2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4 * Copyright (c) 2003, 2004 Maciej W. Rozycki
6 * Common time service routines for MIPS machines. See
7 * Documentation/mips/time.README.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 #include <linux/types.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/param.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/smp.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
27 #include <asm/bootinfo.h>
28 #include <asm/cache.h>
29 #include <asm/compiler.h>
31 #include <asm/cpu-features.h>
32 #include <asm/div64.h>
33 #include <asm/sections.h>
37 * The integer part of the number of usecs per jiffy is taken from tick,
38 * but the fractional part is not recorded, so we calculate it using the
39 * initial value of HZ. This aids systems where tick isn't really an
40 * integer (e.g. for HZ = 128).
42 #define USECS_PER_JIFFY TICK_SIZE
43 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 #define TICK_SIZE (tick_nsec / 1000)
50 DEFINE_SPINLOCK(rtc_lock);
53 * By default we provide the null RTC ops
55 static unsigned long null_rtc_get_time(void)
57 return mktime(2000, 1, 1, 0, 0, 0);
60 static int null_rtc_set_time(unsigned long sec)
65 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
66 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
67 int (*rtc_mips_set_mmss)(unsigned long);
70 /* how many counter cycles in a jiffy */
71 static unsigned long cycles_per_jiffy __read_mostly;
73 /* expirelo is the count value for next CPU timer interrupt */
74 static unsigned int expirelo;
78 * Null timer ack for systems not needing one (e.g. i8254).
80 static void null_timer_ack(void) { /* nothing */ }
83 * Null high precision timer functions for systems lacking one.
85 static cycle_t null_hpt_read(void)
91 * Timer ack for an R4k-compatible timer of a known frequency.
93 static void c0_timer_ack(void)
97 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
98 /* Ack this timer interrupt and set the next one. */
99 expirelo += cycles_per_jiffy;
101 write_c0_compare(expirelo);
103 /* Check to see if we have missed any timer interrupts. */
104 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
105 /* missed_timer_count++; */
106 expirelo = count + cycles_per_jiffy;
107 write_c0_compare(expirelo);
112 * High precision timer functions for a R4k-compatible timer.
114 static cycle_t c0_hpt_read(void)
116 return read_c0_count();
119 /* For use both as a high precision timer and an interrupt source. */
120 static void __init c0_hpt_timer_init(void)
122 expirelo = read_c0_count() + cycles_per_jiffy;
123 write_c0_compare(expirelo);
126 int (*mips_timer_state)(void);
127 void (*mips_timer_ack)(void);
129 /* last time when xtime and rtc are sync'ed up */
130 static long last_rtc_update;
133 * local_timer_interrupt() does profiling and process accounting
134 * on a per-CPU basis.
136 * In UP mode, it is invoked from the (global) timer_interrupt.
138 * In SMP mode, it might invoked by per-CPU timer interrupt, or
139 * a broadcasted inter-processor interrupt which itself is triggered
140 * by the global timer interrupt.
142 void local_timer_interrupt(int irq, void *dev_id)
144 profile_tick(CPU_PROFILING);
145 update_process_times(user_mode(get_irq_regs()));
149 * High-level timer interrupt service routines. This function
150 * is set as irqaction->handler and is invoked through do_IRQ.
152 irqreturn_t timer_interrupt(int irq, void *dev_id)
154 write_seqlock(&xtime_lock);
159 * call the generic timer interrupt handling
164 * If we have an externally synchronized Linux clock, then update
165 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
166 * called as close as possible to 500 ms before the new second starts.
169 xtime.tv_sec > last_rtc_update + 660 &&
170 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
171 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
172 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
173 last_rtc_update = xtime.tv_sec;
175 /* do it again in 60 s */
176 last_rtc_update = xtime.tv_sec - 600;
180 write_sequnlock(&xtime_lock);
183 * In UP mode, we call local_timer_interrupt() to do profiling
184 * and process accouting.
186 * In SMP mode, local_timer_interrupt() is invoked by appropriate
187 * low-level local timer interrupt handler.
189 local_timer_interrupt(irq, dev_id);
194 int null_perf_irq(void)
199 int (*perf_irq)(void) = null_perf_irq;
201 EXPORT_SYMBOL(null_perf_irq);
202 EXPORT_SYMBOL(perf_irq);
204 asmlinkage void ll_timer_interrupt(int irq)
206 int r2 = cpu_has_mips_r2;
209 kstat_this_cpu.irqs[irq]++;
213 * Before R2 of the architecture there was no way to see if a
214 * performance counter interrupt was pending, so we have to run the
215 * performance counter interrupt handler anyway.
217 if (!r2 || (read_c0_cause() & (1 << 26)))
221 /* we keep interrupt disabled all the time */
222 if (!r2 || (read_c0_cause() & (1 << 30)))
223 timer_interrupt(irq, NULL);
229 asmlinkage void ll_local_timer_interrupt(int irq)
232 if (smp_processor_id() != 0)
233 kstat_this_cpu.irqs[irq]++;
235 /* we keep interrupt disabled all the time */
236 local_timer_interrupt(irq, NULL);
242 * time_init() - it does the following things.
244 * 1) board_time_init() -
245 * a) (optional) set up RTC routines,
246 * b) (optional) calibrate and set the mips_hpt_frequency
247 * (only needed if you intended to use cpu counter as timer interrupt
249 * 2) setup xtime based on rtc_mips_get_time().
250 * 3) calculate a couple of cached variables for later usage
251 * 4) plat_timer_setup() -
252 * a) (optional) over-write any choices made above by time_init().
253 * b) machine specific code should setup the timer irqaction.
254 * c) enable the timer interrupt
257 void (*board_time_init)(void);
259 unsigned int mips_hpt_frequency;
261 static struct irqaction timer_irqaction = {
262 .handler = timer_interrupt,
263 .flags = IRQF_DISABLED,
267 static unsigned int __init calibrate_hpt(void)
269 cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
271 const int loops = HZ / 10;
276 * We want to calibrate for 0.1s, but to avoid a 64-bit
277 * division we round the number of loops up to the nearest
280 while (loops > 1 << log_2_loops)
282 i = 1 << log_2_loops;
285 * Wait for a rising edge of the timer interrupt.
287 while (mips_timer_state());
288 while (!mips_timer_state());
291 * Now see how many high precision timer ticks happen
292 * during the calculated number of periods between timer
295 hpt_start = clocksource_mips.read();
297 while (mips_timer_state());
298 while (!mips_timer_state());
300 hpt_end = clocksource_mips.read();
302 hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
304 frequency = hpt_count * hz;
306 return frequency >> log_2_loops;
309 struct clocksource clocksource_mips = {
315 static void __init init_mips_clocksource(void)
320 if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
323 /* Calclate a somewhat reasonable rating value */
324 clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
325 /* Find a shift value */
326 for (shift = 32; shift > 0; shift--) {
327 temp = (u64) NSEC_PER_SEC << shift;
328 do_div(temp, mips_hpt_frequency);
329 if ((temp >> 32) == 0)
332 clocksource_mips.shift = shift;
333 clocksource_mips.mult = (u32)temp;
335 clocksource_register(&clocksource_mips);
338 void __init time_init(void)
343 if (!rtc_mips_set_mmss)
344 rtc_mips_set_mmss = rtc_mips_set_time;
346 xtime.tv_sec = rtc_mips_get_time();
349 set_normalized_timespec(&wall_to_monotonic,
350 -xtime.tv_sec, -xtime.tv_nsec);
352 /* Choose appropriate high precision timer routines. */
353 if (!cpu_has_counter && !clocksource_mips.read)
354 /* No high precision timer -- sorry. */
355 clocksource_mips.read = null_hpt_read;
356 else if (!mips_hpt_frequency && !mips_timer_state) {
357 /* A high precision timer of unknown frequency. */
358 if (!clocksource_mips.read)
359 /* No external high precision timer -- use R4k. */
360 clocksource_mips.read = c0_hpt_read;
362 /* We know counter frequency. Or we can get it. */
363 if (!clocksource_mips.read) {
364 /* No external high precision timer -- use R4k. */
365 clocksource_mips.read = c0_hpt_read;
367 if (!mips_timer_state) {
368 /* No external timer interrupt -- use R4k. */
369 mips_timer_ack = c0_timer_ack;
370 /* Calculate cache parameters. */
372 (mips_hpt_frequency + HZ / 2) / HZ;
374 * This sets up the high precision
375 * timer for the first interrupt.
380 if (!mips_hpt_frequency)
381 mips_hpt_frequency = calibrate_hpt();
383 /* Report the high precision timer rate for a reference. */
384 printk("Using %u.%03u MHz high precision timer.\n",
385 ((mips_hpt_frequency + 500) / 1000) / 1000,
386 ((mips_hpt_frequency + 500) / 1000) % 1000);
390 /* No timer interrupt ack (e.g. i8254). */
391 mips_timer_ack = null_timer_ack;
394 * Call board specific timer interrupt setup.
396 * this pointer must be setup in machine setup routine.
398 * Even if a machine chooses to use a low-level timer interrupt,
399 * it still needs to setup the timer_irqaction.
400 * In that case, it might be better to set timer_irqaction.handler
401 * to be NULL function so that we are sure the high-level code
402 * is not invoked accidentally.
404 plat_timer_setup(&timer_irqaction);
406 init_mips_clocksource();
410 #define STARTOFTIME 1970
411 #define SECDAY 86400L
412 #define SECYR (SECDAY * 365)
413 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
414 #define days_in_year(y) (leapyear(y) ? 366 : 365)
415 #define days_in_month(m) (month_days[(m) - 1])
417 static int month_days[12] = {
418 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
421 void to_tm(unsigned long tim, struct rtc_time *tm)
426 gday = day = tim / SECDAY;
429 /* Hours, minutes, seconds are easy */
430 tm->tm_hour = hms / 3600;
431 tm->tm_min = (hms % 3600) / 60;
432 tm->tm_sec = (hms % 3600) % 60;
434 /* Number of years in days */
435 for (i = STARTOFTIME; day >= days_in_year(i); i++)
436 day -= days_in_year(i);
439 /* Number of months in days left */
440 if (leapyear(tm->tm_year))
441 days_in_month(FEBRUARY) = 29;
442 for (i = 1; day >= days_in_month(i); i++)
443 day -= days_in_month(i);
444 days_in_month(FEBRUARY) = 28;
445 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
447 /* Days are what is left over (+1) from all that. */
448 tm->tm_mday = day + 1;
451 * Determine the day of week
453 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
456 EXPORT_SYMBOL(rtc_lock);
457 EXPORT_SYMBOL(to_tm);
458 EXPORT_SYMBOL(rtc_mips_set_time);
459 EXPORT_SYMBOL(rtc_mips_get_time);
461 unsigned long long sched_clock(void)
463 return (unsigned long long)jiffies*(1000000000/HZ);