2 * linux/arch/alpha/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
30 #include <linux/config.h>
31 #include <linux/errno.h>
32 #include <linux/module.h>
33 #include <linux/sched.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/irq.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/bcd.h>
44 #include <linux/profile.h>
46 #include <asm/uaccess.h>
48 #include <asm/hwrpb.h>
49 #include <asm/8253pit.h>
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
58 extern unsigned long wall_jiffies; /* kernel/timer.c */
60 static int set_rtc_mmss(unsigned long);
62 DEFINE_SPINLOCK(rtc_lock);
64 #define TICK_SIZE (tick_nsec / 1000)
67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69 * for large CPU clock rates.
73 /* lump static variables together for more efficient access: */
75 /* cycle counter last time it got invoked */
77 /* ticks/cycle * 2^48 */
78 unsigned long scaled_ticks_per_cycle;
79 /* last time the CMOS clock got updated */
80 time_t last_rtc_update;
81 /* partial unused tick */
82 unsigned long partial_tick;
85 unsigned long est_cycle_freq;
88 static inline __u32 rpcc(void)
91 asm volatile ("rpcc %0" : "=r"(result));
96 * Scheduler clock - returns current time in nanosec units.
98 * Copied from ARM code for expediency... ;-}
100 unsigned long long sched_clock(void)
102 return (unsigned long long)jiffies * (1000000000 / HZ);
107 * timer_interrupt() needs to keep up the real-time clock,
108 * as well as call the "do_timer()" routine every clocktick
110 irqreturn_t timer_interrupt(int irq, void *dev, struct pt_regs * regs)
117 /* Not SMP, do kernel PC profiling here. */
118 profile_tick(CPU_PROFILING, regs);
121 write_seqlock(&xtime_lock);
124 * Calculate how many ticks have passed since the last update,
125 * including any previous partial leftover. Save any resulting
126 * fraction for the next pass.
129 delta = now - state.last_time;
130 state.last_time = now;
131 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
132 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
133 nticks = delta >> FIX_SHIFT;
138 update_process_times(user_mode(regs));
144 * If we have an externally synchronized Linux clock, then update
145 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
146 * called as close as possible to 500 ms before the new second starts.
149 && xtime.tv_sec > state.last_rtc_update + 660
150 && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
151 && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
152 int tmp = set_rtc_mmss(xtime.tv_sec);
153 state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
156 write_sequnlock(&xtime_lock);
161 common_init_rtc(void)
165 /* Reset periodic interrupt frequency. */
166 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
167 /* Test includes known working values on various platforms
168 where 0x26 is wrong; we refuse to change those. */
169 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
170 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
171 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
174 /* Turn on periodic interrupts. */
175 x = CMOS_READ(RTC_CONTROL);
176 if (!(x & RTC_PIE)) {
177 printk("Turning on RTC interrupts.\n");
179 x &= ~(RTC_AIE | RTC_UIE);
180 CMOS_WRITE(x, RTC_CONTROL);
182 (void) CMOS_READ(RTC_INTR_FLAGS);
184 outb(0x36, 0x43); /* pit counter 0: system timer */
188 outb(0xb6, 0x43); /* pit counter 2: speaker */
196 /* Validate a computed cycle counter result against the known bounds for
197 the given processor core. There's too much brokenness in the way of
198 timing hardware for any one method to work everywhere. :-(
200 Return 0 if the result cannot be trusted, otherwise return the argument. */
202 static unsigned long __init
203 validate_cc_value(unsigned long cc)
205 static struct bounds {
206 unsigned int min, max;
207 } cpu_hz[] __initdata = {
208 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
209 [EV4_CPU] = { 100000000, 300000000 },
210 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
211 [EV45_CPU] = { 200000000, 300000000 },
212 [EV5_CPU] = { 250000000, 433000000 },
213 [EV56_CPU] = { 333000000, 667000000 },
214 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
215 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
216 [EV6_CPU] = { 466000000, 600000000 },
217 [EV67_CPU] = { 600000000, 750000000 },
218 [EV68AL_CPU] = { 750000000, 940000000 },
219 [EV68CB_CPU] = { 1000000000, 1333333333 },
220 /* None of the following are shipping as of 2001-11-01. */
221 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
222 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
223 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
224 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
227 /* Allow for some drift in the crystal. 10MHz is more than enough. */
228 const unsigned int deviation = 10000000;
230 struct percpu_struct *cpu;
233 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
234 index = cpu->type & 0xffffffff;
236 /* If index out of bounds, no way to validate. */
237 if (index >= sizeof(cpu_hz)/sizeof(cpu_hz[0]))
240 /* If index contains no data, no way to validate. */
241 if (cpu_hz[index].max == 0)
244 if (cc < cpu_hz[index].min - deviation
245 || cc > cpu_hz[index].max + deviation)
253 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
257 #define CALIBRATE_LATCH 0xffff
258 #define TIMEOUT_COUNT 0x100000
260 static unsigned long __init
261 calibrate_cc_with_pit(void)
265 /* Set the Gate high, disable speaker */
266 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
269 * Now let's take care of CTC channel 2
271 * Set the Gate high, program CTC channel 2 for mode 0,
272 * (interrupt on terminal count mode), binary count,
273 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
275 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
276 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
277 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
282 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
285 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
286 if (count <= 1 || count == TIMEOUT_COUNT)
289 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
292 /* The Linux interpretation of the CMOS clock register contents:
293 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
294 RTC registers show the second which has precisely just started.
295 Let's hope other operating systems interpret the RTC the same way. */
297 static unsigned long __init
298 rpcc_after_update_in_progress(void)
300 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
301 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
309 unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
310 unsigned long cycle_freq, tolerance;
313 /* Calibrate CPU clock -- attempt #1. */
315 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
319 /* Calibrate CPU clock -- attempt #2. */
320 if (!est_cycle_freq) {
321 cc1 = rpcc_after_update_in_progress();
322 cc2 = rpcc_after_update_in_progress();
323 est_cycle_freq = validate_cc_value(cc2 - cc1);
327 cycle_freq = hwrpb->cycle_freq;
328 if (est_cycle_freq) {
329 /* If the given value is within 250 PPM of what we calculated,
330 accept it. Otherwise, use what we found. */
331 tolerance = cycle_freq / 4000;
332 diff = cycle_freq - est_cycle_freq;
335 if ((unsigned long)diff > tolerance) {
336 cycle_freq = est_cycle_freq;
337 printk("HWRPB cycle frequency bogus. "
338 "Estimated %lu Hz\n", cycle_freq);
342 } else if (! validate_cc_value (cycle_freq)) {
343 printk("HWRPB cycle frequency bogus, "
344 "and unable to estimate a proper value!\n");
347 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
348 to settle, as the Update-In-Progress bit going low isn't good
349 enough on some hardware. 2ms is our guess; we haven't found
350 bogomips yet, but this is close on a 500Mhz box. */
353 sec = CMOS_READ(RTC_SECONDS);
354 min = CMOS_READ(RTC_MINUTES);
355 hour = CMOS_READ(RTC_HOURS);
356 day = CMOS_READ(RTC_DAY_OF_MONTH);
357 mon = CMOS_READ(RTC_MONTH);
358 year = CMOS_READ(RTC_YEAR);
360 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
369 /* PC-like is standard; used for year >= 70 */
373 else if (year >= 20 && year < 48)
376 else if (year >= 48 && year < 70)
377 /* Digital UNIX epoch */
380 printk(KERN_INFO "Using epoch = %d\n", epoch);
382 if ((year += epoch) < 1970)
385 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
388 wall_to_monotonic.tv_sec -= xtime.tv_sec;
389 wall_to_monotonic.tv_nsec = 0;
392 extern void __you_loose (void);
396 state.last_time = cc1;
397 state.scaled_ticks_per_cycle
398 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
399 state.last_rtc_update = 0;
400 state.partial_tick = 0L;
402 /* Startup the timer source. */
407 * Use the cycle counter to estimate an displacement from the last time
408 * tick. Unfortunately the Alpha designers made only the low 32-bits of
409 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
410 * part. So we can't do the "find absolute time in terms of cycles" thing
411 * that the other ports do.
414 do_gettimeofday(struct timeval *tv)
417 unsigned long sec, usec, lost, seq;
418 unsigned long delta_cycles, delta_usec, partial_tick;
421 seq = read_seqbegin_irqsave(&xtime_lock, flags);
423 delta_cycles = rpcc() - state.last_time;
425 usec = (xtime.tv_nsec / 1000);
426 partial_tick = state.partial_tick;
427 lost = jiffies - wall_jiffies;
429 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
432 /* Until and unless we figure out how to get cpu cycle counters
433 in sync and keep them there, we can't use the rpcc tricks. */
434 delta_usec = lost * (1000000 / HZ);
437 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
438 * = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
439 * = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
441 * which, given a 600MHz cycle and a 1024Hz tick, has a
442 * dynamic range of about 1.7e17, which is less than the
443 * 1.8e19 in an unsigned long, so we are safe from overflow.
445 * Round, but with .5 up always, since .5 to even is harder
446 * with no clear gain.
449 delta_usec = (delta_cycles * state.scaled_ticks_per_cycle
451 + (lost << FIX_SHIFT)) * 15625;
452 delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
456 if (usec >= 1000000) {
465 EXPORT_SYMBOL(do_gettimeofday);
468 do_settimeofday(struct timespec *tv)
470 time_t wtm_sec, sec = tv->tv_sec;
471 long wtm_nsec, nsec = tv->tv_nsec;
472 unsigned long delta_nsec;
474 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
477 write_seqlock_irq(&xtime_lock);
479 /* The offset that is added into time in do_gettimeofday above
480 must be subtracted out here to keep a coherent view of the
481 time. Without this, a full-tick error is possible. */
484 delta_nsec = (jiffies - wall_jiffies) * (NSEC_PER_SEC / HZ);
486 delta_nsec = rpcc() - state.last_time;
487 delta_nsec = (delta_nsec * state.scaled_ticks_per_cycle
489 + ((jiffies - wall_jiffies) << FIX_SHIFT)) * 15625;
490 delta_nsec = ((delta_nsec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
496 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
497 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
499 set_normalized_timespec(&xtime, sec, nsec);
500 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
504 write_sequnlock_irq(&xtime_lock);
509 EXPORT_SYMBOL(do_settimeofday);
513 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
514 * called 500 ms after the second nowtime has started, because when
515 * nowtime is written into the registers of the CMOS clock, it will
516 * jump to the next second precisely 500 ms later. Check the Motorola
517 * MC146818A or Dallas DS12887 data sheet for details.
519 * BUG: This routine does not handle hour overflow properly; it just
520 * sets the minutes. Usually you won't notice until after reboot!
525 set_rtc_mmss(unsigned long nowtime)
528 int real_seconds, real_minutes, cmos_minutes;
529 unsigned char save_control, save_freq_select;
531 /* irq are locally disabled here */
532 spin_lock(&rtc_lock);
533 /* Tell the clock it's being set */
534 save_control = CMOS_READ(RTC_CONTROL);
535 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
537 /* Stop and reset prescaler */
538 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
539 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
541 cmos_minutes = CMOS_READ(RTC_MINUTES);
542 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
543 BCD_TO_BIN(cmos_minutes);
546 * since we're only adjusting minutes and seconds,
547 * don't interfere with hour overflow. This avoids
548 * messing with unknown time zones but requires your
549 * RTC not to be off by more than 15 minutes
551 real_seconds = nowtime % 60;
552 real_minutes = nowtime / 60;
553 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
554 /* correct for half hour time zone */
559 if (abs(real_minutes - cmos_minutes) < 30) {
560 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
561 BIN_TO_BCD(real_seconds);
562 BIN_TO_BCD(real_minutes);
564 CMOS_WRITE(real_seconds,RTC_SECONDS);
565 CMOS_WRITE(real_minutes,RTC_MINUTES);
568 "set_rtc_mmss: can't update from %d to %d\n",
569 cmos_minutes, real_minutes);
573 /* The following flags have to be released exactly in this order,
574 * otherwise the DS12887 (popular MC146818A clone with integrated
575 * battery and quartz) will not reset the oscillator and will not
576 * update precisely 500 ms later. You won't find this mentioned in
577 * the Dallas Semiconductor data sheets, but who believes data
578 * sheets anyway ... -- Markus Kuhn
580 CMOS_WRITE(save_control, RTC_CONTROL);
581 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
582 spin_unlock(&rtc_lock);