Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[linux-2.6] / arch / i386 / kernel / setup.c
1 /*
2  *  linux/arch/i386/kernel/setup.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *
8  *  Memory region support
9  *      David Parsons <orc@pell.chi.il.us>, July-August 1999
10  *
11  *  Added E820 sanitization routine (removes overlapping memory regions);
12  *  Brian Moyle <bmoyle@mvista.com>, February 2001
13  *
14  * Moved CPU detection code to cpu/${cpu}.c
15  *    Patrick Mochel <mochel@osdl.org>, March 2002
16  *
17  *  Provisions for empty E820 memory regions (reported by certain BIOSes).
18  *  Alex Achenbach <xela@slit.de>, December 2002.
19  *
20  */
21
22 /*
23  * This file handles the architecture-dependent parts of initialization
24  */
25
26 #include <linux/sched.h>
27 #include <linux/mm.h>
28 #include <linux/mmzone.h>
29 #include <linux/screen_info.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/apm_bios.h>
33 #include <linux/initrd.h>
34 #include <linux/bootmem.h>
35 #include <linux/seq_file.h>
36 #include <linux/platform_device.h>
37 #include <linux/console.h>
38 #include <linux/mca.h>
39 #include <linux/root_dev.h>
40 #include <linux/highmem.h>
41 #include <linux/module.h>
42 #include <linux/efi.h>
43 #include <linux/init.h>
44 #include <linux/edd.h>
45 #include <linux/nodemask.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 #include <linux/dmi.h>
49 #include <linux/pfn.h>
50
51 #include <video/edid.h>
52
53 #include <asm/apic.h>
54 #include <asm/e820.h>
55 #include <asm/mpspec.h>
56 #include <asm/setup.h>
57 #include <asm/arch_hooks.h>
58 #include <asm/sections.h>
59 #include <asm/io_apic.h>
60 #include <asm/ist.h>
61 #include <asm/io.h>
62 #include <setup_arch.h>
63 #include <bios_ebda.h>
64
65 /* Forward Declaration. */
66 void __init find_max_pfn(void);
67
68 /* This value is set up by the early boot code to point to the value
69    immediately after the boot time page tables.  It contains a *physical*
70    address, and must not be in the .bss segment! */
71 unsigned long init_pg_tables_end __initdata = ~0UL;
72
73 int disable_pse __devinitdata = 0;
74
75 /*
76  * Machine setup..
77  */
78
79 #ifdef CONFIG_EFI
80 int efi_enabled = 0;
81 EXPORT_SYMBOL(efi_enabled);
82 #endif
83
84 /* cpu data as detected by the assembly code in head.S */
85 struct cpuinfo_x86 new_cpu_data __initdata = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
86 /* common cpu data for all cpus */
87 struct cpuinfo_x86 boot_cpu_data __read_mostly = { 0, 0, 0, 0, -1, 1, 0, 0, -1 };
88 EXPORT_SYMBOL(boot_cpu_data);
89
90 unsigned long mmu_cr4_features;
91
92 #ifdef  CONFIG_ACPI
93         int acpi_disabled = 0;
94 #else
95         int acpi_disabled = 1;
96 #endif
97 EXPORT_SYMBOL(acpi_disabled);
98
99 #ifdef  CONFIG_ACPI
100 int __initdata acpi_force = 0;
101 extern acpi_interrupt_flags     acpi_sci_flags;
102 #endif
103
104 /* for MCA, but anyone else can use it if they want */
105 unsigned int machine_id;
106 #ifdef CONFIG_MCA
107 EXPORT_SYMBOL(machine_id);
108 #endif
109 unsigned int machine_submodel_id;
110 unsigned int BIOS_revision;
111 unsigned int mca_pentium_flag;
112
113 /* For PCI or other memory-mapped resources */
114 unsigned long pci_mem_start = 0x10000000;
115 #ifdef CONFIG_PCI
116 EXPORT_SYMBOL(pci_mem_start);
117 #endif
118
119 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
120 int bootloader_type;
121
122 /* user-defined highmem size */
123 static unsigned int highmem_pages = -1;
124
125 /*
126  * Setup options
127  */
128 struct drive_info_struct { char dummy[32]; } drive_info;
129 #if defined(CONFIG_BLK_DEV_IDE) || defined(CONFIG_BLK_DEV_HD) || \
130     defined(CONFIG_BLK_DEV_IDE_MODULE) || defined(CONFIG_BLK_DEV_HD_MODULE)
131 EXPORT_SYMBOL(drive_info);
132 #endif
133 struct screen_info screen_info;
134 EXPORT_SYMBOL(screen_info);
135 struct apm_info apm_info;
136 EXPORT_SYMBOL(apm_info);
137 struct sys_desc_table_struct {
138         unsigned short length;
139         unsigned char table[0];
140 };
141 struct edid_info edid_info;
142 EXPORT_SYMBOL_GPL(edid_info);
143 struct ist_info ist_info;
144 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
145         defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
146 EXPORT_SYMBOL(ist_info);
147 #endif
148 struct e820map e820;
149
150 extern void early_cpu_init(void);
151 extern void generic_apic_probe(char *);
152 extern int root_mountflags;
153
154 unsigned long saved_videomode;
155
156 #define RAMDISK_IMAGE_START_MASK        0x07FF
157 #define RAMDISK_PROMPT_FLAG             0x8000
158 #define RAMDISK_LOAD_FLAG               0x4000  
159
160 static char command_line[COMMAND_LINE_SIZE];
161
162 unsigned char __initdata boot_params[PARAM_SIZE];
163
164 static struct resource data_resource = {
165         .name   = "Kernel data",
166         .start  = 0,
167         .end    = 0,
168         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
169 };
170
171 static struct resource code_resource = {
172         .name   = "Kernel code",
173         .start  = 0,
174         .end    = 0,
175         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
176 };
177
178 static struct resource system_rom_resource = {
179         .name   = "System ROM",
180         .start  = 0xf0000,
181         .end    = 0xfffff,
182         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
183 };
184
185 static struct resource extension_rom_resource = {
186         .name   = "Extension ROM",
187         .start  = 0xe0000,
188         .end    = 0xeffff,
189         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
190 };
191
192 static struct resource adapter_rom_resources[] = { {
193         .name   = "Adapter ROM",
194         .start  = 0xc8000,
195         .end    = 0,
196         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
197 }, {
198         .name   = "Adapter ROM",
199         .start  = 0,
200         .end    = 0,
201         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
202 }, {
203         .name   = "Adapter ROM",
204         .start  = 0,
205         .end    = 0,
206         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
207 }, {
208         .name   = "Adapter ROM",
209         .start  = 0,
210         .end    = 0,
211         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
212 }, {
213         .name   = "Adapter ROM",
214         .start  = 0,
215         .end    = 0,
216         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
217 }, {
218         .name   = "Adapter ROM",
219         .start  = 0,
220         .end    = 0,
221         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
222 } };
223
224 #define ADAPTER_ROM_RESOURCES \
225         (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
226
227 static struct resource video_rom_resource = {
228         .name   = "Video ROM",
229         .start  = 0xc0000,
230         .end    = 0xc7fff,
231         .flags  = IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM
232 };
233
234 static struct resource video_ram_resource = {
235         .name   = "Video RAM area",
236         .start  = 0xa0000,
237         .end    = 0xbffff,
238         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
239 };
240
241 static struct resource standard_io_resources[] = { {
242         .name   = "dma1",
243         .start  = 0x0000,
244         .end    = 0x001f,
245         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
246 }, {
247         .name   = "pic1",
248         .start  = 0x0020,
249         .end    = 0x0021,
250         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
251 }, {
252         .name   = "timer0",
253         .start  = 0x0040,
254         .end    = 0x0043,
255         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
256 }, {
257         .name   = "timer1",
258         .start  = 0x0050,
259         .end    = 0x0053,
260         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
261 }, {
262         .name   = "keyboard",
263         .start  = 0x0060,
264         .end    = 0x006f,
265         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
266 }, {
267         .name   = "dma page reg",
268         .start  = 0x0080,
269         .end    = 0x008f,
270         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
271 }, {
272         .name   = "pic2",
273         .start  = 0x00a0,
274         .end    = 0x00a1,
275         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
276 }, {
277         .name   = "dma2",
278         .start  = 0x00c0,
279         .end    = 0x00df,
280         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
281 }, {
282         .name   = "fpu",
283         .start  = 0x00f0,
284         .end    = 0x00ff,
285         .flags  = IORESOURCE_BUSY | IORESOURCE_IO
286 } };
287
288 #define STANDARD_IO_RESOURCES \
289         (sizeof standard_io_resources / sizeof standard_io_resources[0])
290
291 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
292
293 static int __init romchecksum(unsigned char *rom, unsigned long length)
294 {
295         unsigned char *p, sum = 0;
296
297         for (p = rom; p < rom + length; p++)
298                 sum += *p;
299         return sum == 0;
300 }
301
302 static void __init probe_roms(void)
303 {
304         unsigned long start, length, upper;
305         unsigned char *rom;
306         int           i;
307
308         /* video rom */
309         upper = adapter_rom_resources[0].start;
310         for (start = video_rom_resource.start; start < upper; start += 2048) {
311                 rom = isa_bus_to_virt(start);
312                 if (!romsignature(rom))
313                         continue;
314
315                 video_rom_resource.start = start;
316
317                 /* 0 < length <= 0x7f * 512, historically */
318                 length = rom[2] * 512;
319
320                 /* if checksum okay, trust length byte */
321                 if (length && romchecksum(rom, length))
322                         video_rom_resource.end = start + length - 1;
323
324                 request_resource(&iomem_resource, &video_rom_resource);
325                 break;
326         }
327
328         start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
329         if (start < upper)
330                 start = upper;
331
332         /* system rom */
333         request_resource(&iomem_resource, &system_rom_resource);
334         upper = system_rom_resource.start;
335
336         /* check for extension rom (ignore length byte!) */
337         rom = isa_bus_to_virt(extension_rom_resource.start);
338         if (romsignature(rom)) {
339                 length = extension_rom_resource.end - extension_rom_resource.start + 1;
340                 if (romchecksum(rom, length)) {
341                         request_resource(&iomem_resource, &extension_rom_resource);
342                         upper = extension_rom_resource.start;
343                 }
344         }
345
346         /* check for adapter roms on 2k boundaries */
347         for (i = 0; i < ADAPTER_ROM_RESOURCES && start < upper; start += 2048) {
348                 rom = isa_bus_to_virt(start);
349                 if (!romsignature(rom))
350                         continue;
351
352                 /* 0 < length <= 0x7f * 512, historically */
353                 length = rom[2] * 512;
354
355                 /* but accept any length that fits if checksum okay */
356                 if (!length || start + length > upper || !romchecksum(rom, length))
357                         continue;
358
359                 adapter_rom_resources[i].start = start;
360                 adapter_rom_resources[i].end = start + length - 1;
361                 request_resource(&iomem_resource, &adapter_rom_resources[i]);
362
363                 start = adapter_rom_resources[i++].end & ~2047UL;
364         }
365 }
366
367 static void __init limit_regions(unsigned long long size)
368 {
369         unsigned long long current_addr = 0;
370         int i;
371
372         if (efi_enabled) {
373                 efi_memory_desc_t *md;
374                 void *p;
375
376                 for (p = memmap.map, i = 0; p < memmap.map_end;
377                         p += memmap.desc_size, i++) {
378                         md = p;
379                         current_addr = md->phys_addr + (md->num_pages << 12);
380                         if (md->type == EFI_CONVENTIONAL_MEMORY) {
381                                 if (current_addr >= size) {
382                                         md->num_pages -=
383                                                 (((current_addr-size) + PAGE_SIZE-1) >> PAGE_SHIFT);
384                                         memmap.nr_map = i + 1;
385                                         return;
386                                 }
387                         }
388                 }
389         }
390         for (i = 0; i < e820.nr_map; i++) {
391                 current_addr = e820.map[i].addr + e820.map[i].size;
392                 if (current_addr < size)
393                         continue;
394
395                 if (e820.map[i].type != E820_RAM)
396                         continue;
397
398                 if (e820.map[i].addr >= size) {
399                         /*
400                          * This region starts past the end of the
401                          * requested size, skip it completely.
402                          */
403                         e820.nr_map = i;
404                 } else {
405                         e820.nr_map = i + 1;
406                         e820.map[i].size -= current_addr - size;
407                 }
408                 return;
409         }
410 }
411
412 void __init add_memory_region(unsigned long long start,
413                               unsigned long long size, int type)
414 {
415         int x;
416
417         if (!efi_enabled) {
418                 x = e820.nr_map;
419
420                 if (x == E820MAX) {
421                     printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
422                     return;
423                 }
424
425                 e820.map[x].addr = start;
426                 e820.map[x].size = size;
427                 e820.map[x].type = type;
428                 e820.nr_map++;
429         }
430 } /* add_memory_region */
431
432 #define E820_DEBUG      1
433
434 static void __init print_memory_map(char *who)
435 {
436         int i;
437
438         for (i = 0; i < e820.nr_map; i++) {
439                 printk(" %s: %016Lx - %016Lx ", who,
440                         e820.map[i].addr,
441                         e820.map[i].addr + e820.map[i].size);
442                 switch (e820.map[i].type) {
443                 case E820_RAM:  printk("(usable)\n");
444                                 break;
445                 case E820_RESERVED:
446                                 printk("(reserved)\n");
447                                 break;
448                 case E820_ACPI:
449                                 printk("(ACPI data)\n");
450                                 break;
451                 case E820_NVS:
452                                 printk("(ACPI NVS)\n");
453                                 break;
454                 default:        printk("type %lu\n", e820.map[i].type);
455                                 break;
456                 }
457         }
458 }
459
460 /*
461  * Sanitize the BIOS e820 map.
462  *
463  * Some e820 responses include overlapping entries.  The following 
464  * replaces the original e820 map with a new one, removing overlaps.
465  *
466  */
467 struct change_member {
468         struct e820entry *pbios; /* pointer to original bios entry */
469         unsigned long long addr; /* address for this change point */
470 };
471 static struct change_member change_point_list[2*E820MAX] __initdata;
472 static struct change_member *change_point[2*E820MAX] __initdata;
473 static struct e820entry *overlap_list[E820MAX] __initdata;
474 static struct e820entry new_bios[E820MAX] __initdata;
475
476 int __init sanitize_e820_map(struct e820entry * biosmap, char * pnr_map)
477 {
478         struct change_member *change_tmp;
479         unsigned long current_type, last_type;
480         unsigned long long last_addr;
481         int chgidx, still_changing;
482         int overlap_entries;
483         int new_bios_entry;
484         int old_nr, new_nr, chg_nr;
485         int i;
486
487         /*
488                 Visually we're performing the following (1,2,3,4 = memory types)...
489
490                 Sample memory map (w/overlaps):
491                    ____22__________________
492                    ______________________4_
493                    ____1111________________
494                    _44_____________________
495                    11111111________________
496                    ____________________33__
497                    ___________44___________
498                    __________33333_________
499                    ______________22________
500                    ___________________2222_
501                    _________111111111______
502                    _____________________11_
503                    _________________4______
504
505                 Sanitized equivalent (no overlap):
506                    1_______________________
507                    _44_____________________
508                    ___1____________________
509                    ____22__________________
510                    ______11________________
511                    _________1______________
512                    __________3_____________
513                    ___________44___________
514                    _____________33_________
515                    _______________2________
516                    ________________1_______
517                    _________________4______
518                    ___________________2____
519                    ____________________33__
520                    ______________________4_
521         */
522
523         /* if there's only one memory region, don't bother */
524         if (*pnr_map < 2)
525                 return -1;
526
527         old_nr = *pnr_map;
528
529         /* bail out if we find any unreasonable addresses in bios map */
530         for (i=0; i<old_nr; i++)
531                 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
532                         return -1;
533
534         /* create pointers for initial change-point information (for sorting) */
535         for (i=0; i < 2*old_nr; i++)
536                 change_point[i] = &change_point_list[i];
537
538         /* record all known change-points (starting and ending addresses),
539            omitting those that are for empty memory regions */
540         chgidx = 0;
541         for (i=0; i < old_nr; i++)      {
542                 if (biosmap[i].size != 0) {
543                         change_point[chgidx]->addr = biosmap[i].addr;
544                         change_point[chgidx++]->pbios = &biosmap[i];
545                         change_point[chgidx]->addr = biosmap[i].addr + biosmap[i].size;
546                         change_point[chgidx++]->pbios = &biosmap[i];
547                 }
548         }
549         chg_nr = chgidx;        /* true number of change-points */
550
551         /* sort change-point list by memory addresses (low -> high) */
552         still_changing = 1;
553         while (still_changing)  {
554                 still_changing = 0;
555                 for (i=1; i < chg_nr; i++)  {
556                         /* if <current_addr> > <last_addr>, swap */
557                         /* or, if current=<start_addr> & last=<end_addr>, swap */
558                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
559                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
560                                  (change_point[i]->addr == change_point[i]->pbios->addr) &&
561                                  (change_point[i-1]->addr != change_point[i-1]->pbios->addr))
562                            )
563                         {
564                                 change_tmp = change_point[i];
565                                 change_point[i] = change_point[i-1];
566                                 change_point[i-1] = change_tmp;
567                                 still_changing=1;
568                         }
569                 }
570         }
571
572         /* create a new bios memory map, removing overlaps */
573         overlap_entries=0;       /* number of entries in the overlap table */
574         new_bios_entry=0;        /* index for creating new bios map entries */
575         last_type = 0;           /* start with undefined memory type */
576         last_addr = 0;           /* start with 0 as last starting address */
577         /* loop through change-points, determining affect on the new bios map */
578         for (chgidx=0; chgidx < chg_nr; chgidx++)
579         {
580                 /* keep track of all overlapping bios entries */
581                 if (change_point[chgidx]->addr == change_point[chgidx]->pbios->addr)
582                 {
583                         /* add map entry to overlap list (> 1 entry implies an overlap) */
584                         overlap_list[overlap_entries++]=change_point[chgidx]->pbios;
585                 }
586                 else
587                 {
588                         /* remove entry from list (order independent, so swap with last) */
589                         for (i=0; i<overlap_entries; i++)
590                         {
591                                 if (overlap_list[i] == change_point[chgidx]->pbios)
592                                         overlap_list[i] = overlap_list[overlap_entries-1];
593                         }
594                         overlap_entries--;
595                 }
596                 /* if there are overlapping entries, decide which "type" to use */
597                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
598                 current_type = 0;
599                 for (i=0; i<overlap_entries; i++)
600                         if (overlap_list[i]->type > current_type)
601                                 current_type = overlap_list[i]->type;
602                 /* continue building up new bios map based on this information */
603                 if (current_type != last_type)  {
604                         if (last_type != 0)      {
605                                 new_bios[new_bios_entry].size =
606                                         change_point[chgidx]->addr - last_addr;
607                                 /* move forward only if the new size was non-zero */
608                                 if (new_bios[new_bios_entry].size != 0)
609                                         if (++new_bios_entry >= E820MAX)
610                                                 break;  /* no more space left for new bios entries */
611                         }
612                         if (current_type != 0)  {
613                                 new_bios[new_bios_entry].addr = change_point[chgidx]->addr;
614                                 new_bios[new_bios_entry].type = current_type;
615                                 last_addr=change_point[chgidx]->addr;
616                         }
617                         last_type = current_type;
618                 }
619         }
620         new_nr = new_bios_entry;   /* retain count for new bios entries */
621
622         /* copy new bios mapping into original location */
623         memcpy(biosmap, new_bios, new_nr*sizeof(struct e820entry));
624         *pnr_map = new_nr;
625
626         return 0;
627 }
628
629 /*
630  * Copy the BIOS e820 map into a safe place.
631  *
632  * Sanity-check it while we're at it..
633  *
634  * If we're lucky and live on a modern system, the setup code
635  * will have given us a memory map that we can use to properly
636  * set up memory.  If we aren't, we'll fake a memory map.
637  *
638  * We check to see that the memory map contains at least 2 elements
639  * before we'll use it, because the detection code in setup.S may
640  * not be perfect and most every PC known to man has two memory
641  * regions: one from 0 to 640k, and one from 1mb up.  (The IBM
642  * thinkpad 560x, for example, does not cooperate with the memory
643  * detection code.)
644  */
645 int __init copy_e820_map(struct e820entry * biosmap, int nr_map)
646 {
647         /* Only one memory region (or negative)? Ignore it */
648         if (nr_map < 2)
649                 return -1;
650
651         do {
652                 unsigned long long start = biosmap->addr;
653                 unsigned long long size = biosmap->size;
654                 unsigned long long end = start + size;
655                 unsigned long type = biosmap->type;
656
657                 /* Overflow in 64 bits? Ignore the memory map. */
658                 if (start > end)
659                         return -1;
660
661                 /*
662                  * Some BIOSes claim RAM in the 640k - 1M region.
663                  * Not right. Fix it up.
664                  */
665                 if (type == E820_RAM) {
666                         if (start < 0x100000ULL && end > 0xA0000ULL) {
667                                 if (start < 0xA0000ULL)
668                                         add_memory_region(start, 0xA0000ULL-start, type);
669                                 if (end <= 0x100000ULL)
670                                         continue;
671                                 start = 0x100000ULL;
672                                 size = end - start;
673                         }
674                 }
675                 add_memory_region(start, size, type);
676         } while (biosmap++,--nr_map);
677         return 0;
678 }
679
680 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
681 struct edd edd;
682 #ifdef CONFIG_EDD_MODULE
683 EXPORT_SYMBOL(edd);
684 #endif
685 /**
686  * copy_edd() - Copy the BIOS EDD information
687  *              from boot_params into a safe place.
688  *
689  */
690 static inline void copy_edd(void)
691 {
692      memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
693      memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
694      edd.mbr_signature_nr = EDD_MBR_SIG_NR;
695      edd.edd_info_nr = EDD_NR;
696 }
697 #else
698 static inline void copy_edd(void)
699 {
700 }
701 #endif
702
703 static void __init parse_cmdline_early (char ** cmdline_p)
704 {
705         char c = ' ', *to = command_line, *from = saved_command_line;
706         int len = 0;
707         int userdef = 0;
708
709         /* Save unparsed command line copy for /proc/cmdline */
710         saved_command_line[COMMAND_LINE_SIZE-1] = '\0';
711
712         for (;;) {
713                 if (c != ' ')
714                         goto next_char;
715                 /*
716                  * "mem=nopentium" disables the 4MB page tables.
717                  * "mem=XXX[kKmM]" defines a memory region from HIGH_MEM
718                  * to <mem>, overriding the bios size.
719                  * "memmap=XXX[KkmM]@XXX[KkmM]" defines a memory region from
720                  * <start> to <start>+<mem>, overriding the bios size.
721                  *
722                  * HPA tells me bootloaders need to parse mem=, so no new
723                  * option should be mem=  [also see Documentation/i386/boot.txt]
724                  */
725                 if (!memcmp(from, "mem=", 4)) {
726                         if (to != command_line)
727                                 to--;
728                         if (!memcmp(from+4, "nopentium", 9)) {
729                                 from += 9+4;
730                                 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
731                                 disable_pse = 1;
732                         } else {
733                                 /* If the user specifies memory size, we
734                                  * limit the BIOS-provided memory map to
735                                  * that size. exactmap can be used to specify
736                                  * the exact map. mem=number can be used to
737                                  * trim the existing memory map.
738                                  */
739                                 unsigned long long mem_size;
740  
741                                 mem_size = memparse(from+4, &from);
742                                 limit_regions(mem_size);
743                                 userdef=1;
744                         }
745                 }
746
747                 else if (!memcmp(from, "memmap=", 7)) {
748                         if (to != command_line)
749                                 to--;
750                         if (!memcmp(from+7, "exactmap", 8)) {
751 #ifdef CONFIG_CRASH_DUMP
752                                 /* If we are doing a crash dump, we
753                                  * still need to know the real mem
754                                  * size before original memory map is
755                                  * reset.
756                                  */
757                                 find_max_pfn();
758                                 saved_max_pfn = max_pfn;
759 #endif
760                                 from += 8+7;
761                                 e820.nr_map = 0;
762                                 userdef = 1;
763                         } else {
764                                 /* If the user specifies memory size, we
765                                  * limit the BIOS-provided memory map to
766                                  * that size. exactmap can be used to specify
767                                  * the exact map. mem=number can be used to
768                                  * trim the existing memory map.
769                                  */
770                                 unsigned long long start_at, mem_size;
771  
772                                 mem_size = memparse(from+7, &from);
773                                 if (*from == '@') {
774                                         start_at = memparse(from+1, &from);
775                                         add_memory_region(start_at, mem_size, E820_RAM);
776                                 } else if (*from == '#') {
777                                         start_at = memparse(from+1, &from);
778                                         add_memory_region(start_at, mem_size, E820_ACPI);
779                                 } else if (*from == '$') {
780                                         start_at = memparse(from+1, &from);
781                                         add_memory_region(start_at, mem_size, E820_RESERVED);
782                                 } else {
783                                         limit_regions(mem_size);
784                                         userdef=1;
785                                 }
786                         }
787                 }
788
789                 else if (!memcmp(from, "noexec=", 7))
790                         noexec_setup(from + 7);
791
792
793 #ifdef  CONFIG_X86_SMP
794                 /*
795                  * If the BIOS enumerates physical processors before logical,
796                  * maxcpus=N at enumeration-time can be used to disable HT.
797                  */
798                 else if (!memcmp(from, "maxcpus=", 8)) {
799                         extern unsigned int maxcpus;
800
801                         maxcpus = simple_strtoul(from + 8, NULL, 0);
802                 }
803 #endif
804
805 #ifdef CONFIG_ACPI
806                 /* "acpi=off" disables both ACPI table parsing and interpreter */
807                 else if (!memcmp(from, "acpi=off", 8)) {
808                         disable_acpi();
809                 }
810
811                 /* acpi=force to over-ride black-list */
812                 else if (!memcmp(from, "acpi=force", 10)) {
813                         acpi_force = 1;
814                         acpi_ht = 1;
815                         acpi_disabled = 0;
816                 }
817
818                 /* acpi=strict disables out-of-spec workarounds */
819                 else if (!memcmp(from, "acpi=strict", 11)) {
820                         acpi_strict = 1;
821                 }
822
823                 /* Limit ACPI just to boot-time to enable HT */
824                 else if (!memcmp(from, "acpi=ht", 7)) {
825                         if (!acpi_force)
826                                 disable_acpi();
827                         acpi_ht = 1;
828                 }
829                 
830                 /* "pci=noacpi" disable ACPI IRQ routing and PCI scan */
831                 else if (!memcmp(from, "pci=noacpi", 10)) {
832                         acpi_disable_pci();
833                 }
834                 /* "acpi=noirq" disables ACPI interrupt routing */
835                 else if (!memcmp(from, "acpi=noirq", 10)) {
836                         acpi_noirq_set();
837                 }
838
839                 else if (!memcmp(from, "acpi_sci=edge", 13))
840                         acpi_sci_flags.trigger =  1;
841
842                 else if (!memcmp(from, "acpi_sci=level", 14))
843                         acpi_sci_flags.trigger = 3;
844
845                 else if (!memcmp(from, "acpi_sci=high", 13))
846                         acpi_sci_flags.polarity = 1;
847
848                 else if (!memcmp(from, "acpi_sci=low", 12))
849                         acpi_sci_flags.polarity = 3;
850
851 #ifdef CONFIG_X86_IO_APIC
852                 else if (!memcmp(from, "acpi_skip_timer_override", 24))
853                         acpi_skip_timer_override = 1;
854
855                 if (!memcmp(from, "disable_timer_pin_1", 19))
856                         disable_timer_pin_1 = 1;
857                 if (!memcmp(from, "enable_timer_pin_1", 18))
858                         disable_timer_pin_1 = -1;
859
860                 /* disable IO-APIC */
861                 else if (!memcmp(from, "noapic", 6))
862                         disable_ioapic_setup();
863 #endif /* CONFIG_X86_IO_APIC */
864 #endif /* CONFIG_ACPI */
865
866 #ifdef CONFIG_X86_LOCAL_APIC
867                 /* enable local APIC */
868                 else if (!memcmp(from, "lapic", 5))
869                         lapic_enable();
870
871                 /* disable local APIC */
872                 else if (!memcmp(from, "nolapic", 6))
873                         lapic_disable();
874 #endif /* CONFIG_X86_LOCAL_APIC */
875
876 #ifdef CONFIG_KEXEC
877                 /* crashkernel=size@addr specifies the location to reserve for
878                  * a crash kernel.  By reserving this memory we guarantee
879                  * that linux never set's it up as a DMA target.
880                  * Useful for holding code to do something appropriate
881                  * after a kernel panic.
882                  */
883                 else if (!memcmp(from, "crashkernel=", 12)) {
884                         unsigned long size, base;
885                         size = memparse(from+12, &from);
886                         if (*from == '@') {
887                                 base = memparse(from+1, &from);
888                                 /* FIXME: Do I want a sanity check
889                                  * to validate the memory range?
890                                  */
891                                 crashk_res.start = base;
892                                 crashk_res.end   = base + size - 1;
893                         }
894                 }
895 #endif
896 #ifdef CONFIG_PROC_VMCORE
897                 /* elfcorehdr= specifies the location of elf core header
898                  * stored by the crashed kernel.
899                  */
900                 else if (!memcmp(from, "elfcorehdr=", 11))
901                         elfcorehdr_addr = memparse(from+11, &from);
902 #endif
903
904                 /*
905                  * highmem=size forces highmem to be exactly 'size' bytes.
906                  * This works even on boxes that have no highmem otherwise.
907                  * This also works to reduce highmem size on bigger boxes.
908                  */
909                 else if (!memcmp(from, "highmem=", 8))
910                         highmem_pages = memparse(from+8, &from) >> PAGE_SHIFT;
911         
912                 /*
913                  * vmalloc=size forces the vmalloc area to be exactly 'size'
914                  * bytes. This can be used to increase (or decrease) the
915                  * vmalloc area - the default is 128m.
916                  */
917                 else if (!memcmp(from, "vmalloc=", 8))
918                         __VMALLOC_RESERVE = memparse(from+8, &from);
919
920         next_char:
921                 c = *(from++);
922                 if (!c)
923                         break;
924                 if (COMMAND_LINE_SIZE <= ++len)
925                         break;
926                 *(to++) = c;
927         }
928         *to = '\0';
929         *cmdline_p = command_line;
930         if (userdef) {
931                 printk(KERN_INFO "user-defined physical RAM map:\n");
932                 print_memory_map("user");
933         }
934 }
935
936 /*
937  * Callback for efi_memory_walk.
938  */
939 static int __init
940 efi_find_max_pfn(unsigned long start, unsigned long end, void *arg)
941 {
942         unsigned long *max_pfn = arg, pfn;
943
944         if (start < end) {
945                 pfn = PFN_UP(end -1);
946                 if (pfn > *max_pfn)
947                         *max_pfn = pfn;
948         }
949         return 0;
950 }
951
952 static int __init
953 efi_memory_present_wrapper(unsigned long start, unsigned long end, void *arg)
954 {
955         memory_present(0, start, end);
956         return 0;
957 }
958
959 /*
960  * Find the highest page frame number we have available
961  */
962 void __init find_max_pfn(void)
963 {
964         int i;
965
966         max_pfn = 0;
967         if (efi_enabled) {
968                 efi_memmap_walk(efi_find_max_pfn, &max_pfn);
969                 efi_memmap_walk(efi_memory_present_wrapper, NULL);
970                 return;
971         }
972
973         for (i = 0; i < e820.nr_map; i++) {
974                 unsigned long start, end;
975                 /* RAM? */
976                 if (e820.map[i].type != E820_RAM)
977                         continue;
978                 start = PFN_UP(e820.map[i].addr);
979                 end = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
980                 if (start >= end)
981                         continue;
982                 if (end > max_pfn)
983                         max_pfn = end;
984                 memory_present(0, start, end);
985         }
986 }
987
988 /*
989  * Determine low and high memory ranges:
990  */
991 unsigned long __init find_max_low_pfn(void)
992 {
993         unsigned long max_low_pfn;
994
995         max_low_pfn = max_pfn;
996         if (max_low_pfn > MAXMEM_PFN) {
997                 if (highmem_pages == -1)
998                         highmem_pages = max_pfn - MAXMEM_PFN;
999                 if (highmem_pages + MAXMEM_PFN < max_pfn)
1000                         max_pfn = MAXMEM_PFN + highmem_pages;
1001                 if (highmem_pages + MAXMEM_PFN > max_pfn) {
1002                         printk("only %luMB highmem pages available, ignoring highmem size of %uMB.\n", pages_to_mb(max_pfn - MAXMEM_PFN), pages_to_mb(highmem_pages));
1003                         highmem_pages = 0;
1004                 }
1005                 max_low_pfn = MAXMEM_PFN;
1006 #ifndef CONFIG_HIGHMEM
1007                 /* Maximum memory usable is what is directly addressable */
1008                 printk(KERN_WARNING "Warning only %ldMB will be used.\n",
1009                                         MAXMEM>>20);
1010                 if (max_pfn > MAX_NONPAE_PFN)
1011                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1012                 else
1013                         printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
1014                 max_pfn = MAXMEM_PFN;
1015 #else /* !CONFIG_HIGHMEM */
1016 #ifndef CONFIG_X86_PAE
1017                 if (max_pfn > MAX_NONPAE_PFN) {
1018                         max_pfn = MAX_NONPAE_PFN;
1019                         printk(KERN_WARNING "Warning only 4GB will be used.\n");
1020                         printk(KERN_WARNING "Use a PAE enabled kernel.\n");
1021                 }
1022 #endif /* !CONFIG_X86_PAE */
1023 #endif /* !CONFIG_HIGHMEM */
1024         } else {
1025                 if (highmem_pages == -1)
1026                         highmem_pages = 0;
1027 #ifdef CONFIG_HIGHMEM
1028                 if (highmem_pages >= max_pfn) {
1029                         printk(KERN_ERR "highmem size specified (%uMB) is bigger than pages available (%luMB)!.\n", pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
1030                         highmem_pages = 0;
1031                 }
1032                 if (highmem_pages) {
1033                         if (max_low_pfn-highmem_pages < 64*1024*1024/PAGE_SIZE){
1034                                 printk(KERN_ERR "highmem size %uMB results in smaller than 64MB lowmem, ignoring it.\n", pages_to_mb(highmem_pages));
1035                                 highmem_pages = 0;
1036                         }
1037                         max_low_pfn -= highmem_pages;
1038                 }
1039 #else
1040                 if (highmem_pages)
1041                         printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
1042 #endif
1043         }
1044         return max_low_pfn;
1045 }
1046
1047 /*
1048  * Free all available memory for boot time allocation.  Used
1049  * as a callback function by efi_memory_walk()
1050  */
1051
1052 static int __init
1053 free_available_memory(unsigned long start, unsigned long end, void *arg)
1054 {
1055         /* check max_low_pfn */
1056         if (start >= (max_low_pfn << PAGE_SHIFT))
1057                 return 0;
1058         if (end >= (max_low_pfn << PAGE_SHIFT))
1059                 end = max_low_pfn << PAGE_SHIFT;
1060         if (start < end)
1061                 free_bootmem(start, end - start);
1062
1063         return 0;
1064 }
1065 /*
1066  * Register fully available low RAM pages with the bootmem allocator.
1067  */
1068 static void __init register_bootmem_low_pages(unsigned long max_low_pfn)
1069 {
1070         int i;
1071
1072         if (efi_enabled) {
1073                 efi_memmap_walk(free_available_memory, NULL);
1074                 return;
1075         }
1076         for (i = 0; i < e820.nr_map; i++) {
1077                 unsigned long curr_pfn, last_pfn, size;
1078                 /*
1079                  * Reserve usable low memory
1080                  */
1081                 if (e820.map[i].type != E820_RAM)
1082                         continue;
1083                 /*
1084                  * We are rounding up the start address of usable memory:
1085                  */
1086                 curr_pfn = PFN_UP(e820.map[i].addr);
1087                 if (curr_pfn >= max_low_pfn)
1088                         continue;
1089                 /*
1090                  * ... and at the end of the usable range downwards:
1091                  */
1092                 last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);
1093
1094                 if (last_pfn > max_low_pfn)
1095                         last_pfn = max_low_pfn;
1096
1097                 /*
1098                  * .. finally, did all the rounding and playing
1099                  * around just make the area go away?
1100                  */
1101                 if (last_pfn <= curr_pfn)
1102                         continue;
1103
1104                 size = last_pfn - curr_pfn;
1105                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
1106         }
1107 }
1108
1109 /*
1110  * workaround for Dell systems that neglect to reserve EBDA
1111  */
1112 static void __init reserve_ebda_region(void)
1113 {
1114         unsigned int addr;
1115         addr = get_bios_ebda();
1116         if (addr)
1117                 reserve_bootmem(addr, PAGE_SIZE);       
1118 }
1119
1120 #ifndef CONFIG_NEED_MULTIPLE_NODES
1121 void __init setup_bootmem_allocator(void);
1122 static unsigned long __init setup_memory(void)
1123 {
1124         /*
1125          * partially used pages are not usable - thus
1126          * we are rounding upwards:
1127          */
1128         min_low_pfn = PFN_UP(init_pg_tables_end);
1129
1130         find_max_pfn();
1131
1132         max_low_pfn = find_max_low_pfn();
1133
1134 #ifdef CONFIG_HIGHMEM
1135         highstart_pfn = highend_pfn = max_pfn;
1136         if (max_pfn > max_low_pfn) {
1137                 highstart_pfn = max_low_pfn;
1138         }
1139         printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1140                 pages_to_mb(highend_pfn - highstart_pfn));
1141 #endif
1142         printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1143                         pages_to_mb(max_low_pfn));
1144
1145         setup_bootmem_allocator();
1146
1147         return max_low_pfn;
1148 }
1149
1150 void __init zone_sizes_init(void)
1151 {
1152         unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
1153         unsigned int max_dma, low;
1154
1155         max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
1156         low = max_low_pfn;
1157
1158         if (low < max_dma)
1159                 zones_size[ZONE_DMA] = low;
1160         else {
1161                 zones_size[ZONE_DMA] = max_dma;
1162                 zones_size[ZONE_NORMAL] = low - max_dma;
1163 #ifdef CONFIG_HIGHMEM
1164                 zones_size[ZONE_HIGHMEM] = highend_pfn - low;
1165 #endif
1166         }
1167         free_area_init(zones_size);
1168 }
1169 #else
1170 extern unsigned long __init setup_memory(void);
1171 extern void zone_sizes_init(void);
1172 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1173
1174 void __init setup_bootmem_allocator(void)
1175 {
1176         unsigned long bootmap_size;
1177         /*
1178          * Initialize the boot-time allocator (with low memory only):
1179          */
1180         bootmap_size = init_bootmem(min_low_pfn, max_low_pfn);
1181
1182         register_bootmem_low_pages(max_low_pfn);
1183
1184         /*
1185          * Reserve the bootmem bitmap itself as well. We do this in two
1186          * steps (first step was init_bootmem()) because this catches
1187          * the (very unlikely) case of us accidentally initializing the
1188          * bootmem allocator with an invalid RAM area.
1189          */
1190         reserve_bootmem(__PHYSICAL_START, (PFN_PHYS(min_low_pfn) +
1191                          bootmap_size + PAGE_SIZE-1) - (__PHYSICAL_START));
1192
1193         /*
1194          * reserve physical page 0 - it's a special BIOS page on many boxes,
1195          * enabling clean reboots, SMP operation, laptop functions.
1196          */
1197         reserve_bootmem(0, PAGE_SIZE);
1198
1199         /* reserve EBDA region, it's a 4K region */
1200         reserve_ebda_region();
1201
1202     /* could be an AMD 768MPX chipset. Reserve a page  before VGA to prevent
1203        PCI prefetch into it (errata #56). Usually the page is reserved anyways,
1204        unless you have no PS/2 mouse plugged in. */
1205         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
1206             boot_cpu_data.x86 == 6)
1207              reserve_bootmem(0xa0000 - 4096, 4096);
1208
1209 #ifdef CONFIG_SMP
1210         /*
1211          * But first pinch a few for the stack/trampoline stuff
1212          * FIXME: Don't need the extra page at 4K, but need to fix
1213          * trampoline before removing it. (see the GDT stuff)
1214          */
1215         reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1216 #endif
1217 #ifdef CONFIG_ACPI_SLEEP
1218         /*
1219          * Reserve low memory region for sleep support.
1220          */
1221         acpi_reserve_bootmem();
1222 #endif
1223 #ifdef CONFIG_X86_FIND_SMP_CONFIG
1224         /*
1225          * Find and reserve possible boot-time SMP configuration:
1226          */
1227         find_smp_config();
1228 #endif
1229
1230 #ifdef CONFIG_BLK_DEV_INITRD
1231         if (LOADER_TYPE && INITRD_START) {
1232                 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
1233                         reserve_bootmem(INITRD_START, INITRD_SIZE);
1234                         initrd_start =
1235                                 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;
1236                         initrd_end = initrd_start+INITRD_SIZE;
1237                 }
1238                 else {
1239                         printk(KERN_ERR "initrd extends beyond end of memory "
1240                             "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1241                             INITRD_START + INITRD_SIZE,
1242                             max_low_pfn << PAGE_SHIFT);
1243                         initrd_start = 0;
1244                 }
1245         }
1246 #endif
1247 #ifdef CONFIG_KEXEC
1248         if (crashk_res.start != crashk_res.end)
1249                 reserve_bootmem(crashk_res.start,
1250                         crashk_res.end - crashk_res.start + 1);
1251 #endif
1252 }
1253
1254 /*
1255  * The node 0 pgdat is initialized before all of these because
1256  * it's needed for bootmem.  node>0 pgdats have their virtual
1257  * space allocated before the pagetables are in place to access
1258  * them, so they can't be cleared then.
1259  *
1260  * This should all compile down to nothing when NUMA is off.
1261  */
1262 void __init remapped_pgdat_init(void)
1263 {
1264         int nid;
1265
1266         for_each_online_node(nid) {
1267                 if (nid != 0)
1268                         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1269         }
1270 }
1271
1272 /*
1273  * Request address space for all standard RAM and ROM resources
1274  * and also for regions reported as reserved by the e820.
1275  */
1276 static void __init
1277 legacy_init_iomem_resources(struct resource *code_resource, struct resource *data_resource)
1278 {
1279         int i;
1280
1281         probe_roms();
1282         for (i = 0; i < e820.nr_map; i++) {
1283                 struct resource *res;
1284 #ifndef CONFIG_RESOURCES_64BIT
1285                 if (e820.map[i].addr + e820.map[i].size > 0x100000000ULL)
1286                         continue;
1287 #endif
1288                 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
1289                 switch (e820.map[i].type) {
1290                 case E820_RAM:  res->name = "System RAM"; break;
1291                 case E820_ACPI: res->name = "ACPI Tables"; break;
1292                 case E820_NVS:  res->name = "ACPI Non-volatile Storage"; break;
1293                 default:        res->name = "reserved";
1294                 }
1295                 res->start = e820.map[i].addr;
1296                 res->end = res->start + e820.map[i].size - 1;
1297                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1298                 if (request_resource(&iomem_resource, res)) {
1299                         kfree(res);
1300                         continue;
1301                 }
1302                 if (e820.map[i].type == E820_RAM) {
1303                         /*
1304                          *  We don't know which RAM region contains kernel data,
1305                          *  so we try it repeatedly and let the resource manager
1306                          *  test it.
1307                          */
1308                         request_resource(res, code_resource);
1309                         request_resource(res, data_resource);
1310 #ifdef CONFIG_KEXEC
1311                         request_resource(res, &crashk_res);
1312 #endif
1313                 }
1314         }
1315 }
1316
1317 /*
1318  * Request address space for all standard resources
1319  *
1320  * This is called just before pcibios_init(), which is also a
1321  * subsys_initcall, but is linked in later (in arch/i386/pci/common.c).
1322  */
1323 static int __init request_standard_resources(void)
1324 {
1325         int i;
1326
1327         printk("Setting up standard PCI resources\n");
1328         if (efi_enabled)
1329                 efi_initialize_iomem_resources(&code_resource, &data_resource);
1330         else
1331                 legacy_init_iomem_resources(&code_resource, &data_resource);
1332
1333         /* EFI systems may still have VGA */
1334         request_resource(&iomem_resource, &video_ram_resource);
1335
1336         /* request I/O space for devices used on all i[345]86 PCs */
1337         for (i = 0; i < STANDARD_IO_RESOURCES; i++)
1338                 request_resource(&ioport_resource, &standard_io_resources[i]);
1339         return 0;
1340 }
1341
1342 subsys_initcall(request_standard_resources);
1343
1344 static void __init register_memory(void)
1345 {
1346         unsigned long gapstart, gapsize, round;
1347         unsigned long long last;
1348         int i;
1349
1350         /*
1351          * Search for the bigest gap in the low 32 bits of the e820
1352          * memory space.
1353          */
1354         last = 0x100000000ull;
1355         gapstart = 0x10000000;
1356         gapsize = 0x400000;
1357         i = e820.nr_map;
1358         while (--i >= 0) {
1359                 unsigned long long start = e820.map[i].addr;
1360                 unsigned long long end = start + e820.map[i].size;
1361
1362                 /*
1363                  * Since "last" is at most 4GB, we know we'll
1364                  * fit in 32 bits if this condition is true
1365                  */
1366                 if (last > end) {
1367                         unsigned long gap = last - end;
1368
1369                         if (gap > gapsize) {
1370                                 gapsize = gap;
1371                                 gapstart = end;
1372                         }
1373                 }
1374                 if (start < last)
1375                         last = start;
1376         }
1377
1378         /*
1379          * See how much we want to round up: start off with
1380          * rounding to the next 1MB area.
1381          */
1382         round = 0x100000;
1383         while ((gapsize >> 4) > round)
1384                 round += round;
1385         /* Fun with two's complement */
1386         pci_mem_start = (gapstart + round) & -round;
1387
1388         printk("Allocating PCI resources starting at %08lx (gap: %08lx:%08lx)\n",
1389                 pci_mem_start, gapstart, gapsize);
1390 }
1391
1392 #ifdef CONFIG_MCA
1393 static void set_mca_bus(int x)
1394 {
1395         MCA_bus = x;
1396 }
1397 #else
1398 static void set_mca_bus(int x) { }
1399 #endif
1400
1401 /*
1402  * Determine if we were loaded by an EFI loader.  If so, then we have also been
1403  * passed the efi memmap, systab, etc., so we should use these data structures
1404  * for initialization.  Note, the efi init code path is determined by the
1405  * global efi_enabled. This allows the same kernel image to be used on existing
1406  * systems (with a traditional BIOS) as well as on EFI systems.
1407  */
1408 void __init setup_arch(char **cmdline_p)
1409 {
1410         unsigned long max_low_pfn;
1411
1412         memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1413         pre_setup_arch_hook();
1414         early_cpu_init();
1415
1416         /*
1417          * FIXME: This isn't an official loader_type right
1418          * now but does currently work with elilo.
1419          * If we were configured as an EFI kernel, check to make
1420          * sure that we were loaded correctly from elilo and that
1421          * the system table is valid.  If not, then initialize normally.
1422          */
1423 #ifdef CONFIG_EFI
1424         if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1425                 efi_enabled = 1;
1426 #endif
1427
1428         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1429         drive_info = DRIVE_INFO;
1430         screen_info = SCREEN_INFO;
1431         edid_info = EDID_INFO;
1432         apm_info.bios = APM_BIOS_INFO;
1433         ist_info = IST_INFO;
1434         saved_videomode = VIDEO_MODE;
1435         if( SYS_DESC_TABLE.length != 0 ) {
1436                 set_mca_bus(SYS_DESC_TABLE.table[3] & 0x2);
1437                 machine_id = SYS_DESC_TABLE.table[0];
1438                 machine_submodel_id = SYS_DESC_TABLE.table[1];
1439                 BIOS_revision = SYS_DESC_TABLE.table[2];
1440         }
1441         bootloader_type = LOADER_TYPE;
1442
1443 #ifdef CONFIG_BLK_DEV_RAM
1444         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1445         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1446         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1447 #endif
1448         ARCH_SETUP
1449         if (efi_enabled)
1450                 efi_init();
1451         else {
1452                 printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1453                 print_memory_map(machine_specific_memory_setup());
1454         }
1455
1456         copy_edd();
1457
1458         if (!MOUNT_ROOT_RDONLY)
1459                 root_mountflags &= ~MS_RDONLY;
1460         init_mm.start_code = (unsigned long) _text;
1461         init_mm.end_code = (unsigned long) _etext;
1462         init_mm.end_data = (unsigned long) _edata;
1463         init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1464
1465         code_resource.start = virt_to_phys(_text);
1466         code_resource.end = virt_to_phys(_etext)-1;
1467         data_resource.start = virt_to_phys(_etext);
1468         data_resource.end = virt_to_phys(_edata)-1;
1469
1470         parse_cmdline_early(cmdline_p);
1471
1472 #ifdef CONFIG_EARLY_PRINTK
1473         {
1474                 char *s = strstr(*cmdline_p, "earlyprintk=");
1475                 if (s) {
1476                         setup_early_printk(strchr(s, '=') + 1);
1477                         printk("early console enabled\n");
1478                 }
1479         }
1480 #endif
1481
1482         max_low_pfn = setup_memory();
1483
1484         /*
1485          * NOTE: before this point _nobody_ is allowed to allocate
1486          * any memory using the bootmem allocator.  Although the
1487          * alloctor is now initialised only the first 8Mb of the kernel
1488          * virtual address space has been mapped.  All allocations before
1489          * paging_init() has completed must use the alloc_bootmem_low_pages()
1490          * variant (which allocates DMA'able memory) and care must be taken
1491          * not to exceed the 8Mb limit.
1492          */
1493
1494 #ifdef CONFIG_SMP
1495         smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1496 #endif
1497         paging_init();
1498         remapped_pgdat_init();
1499         sparse_init();
1500         zone_sizes_init();
1501
1502         /*
1503          * NOTE: at this point the bootmem allocator is fully available.
1504          */
1505
1506         dmi_scan_machine();
1507
1508 #ifdef CONFIG_X86_GENERICARCH
1509         generic_apic_probe(*cmdline_p);
1510 #endif  
1511         if (efi_enabled)
1512                 efi_map_memmap();
1513
1514 #ifdef CONFIG_ACPI
1515         /*
1516          * Parse the ACPI tables for possible boot-time SMP configuration.
1517          */
1518         acpi_boot_table_init();
1519 #endif
1520
1521 #ifdef CONFIG_X86_IO_APIC
1522         check_acpi_pci();       /* Checks more than just ACPI actually */
1523 #endif
1524
1525 #ifdef CONFIG_ACPI
1526         acpi_boot_init();
1527
1528 #if defined(CONFIG_SMP) && defined(CONFIG_X86_PC)
1529         if (def_to_bigsmp)
1530                 printk(KERN_WARNING "More than 8 CPUs detected and "
1531                         "CONFIG_X86_PC cannot handle it.\nUse "
1532                         "CONFIG_X86_GENERICARCH or CONFIG_X86_BIGSMP.\n");
1533 #endif
1534 #endif
1535 #ifdef CONFIG_X86_LOCAL_APIC
1536         if (smp_found_config)
1537                 get_smp_config();
1538 #endif
1539
1540         register_memory();
1541
1542 #ifdef CONFIG_VT
1543 #if defined(CONFIG_VGA_CONSOLE)
1544         if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1545                 conswitchp = &vga_con;
1546 #elif defined(CONFIG_DUMMY_CONSOLE)
1547         conswitchp = &dummy_con;
1548 #endif
1549 #endif
1550         tsc_init();
1551 }
1552
1553 static __init int add_pcspkr(void)
1554 {
1555         struct platform_device *pd;
1556         int ret;
1557
1558         pd = platform_device_alloc("pcspkr", -1);
1559         if (!pd)
1560                 return -ENOMEM;
1561
1562         ret = platform_device_add(pd);
1563         if (ret)
1564                 platform_device_put(pd);
1565
1566         return ret;
1567 }
1568 device_initcall(add_pcspkr);
1569
1570 /*
1571  * Local Variables:
1572  * mode:c
1573  * c-file-style:"k&r"
1574  * c-basic-offset:8
1575  * End:
1576  */