link */
3787 if (ata_phys_link_offline(link))
3788 ehc->i.action &= ~ATA_EH_SOFTRESET;
3794 * sata_link_hardreset - reset link via SATA phy reset
3795 * @link: link to reset
3796 * @timing: timing parameters { interval, duratinon, timeout } in msec
3797 * @deadline: deadline jiffies for the operation
3798 * @online: optional out parameter indicating link onlineness
3799 * @check_ready: optional callback to check link readiness
3801 * SATA phy-reset @link using DET bits of SControl register.
3802 * After hardreset, link readiness is waited upon using
3803 * ata_wait_ready() if @check_ready is specified. LLDs are
3804 * allowed to not specify @check_ready and wait itself after this
3805 * function returns. Device classification is LLD's
3808 * *@online is set to one iff reset succeeded and @link is online
3812 * Kernel thread context (may sleep)
3815 * 0 on success, -errno otherwise.
3817 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3818 unsigned long deadline,
3819 bool *online, int (*check_ready)(struct ata_link *))
3829 if (sata_set_spd_needed(link)) {
3830 /* SATA spec says nothing about how to reconfigure
3831 * spd. To be on the safe side, turn off phy during
3832 * reconfiguration. This works for at least ICH7 AHCI
3835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3838 scontrol = (scontrol & 0x0f0) | 0x304;
3840 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3846 /* issue phy wake/reset */
3847 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3850 scontrol = (scontrol & 0x0f0) | 0x301;
3852 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3855 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3856 * 10.4.2 says at least 1 ms.
3860 /* bring link back */
3861 rc = sata_link_resume(link, timing, deadline);
3864 /* if link is offline nothing more to do */
3865 if (ata_phys_link_offline(link))
3868 /* Link is online. From this point, -ENODEV too is an error. */
3872 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3873 /* If PMP is supported, we have to do follow-up SRST.
3874 * Some PMPs don't send D2H Reg FIS after hardreset if
3875 * the first port is empty. Wait only for
3876 * ATA_TMOUT_PMP_SRST_WAIT.
3879 unsigned long pmp_deadline;
3881 pmp_deadline = ata_deadline(jiffies,
3882 ATA_TMOUT_PMP_SRST_WAIT);
3883 if (time_after(pmp_deadline, deadline))
3884 pmp_deadline = deadline;
3885 ata_wait_ready(link, pmp_deadline, check_ready);
3893 rc = ata_wait_ready(link, deadline, check_ready);
3895 if (rc && rc != -EAGAIN) {
3896 /* online is set iff link is online && reset succeeded */
3899 ata_link_printk(link, KERN_ERR,
3900 "COMRESET failed (errno=%d)\n", rc);
3902 DPRINTK("EXIT, rc=%d\n", rc);
3907 * sata_std_hardreset - COMRESET w/o waiting or classification
3908 * @link: link to reset
3909 * @class: resulting class of attached device
3910 * @deadline: deadline jiffies for the operation
3912 * Standard SATA COMRESET w/o waiting or classification.
3915 * Kernel thread context (may sleep)
3918 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3920 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3921 unsigned long deadline)
3923 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3928 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3929 return online ? -EAGAIN : rc;
3933 * ata_std_postreset - standard postreset callback
3934 * @link: the target ata_link
3935 * @classes: classes of attached devices
3937 * This function is invoked after a successful reset. Note that
3938 * the device might have been reset more than once using
3939 * different reset methods before postreset is invoked.
3942 * Kernel thread context (may sleep)
3944 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3950 /* reset complete, clear SError */
3951 if (!sata_scr_read(link, SCR_ERROR, &serror))
3952 sata_scr_write(link, SCR_ERROR, serror);
3954 /* print link status */
3955 sata_print_link_status(link);
3961 * ata_dev_same_device - Determine whether new ID matches configured device
3962 * @dev: device to compare against
3963 * @new_class: class of the new device
3964 * @new_id: IDENTIFY page of the new device
3966 * Compare @new_class and @new_id against @dev and determine
3967 * whether @dev is the device indicated by @new_class and
3974 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3976 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3979 const u16 *old_id = dev->id;
3980 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3981 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3983 if (dev->class != new_class) {
3984 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3985 dev->class, new_class);
3989 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3990 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3991 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3992 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3994 if (strcmp(model[0], model[1])) {
3995 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3996 "'%s' != '%s'\n", model[0], model[1]);
4000 if (strcmp(serial[0], serial[1])) {
4001 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4002 "'%s' != '%s'\n", serial[0], serial[1]);
4010 * ata_dev_reread_id - Re-read IDENTIFY data
4011 * @dev: target ATA device
4012 * @readid_flags: read ID flags
4014 * Re-read IDENTIFY page and make sure @dev is still attached to
4018 * Kernel thread context (may sleep)
4021 * 0 on success, negative errno otherwise
4023 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4025 unsigned int class = dev->class;
4026 u16 *id = (void *)dev->link->ap->sector_buf;
4030 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4034 /* is the device still there? */
4035 if (!ata_dev_same_device(dev, class, id))
4038 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4043 * ata_dev_revalidate - Revalidate ATA device
4044 * @dev: device to revalidate
4045 * @new_class: new class code
4046 * @readid_flags: read ID flags
4048 * Re-read IDENTIFY page, make sure @dev is still attached to the
4049 * port and reconfigure it according to the new IDENTIFY page.
4052 * Kernel thread context (may sleep)
4055 * 0 on success, negative errno otherwise
4057 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4058 unsigned int readid_flags)
4060 u64 n_sectors = dev->n_sectors;
4063 if (!ata_dev_enabled(dev))
4066 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4067 if (ata_class_enabled(new_class) &&
4068 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4069 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4070 dev->class, new_class);
4076 rc = ata_dev_reread_id(dev, readid_flags);
4080 /* configure device according to the new ID */
4081 rc = ata_dev_configure(dev);
4085 /* verify n_sectors hasn't changed */
4086 if (dev->class == ATA_DEV_ATA && n_sectors &&
4087 dev->n_sectors != n_sectors) {
4088 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4090 (unsigned long long)n_sectors,
4091 (unsigned long long)dev->n_sectors);
4093 /* restore original n_sectors */
4094 dev->n_sectors = n_sectors;
4103 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4107 struct ata_blacklist_entry {
4108 const char *model_num;
4109 const char *model_rev;
4110 unsigned long horkage;
4113 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4114 /* Devices with DMA related problems under Linux */
4115 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4116 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4117 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4118 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4119 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4120 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4121 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4122 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4123 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4124 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4125 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4126 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4127 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4128 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4129 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4130 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4131 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4132 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4133 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4134 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4135 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4136 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4137 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4138 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4139 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4140 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4141 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4142 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4143 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4144 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4145 /* Odd clown on sil3726/4726 PMPs */
4146 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4148 /* Weird ATAPI devices */
4149 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4150 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4152 /* Devices we expect to fail diagnostics */
4154 /* Devices where NCQ should be avoided */
4156 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4157 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4158 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4159 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4161 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4162 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4163 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4164 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4165 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4167 /* Seagate NCQ + FLUSH CACHE firmware bug */
4168 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4169 ATA_HORKAGE_FIRMWARE_WARN },
4170 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4173 ATA_HORKAGE_FIRMWARE_WARN },
4174 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4175 ATA_HORKAGE_FIRMWARE_WARN },
4176 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4177 ATA_HORKAGE_FIRMWARE_WARN },
4179 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4180 ATA_HORKAGE_FIRMWARE_WARN },
4181 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4182 ATA_HORKAGE_FIRMWARE_WARN },
4183 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4184 ATA_HORKAGE_FIRMWARE_WARN },
4185 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4186 ATA_HORKAGE_FIRMWARE_WARN },
4187 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4188 ATA_HORKAGE_FIRMWARE_WARN },
4190 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4191 ATA_HORKAGE_FIRMWARE_WARN },
4192 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4193 ATA_HORKAGE_FIRMWARE_WARN },
4194 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4195 ATA_HORKAGE_FIRMWARE_WARN },
4196 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4197 ATA_HORKAGE_FIRMWARE_WARN },
4198 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4199 ATA_HORKAGE_FIRMWARE_WARN },
4201 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4202 ATA_HORKAGE_FIRMWARE_WARN },
4203 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4204 ATA_HORKAGE_FIRMWARE_WARN },
4205 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4206 ATA_HORKAGE_FIRMWARE_WARN },
4207 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4212 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4213 ATA_HORKAGE_FIRMWARE_WARN },
4214 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4223 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4224 ATA_HORKAGE_FIRMWARE_WARN },
4225 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4234 /* Blacklist entries taken from Silicon Image 3124/3132
4235 Windows driver .inf file - also several Linux problem reports */
4236 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4237 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4238 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4240 /* devices which puke on READ_NATIVE_MAX */
4241 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4242 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4243 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4244 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4246 /* Devices which report 1 sector over size HPA */
4247 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4248 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4249 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4251 /* Devices which get the IVB wrong */
4252 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4253 /* Maybe we should just blacklist TSSTcorp... */
4254 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4255 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4256 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4257 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4258 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4259 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4261 /* Devices that do not need bridging limits applied */
4262 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4264 /* Devices which aren't very happy with higher link speeds */
4265 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4271 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4277 * check for trailing wildcard: *\0
4279 p = strchr(patt, wildchar);
4280 if (p && ((*(p + 1)) == 0))
4291 return strncmp(patt, name, len);
4294 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4296 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4297 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4298 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4300 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4301 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4303 while (ad->model_num) {
4304 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4305 if (ad->model_rev == NULL)
4307 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4315 static int ata_dma_blacklisted(const struct ata_device *dev)
4317 /* We don't support polling DMA.
4318 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4319 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4321 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4322 (dev->flags & ATA_DFLAG_CDB_INTR))
4324 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4328 * ata_is_40wire - check drive side detection
4331 * Perform drive side detection decoding, allowing for device vendors
4332 * who can't follow the documentation.
4335 static int ata_is_40wire(struct ata_device *dev)
4337 if (dev->horkage & ATA_HORKAGE_IVB)
4338 return ata_drive_40wire_relaxed(dev->id);
4339 return ata_drive_40wire(dev->id);
4343 * cable_is_40wire - 40/80/SATA decider
4344 * @ap: port to consider
4346 * This function encapsulates the policy for speed management
4347 * in one place. At the moment we don't cache the result but
4348 * there is a good case for setting ap->cbl to the result when
4349 * we are called with unknown cables (and figuring out if it
4350 * impacts hotplug at all).
4352 * Return 1 if the cable appears to be 40 wire.
4355 static int cable_is_40wire(struct ata_port *ap)
4357 struct ata_link *link;
4358 struct ata_device *dev;
4360 /* If the controller thinks we are 40 wire, we are. */
4361 if (ap->cbl == ATA_CBL_PATA40)
4364 /* If the controller thinks we are 80 wire, we are. */
4365 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4368 /* If the system is known to be 40 wire short cable (eg
4369 * laptop), then we allow 80 wire modes even if the drive
4372 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4375 /* If the controller doesn't know, we scan.
4377 * Note: We look for all 40 wire detects at this point. Any
4378 * 80 wire detect is taken to be 80 wire cable because
4379 * - in many setups only the one drive (slave if present) will
4380 * give a valid detect
4381 * - if you have a non detect capable drive you don't want it
4382 * to colour the choice
4384 ata_for_each_link(link, ap, EDGE) {
4385 ata_for_each_dev(dev, link, ENABLED) {
4386 if (!ata_is_40wire(dev))
4394 * ata_dev_xfermask - Compute supported xfermask of the given device
4395 * @dev: Device to compute xfermask for
4397 * Compute supported xfermask of @dev and store it in
4398 * dev->*_mask. This function is responsible for applying all
4399 * known limits including host controller limits, device
4405 static void ata_dev_xfermask(struct ata_device *dev)
4407 struct ata_link *link = dev->link;
4408 struct ata_port *ap = link->ap;
4409 struct ata_host *host = ap->host;
4410 unsigned long xfer_mask;
4412 /* controller modes available */
4413 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4414 ap->mwdma_mask, ap->udma_mask);
4416 /* drive modes available */
4417 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4418 dev->mwdma_mask, dev->udma_mask);
4419 xfer_mask &= ata_id_xfermask(dev->id);
4422 * CFA Advanced TrueIDE timings are not allowed on a shared
4425 if (ata_dev_pair(dev)) {
4426 /* No PIO5 or PIO6 */
4427 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4428 /* No MWDMA3 or MWDMA 4 */
4429 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4432 if (ata_dma_blacklisted(dev)) {
4433 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4434 ata_dev_printk(dev, KERN_WARNING,
4435 "device is on DMA blacklist, disabling DMA\n");
4438 if ((host->flags & ATA_HOST_SIMPLEX) &&
4439 host->simplex_claimed && host->simplex_claimed != ap) {
4440 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4441 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4442 "other device, disabling DMA\n");
4445 if (ap->flags & ATA_FLAG_NO_IORDY)
4446 xfer_mask &= ata_pio_mask_no_iordy(dev);
4448 if (ap->ops->mode_filter)
4449 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4451 /* Apply cable rule here. Don't apply it early because when
4452 * we handle hot plug the cable type can itself change.
4453 * Check this last so that we know if the transfer rate was
4454 * solely limited by the cable.
4455 * Unknown or 80 wire cables reported host side are checked
4456 * drive side as well. Cases where we know a 40wire cable
4457 * is used safely for 80 are not checked here.
4459 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4460 /* UDMA/44 or higher would be available */
4461 if (cable_is_40wire(ap)) {
4462 ata_dev_printk(dev, KERN_WARNING,
4463 "limited to UDMA/33 due to 40-wire cable\n");
4464 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4467 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4468 &dev->mwdma_mask, &dev->udma_mask);
4472 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4473 * @dev: Device to which command will be sent
4475 * Issue SET FEATURES - XFER MODE command to device @dev
4479 * PCI/etc. bus probe sem.
4482 * 0 on success, AC_ERR_* mask otherwise.
4485 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4487 struct ata_taskfile tf;
4488 unsigned int err_mask;
4490 /* set up set-features taskfile */
4491 DPRINTK("set features - xfer mode\n");
4493 /* Some controllers and ATAPI devices show flaky interrupt
4494 * behavior after setting xfer mode. Use polling instead.
4496 ata_tf_init(dev, &tf);
4497 tf.command = ATA_CMD_SET_FEATURES;
4498 tf.feature = SETFEATURES_XFER;
4499 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4500 tf.protocol = ATA_PROT_NODATA;
4501 /* If we are using IORDY we must send the mode setting command */
4502 if (ata_pio_need_iordy(dev))
4503 tf.nsect = dev->xfer_mode;
4504 /* If the device has IORDY and the controller does not - turn it off */
4505 else if (ata_id_has_iordy(dev->id))
4507 else /* In the ancient relic department - skip all of this */
4510 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4512 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4516 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4517 * @dev: Device to which command will be sent
4518 * @enable: Whether to enable or disable the feature
4519 * @feature: The sector count represents the feature to set
4521 * Issue SET FEATURES - SATA FEATURES command to device @dev
4522 * on port @ap with sector count
4525 * PCI/etc. bus probe sem.
4528 * 0 on success, AC_ERR_* mask otherwise.
4530 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4533 struct ata_taskfile tf;
4534 unsigned int err_mask;
4536 /* set up set-features taskfile */
4537 DPRINTK("set features - SATA features\n");
4539 ata_tf_init(dev, &tf);
4540 tf.command = ATA_CMD_SET_FEATURES;
4541 tf.feature = enable;
4542 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4543 tf.protocol = ATA_PROT_NODATA;
4546 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4548 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4553 * ata_dev_init_params - Issue INIT DEV PARAMS command
4554 * @dev: Device to which command will be sent
4555 * @heads: Number of heads (taskfile parameter)
4556 * @sectors: Number of sectors (taskfile parameter)
4559 * Kernel thread context (may sleep)
4562 * 0 on success, AC_ERR_* mask otherwise.
4564 static unsigned int ata_dev_init_params(struct ata_device *dev,
4565 u16 heads, u16 sectors)
4567 struct ata_taskfile tf;
4568 unsigned int err_mask;
4570 /* Number of sectors per track 1-255. Number of heads 1-16 */
4571 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4572 return AC_ERR_INVALID;
4574 /* set up init dev params taskfile */
4575 DPRINTK("init dev params \n");
4577 ata_tf_init(dev, &tf);
4578 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4579 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4580 tf.protocol = ATA_PROT_NODATA;
4582 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4584 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4585 /* A clean abort indicates an original or just out of spec drive
4586 and we should continue as we issue the setup based on the
4587 drive reported working geometry */
4588 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4591 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4596 * ata_sg_clean - Unmap DMA memory associated with command
4597 * @qc: Command containing DMA memory to be released
4599 * Unmap all mapped DMA memory associated with this command.
4602 * spin_lock_irqsave(host lock)
4604 void ata_sg_clean(struct ata_queued_cmd *qc)
4606 struct ata_port *ap = qc->ap;
4607 struct scatterlist *sg = qc->sg;
4608 int dir = qc->dma_dir;
4610 WARN_ON_ONCE(sg == NULL);
4612 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4615 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4617 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4622 * atapi_check_dma - Check whether ATAPI DMA can be supported
4623 * @qc: Metadata associated with taskfile to check
4625 * Allow low-level driver to filter ATA PACKET commands, returning
4626 * a status indicating whether or not it is OK to use DMA for the
4627 * supplied PACKET command.
4630 * spin_lock_irqsave(host lock)
4632 * RETURNS: 0 when ATAPI DMA can be used
4635 int atapi_check_dma(struct ata_queued_cmd *qc)
4637 struct ata_port *ap = qc->ap;
4639 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4640 * few ATAPI devices choke on such DMA requests.
4642 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4643 unlikely(qc->nbytes & 15))
4646 if (ap->ops->check_atapi_dma)
4647 return ap->ops->check_atapi_dma(qc);
4653 * ata_std_qc_defer - Check whether a qc needs to be deferred
4654 * @qc: ATA command in question
4656 * Non-NCQ commands cannot run with any other command, NCQ or
4657 * not. As upper layer only knows the queue depth, we are
4658 * responsible for maintaining exclusion. This function checks
4659 * whether a new command @qc can be issued.
4662 * spin_lock_irqsave(host lock)
4665 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4667 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4669 struct ata_link *link = qc->dev->link;
4671 if (qc->tf.protocol == ATA_PROT_NCQ) {
4672 if (!ata_tag_valid(link->active_tag))
4675 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4679 return ATA_DEFER_LINK;
4682 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4685 * ata_sg_init - Associate command with scatter-gather table.
4686 * @qc: Command to be associated
4687 * @sg: Scatter-gather table.
4688 * @n_elem: Number of elements in s/g table.
4690 * Initialize the data-related elements of queued_cmd @qc
4691 * to point to a scatter-gather table @sg, containing @n_elem
4695 * spin_lock_irqsave(host lock)
4697 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4698 unsigned int n_elem)
4701 qc->n_elem = n_elem;
4706 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4707 * @qc: Command with scatter-gather table to be mapped.
4709 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4712 * spin_lock_irqsave(host lock)
4715 * Zero on success, negative on error.
4718 static int ata_sg_setup(struct ata_queued_cmd *qc)
4720 struct ata_port *ap = qc->ap;
4721 unsigned int n_elem;
4723 VPRINTK("ENTER, ata%u\n", ap->print_id);
4725 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4729 DPRINTK("%d sg elements mapped\n", n_elem);
4731 qc->n_elem = n_elem;
4732 qc->flags |= ATA_QCFLAG_DMAMAP;
4738 * swap_buf_le16 - swap halves of 16-bit words in place
4739 * @buf: Buffer to swap
4740 * @buf_words: Number of 16-bit words in buffer.
4742 * Swap halves of 16-bit words if needed to convert from
4743 * little-endian byte order to native cpu byte order, or
4747 * Inherited from caller.
4749 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4754 for (i = 0; i < buf_words; i++)
4755 buf[i] = le16_to_cpu(buf[i]);
4756 #endif /* __BIG_ENDIAN */
4760 * ata_qc_new - Request an available ATA command, for queueing
4767 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4769 struct ata_queued_cmd *qc = NULL;
4772 /* no command while frozen */
4773 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4776 /* the last tag is reserved for internal command. */
4777 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4778 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4779 qc = __ata_qc_from_tag(ap, i);
4790 * ata_qc_new_init - Request an available ATA command, and initialize it
4791 * @dev: Device from whom we request an available command structure
4797 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4799 struct ata_port *ap = dev->link->ap;
4800 struct ata_queued_cmd *qc;
4802 qc = ata_qc_new(ap);
4815 * ata_qc_free - free unused ata_queued_cmd
4816 * @qc: Command to complete
4818 * Designed to free unused ata_queued_cmd object
4819 * in case something prevents using it.
4822 * spin_lock_irqsave(host lock)
4824 void ata_qc_free(struct ata_queued_cmd *qc)
4826 struct ata_port *ap = qc->ap;
4829 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4833 if (likely(ata_tag_valid(tag))) {
4834 qc->tag = ATA_TAG_POISON;
4835 clear_bit(tag, &ap->qc_allocated);
4839 void __ata_qc_complete(struct ata_queued_cmd *qc)
4841 struct ata_port *ap = qc->ap;
4842 struct ata_link *link = qc->dev->link;
4844 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4845 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4847 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4850 /* command should be marked inactive atomically with qc completion */
4851 if (qc->tf.protocol == ATA_PROT_NCQ) {
4852 link->sactive &= ~(1 << qc->tag);
4854 ap->nr_active_links--;
4856 link->active_tag = ATA_TAG_POISON;
4857 ap->nr_active_links--;
4860 /* clear exclusive status */
4861 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4862 ap->excl_link == link))
4863 ap->excl_link = NULL;
4865 /* atapi: mark qc as inactive to prevent the interrupt handler
4866 * from completing the command twice later, before the error handler
4867 * is called. (when rc != 0 and atapi request sense is needed)
4869 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4870 ap->qc_active &= ~(1 << qc->tag);
4872 /* call completion callback */
4873 qc->complete_fn(qc);
4876 static void fill_result_tf(struct ata_queued_cmd *qc)
4878 struct ata_port *ap = qc->ap;
4880 qc->result_tf.flags = qc->tf.flags;
4881 ap->ops->qc_fill_rtf(qc);
4884 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4886 struct ata_device *dev = qc->dev;
4888 if (ata_tag_internal(qc->tag))
4891 if (ata_is_nodata(qc->tf.protocol))
4894 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4897 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4901 * ata_qc_complete - Complete an active ATA command
4902 * @qc: Command to complete
4904 * Indicate to the mid and upper layers that an ATA
4905 * command has completed, with either an ok or not-ok status.
4908 * spin_lock_irqsave(host lock)
4910 void ata_qc_complete(struct ata_queued_cmd *qc)
4912 struct ata_port *ap = qc->ap;
4914 /* XXX: New EH and old EH use different mechanisms to
4915 * synchronize EH with regular execution path.
4917 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4918 * Normal execution path is responsible for not accessing a
4919 * failed qc. libata core enforces the rule by returning NULL
4920 * from ata_qc_from_tag() for failed qcs.
4922 * Old EH depends on ata_qc_complete() nullifying completion
4923 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4924 * not synchronize with interrupt handler. Only PIO task is
4927 if (ap->ops->error_handler) {
4928 struct ata_device *dev = qc->dev;
4929 struct ata_eh_info *ehi = &dev->link->eh_info;
4931 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4933 if (unlikely(qc->err_mask))
4934 qc->flags |= ATA_QCFLAG_FAILED;
4936 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4937 if (!ata_tag_internal(qc->tag)) {
4938 /* always fill result TF for failed qc */
4940 ata_qc_schedule_eh(qc);
4945 /* read result TF if requested */
4946 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4949 /* Some commands need post-processing after successful
4952 switch (qc->tf.command) {
4953 case ATA_CMD_SET_FEATURES:
4954 if (qc->tf.feature != SETFEATURES_WC_ON &&
4955 qc->tf.feature != SETFEATURES_WC_OFF)
4958 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4959 case ATA_CMD_SET_MULTI: /* multi_count changed */
4960 /* revalidate device */
4961 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4962 ata_port_schedule_eh(ap);
4966 dev->flags |= ATA_DFLAG_SLEEPING;
4970 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4971 ata_verify_xfer(qc);
4973 __ata_qc_complete(qc);
4975 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4978 /* read result TF if failed or requested */
4979 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4982 __ata_qc_complete(qc);
4987 * ata_qc_complete_multiple - Complete multiple qcs successfully
4988 * @ap: port in question
4989 * @qc_active: new qc_active mask
4991 * Complete in-flight commands. This functions is meant to be
4992 * called from low-level driver's interrupt routine to complete
4993 * requests normally. ap->qc_active and @qc_active is compared
4994 * and commands are completed accordingly.
4997 * spin_lock_irqsave(host lock)
5000 * Number of completed commands on success, -errno otherwise.
5002 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5008 done_mask = ap->qc_active ^ qc_active;
5010 if (unlikely(done_mask & qc_active)) {
5011 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5012 "(%08x->%08x)\n", ap->qc_active, qc_active);
5016 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5017 struct ata_queued_cmd *qc;
5019 if (!(done_mask & (1 << i)))
5022 if ((qc = ata_qc_from_tag(ap, i))) {
5023 ata_qc_complete(qc);
5032 * ata_qc_issue - issue taskfile to device
5033 * @qc: command to issue to device
5035 * Prepare an ATA command to submission to device.
5036 * This includes mapping the data into a DMA-able
5037 * area, filling in the S/G table, and finally
5038 * writing the taskfile to hardware, starting the command.
5041 * spin_lock_irqsave(host lock)
5043 void ata_qc_issue(struct ata_queued_cmd *qc)
5045 struct ata_port *ap = qc->ap;
5046 struct ata_link *link = qc->dev->link;
5047 u8 prot = qc->tf.protocol;
5049 /* Make sure only one non-NCQ command is outstanding. The
5050 * check is skipped for old EH because it reuses active qc to
5051 * request ATAPI sense.
5053 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5055 if (ata_is_ncq(prot)) {
5056 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5059 ap->nr_active_links++;
5060 link->sactive |= 1 << qc->tag;
5062 WARN_ON_ONCE(link->sactive);
5064 ap->nr_active_links++;
5065 link->active_tag = qc->tag;
5068 qc->flags |= ATA_QCFLAG_ACTIVE;
5069 ap->qc_active |= 1 << qc->tag;
5071 /* We guarantee to LLDs that they will have at least one
5072 * non-zero sg if the command is a data command.
5074 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5076 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5077 (ap->flags & ATA_FLAG_PIO_DMA)))
5078 if (ata_sg_setup(qc))
5081 /* if device is sleeping, schedule reset and abort the link */
5082 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5083 link->eh_info.action |= ATA_EH_RESET;
5084 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5085 ata_link_abort(link);
5089 ap->ops->qc_prep(qc);
5091 qc->err_mask |= ap->ops->qc_issue(qc);
5092 if (unlikely(qc->err_mask))
5097 qc->err_mask |= AC_ERR_SYSTEM;
5099 ata_qc_complete(qc);
5103 * sata_scr_valid - test whether SCRs are accessible
5104 * @link: ATA link to test SCR accessibility for
5106 * Test whether SCRs are accessible for @link.
5112 * 1 if SCRs are accessible, 0 otherwise.
5114 int sata_scr_valid(struct ata_link *link)
5116 struct ata_port *ap = link->ap;
5118 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5122 * sata_scr_read - read SCR register of the specified port
5123 * @link: ATA link to read SCR for
5125 * @val: Place to store read value
5127 * Read SCR register @reg of @link into *@val. This function is
5128 * guaranteed to succeed if @link is ap->link, the cable type of
5129 * the port is SATA and the port implements ->scr_read.
5132 * None if @link is ap->link. Kernel thread context otherwise.
5135 * 0 on success, negative errno on failure.
5137 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5139 if (ata_is_host_link(link)) {
5140 if (sata_scr_valid(link))
5141 return link->ap->ops->scr_read(link, reg, val);
5145 return sata_pmp_scr_read(link, reg, val);
5149 * sata_scr_write - write SCR register of the specified port
5150 * @link: ATA link to write SCR for
5151 * @reg: SCR to write
5152 * @val: value to write
5154 * Write @val to SCR register @reg of @link. This function is
5155 * guaranteed to succeed if @link is ap->link, the cable type of
5156 * the port is SATA and the port implements ->scr_read.
5159 * None if @link is ap->link. Kernel thread context otherwise.
5162 * 0 on success, negative errno on failure.
5164 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5166 if (ata_is_host_link(link)) {
5167 if (sata_scr_valid(link))
5168 return link->ap->ops->scr_write(link, reg, val);
5172 return sata_pmp_scr_write(link, reg, val);
5176 * sata_scr_write_flush - write SCR register of the specified port and flush
5177 * @link: ATA link to write SCR for
5178 * @reg: SCR to write
5179 * @val: value to write
5181 * This function is identical to sata_scr_write() except that this
5182 * function performs flush after writing to the register.
5185 * None if @link is ap->link. Kernel thread context otherwise.
5188 * 0 on success, negative errno on failure.
5190 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5192 if (ata_is_host_link(link)) {
5195 if (sata_scr_valid(link)) {
5196 rc = link->ap->ops->scr_write(link, reg, val);
5198 rc = link->ap->ops->scr_read(link, reg, &val);
5204 return sata_pmp_scr_write(link, reg, val);
5208 * ata_phys_link_online - test whether the given link is online
5209 * @link: ATA link to test
5211 * Test whether @link is online. Note that this function returns
5212 * 0 if online status of @link cannot be obtained, so
5213 * ata_link_online(link) != !ata_link_offline(link).
5219 * True if the port online status is available and online.
5221 bool ata_phys_link_online(struct ata_link *link)
5225 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5226 ata_sstatus_online(sstatus))
5232 * ata_phys_link_offline - test whether the given link is offline
5233 * @link: ATA link to test
5235 * Test whether @link is offline. Note that this function
5236 * returns 0 if offline status of @link cannot be obtained, so
5237 * ata_link_online(link) != !ata_link_offline(link).
5243 * True if the port offline status is available and offline.
5245 bool ata_phys_link_offline(struct ata_link *link)
5249 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5250 !ata_sstatus_online(sstatus))
5256 * ata_link_online - test whether the given link is online
5257 * @link: ATA link to test
5259 * Test whether @link is online. This is identical to
5260 * ata_phys_link_online() when there's no slave link. When
5261 * there's a slave link, this function should only be called on
5262 * the master link and will return true if any of M/S links is
5269 * True if the port online status is available and online.
5271 bool ata_link_online(struct ata_link *link)
5273 struct ata_link *slave = link->ap->slave_link;
5275 WARN_ON(link == slave); /* shouldn't be called on slave link */
5277 return ata_phys_link_online(link) ||
5278 (slave && ata_phys_link_online(slave));
5282 * ata_link_offline - test whether the given link is offline
5283 * @link: ATA link to test
5285 * Test whether @link is offline. This is identical to
5286 * ata_phys_link_offline() when there's no slave link. When
5287 * there's a slave link, this function should only be called on
5288 * the master link and will return true if both M/S links are
5295 * True if the port offline status is available and offline.
5297 bool ata_link_offline(struct ata_link *link)
5299 struct ata_link *slave = link->ap->slave_link;
5301 WARN_ON(link == slave); /* shouldn't be called on slave link */
5303 return ata_phys_link_offline(link) &&
5304 (!slave || ata_phys_link_offline(slave));
5308 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5309 unsigned int action, unsigned int ehi_flags,
5312 unsigned long flags;
5315 for (i = 0; i < host->n_ports; i++) {
5316 struct ata_port *ap = host->ports[i];
5317 struct ata_link *link;
5319 /* Previous resume operation might still be in
5320 * progress. Wait for PM_PENDING to clear.
5322 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323 ata_port_wait_eh(ap);
5324 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5327 /* request PM ops to EH */
5328 spin_lock_irqsave(ap->lock, flags);
5333 ap->pm_result = &rc;
5336 ap->pflags |= ATA_PFLAG_PM_PENDING;
5337 ata_for_each_link(link, ap, HOST_FIRST) {
5338 link->eh_info.action |= action;
5339 link->eh_info.flags |= ehi_flags;
5342 ata_port_schedule_eh(ap);
5344 spin_unlock_irqrestore(ap->lock, flags);
5346 /* wait and check result */
5348 ata_port_wait_eh(ap);
5349 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5359 * ata_host_suspend - suspend host
5360 * @host: host to suspend
5363 * Suspend @host. Actual operation is performed by EH. This
5364 * function requests EH to perform PM operations and waits for EH
5368 * Kernel thread context (may sleep).
5371 * 0 on success, -errno on failure.
5373 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5378 * disable link pm on all ports before requesting
5381 ata_lpm_enable(host);
5383 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5385 host->dev->power.power_state = mesg;
5390 * ata_host_resume - resume host
5391 * @host: host to resume
5393 * Resume @host. Actual operation is performed by EH. This
5394 * function requests EH to perform PM operations and returns.
5395 * Note that all resume operations are performed parallely.
5398 * Kernel thread context (may sleep).
5400 void ata_host_resume(struct ata_host *host)
5402 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5403 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5404 host->dev->power.power_state = PMSG_ON;
5406 /* reenable link pm */
5407 ata_lpm_disable(host);
5412 * ata_port_start - Set port up for dma.
5413 * @ap: Port to initialize
5415 * Called just after data structures for each port are
5416 * initialized. Allocates space for PRD table.
5418 * May be used as the port_start() entry in ata_port_operations.
5421 * Inherited from caller.
5423 int ata_port_start(struct ata_port *ap)
5425 struct device *dev = ap->dev;
5427 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5436 * ata_dev_init - Initialize an ata_device structure
5437 * @dev: Device structure to initialize
5439 * Initialize @dev in preparation for probing.
5442 * Inherited from caller.
5444 void ata_dev_init(struct ata_device *dev)
5446 struct ata_link *link = ata_dev_phys_link(dev);
5447 struct ata_port *ap = link->ap;
5448 unsigned long flags;
5450 /* SATA spd limit is bound to the attached device, reset together */
5451 link->sata_spd_limit = link->hw_sata_spd_limit;
5454 /* High bits of dev->flags are used to record warm plug
5455 * requests which occur asynchronously. Synchronize using
5458 spin_lock_irqsave(ap->lock, flags);
5459 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5461 spin_unlock_irqrestore(ap->lock, flags);
5463 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5464 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5465 dev->pio_mask = UINT_MAX;
5466 dev->mwdma_mask = UINT_MAX;
5467 dev->udma_mask = UINT_MAX;
5471 * ata_link_init - Initialize an ata_link structure
5472 * @ap: ATA port link is attached to
5473 * @link: Link structure to initialize
5474 * @pmp: Port multiplier port number
5479 * Kernel thread context (may sleep)
5481 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5485 /* clear everything except for devices */
5486 memset(link, 0, offsetof(struct ata_link, device[0]));
5490 link->active_tag = ATA_TAG_POISON;
5491 link->hw_sata_spd_limit = UINT_MAX;
5493 /* can't use iterator, ap isn't initialized yet */
5494 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5495 struct ata_device *dev = &link->device[i];
5498 dev->devno = dev - link->device;
5504 * sata_link_init_spd - Initialize link->sata_spd_limit
5505 * @link: Link to configure sata_spd_limit for
5507 * Initialize @link->[hw_]sata_spd_limit to the currently
5511 * Kernel thread context (may sleep).
5514 * 0 on success, -errno on failure.
5516 int sata_link_init_spd(struct ata_link *link)
5521 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5525 spd = (link->saved_scontrol >> 4) & 0xf;
5527 link->hw_sata_spd_limit &= (1 << spd) - 1;
5529 ata_force_link_limits(link);
5531 link->sata_spd_limit = link->hw_sata_spd_limit;
5537 * ata_port_alloc - allocate and initialize basic ATA port resources
5538 * @host: ATA host this allocated port belongs to
5540 * Allocate and initialize basic ATA port resources.
5543 * Allocate ATA port on success, NULL on failure.
5546 * Inherited from calling layer (may sleep).
5548 struct ata_port *ata_port_alloc(struct ata_host *host)
5550 struct ata_port *ap;
5554 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5558 ap->pflags |= ATA_PFLAG_INITIALIZING;
5559 ap->lock = &host->lock;
5560 ap->flags = ATA_FLAG_DISABLED;
5562 ap->ctl = ATA_DEVCTL_OBS;
5564 ap->dev = host->dev;
5565 ap->last_ctl = 0xFF;
5567 #if defined(ATA_VERBOSE_DEBUG)
5568 /* turn on all debugging levels */
5569 ap->msg_enable = 0x00FF;
5570 #elif defined(ATA_DEBUG)
5571 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5573 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5576 #ifdef CONFIG_ATA_SFF
5577 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5579 INIT_DELAYED_WORK(&ap->port_task, NULL);
5581 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5582 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5583 INIT_LIST_HEAD(&ap->eh_done_q);
5584 init_waitqueue_head(&ap->eh_wait_q);
5585 init_completion(&ap->park_req_pending);
5586 init_timer_deferrable(&ap->fastdrain_timer);
5587 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5588 ap->fastdrain_timer.data = (unsigned long)ap;
5590 ap->cbl = ATA_CBL_NONE;
5592 ata_link_init(ap, &ap->link, 0);
5595 ap->stats.unhandled_irq = 1;
5596 ap->stats.idle_irq = 1;
5601 static void ata_host_release(struct device *gendev, void *res)
5603 struct ata_host *host = dev_get_drvdata(gendev);
5606 for (i = 0; i < host->n_ports; i++) {
5607 struct ata_port *ap = host->ports[i];
5613 scsi_host_put(ap->scsi_host);
5615 kfree(ap->pmp_link);
5616 kfree(ap->slave_link);
5618 host->ports[i] = NULL;
5621 dev_set_drvdata(gendev, NULL);
5625 * ata_host_alloc - allocate and init basic ATA host resources
5626 * @dev: generic device this host is associated with
5627 * @max_ports: maximum number of ATA ports associated with this host
5629 * Allocate and initialize basic ATA host resources. LLD calls
5630 * this function to allocate a host, initializes it fully and
5631 * attaches it using ata_host_register().
5633 * @max_ports ports are allocated and host->n_ports is
5634 * initialized to @max_ports. The caller is allowed to decrease
5635 * host->n_ports before calling ata_host_register(). The unused
5636 * ports will be automatically freed on registration.
5639 * Allocate ATA host on success, NULL on failure.
5642 * Inherited from calling layer (may sleep).
5644 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5646 struct ata_host *host;
5652 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5655 /* alloc a container for our list of ATA ports (buses) */
5656 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5657 /* alloc a container for our list of ATA ports (buses) */
5658 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5662 devres_add(dev, host);
5663 dev_set_drvdata(dev, host);
5665 spin_lock_init(&host->lock);
5667 host->n_ports = max_ports;
5669 /* allocate ports bound to this host */
5670 for (i = 0; i < max_ports; i++) {
5671 struct ata_port *ap;
5673 ap = ata_port_alloc(host);
5678 host->ports[i] = ap;
5681 devres_remove_group(dev, NULL);
5685 devres_release_group(dev, NULL);
5690 * ata_host_alloc_pinfo - alloc host and init with port_info array
5691 * @dev: generic device this host is associated with
5692 * @ppi: array of ATA port_info to initialize host with
5693 * @n_ports: number of ATA ports attached to this host
5695 * Allocate ATA host and initialize with info from @ppi. If NULL
5696 * terminated, @ppi may contain fewer entries than @n_ports. The
5697 * last entry will be used for the remaining ports.
5700 * Allocate ATA host on success, NULL on failure.
5703 * Inherited from calling layer (may sleep).
5705 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5706 const struct ata_port_info * const * ppi,
5709 const struct ata_port_info *pi;
5710 struct ata_host *host;
5713 host = ata_host_alloc(dev, n_ports);
5717 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5718 struct ata_port *ap = host->ports[i];
5723 ap->pio_mask = pi->pio_mask;
5724 ap->mwdma_mask = pi->mwdma_mask;
5725 ap->udma_mask = pi->udma_mask;
5726 ap->flags |= pi->flags;
5727 ap->link.flags |= pi->link_flags;
5728 ap->ops = pi->port_ops;
5730 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5731 host->ops = pi->port_ops;
5738 * ata_slave_link_init - initialize slave link
5739 * @ap: port to initialize slave link for
5741 * Create and initialize slave link for @ap. This enables slave
5742 * link handling on the port.
5744 * In libata, a port contains links and a link contains devices.
5745 * There is single host link but if a PMP is attached to it,
5746 * there can be multiple fan-out links. On SATA, there's usually
5747 * a single device connected to a link but PATA and SATA
5748 * controllers emulating TF based interface can have two - master
5751 * However, there are a few controllers which don't fit into this
5752 * abstraction too well - SATA controllers which emulate TF
5753 * interface with both master and slave devices but also have
5754 * separate SCR register sets for each device. These controllers
5755 * need separate links for physical link handling
5756 * (e.g. onlineness, link speed) but should be treated like a
5757 * traditional M/S controller for everything else (e.g. command
5758 * issue, softreset).
5760 * slave_link is libata's way of handling this class of
5761 * controllers without impacting core layer too much. For
5762 * anything other than physical link handling, the default host
5763 * link is used for both master and slave. For physical link
5764 * handling, separate @ap->slave_link is used. All dirty details
5765 * are implemented inside libata core layer. From LLD's POV, the
5766 * only difference is that prereset, hardreset and postreset are
5767 * called once more for the slave link, so the reset sequence
5768 * looks like the following.
5770 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5771 * softreset(M) -> postreset(M) -> postreset(S)
5773 * Note that softreset is called only for the master. Softreset
5774 * resets both M/S by definition, so SRST on master should handle
5775 * both (the standard method will work just fine).
5778 * Should be called before host is registered.
5781 * 0 on success, -errno on failure.
5783 int ata_slave_link_init(struct ata_port *ap)
5785 struct ata_link *link;
5787 WARN_ON(ap->slave_link);
5788 WARN_ON(ap->flags & ATA_FLAG_PMP);
5790 link = kzalloc(sizeof(*link), GFP_KERNEL);
5794 ata_link_init(ap, link, 1);
5795 ap->slave_link = link;
5799 static void ata_host_stop(struct device *gendev, void *res)
5801 struct ata_host *host = dev_get_drvdata(gendev);
5804 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5806 for (i = 0; i < host->n_ports; i++) {
5807 struct ata_port *ap = host->ports[i];
5809 if (ap->ops->port_stop)
5810 ap->ops->port_stop(ap);
5813 if (host->ops->host_stop)
5814 host->ops->host_stop(host);
5818 * ata_finalize_port_ops - finalize ata_port_operations
5819 * @ops: ata_port_operations to finalize
5821 * An ata_port_operations can inherit from another ops and that
5822 * ops can again inherit from another. This can go on as many
5823 * times as necessary as long as there is no loop in the
5824 * inheritance chain.
5826 * Ops tables are finalized when the host is started. NULL or
5827 * unspecified entries are inherited from the closet ancestor
5828 * which has the method and the entry is populated with it.
5829 * After finalization, the ops table directly points to all the
5830 * methods and ->inherits is no longer necessary and cleared.
5832 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5837 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5839 static DEFINE_SPINLOCK(lock);
5840 const struct ata_port_operations *cur;
5841 void **begin = (void **)ops;
5842 void **end = (void **)&ops->inherits;
5845 if (!ops || !ops->inherits)
5850 for (cur = ops->inherits; cur; cur = cur->inherits) {
5851 void **inherit = (void **)cur;
5853 for (pp = begin; pp < end; pp++, inherit++)
5858 for (pp = begin; pp < end; pp++)
5862 ops->inherits = NULL;
5868 * ata_host_start - start and freeze ports of an ATA host
5869 * @host: ATA host to start ports for
5871 * Start and then freeze ports of @host. Started status is
5872 * recorded in host->flags, so this function can be called
5873 * multiple times. Ports are guaranteed to get started only
5874 * once. If host->ops isn't initialized yet, its set to the
5875 * first non-dummy port ops.
5878 * Inherited from calling layer (may sleep).
5881 * 0 if all ports are started successfully, -errno otherwise.
5883 int ata_host_start(struct ata_host *host)
5886 void *start_dr = NULL;
5889 if (host->flags & ATA_HOST_STARTED)
5892 ata_finalize_port_ops(host->ops);
5894 for (i = 0; i < host->n_ports; i++) {
5895 struct ata_port *ap = host->ports[i];
5897 ata_finalize_port_ops(ap->ops);
5899 if (!host->ops && !ata_port_is_dummy(ap))
5900 host->ops = ap->ops;
5902 if (ap->ops->port_stop)
5906 if (host->ops->host_stop)
5910 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5915 for (i = 0; i < host->n_ports; i++) {
5916 struct ata_port *ap = host->ports[i];
5918 if (ap->ops->port_start) {
5919 rc = ap->ops->port_start(ap);
5922 dev_printk(KERN_ERR, host->dev,
5923 "failed to start port %d "
5924 "(errno=%d)\n", i, rc);
5928 ata_eh_freeze_port(ap);
5932 devres_add(host->dev, start_dr);
5933 host->flags |= ATA_HOST_STARTED;
5938 struct ata_port *ap = host->ports[i];
5940 if (ap->ops->port_stop)
5941 ap->ops->port_stop(ap);
5943 devres_free(start_dr);
5948 * ata_sas_host_init - Initialize a host struct
5949 * @host: host to initialize
5950 * @dev: device host is attached to
5951 * @flags: host flags
5955 * PCI/etc. bus probe sem.
5958 /* KILLME - the only user left is ipr */
5959 void ata_host_init(struct ata_host *host, struct device *dev,
5960 unsigned long flags, struct ata_port_operations *ops)
5962 spin_lock_init(&host->lock);
5964 host->flags = flags;
5969 static void async_port_probe(void *data, async_cookie_t cookie)
5972 struct ata_port *ap = data;
5975 * If we're not allowed to scan this host in parallel,
5976 * we need to wait until all previous scans have completed
5977 * before going further.
5978 * Jeff Garzik says this is only within a controller, so we
5979 * don't need to wait for port 0, only for later ports.
5981 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5982 async_synchronize_cookie(cookie);
5985 if (ap->ops->error_handler) {
5986 struct ata_eh_info *ehi = &ap->link.eh_info;
5987 unsigned long flags;
5991 /* kick EH for boot probing */
5992 spin_lock_irqsave(ap->lock, flags);
5994 ehi->probe_mask |= ATA_ALL_DEVICES;
5995 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5996 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5998 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5999 ap->pflags |= ATA_PFLAG_LOADING;
6000 ata_port_schedule_eh(ap);
6002 spin_unlock_irqrestore(ap->lock, flags);
6004 /* wait for EH to finish */
6005 ata_port_wait_eh(ap);
6007 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6008 rc = ata_bus_probe(ap);
6009 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6012 /* FIXME: do something useful here?
6013 * Current libata behavior will
6014 * tear down everything when
6015 * the module is removed
6016 * or the h/w is unplugged.
6021 /* in order to keep device order, we need to synchronize at this point */
6022 async_synchronize_cookie(cookie);
6024 ata_scsi_scan_host(ap, 1);
6028 * ata_host_register - register initialized ATA host
6029 * @host: ATA host to register
6030 * @sht: template for SCSI host
6032 * Register initialized ATA host. @host is allocated using
6033 * ata_host_alloc() and fully initialized by LLD. This function
6034 * starts ports, registers @host with ATA and SCSI layers and
6035 * probe registered devices.
6038 * Inherited from calling layer (may sleep).
6041 * 0 on success, -errno otherwise.
6043 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6047 /* host must have been started */
6048 if (!(host->flags & ATA_HOST_STARTED)) {
6049 dev_printk(KERN_ERR, host->dev,
6050 "BUG: trying to register unstarted host\n");
6055 /* Blow away unused ports. This happens when LLD can't
6056 * determine the exact number of ports to allocate at
6059 for (i = host->n_ports; host->ports[i]; i++)
6060 kfree(host->ports[i]);
6062 /* give ports names and add SCSI hosts */
6063 for (i = 0; i < host->n_ports; i++)
6064 host->ports[i]->print_id = ata_print_id++;
6066 rc = ata_scsi_add_hosts(host, sht);
6070 /* associate with ACPI nodes */
6071 ata_acpi_associate(host);
6073 /* set cable, sata_spd_limit and report */
6074 for (i = 0; i < host->n_ports; i++) {
6075 struct ata_port *ap = host->ports[i];
6076 unsigned long xfer_mask;
6078 /* set SATA cable type if still unset */
6079 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6080 ap->cbl = ATA_CBL_SATA;
6082 /* init sata_spd_limit to the current value */
6083 sata_link_init_spd(&ap->link);
6085 sata_link_init_spd(ap->slave_link);
6087 /* print per-port info to dmesg */
6088 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6091 if (!ata_port_is_dummy(ap)) {
6092 ata_port_printk(ap, KERN_INFO,
6093 "%cATA max %s %s\n",
6094 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6095 ata_mode_string(xfer_mask),
6096 ap->link.eh_info.desc);
6097 ata_ehi_clear_desc(&ap->link.eh_info);
6099 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6102 /* perform each probe synchronously */
6103 DPRINTK("probe begin\n");
6104 for (i = 0; i < host->n_ports; i++) {
6105 struct ata_port *ap = host->ports[i];
6106 async_schedule(async_port_probe, ap);
6108 DPRINTK("probe end\n");
6114 * ata_host_activate - start host, request IRQ and register it
6115 * @host: target ATA host
6116 * @irq: IRQ to request
6117 * @irq_handler: irq_handler used when requesting IRQ
6118 * @irq_flags: irq_flags used when requesting IRQ
6119 * @sht: scsi_host_template to use when registering the host
6121 * After allocating an ATA host and initializing it, most libata
6122 * LLDs perform three steps to activate the host - start host,
6123 * request IRQ and register it. This helper takes necessasry
6124 * arguments and performs the three steps in one go.
6126 * An invalid IRQ skips the IRQ registration and expects the host to
6127 * have set polling mode on the port. In this case, @irq_handler
6131 * Inherited from calling layer (may sleep).
6134 * 0 on success, -errno otherwise.
6136 int ata_host_activate(struct ata_host *host, int irq,
6137 irq_handler_t irq_handler, unsigned long irq_flags,
6138 struct scsi_host_template *sht)
6142 rc = ata_host_start(host);
6146 /* Special case for polling mode */
6148 WARN_ON(irq_handler);
6149 return ata_host_register(host, sht);
6152 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6153 dev_driver_string(host->dev), host);
6157 for (i = 0; i < host->n_ports; i++)
6158 ata_port_desc(host->ports[i], "irq %d", irq);
6160 rc = ata_host_register(host, sht);
6161 /* if failed, just free the IRQ and leave ports alone */
6163 devm_free_irq(host->dev, irq, host);
6169 * ata_port_detach - Detach ATA port in prepration of device removal
6170 * @ap: ATA port to be detached
6172 * Detach all ATA devices and the associated SCSI devices of @ap;
6173 * then, remove the associated SCSI host. @ap is guaranteed to
6174 * be quiescent on return from this function.
6177 * Kernel thread context (may sleep).
6179 static void ata_port_detach(struct ata_port *ap)
6181 unsigned long flags;
6183 if (!ap->ops->error_handler)
6186 /* tell EH we're leaving & flush EH */
6187 spin_lock_irqsave(ap->lock, flags);
6188 ap->pflags |= ATA_PFLAG_UNLOADING;
6189 ata_port_schedule_eh(ap);
6190 spin_unlock_irqrestore(ap->lock, flags);
6192 /* wait till EH commits suicide */
6193 ata_port_wait_eh(ap);
6195 /* it better be dead now */
6196 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6198 cancel_rearming_delayed_work(&ap->hotplug_task);
6201 /* remove the associated SCSI host */
6202 scsi_remove_host(ap->scsi_host);
6206 * ata_host_detach - Detach all ports of an ATA host
6207 * @host: Host to detach
6209 * Detach all ports of @host.
6212 * Kernel thread context (may sleep).
6214 void ata_host_detach(struct ata_host *host)
6218 for (i = 0; i < host->n_ports; i++)
6219 ata_port_detach(host->ports[i]);
6221 /* the host is dead now, dissociate ACPI */
6222 ata_acpi_dissociate(host);
6228 * ata_pci_remove_one - PCI layer callback for device removal
6229 * @pdev: PCI device that was removed
6231 * PCI layer indicates to libata via this hook that hot-unplug or
6232 * module unload event has occurred. Detach all ports. Resource
6233 * release is handled via devres.
6236 * Inherited from PCI layer (may sleep).
6238 void ata_pci_remove_one(struct pci_dev *pdev)
6240 struct device *dev = &pdev->dev;
6241 struct ata_host *host = dev_get_drvdata(dev);
6243 ata_host_detach(host);
6246 /* move to PCI subsystem */
6247 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6249 unsigned long tmp = 0;
6251 switch (bits->width) {
6254 pci_read_config_byte(pdev, bits->reg, &tmp8);
6260 pci_read_config_word(pdev, bits->reg, &tmp16);
6266 pci_read_config_dword(pdev, bits->reg, &tmp32);
6277 return (tmp == bits->val) ? 1 : 0;
6281 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6283 pci_save_state(pdev);
6284 pci_disable_device(pdev);
6286 if (mesg.event & PM_EVENT_SLEEP)
6287 pci_set_power_state(pdev, PCI_D3hot);
6290 int ata_pci_device_do_resume(struct pci_dev *pdev)
6294 pci_set_power_state(pdev, PCI_D0);
6295 pci_restore_state(pdev);
6297 rc = pcim_enable_device(pdev);
6299 dev_printk(KERN_ERR, &pdev->dev,
6300 "failed to enable device after resume (%d)\n", rc);
6304 pci_set_master(pdev);
6308 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6310 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6313 rc = ata_host_suspend(host, mesg);
6317 ata_pci_device_do_suspend(pdev, mesg);
6322 int ata_pci_device_resume(struct pci_dev *pdev)
6324 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6327 rc = ata_pci_device_do_resume(pdev);
6329 ata_host_resume(host);
6332 #endif /* CONFIG_PM */
6334 #endif /* CONFIG_PCI */
6336 static int __init ata_parse_force_one(char **cur,
6337 struct ata_force_ent *force_ent,
6338 const char **reason)
6340 /* FIXME: Currently, there's no way to tag init const data and
6341 * using __initdata causes build failure on some versions of
6342 * gcc. Once __initdataconst is implemented, add const to the
6343 * following structure.
6345 static struct ata_force_param force_tbl[] __initdata = {
6346 { "40c", .cbl = ATA_CBL_PATA40 },
6347 { "80c", .cbl = ATA_CBL_PATA80 },
6348 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6349 { "unk", .cbl = ATA_CBL_PATA_UNK },
6350 { "ign", .cbl = ATA_CBL_PATA_IGN },
6351 { "sata", .cbl = ATA_CBL_SATA },
6352 { "1.5Gbps", .spd_limit = 1 },
6353 { "3.0Gbps", .spd_limit = 2 },
6354 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6355 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6356 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6357 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6358 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6359 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6360 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6361 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6362 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6363 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6364 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6365 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6366 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6367 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6368 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6369 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6370 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6371 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6372 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6373 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6374 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6375 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6376 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6377 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6378 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6379 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6380 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6381 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6382 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6383 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6384 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6385 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6386 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6387 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6388 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6389 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6390 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6391 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6392 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6394 char *start = *cur, *p = *cur;
6395 char *id, *val, *endp;
6396 const struct ata_force_param *match_fp = NULL;
6397 int nr_matches = 0, i;
6399 /* find where this param ends and update *cur */
6400 while (*p != '\0' && *p != ',')
6411 p = strchr(start, ':');
6413 val = strstrip(start);
6418 id = strstrip(start);
6419 val = strstrip(p + 1);
6422 p = strchr(id, '.');
6425 force_ent->device = simple_strtoul(p, &endp, 10);
6426 if (p == endp || *endp != '\0') {
6427 *reason = "invalid device";
6432 force_ent->port = simple_strtoul(id, &endp, 10);
6433 if (p == endp || *endp != '\0') {
6434 *reason = "invalid port/link";
6439 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6440 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6441 const struct ata_force_param *fp = &force_tbl[i];
6443 if (strncasecmp(val, fp->name, strlen(val)))
6449 if (strcasecmp(val, fp->name) == 0) {
6456 *reason = "unknown value";
6459 if (nr_matches > 1) {
6460 *reason = "ambigious value";
6464 force_ent->param = *match_fp;
6469 static void __init ata_parse_force_param(void)
6471 int idx = 0, size = 1;
6472 int last_port = -1, last_device = -1;
6473 char *p, *cur, *next;
6475 /* calculate maximum number of params and allocate force_tbl */
6476 for (p = ata_force_param_buf; *p; p++)
6480 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6481 if (!ata_force_tbl) {
6482 printk(KERN_WARNING "ata: failed to extend force table, "
6483 "libata.force ignored\n");
6487 /* parse and populate the table */
6488 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6489 const char *reason = "";
6490 struct ata_force_ent te = { .port = -1, .device = -1 };
6493 if (ata_parse_force_one(&next, &te, &reason)) {
6494 printk(KERN_WARNING "ata: failed to parse force "
6495 "parameter \"%s\" (%s)\n",
6500 if (te.port == -1) {
6501 te.port = last_port;
6502 te.device = last_device;
6505 ata_force_tbl[idx++] = te;
6507 last_port = te.port;
6508 last_device = te.device;
6511 ata_force_tbl_size = idx;
6514 static int __init ata_init(void)
6516 ata_parse_force_param();
6518 ata_wq = create_workqueue("ata");
6520 goto free_force_tbl;
6522 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6526 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6530 destroy_workqueue(ata_wq);
6532 kfree(ata_force_tbl);
6536 static void __exit ata_exit(void)
6538 kfree(ata_force_tbl);
6539 destroy_workqueue(ata_wq);
6540 destroy_workqueue(ata_aux_wq);
6543 subsys_initcall(ata_init);
6544 module_exit(ata_exit);
6546 static unsigned long ratelimit_time;
6547 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6549 int ata_ratelimit(void)
6552 unsigned long flags;
6554 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6556 if (time_after(jiffies, ratelimit_time)) {
6558 ratelimit_time = jiffies + (HZ/5);
6562 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6568 * ata_wait_register - wait until register value changes
6569 * @reg: IO-mapped register
6570 * @mask: Mask to apply to read register value
6571 * @val: Wait condition
6572 * @interval: polling interval in milliseconds
6573 * @timeout: timeout in milliseconds
6575 * Waiting for some bits of register to change is a common
6576 * operation for ATA controllers. This function reads 32bit LE
6577 * IO-mapped register @reg and tests for the following condition.
6579 * (*@reg & mask) != val
6581 * If the condition is met, it returns; otherwise, the process is
6582 * repeated after @interval_msec until timeout.
6585 * Kernel thread context (may sleep)
6588 * The final register value.
6590 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6591 unsigned long interval, unsigned long timeout)
6593 unsigned long deadline;
6596 tmp = ioread32(reg);
6598 /* Calculate timeout _after_ the first read to make sure
6599 * preceding writes reach the controller before starting to
6600 * eat away the timeout.
6602 deadline = ata_deadline(jiffies, timeout);
6604 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6606 tmp = ioread32(reg);
6615 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6617 return AC_ERR_SYSTEM;
6620 static void ata_dummy_error_handler(struct ata_port *ap)
6625 struct ata_port_operations ata_dummy_port_ops = {
6626 .qc_prep = ata_noop_qc_prep,
6627 .qc_issue = ata_dummy_qc_issue,
6628 .error_handler = ata_dummy_error_handler,
6631 const struct ata_port_info ata_dummy_port_info = {
6632 .port_ops = &ata_dummy_port_ops,
6636 * libata is essentially a library of internal helper functions for
6637 * low-level ATA host controller drivers. As such, the API/ABI is
6638 * likely to change as new drivers are added and updated.
6639 * Do not depend on ABI/API stability.
6641 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6642 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6643 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6644 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6645 EXPORT_SYMBOL_GPL(sata_port_ops);
6646 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6647 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6648 EXPORT_SYMBOL_GPL(ata_link_next);
6649 EXPORT_SYMBOL_GPL(ata_dev_next);
6650 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6651 EXPORT_SYMBOL_GPL(ata_host_init);
6652 EXPORT_SYMBOL_GPL(ata_host_alloc);
6653 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6654 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6655 EXPORT_SYMBOL_GPL(ata_host_start);
6656 EXPORT_SYMBOL_GPL(ata_host_register);
6657 EXPORT_SYMBOL_GPL(ata_host_activate);
6658 EXPORT_SYMBOL_GPL(ata_host_detach);
6659 EXPORT_SYMBOL_GPL(ata_sg_init);
6660 EXPORT_SYMBOL_GPL(ata_qc_complete);
6661 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6662 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6663 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6664 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6665 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6666 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6667 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6668 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6669 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6670 EXPORT_SYMBOL_GPL(ata_mode_string);
6671 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6672 EXPORT_SYMBOL_GPL(ata_port_start);
6673 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6674 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6675 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6676 EXPORT_SYMBOL_GPL(ata_port_probe);
6677 EXPORT_SYMBOL_GPL(ata_dev_disable);
6678 EXPORT_SYMBOL_GPL(sata_set_spd);
6679 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6680 EXPORT_SYMBOL_GPL(sata_link_debounce);
6681 EXPORT_SYMBOL_GPL(sata_link_resume);
6682 EXPORT_SYMBOL_GPL(ata_std_prereset);
6683 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6684 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6685 EXPORT_SYMBOL_GPL(ata_std_postreset);
6686 EXPORT_SYMBOL_GPL(ata_dev_classify);
6687 EXPORT_SYMBOL_GPL(ata_dev_pair);
6688 EXPORT_SYMBOL_GPL(ata_port_disable);
6689 EXPORT_SYMBOL_GPL(ata_ratelimit);
6690 EXPORT_SYMBOL_GPL(ata_wait_register);
6691 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6692 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6693 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6694 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6695 EXPORT_SYMBOL_GPL(sata_scr_valid);
6696 EXPORT_SYMBOL_GPL(sata_scr_read);
6697 EXPORT_SYMBOL_GPL(sata_scr_write);
6698 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6699 EXPORT_SYMBOL_GPL(ata_link_online);
6700 EXPORT_SYMBOL_GPL(ata_link_offline);
6702 EXPORT_SYMBOL_GPL(ata_host_suspend);
6703 EXPORT_SYMBOL_GPL(ata_host_resume);
6704 #endif /* CONFIG_PM */
6705 EXPORT_SYMBOL_GPL(ata_id_string);
6706 EXPORT_SYMBOL_GPL(ata_id_c_string);
6707 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6708 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6710 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6711 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6712 EXPORT_SYMBOL_GPL(ata_timing_compute);
6713 EXPORT_SYMBOL_GPL(ata_timing_merge);
6714 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6717 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6718 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6720 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6721 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6722 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6723 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6724 #endif /* CONFIG_PM */
6725 #endif /* CONFIG_PCI */
6727 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6728 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6729 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6730 EXPORT_SYMBOL_GPL(ata_port_desc);
6732 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6733 #endif /* CONFIG_PCI */
6734 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6735 EXPORT_SYMBOL_GPL(ata_link_abort);
6736 EXPORT_SYMBOL_GPL(ata_port_abort);
6737 EXPORT_SYMBOL_GPL(ata_port_freeze);
6738 EXPORT_SYMBOL_GPL(sata_async_notification);
6739 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6740 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6741 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6742 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6743 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6744 EXPORT_SYMBOL_GPL(ata_do_eh);
6745 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6747 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6748 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6749 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6750 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6751 EXPORT_SYMBOL_GPL(ata_cable_sata);