2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/cpufreq.h>
31 #include <linux/proc_fs.h>
32 #include <linux/seq_file.h>
33 #include <linux/compiler.h>
34 #include <linux/sched.h> /* current */
36 #include <asm/delay.h>
37 #include <asm/uaccess.h>
39 #include <linux/acpi.h>
40 #include <acpi/processor.h>
42 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
44 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
45 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
46 MODULE_LICENSE("GPL");
49 struct cpufreq_acpi_io {
50 struct acpi_processor_performance *acpi_data;
51 struct cpufreq_frequency_table *freq_table;
55 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
56 static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
58 static struct cpufreq_driver acpi_cpufreq_driver;
60 static unsigned int acpi_pstate_strict;
63 acpi_processor_write_port(
70 } else if (bit_width <= 16) {
72 } else if (bit_width <= 32) {
81 acpi_processor_read_port(
89 } else if (bit_width <= 16) {
91 } else if (bit_width <= 32) {
100 acpi_processor_set_performance (
101 struct cpufreq_acpi_io *data,
111 struct acpi_processor_performance *perf;
113 dprintk("acpi_processor_set_performance\n");
116 perf = data->acpi_data;
117 if (state == perf->state) {
118 if (unlikely(data->resume)) {
119 dprintk("Called after resume, resetting to P%d\n", state);
122 dprintk("Already at target state (P%d)\n", state);
127 dprintk("Transitioning from P%d to P%d\n", perf->state, state);
130 * First we write the target state's 'control' value to the
134 port = perf->control_register.address;
135 bit_width = perf->control_register.bit_width;
136 value = (u32) perf->states[state].control;
138 dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
140 ret = acpi_processor_write_port(port, bit_width, value);
142 dprintk("Invalid port width 0x%04x\n", bit_width);
147 * Assume the write went through when acpi_pstate_strict is not used.
148 * As read status_register is an expensive operation and there
149 * are no specific error cases where an IO port write will fail.
151 if (acpi_pstate_strict) {
152 /* Then we read the 'status_register' and compare the value
153 * with the target state's 'status' to make sure the
154 * transition was successful.
155 * Note that we'll poll for up to 1ms (100 cycles of 10us)
159 port = perf->status_register.address;
160 bit_width = perf->status_register.bit_width;
162 dprintk("Looking for 0x%08x from port 0x%04x\n",
163 (u32) perf->states[state].status, port);
165 for (i = 0; i < 100; i++) {
166 ret = acpi_processor_read_port(port, bit_width, &value);
168 dprintk("Invalid port width 0x%04x\n", bit_width);
171 if (value == (u32) perf->states[state].status)
176 value = (u32) perf->states[state].status;
179 if (unlikely(value != (u32) perf->states[state].status)) {
180 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
185 dprintk("Transition successful after %d microseconds\n", i * 10);
193 acpi_cpufreq_target (
194 struct cpufreq_policy *policy,
195 unsigned int target_freq,
196 unsigned int relation)
198 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
199 struct acpi_processor_performance *perf;
200 struct cpufreq_freqs freqs;
201 cpumask_t online_policy_cpus;
202 cpumask_t saved_mask;
204 cpumask_t covered_cpus;
205 unsigned int cur_state = 0;
206 unsigned int next_state = 0;
207 unsigned int result = 0;
211 dprintk("acpi_cpufreq_setpolicy\n");
213 result = cpufreq_frequency_table_target(policy,
218 if (unlikely(result))
221 perf = data->acpi_data;
222 cur_state = perf->state;
223 freqs.old = data->freq_table[cur_state].frequency;
224 freqs.new = data->freq_table[next_state].frequency;
226 #ifdef CONFIG_HOTPLUG_CPU
227 /* cpufreq holds the hotplug lock, so we are safe from here on */
228 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
230 online_policy_cpus = policy->cpus;
233 for_each_cpu_mask(j, online_policy_cpus) {
235 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
239 * We need to call driver->target() on all or any CPU in
240 * policy->cpus, depending on policy->shared_type.
242 saved_mask = current->cpus_allowed;
243 cpus_clear(covered_cpus);
244 for_each_cpu_mask(j, online_policy_cpus) {
246 * Support for SMP systems.
247 * Make sure we are running on CPU that wants to change freq
249 cpus_clear(set_mask);
250 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
251 cpus_or(set_mask, set_mask, online_policy_cpus);
253 cpu_set(j, set_mask);
255 set_cpus_allowed(current, set_mask);
256 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
257 dprintk("couldn't limit to CPUs in this domain\n");
262 result = acpi_processor_set_performance (data, j, next_state);
268 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
271 cpu_set(j, covered_cpus);
274 for_each_cpu_mask(j, online_policy_cpus) {
276 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
279 if (unlikely(result)) {
281 * We have failed halfway through the frequency change.
282 * We have sent callbacks to online_policy_cpus and
283 * acpi_processor_set_performance() has been called on
284 * coverd_cpus. Best effort undo..
287 if (!cpus_empty(covered_cpus)) {
288 for_each_cpu_mask(j, covered_cpus) {
290 acpi_processor_set_performance (data,
297 freqs.new = freqs.old;
299 for_each_cpu_mask(j, online_policy_cpus) {
301 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
302 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
306 set_cpus_allowed(current, saved_mask);
312 acpi_cpufreq_verify (
313 struct cpufreq_policy *policy)
315 unsigned int result = 0;
316 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
318 dprintk("acpi_cpufreq_verify\n");
320 result = cpufreq_frequency_table_verify(policy,
328 acpi_cpufreq_guess_freq (
329 struct cpufreq_acpi_io *data,
332 struct acpi_processor_performance *perf = data->acpi_data;
335 /* search the closest match to cpu_khz */
338 unsigned long freqn = perf->states[0].core_frequency * 1000;
340 for (i = 0; i < (perf->state_count - 1); i++) {
342 freqn = perf->states[i+1].core_frequency * 1000;
343 if ((2 * cpu_khz) > (freqn + freq)) {
348 perf->state = perf->state_count - 1;
351 /* assume CPU is at P0... */
353 return perf->states[0].core_frequency * 1000;
359 * acpi_cpufreq_early_init - initialize ACPI P-States library
361 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
362 * in order to determine correct frequency and voltage pairings. We can
363 * do _PDC and _PSD and find out the processor dependency for the
364 * actual init that will happen later...
366 static int acpi_cpufreq_early_init_acpi(void)
368 struct acpi_processor_performance *data;
371 dprintk("acpi_cpufreq_early_init\n");
373 for_each_possible_cpu(i) {
374 data = kzalloc(sizeof(struct acpi_processor_performance),
377 for_each_possible_cpu(j) {
378 kfree(acpi_perf_data[j]);
379 acpi_perf_data[j] = NULL;
383 acpi_perf_data[i] = data;
386 /* Do initialization in ACPI core */
387 return acpi_processor_preregister_performance(acpi_perf_data);
391 acpi_cpufreq_cpu_init (
392 struct cpufreq_policy *policy)
395 unsigned int cpu = policy->cpu;
396 struct cpufreq_acpi_io *data;
397 unsigned int result = 0;
398 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
399 struct acpi_processor_performance *perf;
401 dprintk("acpi_cpufreq_cpu_init\n");
403 if (!acpi_perf_data[cpu])
406 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
410 data->acpi_data = acpi_perf_data[cpu];
411 acpi_io_data[cpu] = data;
413 result = acpi_processor_register_performance(data->acpi_data, cpu);
418 perf = data->acpi_data;
419 policy->shared_type = perf->shared_type;
421 * Will let policy->cpus know about dependency only when software
422 * coordination is required.
424 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
425 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
426 policy->cpus = perf->shared_cpu_map;
428 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
429 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
432 /* capability check */
433 if (perf->state_count <= 1) {
434 dprintk("No P-States\n");
439 if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
440 (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
441 dprintk("Unsupported address space [%d, %d]\n",
442 (u32) (perf->control_register.space_id),
443 (u32) (perf->status_register.space_id));
448 /* alloc freq_table */
449 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
450 if (!data->freq_table) {
455 /* detect transition latency */
456 policy->cpuinfo.transition_latency = 0;
457 for (i=0; i<perf->state_count; i++) {
458 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
459 policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
461 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
463 /* The current speed is unknown and not detectable by ACPI... */
464 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
467 for (i=0; i<=perf->state_count; i++)
469 data->freq_table[i].index = i;
470 if (i<perf->state_count)
471 data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
473 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
476 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
481 /* notify BIOS that we exist */
482 acpi_processor_notify_smm(THIS_MODULE);
484 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
486 for (i = 0; i < perf->state_count; i++)
487 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
488 (i == perf->state?'*':' '), i,
489 (u32) perf->states[i].core_frequency,
490 (u32) perf->states[i].power,
491 (u32) perf->states[i].transition_latency);
493 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
496 * the first call to ->target() should result in us actually
497 * writing something to the appropriate registers.
504 kfree(data->freq_table);
506 acpi_processor_unregister_performance(perf, cpu);
509 acpi_io_data[cpu] = NULL;
516 acpi_cpufreq_cpu_exit (
517 struct cpufreq_policy *policy)
519 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
522 dprintk("acpi_cpufreq_cpu_exit\n");
525 cpufreq_frequency_table_put_attr(policy->cpu);
526 acpi_io_data[policy->cpu] = NULL;
527 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
535 acpi_cpufreq_resume (
536 struct cpufreq_policy *policy)
538 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
541 dprintk("acpi_cpufreq_resume\n");
549 static struct freq_attr* acpi_cpufreq_attr[] = {
550 &cpufreq_freq_attr_scaling_available_freqs,
554 static struct cpufreq_driver acpi_cpufreq_driver = {
555 .verify = acpi_cpufreq_verify,
556 .target = acpi_cpufreq_target,
557 .init = acpi_cpufreq_cpu_init,
558 .exit = acpi_cpufreq_cpu_exit,
559 .resume = acpi_cpufreq_resume,
560 .name = "acpi-cpufreq",
561 .owner = THIS_MODULE,
562 .attr = acpi_cpufreq_attr,
563 .flags = CPUFREQ_STICKY,
568 acpi_cpufreq_init (void)
570 dprintk("acpi_cpufreq_init\n");
572 acpi_cpufreq_early_init_acpi();
574 return cpufreq_register_driver(&acpi_cpufreq_driver);
579 acpi_cpufreq_exit (void)
582 dprintk("acpi_cpufreq_exit\n");
584 cpufreq_unregister_driver(&acpi_cpufreq_driver);
586 for_each_possible_cpu(i) {
587 kfree(acpi_perf_data[i]);
588 acpi_perf_data[i] = NULL;
593 module_param(acpi_pstate_strict, uint, 0644);
594 MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
596 late_initcall(acpi_cpufreq_init);
597 module_exit(acpi_cpufreq_exit);
599 MODULE_ALIAS("acpi");