1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.17"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
149 {"tmac_data_octets"},
153 {"tmac_pause_ctrl_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
226 {"new_rd_req_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
231 {"new_wr_req_rtry_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
331 {"prc_pcix_err_cnt"},
338 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
348 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
352 init_timer(&timer); \
353 timer.function = handle; \
354 timer.data = (unsigned long) arg; \
355 mod_timer(&timer, (jiffies + exp)) \
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
360 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
361 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
362 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
363 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
364 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
365 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368 static void s2io_vlan_rx_register(struct net_device *dev,
369 struct vlan_group *grp)
371 struct s2io_nic *nic = dev->priv;
374 spin_lock_irqsave(&nic->tx_lock, flags);
376 spin_unlock_irqrestore(&nic->tx_lock, flags);
379 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
380 static int vlan_strip_flag;
383 * Constants to be programmed into the Xena's registers, to configure
388 static const u64 herc_act_dtx_cfg[] = {
390 0x8000051536750000ULL, 0x80000515367500E0ULL,
392 0x8000051536750004ULL, 0x80000515367500E4ULL,
394 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398 0x801205150D440000ULL, 0x801205150D4400E0ULL,
400 0x801205150D440004ULL, 0x801205150D4400E4ULL,
402 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
409 static const u64 xena_dtx_cfg[] = {
411 0x8000051500000000ULL, 0x80000515000000E0ULL,
413 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415 0x8001051500000000ULL, 0x80010515000000E0ULL,
417 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419 0x8002051500000000ULL, 0x80020515000000E0ULL,
421 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
426 * Constants for Fixing the MacAddress problem seen mostly on
429 static const u64 fix_mac[] = {
430 0x0060000000000000ULL, 0x0060600000000000ULL,
431 0x0040600000000000ULL, 0x0000600000000000ULL,
432 0x0020600000000000ULL, 0x0060600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0000600000000000ULL,
443 0x0040600000000000ULL, 0x0060600000000000ULL,
447 MODULE_LICENSE("GPL");
448 MODULE_VERSION(DRV_VERSION);
451 /* Module Loadable parameters. */
452 S2IO_PARM_INT(tx_fifo_num, 1);
453 S2IO_PARM_INT(rx_ring_num, 1);
456 S2IO_PARM_INT(rx_ring_mode, 1);
457 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
458 S2IO_PARM_INT(rmac_pause_time, 0x100);
459 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
460 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
461 S2IO_PARM_INT(shared_splits, 0);
462 S2IO_PARM_INT(tmac_util_period, 5);
463 S2IO_PARM_INT(rmac_util_period, 5);
464 S2IO_PARM_INT(l3l4hdr_size, 128);
465 /* Frequency of Rx desc syncs expressed as power of 2 */
466 S2IO_PARM_INT(rxsync_frequency, 3);
467 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
468 S2IO_PARM_INT(intr_type, 2);
469 /* Large receive offload feature */
470 static unsigned int lro_enable;
471 module_param_named(lro, lro_enable, uint, 0);
473 /* Max pkts to be aggregated by LRO at one time. If not specified,
474 * aggregation happens until we hit max IP pkt size(64K)
476 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
477 S2IO_PARM_INT(indicate_max_pkts, 0);
479 S2IO_PARM_INT(napi, 1);
480 S2IO_PARM_INT(ufo, 0);
481 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
483 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
484 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
485 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
486 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
487 static unsigned int rts_frm_len[MAX_RX_RINGS] =
488 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
490 module_param_array(tx_fifo_len, uint, NULL, 0);
491 module_param_array(rx_ring_sz, uint, NULL, 0);
492 module_param_array(rts_frm_len, uint, NULL, 0);
496 * This table lists all the devices that this driver supports.
498 static struct pci_device_id s2io_tbl[] __devinitdata = {
499 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
500 PCI_ANY_ID, PCI_ANY_ID},
501 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
502 PCI_ANY_ID, PCI_ANY_ID},
503 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
504 PCI_ANY_ID, PCI_ANY_ID},
505 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
506 PCI_ANY_ID, PCI_ANY_ID},
510 MODULE_DEVICE_TABLE(pci, s2io_tbl);
512 static struct pci_error_handlers s2io_err_handler = {
513 .error_detected = s2io_io_error_detected,
514 .slot_reset = s2io_io_slot_reset,
515 .resume = s2io_io_resume,
518 static struct pci_driver s2io_driver = {
520 .id_table = s2io_tbl,
521 .probe = s2io_init_nic,
522 .remove = __devexit_p(s2io_rem_nic),
523 .err_handler = &s2io_err_handler,
526 /* A simplifier macro used both by init and free shared_mem Fns(). */
527 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
530 * init_shared_mem - Allocation and Initialization of Memory
531 * @nic: Device private variable.
532 * Description: The function allocates all the memory areas shared
533 * between the NIC and the driver. This includes Tx descriptors,
534 * Rx descriptors and the statistics block.
537 static int init_shared_mem(struct s2io_nic *nic)
540 void *tmp_v_addr, *tmp_v_addr_next;
541 dma_addr_t tmp_p_addr, tmp_p_addr_next;
542 struct RxD_block *pre_rxd_blk = NULL;
544 int lst_size, lst_per_page;
545 struct net_device *dev = nic->dev;
549 struct mac_info *mac_control;
550 struct config_param *config;
551 unsigned long long mem_allocated = 0;
553 mac_control = &nic->mac_control;
554 config = &nic->config;
557 /* Allocation and initialization of TXDLs in FIOFs */
559 for (i = 0; i < config->tx_fifo_num; i++) {
560 size += config->tx_cfg[i].fifo_len;
562 if (size > MAX_AVAILABLE_TXDS) {
563 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
564 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
568 lst_size = (sizeof(struct TxD) * config->max_txds);
569 lst_per_page = PAGE_SIZE / lst_size;
571 for (i = 0; i < config->tx_fifo_num; i++) {
572 int fifo_len = config->tx_cfg[i].fifo_len;
573 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
574 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576 if (!mac_control->fifos[i].list_info) {
578 "Malloc failed for list_info\n");
581 mem_allocated += list_holder_size;
583 for (i = 0; i < config->tx_fifo_num; i++) {
584 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586 mac_control->fifos[i].tx_curr_put_info.offset = 0;
587 mac_control->fifos[i].tx_curr_put_info.fifo_len =
588 config->tx_cfg[i].fifo_len - 1;
589 mac_control->fifos[i].tx_curr_get_info.offset = 0;
590 mac_control->fifos[i].tx_curr_get_info.fifo_len =
591 config->tx_cfg[i].fifo_len - 1;
592 mac_control->fifos[i].fifo_no = i;
593 mac_control->fifos[i].nic = nic;
594 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
596 for (j = 0; j < page_num; j++) {
600 tmp_v = pci_alloc_consistent(nic->pdev,
604 "pci_alloc_consistent ");
605 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
608 /* If we got a zero DMA address(can happen on
609 * certain platforms like PPC), reallocate.
610 * Store virtual address of page we don't want,
614 mac_control->zerodma_virt_addr = tmp_v;
616 "%s: Zero DMA address for TxDL. ", dev->name);
618 "Virtual address %p\n", tmp_v);
619 tmp_v = pci_alloc_consistent(nic->pdev,
623 "pci_alloc_consistent ");
624 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
627 mem_allocated += PAGE_SIZE;
629 while (k < lst_per_page) {
630 int l = (j * lst_per_page) + k;
631 if (l == config->tx_cfg[i].fifo_len)
633 mac_control->fifos[i].list_info[l].list_virt_addr =
634 tmp_v + (k * lst_size);
635 mac_control->fifos[i].list_info[l].list_phy_addr =
636 tmp_p + (k * lst_size);
642 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
643 if (!nic->ufo_in_band_v)
645 mem_allocated += (size * sizeof(u64));
647 /* Allocation and initialization of RXDs in Rings */
649 for (i = 0; i < config->rx_ring_num; i++) {
650 if (config->rx_cfg[i].num_rxd %
651 (rxd_count[nic->rxd_mode] + 1)) {
652 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
653 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
655 DBG_PRINT(ERR_DBG, "RxDs per Block");
658 size += config->rx_cfg[i].num_rxd;
659 mac_control->rings[i].block_count =
660 config->rx_cfg[i].num_rxd /
661 (rxd_count[nic->rxd_mode] + 1 );
662 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
663 mac_control->rings[i].block_count;
665 if (nic->rxd_mode == RXD_MODE_1)
666 size = (size * (sizeof(struct RxD1)));
668 size = (size * (sizeof(struct RxD3)));
670 for (i = 0; i < config->rx_ring_num; i++) {
671 mac_control->rings[i].rx_curr_get_info.block_index = 0;
672 mac_control->rings[i].rx_curr_get_info.offset = 0;
673 mac_control->rings[i].rx_curr_get_info.ring_len =
674 config->rx_cfg[i].num_rxd - 1;
675 mac_control->rings[i].rx_curr_put_info.block_index = 0;
676 mac_control->rings[i].rx_curr_put_info.offset = 0;
677 mac_control->rings[i].rx_curr_put_info.ring_len =
678 config->rx_cfg[i].num_rxd - 1;
679 mac_control->rings[i].nic = nic;
680 mac_control->rings[i].ring_no = i;
682 blk_cnt = config->rx_cfg[i].num_rxd /
683 (rxd_count[nic->rxd_mode] + 1);
684 /* Allocating all the Rx blocks */
685 for (j = 0; j < blk_cnt; j++) {
686 struct rx_block_info *rx_blocks;
689 rx_blocks = &mac_control->rings[i].rx_blocks[j];
690 size = SIZE_OF_BLOCK; //size is always page size
691 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693 if (tmp_v_addr == NULL) {
695 * In case of failure, free_shared_mem()
696 * is called, which should free any
697 * memory that was alloced till the
700 rx_blocks->block_virt_addr = tmp_v_addr;
703 mem_allocated += size;
704 memset(tmp_v_addr, 0, size);
705 rx_blocks->block_virt_addr = tmp_v_addr;
706 rx_blocks->block_dma_addr = tmp_p_addr;
707 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
708 rxd_count[nic->rxd_mode],
710 if (!rx_blocks->rxds)
713 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
714 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
715 rx_blocks->rxds[l].virt_addr =
716 rx_blocks->block_virt_addr +
717 (rxd_size[nic->rxd_mode] * l);
718 rx_blocks->rxds[l].dma_addr =
719 rx_blocks->block_dma_addr +
720 (rxd_size[nic->rxd_mode] * l);
723 /* Interlinking all Rx Blocks */
724 for (j = 0; j < blk_cnt; j++) {
726 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728 mac_control->rings[i].rx_blocks[(j + 1) %
729 blk_cnt].block_virt_addr;
731 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733 mac_control->rings[i].rx_blocks[(j + 1) %
734 blk_cnt].block_dma_addr;
736 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
737 pre_rxd_blk->reserved_2_pNext_RxD_block =
738 (unsigned long) tmp_v_addr_next;
739 pre_rxd_blk->pNext_RxD_Blk_physical =
740 (u64) tmp_p_addr_next;
743 if (nic->rxd_mode == RXD_MODE_3B) {
745 * Allocation of Storages for buffer addresses in 2BUFF mode
746 * and the buffers as well.
748 for (i = 0; i < config->rx_ring_num; i++) {
749 blk_cnt = config->rx_cfg[i].num_rxd /
750 (rxd_count[nic->rxd_mode]+ 1);
751 mac_control->rings[i].ba =
752 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754 if (!mac_control->rings[i].ba)
756 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
757 for (j = 0; j < blk_cnt; j++) {
759 mac_control->rings[i].ba[j] =
760 kmalloc((sizeof(struct buffAdd) *
761 (rxd_count[nic->rxd_mode] + 1)),
763 if (!mac_control->rings[i].ba[j])
765 mem_allocated += (sizeof(struct buffAdd) * \
766 (rxd_count[nic->rxd_mode] + 1));
767 while (k != rxd_count[nic->rxd_mode]) {
768 ba = &mac_control->rings[i].ba[j][k];
770 ba->ba_0_org = (void *) kmalloc
771 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
775 (BUF0_LEN + ALIGN_SIZE);
776 tmp = (unsigned long)ba->ba_0_org;
778 tmp &= ~((unsigned long) ALIGN_SIZE);
779 ba->ba_0 = (void *) tmp;
781 ba->ba_1_org = (void *) kmalloc
782 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
786 += (BUF1_LEN + ALIGN_SIZE);
787 tmp = (unsigned long) ba->ba_1_org;
789 tmp &= ~((unsigned long) ALIGN_SIZE);
790 ba->ba_1 = (void *) tmp;
797 /* Allocation and initialization of Statistics block */
798 size = sizeof(struct stat_block);
799 mac_control->stats_mem = pci_alloc_consistent
800 (nic->pdev, size, &mac_control->stats_mem_phy);
802 if (!mac_control->stats_mem) {
804 * In case of failure, free_shared_mem() is called, which
805 * should free any memory that was alloced till the
810 mem_allocated += size;
811 mac_control->stats_mem_sz = size;
813 tmp_v_addr = mac_control->stats_mem;
814 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
815 memset(tmp_v_addr, 0, size);
816 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
817 (unsigned long long) tmp_p_addr);
818 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
823 * free_shared_mem - Free the allocated Memory
824 * @nic: Device private variable.
825 * Description: This function is to free all memory locations allocated by
826 * the init_shared_mem() function and return it to the kernel.
829 static void free_shared_mem(struct s2io_nic *nic)
831 int i, j, blk_cnt, size;
834 dma_addr_t tmp_p_addr;
835 struct mac_info *mac_control;
836 struct config_param *config;
837 int lst_size, lst_per_page;
838 struct net_device *dev;
846 mac_control = &nic->mac_control;
847 config = &nic->config;
849 lst_size = (sizeof(struct TxD) * config->max_txds);
850 lst_per_page = PAGE_SIZE / lst_size;
852 for (i = 0; i < config->tx_fifo_num; i++) {
853 ufo_size += config->tx_cfg[i].fifo_len;
854 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856 for (j = 0; j < page_num; j++) {
857 int mem_blks = (j * lst_per_page);
858 if (!mac_control->fifos[i].list_info)
860 if (!mac_control->fifos[i].list_info[mem_blks].
863 pci_free_consistent(nic->pdev, PAGE_SIZE,
864 mac_control->fifos[i].
867 mac_control->fifos[i].
870 nic->mac_control.stats_info->sw_stat.mem_freed
873 /* If we got a zero DMA address during allocation,
876 if (mac_control->zerodma_virt_addr) {
877 pci_free_consistent(nic->pdev, PAGE_SIZE,
878 mac_control->zerodma_virt_addr,
881 "%s: Freeing TxDL with zero DMA addr. ",
883 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
884 mac_control->zerodma_virt_addr);
885 nic->mac_control.stats_info->sw_stat.mem_freed
888 kfree(mac_control->fifos[i].list_info);
889 nic->mac_control.stats_info->sw_stat.mem_freed +=
890 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
893 size = SIZE_OF_BLOCK;
894 for (i = 0; i < config->rx_ring_num; i++) {
895 blk_cnt = mac_control->rings[i].block_count;
896 for (j = 0; j < blk_cnt; j++) {
897 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901 if (tmp_v_addr == NULL)
903 pci_free_consistent(nic->pdev, size,
904 tmp_v_addr, tmp_p_addr);
905 nic->mac_control.stats_info->sw_stat.mem_freed += size;
906 kfree(mac_control->rings[i].rx_blocks[j].rxds);
907 nic->mac_control.stats_info->sw_stat.mem_freed +=
908 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
912 if (nic->rxd_mode == RXD_MODE_3B) {
913 /* Freeing buffer storage addresses in 2BUFF mode. */
914 for (i = 0; i < config->rx_ring_num; i++) {
915 blk_cnt = config->rx_cfg[i].num_rxd /
916 (rxd_count[nic->rxd_mode] + 1);
917 for (j = 0; j < blk_cnt; j++) {
919 if (!mac_control->rings[i].ba[j])
921 while (k != rxd_count[nic->rxd_mode]) {
923 &mac_control->rings[i].ba[j][k];
925 nic->mac_control.stats_info->sw_stat.\
926 mem_freed += (BUF0_LEN + ALIGN_SIZE);
928 nic->mac_control.stats_info->sw_stat.\
929 mem_freed += (BUF1_LEN + ALIGN_SIZE);
932 kfree(mac_control->rings[i].ba[j]);
933 nic->mac_control.stats_info->sw_stat.mem_freed +=
934 (sizeof(struct buffAdd) *
935 (rxd_count[nic->rxd_mode] + 1));
937 kfree(mac_control->rings[i].ba);
938 nic->mac_control.stats_info->sw_stat.mem_freed +=
939 (sizeof(struct buffAdd *) * blk_cnt);
943 if (mac_control->stats_mem) {
944 pci_free_consistent(nic->pdev,
945 mac_control->stats_mem_sz,
946 mac_control->stats_mem,
947 mac_control->stats_mem_phy);
948 nic->mac_control.stats_info->sw_stat.mem_freed +=
949 mac_control->stats_mem_sz;
951 if (nic->ufo_in_band_v) {
952 kfree(nic->ufo_in_band_v);
953 nic->mac_control.stats_info->sw_stat.mem_freed
954 += (ufo_size * sizeof(u64));
959 * s2io_verify_pci_mode -
962 static int s2io_verify_pci_mode(struct s2io_nic *nic)
964 struct XENA_dev_config __iomem *bar0 = nic->bar0;
965 register u64 val64 = 0;
968 val64 = readq(&bar0->pci_mode);
969 mode = (u8)GET_PCI_MODE(val64);
971 if ( val64 & PCI_MODE_UNKNOWN_MODE)
972 return -1; /* Unknown PCI mode */
976 #define NEC_VENID 0x1033
977 #define NEC_DEVID 0x0125
978 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
980 struct pci_dev *tdev = NULL;
981 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
982 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
983 if (tdev->bus == s2io_pdev->bus->parent)
991 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
993 * s2io_print_pci_mode -
995 static int s2io_print_pci_mode(struct s2io_nic *nic)
997 struct XENA_dev_config __iomem *bar0 = nic->bar0;
998 register u64 val64 = 0;
1000 struct config_param *config = &nic->config;
1002 val64 = readq(&bar0->pci_mode);
1003 mode = (u8)GET_PCI_MODE(val64);
1005 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1006 return -1; /* Unknown PCI mode */
1008 config->bus_speed = bus_speed[mode];
1010 if (s2io_on_nec_bridge(nic->pdev)) {
1011 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1016 if (val64 & PCI_MODE_32_BITS) {
1017 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1023 case PCI_MODE_PCI_33:
1024 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026 case PCI_MODE_PCI_66:
1027 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029 case PCI_MODE_PCIX_M1_66:
1030 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032 case PCI_MODE_PCIX_M1_100:
1033 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035 case PCI_MODE_PCIX_M1_133:
1036 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038 case PCI_MODE_PCIX_M2_66:
1039 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041 case PCI_MODE_PCIX_M2_100:
1042 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044 case PCI_MODE_PCIX_M2_133:
1045 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1048 return -1; /* Unsupported bus speed */
1055 * init_nic - Initialization of hardware
1056 * @nic: device peivate variable
1057 * Description: The function sequentially configures every block
1058 * of the H/W from their reset values.
1059 * Return Value: SUCCESS on success and
1060 * '-1' on failure (endian settings incorrect).
1063 static int init_nic(struct s2io_nic *nic)
1065 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1066 struct net_device *dev = nic->dev;
1067 register u64 val64 = 0;
1071 struct mac_info *mac_control;
1072 struct config_param *config;
1074 unsigned long long mem_share;
1077 mac_control = &nic->mac_control;
1078 config = &nic->config;
1080 /* to set the swapper controle on the card */
1081 if(s2io_set_swapper(nic)) {
1082 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1087 * Herc requires EOI to be removed from reset before XGXS, so..
1089 if (nic->device_type & XFRAME_II_DEVICE) {
1090 val64 = 0xA500000000ULL;
1091 writeq(val64, &bar0->sw_reset);
1093 val64 = readq(&bar0->sw_reset);
1096 /* Remove XGXS from reset state */
1098 writeq(val64, &bar0->sw_reset);
1100 val64 = readq(&bar0->sw_reset);
1102 /* Ensure that it's safe to access registers by checking
1103 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1105 if (nic->device_type == XFRAME_II_DEVICE) {
1106 for (i = 0; i < 50; i++) {
1107 val64 = readq(&bar0->adapter_status);
1108 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1116 /* Enable Receiving broadcasts */
1117 add = &bar0->mac_cfg;
1118 val64 = readq(&bar0->mac_cfg);
1119 val64 |= MAC_RMAC_BCAST_ENABLE;
1120 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1121 writel((u32) val64, add);
1122 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1123 writel((u32) (val64 >> 32), (add + 4));
1125 /* Read registers in all blocks */
1126 val64 = readq(&bar0->mac_int_mask);
1127 val64 = readq(&bar0->mc_int_mask);
1128 val64 = readq(&bar0->xgxs_int_mask);
1132 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1134 if (nic->device_type & XFRAME_II_DEVICE) {
1135 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1136 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1137 &bar0->dtx_control, UF);
1139 msleep(1); /* Necessary!! */
1143 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1144 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1145 &bar0->dtx_control, UF);
1146 val64 = readq(&bar0->dtx_control);
1151 /* Tx DMA Initialization */
1153 writeq(val64, &bar0->tx_fifo_partition_0);
1154 writeq(val64, &bar0->tx_fifo_partition_1);
1155 writeq(val64, &bar0->tx_fifo_partition_2);
1156 writeq(val64, &bar0->tx_fifo_partition_3);
1159 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1161 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1162 13) | vBIT(config->tx_cfg[i].fifo_priority,
1165 if (i == (config->tx_fifo_num - 1)) {
1172 writeq(val64, &bar0->tx_fifo_partition_0);
1176 writeq(val64, &bar0->tx_fifo_partition_1);
1180 writeq(val64, &bar0->tx_fifo_partition_2);
1184 writeq(val64, &bar0->tx_fifo_partition_3);
1190 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1191 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1193 if ((nic->device_type == XFRAME_I_DEVICE) &&
1194 (nic->pdev->revision < 4))
1195 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1197 val64 = readq(&bar0->tx_fifo_partition_0);
1198 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1199 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1202 * Initialization of Tx_PA_CONFIG register to ignore packet
1203 * integrity checking.
1205 val64 = readq(&bar0->tx_pa_cfg);
1206 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1207 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1208 writeq(val64, &bar0->tx_pa_cfg);
1210 /* Rx DMA intialization. */
1212 for (i = 0; i < config->rx_ring_num; i++) {
1214 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1217 writeq(val64, &bar0->rx_queue_priority);
1220 * Allocating equal share of memory to all the
1224 if (nic->device_type & XFRAME_II_DEVICE)
1229 for (i = 0; i < config->rx_ring_num; i++) {
1232 mem_share = (mem_size / config->rx_ring_num +
1233 mem_size % config->rx_ring_num);
1234 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1237 mem_share = (mem_size / config->rx_ring_num);
1238 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1241 mem_share = (mem_size / config->rx_ring_num);
1242 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1245 mem_share = (mem_size / config->rx_ring_num);
1246 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1249 mem_share = (mem_size / config->rx_ring_num);
1250 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1253 mem_share = (mem_size / config->rx_ring_num);
1254 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1257 mem_share = (mem_size / config->rx_ring_num);
1258 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1261 mem_share = (mem_size / config->rx_ring_num);
1262 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1266 writeq(val64, &bar0->rx_queue_cfg);
1269 * Filling Tx round robin registers
1270 * as per the number of FIFOs
1272 switch (config->tx_fifo_num) {
1274 val64 = 0x0000000000000000ULL;
1275 writeq(val64, &bar0->tx_w_round_robin_0);
1276 writeq(val64, &bar0->tx_w_round_robin_1);
1277 writeq(val64, &bar0->tx_w_round_robin_2);
1278 writeq(val64, &bar0->tx_w_round_robin_3);
1279 writeq(val64, &bar0->tx_w_round_robin_4);
1282 val64 = 0x0000010000010000ULL;
1283 writeq(val64, &bar0->tx_w_round_robin_0);
1284 val64 = 0x0100000100000100ULL;
1285 writeq(val64, &bar0->tx_w_round_robin_1);
1286 val64 = 0x0001000001000001ULL;
1287 writeq(val64, &bar0->tx_w_round_robin_2);
1288 val64 = 0x0000010000010000ULL;
1289 writeq(val64, &bar0->tx_w_round_robin_3);
1290 val64 = 0x0100000000000000ULL;
1291 writeq(val64, &bar0->tx_w_round_robin_4);
1294 val64 = 0x0001000102000001ULL;
1295 writeq(val64, &bar0->tx_w_round_robin_0);
1296 val64 = 0x0001020000010001ULL;
1297 writeq(val64, &bar0->tx_w_round_robin_1);
1298 val64 = 0x0200000100010200ULL;
1299 writeq(val64, &bar0->tx_w_round_robin_2);
1300 val64 = 0x0001000102000001ULL;
1301 writeq(val64, &bar0->tx_w_round_robin_3);
1302 val64 = 0x0001020000000000ULL;
1303 writeq(val64, &bar0->tx_w_round_robin_4);
1306 val64 = 0x0001020300010200ULL;
1307 writeq(val64, &bar0->tx_w_round_robin_0);
1308 val64 = 0x0100000102030001ULL;
1309 writeq(val64, &bar0->tx_w_round_robin_1);
1310 val64 = 0x0200010000010203ULL;
1311 writeq(val64, &bar0->tx_w_round_robin_2);
1312 val64 = 0x0001020001000001ULL;
1313 writeq(val64, &bar0->tx_w_round_robin_3);
1314 val64 = 0x0203000100000000ULL;
1315 writeq(val64, &bar0->tx_w_round_robin_4);
1318 val64 = 0x0001000203000102ULL;
1319 writeq(val64, &bar0->tx_w_round_robin_0);
1320 val64 = 0x0001020001030004ULL;
1321 writeq(val64, &bar0->tx_w_round_robin_1);
1322 val64 = 0x0001000203000102ULL;
1323 writeq(val64, &bar0->tx_w_round_robin_2);
1324 val64 = 0x0001020001030004ULL;
1325 writeq(val64, &bar0->tx_w_round_robin_3);
1326 val64 = 0x0001000000000000ULL;
1327 writeq(val64, &bar0->tx_w_round_robin_4);
1330 val64 = 0x0001020304000102ULL;
1331 writeq(val64, &bar0->tx_w_round_robin_0);
1332 val64 = 0x0304050001020001ULL;
1333 writeq(val64, &bar0->tx_w_round_robin_1);
1334 val64 = 0x0203000100000102ULL;
1335 writeq(val64, &bar0->tx_w_round_robin_2);
1336 val64 = 0x0304000102030405ULL;
1337 writeq(val64, &bar0->tx_w_round_robin_3);
1338 val64 = 0x0001000200000000ULL;
1339 writeq(val64, &bar0->tx_w_round_robin_4);
1342 val64 = 0x0001020001020300ULL;
1343 writeq(val64, &bar0->tx_w_round_robin_0);
1344 val64 = 0x0102030400010203ULL;
1345 writeq(val64, &bar0->tx_w_round_robin_1);
1346 val64 = 0x0405060001020001ULL;
1347 writeq(val64, &bar0->tx_w_round_robin_2);
1348 val64 = 0x0304050000010200ULL;
1349 writeq(val64, &bar0->tx_w_round_robin_3);
1350 val64 = 0x0102030000000000ULL;
1351 writeq(val64, &bar0->tx_w_round_robin_4);
1354 val64 = 0x0001020300040105ULL;
1355 writeq(val64, &bar0->tx_w_round_robin_0);
1356 val64 = 0x0200030106000204ULL;
1357 writeq(val64, &bar0->tx_w_round_robin_1);
1358 val64 = 0x0103000502010007ULL;
1359 writeq(val64, &bar0->tx_w_round_robin_2);
1360 val64 = 0x0304010002060500ULL;
1361 writeq(val64, &bar0->tx_w_round_robin_3);
1362 val64 = 0x0103020400000000ULL;
1363 writeq(val64, &bar0->tx_w_round_robin_4);
1367 /* Enable all configured Tx FIFO partitions */
1368 val64 = readq(&bar0->tx_fifo_partition_0);
1369 val64 |= (TX_FIFO_PARTITION_EN);
1370 writeq(val64, &bar0->tx_fifo_partition_0);
1372 /* Filling the Rx round robin registers as per the
1373 * number of Rings and steering based on QoS.
1375 switch (config->rx_ring_num) {
1377 val64 = 0x8080808080808080ULL;
1378 writeq(val64, &bar0->rts_qos_steering);
1381 val64 = 0x0000010000010000ULL;
1382 writeq(val64, &bar0->rx_w_round_robin_0);
1383 val64 = 0x0100000100000100ULL;
1384 writeq(val64, &bar0->rx_w_round_robin_1);
1385 val64 = 0x0001000001000001ULL;
1386 writeq(val64, &bar0->rx_w_round_robin_2);
1387 val64 = 0x0000010000010000ULL;
1388 writeq(val64, &bar0->rx_w_round_robin_3);
1389 val64 = 0x0100000000000000ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_4);
1392 val64 = 0x8080808040404040ULL;
1393 writeq(val64, &bar0->rts_qos_steering);
1396 val64 = 0x0001000102000001ULL;
1397 writeq(val64, &bar0->rx_w_round_robin_0);
1398 val64 = 0x0001020000010001ULL;
1399 writeq(val64, &bar0->rx_w_round_robin_1);
1400 val64 = 0x0200000100010200ULL;
1401 writeq(val64, &bar0->rx_w_round_robin_2);
1402 val64 = 0x0001000102000001ULL;
1403 writeq(val64, &bar0->rx_w_round_robin_3);
1404 val64 = 0x0001020000000000ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_4);
1407 val64 = 0x8080804040402020ULL;
1408 writeq(val64, &bar0->rts_qos_steering);
1411 val64 = 0x0001020300010200ULL;
1412 writeq(val64, &bar0->rx_w_round_robin_0);
1413 val64 = 0x0100000102030001ULL;
1414 writeq(val64, &bar0->rx_w_round_robin_1);
1415 val64 = 0x0200010000010203ULL;
1416 writeq(val64, &bar0->rx_w_round_robin_2);
1417 val64 = 0x0001020001000001ULL;
1418 writeq(val64, &bar0->rx_w_round_robin_3);
1419 val64 = 0x0203000100000000ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_4);
1422 val64 = 0x8080404020201010ULL;
1423 writeq(val64, &bar0->rts_qos_steering);
1426 val64 = 0x0001000203000102ULL;
1427 writeq(val64, &bar0->rx_w_round_robin_0);
1428 val64 = 0x0001020001030004ULL;
1429 writeq(val64, &bar0->rx_w_round_robin_1);
1430 val64 = 0x0001000203000102ULL;
1431 writeq(val64, &bar0->rx_w_round_robin_2);
1432 val64 = 0x0001020001030004ULL;
1433 writeq(val64, &bar0->rx_w_round_robin_3);
1434 val64 = 0x0001000000000000ULL;
1435 writeq(val64, &bar0->rx_w_round_robin_4);
1437 val64 = 0x8080404020201008ULL;
1438 writeq(val64, &bar0->rts_qos_steering);
1441 val64 = 0x0001020304000102ULL;
1442 writeq(val64, &bar0->rx_w_round_robin_0);
1443 val64 = 0x0304050001020001ULL;
1444 writeq(val64, &bar0->rx_w_round_robin_1);
1445 val64 = 0x0203000100000102ULL;
1446 writeq(val64, &bar0->rx_w_round_robin_2);
1447 val64 = 0x0304000102030405ULL;
1448 writeq(val64, &bar0->rx_w_round_robin_3);
1449 val64 = 0x0001000200000000ULL;
1450 writeq(val64, &bar0->rx_w_round_robin_4);
1452 val64 = 0x8080404020100804ULL;
1453 writeq(val64, &bar0->rts_qos_steering);
1456 val64 = 0x0001020001020300ULL;
1457 writeq(val64, &bar0->rx_w_round_robin_0);
1458 val64 = 0x0102030400010203ULL;
1459 writeq(val64, &bar0->rx_w_round_robin_1);
1460 val64 = 0x0405060001020001ULL;
1461 writeq(val64, &bar0->rx_w_round_robin_2);
1462 val64 = 0x0304050000010200ULL;
1463 writeq(val64, &bar0->rx_w_round_robin_3);
1464 val64 = 0x0102030000000000ULL;
1465 writeq(val64, &bar0->rx_w_round_robin_4);
1467 val64 = 0x8080402010080402ULL;
1468 writeq(val64, &bar0->rts_qos_steering);
1471 val64 = 0x0001020300040105ULL;
1472 writeq(val64, &bar0->rx_w_round_robin_0);
1473 val64 = 0x0200030106000204ULL;
1474 writeq(val64, &bar0->rx_w_round_robin_1);
1475 val64 = 0x0103000502010007ULL;
1476 writeq(val64, &bar0->rx_w_round_robin_2);
1477 val64 = 0x0304010002060500ULL;
1478 writeq(val64, &bar0->rx_w_round_robin_3);
1479 val64 = 0x0103020400000000ULL;
1480 writeq(val64, &bar0->rx_w_round_robin_4);
1482 val64 = 0x8040201008040201ULL;
1483 writeq(val64, &bar0->rts_qos_steering);
1489 for (i = 0; i < 8; i++)
1490 writeq(val64, &bar0->rts_frm_len_n[i]);
1492 /* Set the default rts frame length for the rings configured */
1493 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1494 for (i = 0 ; i < config->rx_ring_num ; i++)
1495 writeq(val64, &bar0->rts_frm_len_n[i]);
1497 /* Set the frame length for the configured rings
1498 * desired by the user
1500 for (i = 0; i < config->rx_ring_num; i++) {
1501 /* If rts_frm_len[i] == 0 then it is assumed that user not
1502 * specified frame length steering.
1503 * If the user provides the frame length then program
1504 * the rts_frm_len register for those values or else
1505 * leave it as it is.
1507 if (rts_frm_len[i] != 0) {
1508 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1509 &bar0->rts_frm_len_n[i]);
1513 /* Disable differentiated services steering logic */
1514 for (i = 0; i < 64; i++) {
1515 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1516 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1518 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1523 /* Program statistics memory */
1524 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1526 if (nic->device_type == XFRAME_II_DEVICE) {
1527 val64 = STAT_BC(0x320);
1528 writeq(val64, &bar0->stat_byte_cnt);
1532 * Initializing the sampling rate for the device to calculate the
1533 * bandwidth utilization.
1535 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1536 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1537 writeq(val64, &bar0->mac_link_util);
1541 * Initializing the Transmit and Receive Traffic Interrupt
1545 * TTI Initialization. Default Tx timer gets us about
1546 * 250 interrupts per sec. Continuous interrupts are enabled
1549 if (nic->device_type == XFRAME_II_DEVICE) {
1550 int count = (nic->config.bus_speed * 125)/2;
1551 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1554 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1556 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1557 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1558 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1559 if (use_continuous_tx_intrs)
1560 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1561 writeq(val64, &bar0->tti_data1_mem);
1563 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1564 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1565 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1566 writeq(val64, &bar0->tti_data2_mem);
1568 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1569 writeq(val64, &bar0->tti_command_mem);
1572 * Once the operation completes, the Strobe bit of the command
1573 * register will be reset. We poll for this particular condition
1574 * We wait for a maximum of 500ms for the operation to complete,
1575 * if it's not complete by then we return error.
1579 val64 = readq(&bar0->tti_command_mem);
1580 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1584 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1592 /* RTI Initialization */
1593 if (nic->device_type == XFRAME_II_DEVICE) {
1595 * Programmed to generate Apprx 500 Intrs per
1598 int count = (nic->config.bus_speed * 125)/4;
1599 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1601 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1602 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1603 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1604 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1606 writeq(val64, &bar0->rti_data1_mem);
1608 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1609 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1610 if (nic->config.intr_type == MSI_X)
1611 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1612 RTI_DATA2_MEM_RX_UFC_D(0x40));
1614 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1615 RTI_DATA2_MEM_RX_UFC_D(0x80));
1616 writeq(val64, &bar0->rti_data2_mem);
1618 for (i = 0; i < config->rx_ring_num; i++) {
1619 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1620 | RTI_CMD_MEM_OFFSET(i);
1621 writeq(val64, &bar0->rti_command_mem);
1624 * Once the operation completes, the Strobe bit of the
1625 * command register will be reset. We poll for this
1626 * particular condition. We wait for a maximum of 500ms
1627 * for the operation to complete, if it's not complete
1628 * by then we return error.
1632 val64 = readq(&bar0->rti_command_mem);
1633 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1637 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1647 * Initializing proper values as Pause threshold into all
1648 * the 8 Queues on Rx side.
1650 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1651 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1653 /* Disable RMAC PAD STRIPPING */
1654 add = &bar0->mac_cfg;
1655 val64 = readq(&bar0->mac_cfg);
1656 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1657 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658 writel((u32) (val64), add);
1659 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660 writel((u32) (val64 >> 32), (add + 4));
1661 val64 = readq(&bar0->mac_cfg);
1663 /* Enable FCS stripping by adapter */
1664 add = &bar0->mac_cfg;
1665 val64 = readq(&bar0->mac_cfg);
1666 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1667 if (nic->device_type == XFRAME_II_DEVICE)
1668 writeq(val64, &bar0->mac_cfg);
1670 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1671 writel((u32) (val64), add);
1672 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1673 writel((u32) (val64 >> 32), (add + 4));
1677 * Set the time value to be inserted in the pause frame
1678 * generated by xena.
1680 val64 = readq(&bar0->rmac_pause_cfg);
1681 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1682 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1683 writeq(val64, &bar0->rmac_pause_cfg);
1686 * Set the Threshold Limit for Generating the pause frame
1687 * If the amount of data in any Queue exceeds ratio of
1688 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1689 * pause frame is generated
1692 for (i = 0; i < 4; i++) {
1694 (((u64) 0xFF00 | nic->mac_control.
1695 mc_pause_threshold_q0q3)
1698 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1701 for (i = 0; i < 4; i++) {
1703 (((u64) 0xFF00 | nic->mac_control.
1704 mc_pause_threshold_q4q7)
1707 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1710 * TxDMA will stop Read request if the number of read split has
1711 * exceeded the limit pointed by shared_splits
1713 val64 = readq(&bar0->pic_control);
1714 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1715 writeq(val64, &bar0->pic_control);
1717 if (nic->config.bus_speed == 266) {
1718 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1719 writeq(0x0, &bar0->read_retry_delay);
1720 writeq(0x0, &bar0->write_retry_delay);
1724 * Programming the Herc to split every write transaction
1725 * that does not start on an ADB to reduce disconnects.
1727 if (nic->device_type == XFRAME_II_DEVICE) {
1728 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1729 MISC_LINK_STABILITY_PRD(3);
1730 writeq(val64, &bar0->misc_control);
1731 val64 = readq(&bar0->pic_control2);
1732 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1733 writeq(val64, &bar0->pic_control2);
1735 if (strstr(nic->product_name, "CX4")) {
1736 val64 = TMAC_AVG_IPG(0x17);
1737 writeq(val64, &bar0->tmac_avg_ipg);
1742 #define LINK_UP_DOWN_INTERRUPT 1
1743 #define MAC_RMAC_ERR_TIMER 2
1745 static int s2io_link_fault_indication(struct s2io_nic *nic)
1747 if (nic->config.intr_type != INTA)
1748 return MAC_RMAC_ERR_TIMER;
1749 if (nic->device_type == XFRAME_II_DEVICE)
1750 return LINK_UP_DOWN_INTERRUPT;
1752 return MAC_RMAC_ERR_TIMER;
1756 * do_s2io_write_bits - update alarm bits in alarm register
1757 * @value: alarm bits
1758 * @flag: interrupt status
1759 * @addr: address value
1760 * Description: update alarm bits in alarm register
1764 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1768 temp64 = readq(addr);
1770 if(flag == ENABLE_INTRS)
1771 temp64 &= ~((u64) value);
1773 temp64 |= ((u64) value);
1774 writeq(temp64, addr);
1777 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1779 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1780 register u64 gen_int_mask = 0;
1782 if (mask & TX_DMA_INTR) {
1784 gen_int_mask |= TXDMA_INT_M;
1786 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1787 TXDMA_PCC_INT | TXDMA_TTI_INT |
1788 TXDMA_LSO_INT | TXDMA_TPA_INT |
1789 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1791 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1792 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1793 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1794 &bar0->pfc_err_mask);
1796 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1797 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1798 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1800 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1801 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1802 PCC_N_SERR | PCC_6_COF_OV_ERR |
1803 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1804 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1805 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1807 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1808 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1810 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1811 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1812 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1813 flag, &bar0->lso_err_mask);
1815 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1816 flag, &bar0->tpa_err_mask);
1818 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1822 if (mask & TX_MAC_INTR) {
1823 gen_int_mask |= TXMAC_INT_M;
1824 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1825 &bar0->mac_int_mask);
1826 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1827 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1828 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1829 flag, &bar0->mac_tmac_err_mask);
1832 if (mask & TX_XGXS_INTR) {
1833 gen_int_mask |= TXXGXS_INT_M;
1834 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1835 &bar0->xgxs_int_mask);
1836 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1837 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1838 flag, &bar0->xgxs_txgxs_err_mask);
1841 if (mask & RX_DMA_INTR) {
1842 gen_int_mask |= RXDMA_INT_M;
1843 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1844 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1845 flag, &bar0->rxdma_int_mask);
1846 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1847 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1848 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1849 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1850 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1851 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1852 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1853 &bar0->prc_pcix_err_mask);
1854 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1855 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1856 &bar0->rpa_err_mask);
1857 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1858 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1859 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1860 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1861 flag, &bar0->rda_err_mask);
1862 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1863 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1864 flag, &bar0->rti_err_mask);
1867 if (mask & RX_MAC_INTR) {
1868 gen_int_mask |= RXMAC_INT_M;
1869 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1870 &bar0->mac_int_mask);
1871 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1872 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1873 RMAC_DOUBLE_ECC_ERR |
1874 RMAC_LINK_STATE_CHANGE_INT,
1875 flag, &bar0->mac_rmac_err_mask);
1878 if (mask & RX_XGXS_INTR)
1880 gen_int_mask |= RXXGXS_INT_M;
1881 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1882 &bar0->xgxs_int_mask);
1883 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1884 &bar0->xgxs_rxgxs_err_mask);
1887 if (mask & MC_INTR) {
1888 gen_int_mask |= MC_INT_M;
1889 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1890 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1891 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1892 &bar0->mc_err_mask);
1894 nic->general_int_mask = gen_int_mask;
1896 /* Remove this line when alarm interrupts are enabled */
1897 nic->general_int_mask = 0;
1900 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1901 * @nic: device private variable,
1902 * @mask: A mask indicating which Intr block must be modified and,
1903 * @flag: A flag indicating whether to enable or disable the Intrs.
1904 * Description: This function will either disable or enable the interrupts
1905 * depending on the flag argument. The mask argument can be used to
1906 * enable/disable any Intr block.
1907 * Return Value: NONE.
1910 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1912 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913 register u64 temp64 = 0, intr_mask = 0;
1915 intr_mask = nic->general_int_mask;
1917 /* Top level interrupt classification */
1918 /* PIC Interrupts */
1919 if (mask & TX_PIC_INTR) {
1920 /* Enable PIC Intrs in the general intr mask register */
1921 intr_mask |= TXPIC_INT_M;
1922 if (flag == ENABLE_INTRS) {
1924 * If Hercules adapter enable GPIO otherwise
1925 * disable all PCIX, Flash, MDIO, IIC and GPIO
1926 * interrupts for now.
1929 if (s2io_link_fault_indication(nic) ==
1930 LINK_UP_DOWN_INTERRUPT ) {
1931 do_s2io_write_bits(PIC_INT_GPIO, flag,
1932 &bar0->pic_int_mask);
1933 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1934 &bar0->gpio_int_mask);
1936 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1937 } else if (flag == DISABLE_INTRS) {
1939 * Disable PIC Intrs in the general
1940 * intr mask register
1942 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1946 /* Tx traffic interrupts */
1947 if (mask & TX_TRAFFIC_INTR) {
1948 intr_mask |= TXTRAFFIC_INT_M;
1949 if (flag == ENABLE_INTRS) {
1951 * Enable all the Tx side interrupts
1952 * writing 0 Enables all 64 TX interrupt levels
1954 writeq(0x0, &bar0->tx_traffic_mask);
1955 } else if (flag == DISABLE_INTRS) {
1957 * Disable Tx Traffic Intrs in the general intr mask
1960 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1964 /* Rx traffic interrupts */
1965 if (mask & RX_TRAFFIC_INTR) {
1966 intr_mask |= RXTRAFFIC_INT_M;
1967 if (flag == ENABLE_INTRS) {
1968 /* writing 0 Enables all 8 RX interrupt levels */
1969 writeq(0x0, &bar0->rx_traffic_mask);
1970 } else if (flag == DISABLE_INTRS) {
1972 * Disable Rx Traffic Intrs in the general intr mask
1975 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1979 temp64 = readq(&bar0->general_int_mask);
1980 if (flag == ENABLE_INTRS)
1981 temp64 &= ~((u64) intr_mask);
1983 temp64 = DISABLE_ALL_INTRS;
1984 writeq(temp64, &bar0->general_int_mask);
1986 nic->general_int_mask = readq(&bar0->general_int_mask);
1990 * verify_pcc_quiescent- Checks for PCC quiescent state
1991 * Return: 1 If PCC is quiescence
1992 * 0 If PCC is not quiescence
1994 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1997 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1998 u64 val64 = readq(&bar0->adapter_status);
2000 herc = (sp->device_type == XFRAME_II_DEVICE);
2002 if (flag == FALSE) {
2003 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2004 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2007 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2011 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2012 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2013 ADAPTER_STATUS_RMAC_PCC_IDLE))
2016 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2017 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2025 * verify_xena_quiescence - Checks whether the H/W is ready
2026 * Description: Returns whether the H/W is ready to go or not. Depending
2027 * on whether adapter enable bit was written or not the comparison
2028 * differs and the calling function passes the input argument flag to
2030 * Return: 1 If xena is quiescence
2031 * 0 If Xena is not quiescence
2034 static int verify_xena_quiescence(struct s2io_nic *sp)
2037 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2038 u64 val64 = readq(&bar0->adapter_status);
2039 mode = s2io_verify_pci_mode(sp);
2041 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2042 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2045 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2046 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2049 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2050 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2053 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2054 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2057 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2058 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2061 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2062 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2065 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2066 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2069 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2070 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2075 * In PCI 33 mode, the P_PLL is not used, and therefore,
2076 * the the P_PLL_LOCK bit in the adapter_status register will
2079 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2080 sp->device_type == XFRAME_II_DEVICE && mode !=
2082 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2085 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2086 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2087 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2094 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2095 * @sp: Pointer to device specifc structure
2097 * New procedure to clear mac address reading problems on Alpha platforms
2101 static void fix_mac_address(struct s2io_nic * sp)
2103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2107 while (fix_mac[i] != END_SIGN) {
2108 writeq(fix_mac[i++], &bar0->gpio_control);
2110 val64 = readq(&bar0->gpio_control);
2115 * start_nic - Turns the device on
2116 * @nic : device private variable.
2118 * This function actually turns the device on. Before this function is
2119 * called,all Registers are configured from their reset states
2120 * and shared memory is allocated but the NIC is still quiescent. On
2121 * calling this function, the device interrupts are cleared and the NIC is
2122 * literally switched on by writing into the adapter control register.
2124 * SUCCESS on success and -1 on failure.
2127 static int start_nic(struct s2io_nic *nic)
2129 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2130 struct net_device *dev = nic->dev;
2131 register u64 val64 = 0;
2133 struct mac_info *mac_control;
2134 struct config_param *config;
2136 mac_control = &nic->mac_control;
2137 config = &nic->config;
2139 /* PRC Initialization and configuration */
2140 for (i = 0; i < config->rx_ring_num; i++) {
2141 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2142 &bar0->prc_rxd0_n[i]);
2144 val64 = readq(&bar0->prc_ctrl_n[i]);
2145 if (nic->rxd_mode == RXD_MODE_1)
2146 val64 |= PRC_CTRL_RC_ENABLED;
2148 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2149 if (nic->device_type == XFRAME_II_DEVICE)
2150 val64 |= PRC_CTRL_GROUP_READS;
2151 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2152 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2153 writeq(val64, &bar0->prc_ctrl_n[i]);
2156 if (nic->rxd_mode == RXD_MODE_3B) {
2157 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2158 val64 = readq(&bar0->rx_pa_cfg);
2159 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2160 writeq(val64, &bar0->rx_pa_cfg);
2163 if (vlan_tag_strip == 0) {
2164 val64 = readq(&bar0->rx_pa_cfg);
2165 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2166 writeq(val64, &bar0->rx_pa_cfg);
2167 vlan_strip_flag = 0;
2171 * Enabling MC-RLDRAM. After enabling the device, we timeout
2172 * for around 100ms, which is approximately the time required
2173 * for the device to be ready for operation.
2175 val64 = readq(&bar0->mc_rldram_mrs);
2176 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2177 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2178 val64 = readq(&bar0->mc_rldram_mrs);
2180 msleep(100); /* Delay by around 100 ms. */
2182 /* Enabling ECC Protection. */
2183 val64 = readq(&bar0->adapter_control);
2184 val64 &= ~ADAPTER_ECC_EN;
2185 writeq(val64, &bar0->adapter_control);
2188 * Verify if the device is ready to be enabled, if so enable
2191 val64 = readq(&bar0->adapter_status);
2192 if (!verify_xena_quiescence(nic)) {
2193 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2194 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2195 (unsigned long long) val64);
2200 * With some switches, link might be already up at this point.
2201 * Because of this weird behavior, when we enable laser,
2202 * we may not get link. We need to handle this. We cannot
2203 * figure out which switch is misbehaving. So we are forced to
2204 * make a global change.
2207 /* Enabling Laser. */
2208 val64 = readq(&bar0->adapter_control);
2209 val64 |= ADAPTER_EOI_TX_ON;
2210 writeq(val64, &bar0->adapter_control);
2212 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2214 * Dont see link state interrupts initally on some switches,
2215 * so directly scheduling the link state task here.
2217 schedule_work(&nic->set_link_task);
2219 /* SXE-002: Initialize link and activity LED */
2220 subid = nic->pdev->subsystem_device;
2221 if (((subid & 0xFF) >= 0x07) &&
2222 (nic->device_type == XFRAME_I_DEVICE)) {
2223 val64 = readq(&bar0->gpio_control);
2224 val64 |= 0x0000800000000000ULL;
2225 writeq(val64, &bar0->gpio_control);
2226 val64 = 0x0411040400000000ULL;
2227 writeq(val64, (void __iomem *)bar0 + 0x2700);
2233 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2235 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2236 TxD *txdlp, int get_off)
2238 struct s2io_nic *nic = fifo_data->nic;
2239 struct sk_buff *skb;
2244 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2245 pci_unmap_single(nic->pdev, (dma_addr_t)
2246 txds->Buffer_Pointer, sizeof(u64),
2251 skb = (struct sk_buff *) ((unsigned long)
2252 txds->Host_Control);
2254 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2257 pci_unmap_single(nic->pdev, (dma_addr_t)
2258 txds->Buffer_Pointer,
2259 skb->len - skb->data_len,
2261 frg_cnt = skb_shinfo(skb)->nr_frags;
2264 for (j = 0; j < frg_cnt; j++, txds++) {
2265 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2266 if (!txds->Buffer_Pointer)
2268 pci_unmap_page(nic->pdev, (dma_addr_t)
2269 txds->Buffer_Pointer,
2270 frag->size, PCI_DMA_TODEVICE);
2273 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2278 * free_tx_buffers - Free all queued Tx buffers
2279 * @nic : device private variable.
2281 * Free all queued Tx buffers.
2282 * Return Value: void
2285 static void free_tx_buffers(struct s2io_nic *nic)
2287 struct net_device *dev = nic->dev;
2288 struct sk_buff *skb;
2291 struct mac_info *mac_control;
2292 struct config_param *config;
2295 mac_control = &nic->mac_control;
2296 config = &nic->config;
2298 for (i = 0; i < config->tx_fifo_num; i++) {
2299 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2300 txdp = (struct TxD *) \
2301 mac_control->fifos[i].list_info[j].list_virt_addr;
2302 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2304 nic->mac_control.stats_info->sw_stat.mem_freed
2311 "%s:forcibly freeing %d skbs on FIFO%d\n",
2313 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2314 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2319 * stop_nic - To stop the nic
2320 * @nic ; device private variable.
2322 * This function does exactly the opposite of what the start_nic()
2323 * function does. This function is called to stop the device.
2328 static void stop_nic(struct s2io_nic *nic)
2330 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2331 register u64 val64 = 0;
2333 struct mac_info *mac_control;
2334 struct config_param *config;
2336 mac_control = &nic->mac_control;
2337 config = &nic->config;
2339 /* Disable all interrupts */
2340 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2341 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2342 interruptible |= TX_PIC_INTR;
2343 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2345 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2346 val64 = readq(&bar0->adapter_control);
2347 val64 &= ~(ADAPTER_CNTL_EN);
2348 writeq(val64, &bar0->adapter_control);
2352 * fill_rx_buffers - Allocates the Rx side skbs
2353 * @nic: device private variable
2354 * @ring_no: ring number
2356 * The function allocates Rx side skbs and puts the physical
2357 * address of these buffers into the RxD buffer pointers, so that the NIC
2358 * can DMA the received frame into these locations.
2359 * The NIC supports 3 receive modes, viz
2361 * 2. three buffer and
2362 * 3. Five buffer modes.
2363 * Each mode defines how many fragments the received frame will be split
2364 * up into by the NIC. The frame is split into L3 header, L4 Header,
2365 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2366 * is split into 3 fragments. As of now only single buffer mode is
2369 * SUCCESS on success or an appropriate -ve value on failure.
2372 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2374 struct net_device *dev = nic->dev;
2375 struct sk_buff *skb;
2377 int off, off1, size, block_no, block_no1;
2380 struct mac_info *mac_control;
2381 struct config_param *config;
2384 unsigned long flags;
2385 struct RxD_t *first_rxdp = NULL;
2386 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2389 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2391 mac_control = &nic->mac_control;
2392 config = &nic->config;
2393 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2394 atomic_read(&nic->rx_bufs_left[ring_no]);
2396 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2397 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2398 while (alloc_tab < alloc_cnt) {
2399 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2401 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2403 rxdp = mac_control->rings[ring_no].
2404 rx_blocks[block_no].rxds[off].virt_addr;
2406 if ((block_no == block_no1) && (off == off1) &&
2407 (rxdp->Host_Control)) {
2408 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2410 DBG_PRINT(INTR_DBG, " info equated\n");
2413 if (off && (off == rxd_count[nic->rxd_mode])) {
2414 mac_control->rings[ring_no].rx_curr_put_info.
2416 if (mac_control->rings[ring_no].rx_curr_put_info.
2417 block_index == mac_control->rings[ring_no].
2419 mac_control->rings[ring_no].rx_curr_put_info.
2421 block_no = mac_control->rings[ring_no].
2422 rx_curr_put_info.block_index;
2423 if (off == rxd_count[nic->rxd_mode])
2425 mac_control->rings[ring_no].rx_curr_put_info.
2427 rxdp = mac_control->rings[ring_no].
2428 rx_blocks[block_no].block_virt_addr;
2429 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2433 spin_lock_irqsave(&nic->put_lock, flags);
2434 mac_control->rings[ring_no].put_pos =
2435 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2436 spin_unlock_irqrestore(&nic->put_lock, flags);
2438 mac_control->rings[ring_no].put_pos =
2439 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2441 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2442 ((nic->rxd_mode == RXD_MODE_3B) &&
2443 (rxdp->Control_2 & s2BIT(0)))) {
2444 mac_control->rings[ring_no].rx_curr_put_info.
2448 /* calculate size of skb based on ring mode */
2449 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2450 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2451 if (nic->rxd_mode == RXD_MODE_1)
2452 size += NET_IP_ALIGN;
2454 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2457 skb = dev_alloc_skb(size);
2459 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2460 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2463 first_rxdp->Control_1 |= RXD_OWN_XENA;
2465 nic->mac_control.stats_info->sw_stat. \
2466 mem_alloc_fail_cnt++;
2469 nic->mac_control.stats_info->sw_stat.mem_allocated
2471 if (nic->rxd_mode == RXD_MODE_1) {
2472 /* 1 buffer mode - normal operation mode */
2473 rxdp1 = (struct RxD1*)rxdp;
2474 memset(rxdp, 0, sizeof(struct RxD1));
2475 skb_reserve(skb, NET_IP_ALIGN);
2476 rxdp1->Buffer0_ptr = pci_map_single
2477 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2478 PCI_DMA_FROMDEVICE);
2479 if( (rxdp1->Buffer0_ptr == 0) ||
2480 (rxdp1->Buffer0_ptr ==
2482 goto pci_map_failed;
2485 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2487 } else if (nic->rxd_mode == RXD_MODE_3B) {
2490 * 2 buffer mode provides 128
2491 * byte aligned receive buffers.
2494 rxdp3 = (struct RxD3*)rxdp;
2495 /* save buffer pointers to avoid frequent dma mapping */
2496 Buffer0_ptr = rxdp3->Buffer0_ptr;
2497 Buffer1_ptr = rxdp3->Buffer1_ptr;
2498 memset(rxdp, 0, sizeof(struct RxD3));
2499 /* restore the buffer pointers for dma sync*/
2500 rxdp3->Buffer0_ptr = Buffer0_ptr;
2501 rxdp3->Buffer1_ptr = Buffer1_ptr;
2503 ba = &mac_control->rings[ring_no].ba[block_no][off];
2504 skb_reserve(skb, BUF0_LEN);
2505 tmp = (u64)(unsigned long) skb->data;
2508 skb->data = (void *) (unsigned long)tmp;
2509 skb_reset_tail_pointer(skb);
2511 if (!(rxdp3->Buffer0_ptr))
2512 rxdp3->Buffer0_ptr =
2513 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2514 PCI_DMA_FROMDEVICE);
2516 pci_dma_sync_single_for_device(nic->pdev,
2517 (dma_addr_t) rxdp3->Buffer0_ptr,
2518 BUF0_LEN, PCI_DMA_FROMDEVICE);
2519 if( (rxdp3->Buffer0_ptr == 0) ||
2520 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2521 goto pci_map_failed;
2523 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2524 if (nic->rxd_mode == RXD_MODE_3B) {
2525 /* Two buffer mode */
2528 * Buffer2 will have L3/L4 header plus
2531 rxdp3->Buffer2_ptr = pci_map_single
2532 (nic->pdev, skb->data, dev->mtu + 4,
2533 PCI_DMA_FROMDEVICE);
2535 if( (rxdp3->Buffer2_ptr == 0) ||
2536 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2537 goto pci_map_failed;
2539 rxdp3->Buffer1_ptr =
2540 pci_map_single(nic->pdev,
2542 PCI_DMA_FROMDEVICE);
2543 if( (rxdp3->Buffer1_ptr == 0) ||
2544 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2547 (dma_addr_t)rxdp3->Buffer2_ptr,
2549 PCI_DMA_FROMDEVICE);
2550 goto pci_map_failed;
2552 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2553 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2556 rxdp->Control_2 |= s2BIT(0);
2558 rxdp->Host_Control = (unsigned long) (skb);
2559 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2560 rxdp->Control_1 |= RXD_OWN_XENA;
2562 if (off == (rxd_count[nic->rxd_mode] + 1))
2564 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2566 rxdp->Control_2 |= SET_RXD_MARKER;
2567 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2570 first_rxdp->Control_1 |= RXD_OWN_XENA;
2574 atomic_inc(&nic->rx_bufs_left[ring_no]);
2579 /* Transfer ownership of first descriptor to adapter just before
2580 * exiting. Before that, use memory barrier so that ownership
2581 * and other fields are seen by adapter correctly.
2585 first_rxdp->Control_1 |= RXD_OWN_XENA;
2590 stats->pci_map_fail_cnt++;
2591 stats->mem_freed += skb->truesize;
2592 dev_kfree_skb_irq(skb);
2596 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2598 struct net_device *dev = sp->dev;
2600 struct sk_buff *skb;
2602 struct mac_info *mac_control;
2607 mac_control = &sp->mac_control;
2608 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2609 rxdp = mac_control->rings[ring_no].
2610 rx_blocks[blk].rxds[j].virt_addr;
2611 skb = (struct sk_buff *)
2612 ((unsigned long) rxdp->Host_Control);
2616 if (sp->rxd_mode == RXD_MODE_1) {
2617 rxdp1 = (struct RxD1*)rxdp;
2618 pci_unmap_single(sp->pdev, (dma_addr_t)
2621 HEADER_ETHERNET_II_802_3_SIZE
2622 + HEADER_802_2_SIZE +
2624 PCI_DMA_FROMDEVICE);
2625 memset(rxdp, 0, sizeof(struct RxD1));
2626 } else if(sp->rxd_mode == RXD_MODE_3B) {
2627 rxdp3 = (struct RxD3*)rxdp;
2628 ba = &mac_control->rings[ring_no].
2630 pci_unmap_single(sp->pdev, (dma_addr_t)
2633 PCI_DMA_FROMDEVICE);
2634 pci_unmap_single(sp->pdev, (dma_addr_t)
2637 PCI_DMA_FROMDEVICE);
2638 pci_unmap_single(sp->pdev, (dma_addr_t)
2641 PCI_DMA_FROMDEVICE);
2642 memset(rxdp, 0, sizeof(struct RxD3));
2644 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2646 atomic_dec(&sp->rx_bufs_left[ring_no]);
2651 * free_rx_buffers - Frees all Rx buffers
2652 * @sp: device private variable.
2654 * This function will free all Rx buffers allocated by host.
2659 static void free_rx_buffers(struct s2io_nic *sp)
2661 struct net_device *dev = sp->dev;
2662 int i, blk = 0, buf_cnt = 0;
2663 struct mac_info *mac_control;
2664 struct config_param *config;
2666 mac_control = &sp->mac_control;
2667 config = &sp->config;
2669 for (i = 0; i < config->rx_ring_num; i++) {
2670 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2671 free_rxd_blk(sp,i,blk);
2673 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2674 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2675 mac_control->rings[i].rx_curr_put_info.offset = 0;
2676 mac_control->rings[i].rx_curr_get_info.offset = 0;
2677 atomic_set(&sp->rx_bufs_left[i], 0);
2678 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2679 dev->name, buf_cnt, i);
2684 * s2io_poll - Rx interrupt handler for NAPI support
2685 * @napi : pointer to the napi structure.
2686 * @budget : The number of packets that were budgeted to be processed
2687 * during one pass through the 'Poll" function.
2689 * Comes into picture only if NAPI support has been incorporated. It does
2690 * the same thing that rx_intr_handler does, but not in a interrupt context
2691 * also It will process only a given number of packets.
2693 * 0 on success and 1 if there are No Rx packets to be processed.
2696 static int s2io_poll(struct napi_struct *napi, int budget)
2698 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2699 struct net_device *dev = nic->dev;
2700 int pkt_cnt = 0, org_pkts_to_process;
2701 struct mac_info *mac_control;
2702 struct config_param *config;
2703 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2706 mac_control = &nic->mac_control;
2707 config = &nic->config;
2709 nic->pkts_to_process = budget;
2710 org_pkts_to_process = nic->pkts_to_process;
2712 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2713 readl(&bar0->rx_traffic_int);
2715 for (i = 0; i < config->rx_ring_num; i++) {
2716 rx_intr_handler(&mac_control->rings[i]);
2717 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2718 if (!nic->pkts_to_process) {
2719 /* Quota for the current iteration has been met */
2724 netif_rx_complete(dev, napi);
2726 for (i = 0; i < config->rx_ring_num; i++) {
2727 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2728 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2729 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2733 /* Re enable the Rx interrupts. */
2734 writeq(0x0, &bar0->rx_traffic_mask);
2735 readl(&bar0->rx_traffic_mask);
2739 for (i = 0; i < config->rx_ring_num; i++) {
2740 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2741 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2742 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2749 #ifdef CONFIG_NET_POLL_CONTROLLER
2751 * s2io_netpoll - netpoll event handler entry point
2752 * @dev : pointer to the device structure.
2754 * This function will be called by upper layer to check for events on the
2755 * interface in situations where interrupts are disabled. It is used for
2756 * specific in-kernel networking tasks, such as remote consoles and kernel
2757 * debugging over the network (example netdump in RedHat).
2759 static void s2io_netpoll(struct net_device *dev)
2761 struct s2io_nic *nic = dev->priv;
2762 struct mac_info *mac_control;
2763 struct config_param *config;
2764 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2765 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2768 if (pci_channel_offline(nic->pdev))
2771 disable_irq(dev->irq);
2773 mac_control = &nic->mac_control;
2774 config = &nic->config;
2776 writeq(val64, &bar0->rx_traffic_int);
2777 writeq(val64, &bar0->tx_traffic_int);
2779 /* we need to free up the transmitted skbufs or else netpoll will
2780 * run out of skbs and will fail and eventually netpoll application such
2781 * as netdump will fail.
2783 for (i = 0; i < config->tx_fifo_num; i++)
2784 tx_intr_handler(&mac_control->fifos[i]);
2786 /* check for received packet and indicate up to network */
2787 for (i = 0; i < config->rx_ring_num; i++)
2788 rx_intr_handler(&mac_control->rings[i]);
2790 for (i = 0; i < config->rx_ring_num; i++) {
2791 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2792 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2793 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2797 enable_irq(dev->irq);
2803 * rx_intr_handler - Rx interrupt handler
2804 * @nic: device private variable.
2806 * If the interrupt is because of a received frame or if the
2807 * receive ring contains fresh as yet un-processed frames,this function is
2808 * called. It picks out the RxD at which place the last Rx processing had
2809 * stopped and sends the skb to the OSM's Rx handler and then increments
2814 static void rx_intr_handler(struct ring_info *ring_data)
2816 struct s2io_nic *nic = ring_data->nic;
2817 struct net_device *dev = (struct net_device *) nic->dev;
2818 int get_block, put_block, put_offset;
2819 struct rx_curr_get_info get_info, put_info;
2821 struct sk_buff *skb;
2827 spin_lock(&nic->rx_lock);
2829 get_info = ring_data->rx_curr_get_info;
2830 get_block = get_info.block_index;
2831 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2832 put_block = put_info.block_index;
2833 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2835 spin_lock(&nic->put_lock);
2836 put_offset = ring_data->put_pos;
2837 spin_unlock(&nic->put_lock);
2839 put_offset = ring_data->put_pos;
2841 while (RXD_IS_UP2DT(rxdp)) {
2843 * If your are next to put index then it's
2844 * FIFO full condition
2846 if ((get_block == put_block) &&
2847 (get_info.offset + 1) == put_info.offset) {
2848 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2851 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2853 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2855 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2856 spin_unlock(&nic->rx_lock);
2859 if (nic->rxd_mode == RXD_MODE_1) {
2860 rxdp1 = (struct RxD1*)rxdp;
2861 pci_unmap_single(nic->pdev, (dma_addr_t)
2864 HEADER_ETHERNET_II_802_3_SIZE +
2867 PCI_DMA_FROMDEVICE);
2868 } else if (nic->rxd_mode == RXD_MODE_3B) {
2869 rxdp3 = (struct RxD3*)rxdp;
2870 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2872 BUF0_LEN, PCI_DMA_FROMDEVICE);
2873 pci_unmap_single(nic->pdev, (dma_addr_t)
2876 PCI_DMA_FROMDEVICE);
2878 prefetch(skb->data);
2879 rx_osm_handler(ring_data, rxdp);
2881 ring_data->rx_curr_get_info.offset = get_info.offset;
2882 rxdp = ring_data->rx_blocks[get_block].
2883 rxds[get_info.offset].virt_addr;
2884 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2885 get_info.offset = 0;
2886 ring_data->rx_curr_get_info.offset = get_info.offset;
2888 if (get_block == ring_data->block_count)
2890 ring_data->rx_curr_get_info.block_index = get_block;
2891 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2894 nic->pkts_to_process -= 1;
2895 if ((napi) && (!nic->pkts_to_process))
2898 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2902 /* Clear all LRO sessions before exiting */
2903 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2904 struct lro *lro = &nic->lro0_n[i];
2906 update_L3L4_header(nic, lro);
2907 queue_rx_frame(lro->parent);
2908 clear_lro_session(lro);
2913 spin_unlock(&nic->rx_lock);
2917 * tx_intr_handler - Transmit interrupt handler
2918 * @nic : device private variable
2920 * If an interrupt was raised to indicate DMA complete of the
2921 * Tx packet, this function is called. It identifies the last TxD
2922 * whose buffer was freed and frees all skbs whose data have already
2923 * DMA'ed into the NICs internal memory.
2928 static void tx_intr_handler(struct fifo_info *fifo_data)
2930 struct s2io_nic *nic = fifo_data->nic;
2931 struct net_device *dev = (struct net_device *) nic->dev;
2932 struct tx_curr_get_info get_info, put_info;
2933 struct sk_buff *skb;
2937 get_info = fifo_data->tx_curr_get_info;
2938 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2939 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2941 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2942 (get_info.offset != put_info.offset) &&
2943 (txdlp->Host_Control)) {
2944 /* Check for TxD errors */
2945 if (txdlp->Control_1 & TXD_T_CODE) {
2946 unsigned long long err;
2947 err = txdlp->Control_1 & TXD_T_CODE;
2949 nic->mac_control.stats_info->sw_stat.
2953 /* update t_code statistics */
2954 err_mask = err >> 48;
2957 nic->mac_control.stats_info->sw_stat.
2962 nic->mac_control.stats_info->sw_stat.
2963 tx_desc_abort_cnt++;
2967 nic->mac_control.stats_info->sw_stat.
2968 tx_parity_err_cnt++;
2972 nic->mac_control.stats_info->sw_stat.
2977 nic->mac_control.stats_info->sw_stat.
2978 tx_list_proc_err_cnt++;
2983 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2985 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2987 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2991 /* Updating the statistics block */
2992 nic->stats.tx_bytes += skb->len;
2993 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2994 dev_kfree_skb_irq(skb);
2997 if (get_info.offset == get_info.fifo_len + 1)
2998 get_info.offset = 0;
2999 txdlp = (struct TxD *) fifo_data->list_info
3000 [get_info.offset].list_virt_addr;
3001 fifo_data->tx_curr_get_info.offset =
3005 spin_lock(&nic->tx_lock);
3006 if (netif_queue_stopped(dev))
3007 netif_wake_queue(dev);
3008 spin_unlock(&nic->tx_lock);
3012 * s2io_mdio_write - Function to write in to MDIO registers
3013 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3014 * @addr : address value
3015 * @value : data value
3016 * @dev : pointer to net_device structure
3018 * This function is used to write values to the MDIO registers
3021 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3024 struct s2io_nic *sp = dev->priv;
3025 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3027 //address transaction
3028 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029 | MDIO_MMD_DEV_ADDR(mmd_type)
3030 | MDIO_MMS_PRT_ADDR(0x0);
3031 writeq(val64, &bar0->mdio_control);
3032 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3033 writeq(val64, &bar0->mdio_control);
3038 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3039 | MDIO_MMD_DEV_ADDR(mmd_type)
3040 | MDIO_MMS_PRT_ADDR(0x0)
3041 | MDIO_MDIO_DATA(value)
3042 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3043 writeq(val64, &bar0->mdio_control);
3044 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045 writeq(val64, &bar0->mdio_control);
3049 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3050 | MDIO_MMD_DEV_ADDR(mmd_type)
3051 | MDIO_MMS_PRT_ADDR(0x0)
3052 | MDIO_OP(MDIO_OP_READ_TRANS);
3053 writeq(val64, &bar0->mdio_control);
3054 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3055 writeq(val64, &bar0->mdio_control);
3061 * s2io_mdio_read - Function to write in to MDIO registers
3062 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063 * @addr : address value
3064 * @dev : pointer to net_device structure
3066 * This function is used to read values to the MDIO registers
3069 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3073 struct s2io_nic *sp = dev->priv;
3074 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3076 /* address transaction */
3077 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078 | MDIO_MMD_DEV_ADDR(mmd_type)
3079 | MDIO_MMS_PRT_ADDR(0x0);
3080 writeq(val64, &bar0->mdio_control);
3081 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3082 writeq(val64, &bar0->mdio_control);
3085 /* Data transaction */
3087 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3088 | MDIO_MMD_DEV_ADDR(mmd_type)
3089 | MDIO_MMS_PRT_ADDR(0x0)
3090 | MDIO_OP(MDIO_OP_READ_TRANS);
3091 writeq(val64, &bar0->mdio_control);
3092 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3093 writeq(val64, &bar0->mdio_control);
3096 /* Read the value from regs */
3097 rval64 = readq(&bar0->mdio_control);
3098 rval64 = rval64 & 0xFFFF0000;
3099 rval64 = rval64 >> 16;
3103 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3104 * @counter : couter value to be updated
3105 * @flag : flag to indicate the status
3106 * @type : counter type
3108 * This function is to check the status of the xpak counters value
3112 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3117 for(i = 0; i <index; i++)
3122 *counter = *counter + 1;
3123 val64 = *regs_stat & mask;
3124 val64 = val64 >> (index * 0x2);
3131 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3132 "service. Excessive temperatures may "
3133 "result in premature transceiver "
3137 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3138 "service Excessive bias currents may "
3139 "indicate imminent laser diode "
3143 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3144 "service Excessive laser output "
3145 "power may saturate far-end "
3149 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3154 val64 = val64 << (index * 0x2);
3155 *regs_stat = (*regs_stat & (~mask)) | (val64);
3158 *regs_stat = *regs_stat & (~mask);
3163 * s2io_updt_xpak_counter - Function to update the xpak counters
3164 * @dev : pointer to net_device struct
3166 * This function is to upate the status of the xpak counters value
3169 static void s2io_updt_xpak_counter(struct net_device *dev)
3177 struct s2io_nic *sp = dev->priv;
3178 struct stat_block *stat_info = sp->mac_control.stats_info;
3180 /* Check the communication with the MDIO slave */
3183 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3184 if((val64 == 0xFFFF) || (val64 == 0x0000))
3186 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3187 "Returned %llx\n", (unsigned long long)val64);
3191 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3194 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3195 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3196 (unsigned long long)val64);
3200 /* Loading the DOM register to MDIO register */
3202 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3203 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3205 /* Reading the Alarm flags */
3208 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3210 flag = CHECKBIT(val64, 0x7);
3212 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3213 &stat_info->xpak_stat.xpak_regs_stat,
3216 if(CHECKBIT(val64, 0x6))
3217 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3219 flag = CHECKBIT(val64, 0x3);
3221 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3222 &stat_info->xpak_stat.xpak_regs_stat,
3225 if(CHECKBIT(val64, 0x2))
3226 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3228 flag = CHECKBIT(val64, 0x1);
3230 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3231 &stat_info->xpak_stat.xpak_regs_stat,
3234 if(CHECKBIT(val64, 0x0))
3235 stat_info->xpak_stat.alarm_laser_output_power_low++;
3237 /* Reading the Warning flags */
3240 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3242 if(CHECKBIT(val64, 0x7))
3243 stat_info->xpak_stat.warn_transceiver_temp_high++;
3245 if(CHECKBIT(val64, 0x6))
3246 stat_info->xpak_stat.warn_transceiver_temp_low++;
3248 if(CHECKBIT(val64, 0x3))
3249 stat_info->xpak_stat.warn_laser_bias_current_high++;
3251 if(CHECKBIT(val64, 0x2))
3252 stat_info->xpak_stat.warn_laser_bias_current_low++;
3254 if(CHECKBIT(val64, 0x1))
3255 stat_info->xpak_stat.warn_laser_output_power_high++;
3257 if(CHECKBIT(val64, 0x0))
3258 stat_info->xpak_stat.warn_laser_output_power_low++;
3262 * wait_for_cmd_complete - waits for a command to complete.
3263 * @sp : private member of the device structure, which is a pointer to the
3264 * s2io_nic structure.
3265 * Description: Function that waits for a command to Write into RMAC
3266 * ADDR DATA registers to be completed and returns either success or
3267 * error depending on whether the command was complete or not.
3269 * SUCCESS on success and FAILURE on failure.
3272 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3275 int ret = FAILURE, cnt = 0, delay = 1;
3278 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3282 val64 = readq(addr);
3283 if (bit_state == S2IO_BIT_RESET) {
3284 if (!(val64 & busy_bit)) {
3289 if (!(val64 & busy_bit)) {
3306 * check_pci_device_id - Checks if the device id is supported
3308 * Description: Function to check if the pci device id is supported by driver.
3309 * Return value: Actual device id if supported else PCI_ANY_ID
3311 static u16 check_pci_device_id(u16 id)
3314 case PCI_DEVICE_ID_HERC_WIN:
3315 case PCI_DEVICE_ID_HERC_UNI:
3316 return XFRAME_II_DEVICE;
3317 case PCI_DEVICE_ID_S2IO_UNI:
3318 case PCI_DEVICE_ID_S2IO_WIN:
3319 return XFRAME_I_DEVICE;
3326 * s2io_reset - Resets the card.
3327 * @sp : private member of the device structure.
3328 * Description: Function to Reset the card. This function then also
3329 * restores the previously saved PCI configuration space registers as
3330 * the card reset also resets the configuration space.
3335 static void s2io_reset(struct s2io_nic * sp)
3337 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3342 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3343 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3345 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3346 __FUNCTION__, sp->dev->name);
3348 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3349 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3351 val64 = SW_RESET_ALL;
3352 writeq(val64, &bar0->sw_reset);
3353 if (strstr(sp->product_name, "CX4")) {
3357 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3359 /* Restore the PCI state saved during initialization. */
3360 pci_restore_state(sp->pdev);
3361 pci_read_config_word(sp->pdev, 0x2, &val16);
3362 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3367 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3368 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3371 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3375 /* Set swapper to enable I/O register access */
3376 s2io_set_swapper(sp);
3378 /* Restore the MSIX table entries from local variables */
3379 restore_xmsi_data(sp);
3381 /* Clear certain PCI/PCI-X fields after reset */
3382 if (sp->device_type == XFRAME_II_DEVICE) {
3383 /* Clear "detected parity error" bit */
3384 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3386 /* Clearing PCIX Ecc status register */
3387 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3389 /* Clearing PCI_STATUS error reflected here */
3390 writeq(s2BIT(62), &bar0->txpic_int_reg);
3393 /* Reset device statistics maintained by OS */
3394 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3396 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3397 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3398 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3399 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3400 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3401 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3402 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3403 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3404 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3405 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3406 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3407 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3408 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3409 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3410 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3411 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3412 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3413 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3414 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3416 /* SXE-002: Configure link and activity LED to turn it off */
3417 subid = sp->pdev->subsystem_device;
3418 if (((subid & 0xFF) >= 0x07) &&
3419 (sp->device_type == XFRAME_I_DEVICE)) {
3420 val64 = readq(&bar0->gpio_control);
3421 val64 |= 0x0000800000000000ULL;
3422 writeq(val64, &bar0->gpio_control);
3423 val64 = 0x0411040400000000ULL;
3424 writeq(val64, (void __iomem *)bar0 + 0x2700);
3428 * Clear spurious ECC interrupts that would have occured on
3429 * XFRAME II cards after reset.
3431 if (sp->device_type == XFRAME_II_DEVICE) {
3432 val64 = readq(&bar0->pcc_err_reg);
3433 writeq(val64, &bar0->pcc_err_reg);
3436 /* restore the previously assigned mac address */
3437 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3439 sp->device_enabled_once = FALSE;
3443 * s2io_set_swapper - to set the swapper controle on the card
3444 * @sp : private member of the device structure,
3445 * pointer to the s2io_nic structure.
3446 * Description: Function to set the swapper control on the card
3447 * correctly depending on the 'endianness' of the system.
3449 * SUCCESS on success and FAILURE on failure.
3452 static int s2io_set_swapper(struct s2io_nic * sp)
3454 struct net_device *dev = sp->dev;
3455 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3456 u64 val64, valt, valr;
3459 * Set proper endian settings and verify the same by reading
3460 * the PIF Feed-back register.
3463 val64 = readq(&bar0->pif_rd_swapper_fb);
3464 if (val64 != 0x0123456789ABCDEFULL) {
3466 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3467 0x8100008181000081ULL, /* FE=1, SE=0 */
3468 0x4200004242000042ULL, /* FE=0, SE=1 */
3469 0}; /* FE=0, SE=0 */
3472 writeq(value[i], &bar0->swapper_ctrl);
3473 val64 = readq(&bar0->pif_rd_swapper_fb);
3474 if (val64 == 0x0123456789ABCDEFULL)
3479 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3481 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3482 (unsigned long long) val64);
3487 valr = readq(&bar0->swapper_ctrl);
3490 valt = 0x0123456789ABCDEFULL;
3491 writeq(valt, &bar0->xmsi_address);
3492 val64 = readq(&bar0->xmsi_address);
3496 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3497 0x0081810000818100ULL, /* FE=1, SE=0 */
3498 0x0042420000424200ULL, /* FE=0, SE=1 */
3499 0}; /* FE=0, SE=0 */
3502 writeq((value[i] | valr), &bar0->swapper_ctrl);
3503 writeq(valt, &bar0->xmsi_address);
3504 val64 = readq(&bar0->xmsi_address);
3510 unsigned long long x = val64;
3511 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3512 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3516 val64 = readq(&bar0->swapper_ctrl);
3517 val64 &= 0xFFFF000000000000ULL;
3521 * The device by default set to a big endian format, so a
3522 * big endian driver need not set anything.
3524 val64 |= (SWAPPER_CTRL_TXP_FE |
3525 SWAPPER_CTRL_TXP_SE |
3526 SWAPPER_CTRL_TXD_R_FE |
3527 SWAPPER_CTRL_TXD_W_FE |
3528 SWAPPER_CTRL_TXF_R_FE |
3529 SWAPPER_CTRL_RXD_R_FE |
3530 SWAPPER_CTRL_RXD_W_FE |
3531 SWAPPER_CTRL_RXF_W_FE |
3532 SWAPPER_CTRL_XMSI_FE |
3533 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3534 if (sp->config.intr_type == INTA)
3535 val64 |= SWAPPER_CTRL_XMSI_SE;
3536 writeq(val64, &bar0->swapper_ctrl);
3539 * Initially we enable all bits to make it accessible by the
3540 * driver, then we selectively enable only those bits that
3543 val64 |= (SWAPPER_CTRL_TXP_FE |
3544 SWAPPER_CTRL_TXP_SE |
3545 SWAPPER_CTRL_TXD_R_FE |
3546 SWAPPER_CTRL_TXD_R_SE |
3547 SWAPPER_CTRL_TXD_W_FE |
3548 SWAPPER_CTRL_TXD_W_SE |
3549 SWAPPER_CTRL_TXF_R_FE |
3550 SWAPPER_CTRL_RXD_R_FE |
3551 SWAPPER_CTRL_RXD_R_SE |
3552 SWAPPER_CTRL_RXD_W_FE |
3553 SWAPPER_CTRL_RXD_W_SE |
3554 SWAPPER_CTRL_RXF_W_FE |
3555 SWAPPER_CTRL_XMSI_FE |
3556 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3557 if (sp->config.intr_type == INTA)
3558 val64 |= SWAPPER_CTRL_XMSI_SE;
3559 writeq(val64, &bar0->swapper_ctrl);
3561 val64 = readq(&bar0->swapper_ctrl);
3564 * Verifying if endian settings are accurate by reading a
3565 * feedback register.
3567 val64 = readq(&bar0->pif_rd_swapper_fb);
3568 if (val64 != 0x0123456789ABCDEFULL) {
3569 /* Endian settings are incorrect, calls for another dekko. */
3570 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3572 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3573 (unsigned long long) val64);
3580 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3582 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3584 int ret = 0, cnt = 0;
3587 val64 = readq(&bar0->xmsi_access);
3588 if (!(val64 & s2BIT(15)))
3594 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3601 static void restore_xmsi_data(struct s2io_nic *nic)
3603 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3607 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3608 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3609 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3610 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3611 writeq(val64, &bar0->xmsi_access);
3612 if (wait_for_msix_trans(nic, i)) {
3613 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3619 static void store_xmsi_data(struct s2io_nic *nic)
3621 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3622 u64 val64, addr, data;
3625 /* Store and display */
3626 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3627 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3628 writeq(val64, &bar0->xmsi_access);
3629 if (wait_for_msix_trans(nic, i)) {
3630 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3633 addr = readq(&bar0->xmsi_address);
3634 data = readq(&bar0->xmsi_data);
3636 nic->msix_info[i].addr = addr;
3637 nic->msix_info[i].data = data;
3642 static int s2io_enable_msi_x(struct s2io_nic *nic)
3644 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3646 u16 msi_control; /* Temp variable */
3647 int ret, i, j, msix_indx = 1;
3649 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3651 if (!nic->entries) {
3652 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3654 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3657 nic->mac_control.stats_info->sw_stat.mem_allocated
3658 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3661 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3663 if (!nic->s2io_entries) {
3664 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3666 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3667 kfree(nic->entries);
3668 nic->mac_control.stats_info->sw_stat.mem_freed
3669 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3672 nic->mac_control.stats_info->sw_stat.mem_allocated
3673 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3675 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3676 nic->entries[i].entry = i;
3677 nic->s2io_entries[i].entry = i;
3678 nic->s2io_entries[i].arg = NULL;
3679 nic->s2io_entries[i].in_use = 0;
3682 tx_mat = readq(&bar0->tx_mat0_n[0]);
3683 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3684 tx_mat |= TX_MAT_SET(i, msix_indx);
3685 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3686 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3687 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3689 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3691 rx_mat = readq(&bar0->rx_mat);
3692 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3693 rx_mat |= RX_MAT_SET(j, msix_indx);
3694 nic->s2io_entries[msix_indx].arg
3695 = &nic->mac_control.rings[j];
3696 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3697 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3699 writeq(rx_mat, &bar0->rx_mat);
3701 nic->avail_msix_vectors = 0;
3702 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3703 /* We fail init if error or we get less vectors than min required */
3704 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3705 nic->avail_msix_vectors = ret;
3706 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3709 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3710 kfree(nic->entries);
3711 nic->mac_control.stats_info->sw_stat.mem_freed
3712 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3713 kfree(nic->s2io_entries);
3714 nic->mac_control.stats_info->sw_stat.mem_freed
3715 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3716 nic->entries = NULL;
3717 nic->s2io_entries = NULL;
3718 nic->avail_msix_vectors = 0;
3721 if (!nic->avail_msix_vectors)
3722 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3725 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3726 * in the herc NIC. (Temp change, needs to be removed later)
3728 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3729 msi_control |= 0x1; /* Enable MSI */
3730 pci_write_config_word(nic->pdev, 0x42, msi_control);
3735 /* Handle software interrupt used during MSI(X) test */
3736 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3738 struct s2io_nic *sp = dev_id;
3740 sp->msi_detected = 1;
3741 wake_up(&sp->msi_wait);
3746 /* Test interrupt path by forcing a a software IRQ */
3747 static int s2io_test_msi(struct s2io_nic *sp)
3749 struct pci_dev *pdev = sp->pdev;
3750 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3754 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3757 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3758 sp->dev->name, pci_name(pdev), pdev->irq);
3762 init_waitqueue_head (&sp->msi_wait);
3763 sp->msi_detected = 0;
3765 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3766 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3767 val64 |= SCHED_INT_CTRL_TIMER_EN;
3768 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3769 writeq(val64, &bar0->scheduled_int_ctrl);
3771 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3773 if (!sp->msi_detected) {
3774 /* MSI(X) test failed, go back to INTx mode */
3775 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3776 "using MSI(X) during test\n", sp->dev->name,
3782 free_irq(sp->entries[1].vector, sp);
3784 writeq(saved64, &bar0->scheduled_int_ctrl);
3789 static void remove_msix_isr(struct s2io_nic *sp)
3794 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3795 if (sp->s2io_entries[i].in_use ==
3796 MSIX_REGISTERED_SUCCESS) {
3797 int vector = sp->entries[i].vector;
3798 void *arg = sp->s2io_entries[i].arg;
3799 free_irq(vector, arg);
3804 kfree(sp->s2io_entries);
3806 sp->s2io_entries = NULL;
3808 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3809 msi_control &= 0xFFFE; /* Disable MSI */
3810 pci_write_config_word(sp->pdev, 0x42, msi_control);
3812 pci_disable_msix(sp->pdev);
3815 static void remove_inta_isr(struct s2io_nic *sp)
3817 struct net_device *dev = sp->dev;
3819 free_irq(sp->pdev->irq, dev);
3822 /* ********************************************************* *
3823 * Functions defined below concern the OS part of the driver *
3824 * ********************************************************* */
3827 * s2io_open - open entry point of the driver
3828 * @dev : pointer to the device structure.
3830 * This function is the open entry point of the driver. It mainly calls a
3831 * function to allocate Rx buffers and inserts them into the buffer
3832 * descriptors and then enables the Rx part of the NIC.
3834 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3838 static int s2io_open(struct net_device *dev)
3840 struct s2io_nic *sp = dev->priv;
3844 * Make sure you have link off by default every time
3845 * Nic is initialized
3847 netif_carrier_off(dev);
3848 sp->last_link_state = 0;
3850 if (sp->config.intr_type == MSI_X) {
3851 int ret = s2io_enable_msi_x(sp);
3854 ret = s2io_test_msi(sp);
3855 /* rollback MSI-X, will re-enable during add_isr() */
3856 remove_msix_isr(sp);
3861 "%s: MSI-X requested but failed to enable\n",
3863 sp->config.intr_type = INTA;
3867 /* NAPI doesn't work well with MSI(X) */
3868 if (sp->config.intr_type != INTA) {
3870 sp->config.napi = 0;
3873 /* Initialize H/W and enable interrupts */
3874 err = s2io_card_up(sp);
3876 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3878 goto hw_init_failed;
3881 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3882 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3885 goto hw_init_failed;
3888 netif_start_queue(dev);
3892 if (sp->config.intr_type == MSI_X) {
3895 sp->mac_control.stats_info->sw_stat.mem_freed
3896 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3898 if (sp->s2io_entries) {
3899 kfree(sp->s2io_entries);
3900 sp->mac_control.stats_info->sw_stat.mem_freed
3901 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3908 * s2io_close -close entry point of the driver
3909 * @dev : device pointer.
3911 * This is the stop entry point of the driver. It needs to undo exactly
3912 * whatever was done by the open entry point,thus it's usually referred to
3913 * as the close function.Among other things this function mainly stops the
3914 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3916 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3920 static int s2io_close(struct net_device *dev)
3922 struct s2io_nic *sp = dev->priv;
3924 /* Return if the device is already closed *
3925 * Can happen when s2io_card_up failed in change_mtu *
3927 if (!is_s2io_card_up(sp))
3930 netif_stop_queue(dev);
3931 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3938 * s2io_xmit - Tx entry point of te driver
3939 * @skb : the socket buffer containing the Tx data.
3940 * @dev : device pointer.
3942 * This function is the Tx entry point of the driver. S2IO NIC supports
3943 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3944 * NOTE: when device cant queue the pkt,just the trans_start variable will
3947 * 0 on success & 1 on failure.
3950 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3952 struct s2io_nic *sp = dev->priv;
3953 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3956 struct TxFIFO_element __iomem *tx_fifo;
3957 unsigned long flags;
3959 int vlan_priority = 0;
3960 struct mac_info *mac_control;
3961 struct config_param *config;
3963 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3965 mac_control = &sp->mac_control;
3966 config = &sp->config;
3968 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3970 if (unlikely(skb->len <= 0)) {
3971 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3972 dev_kfree_skb_any(skb);
3976 spin_lock_irqsave(&sp->tx_lock, flags);
3977 if (!is_s2io_card_up(sp)) {
3978 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3980 spin_unlock_irqrestore(&sp->tx_lock, flags);
3986 /* Get Fifo number to Transmit based on vlan priority */
3987 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3988 vlan_tag = vlan_tx_tag_get(skb);
3989 vlan_priority = vlan_tag >> 13;
3990 queue = config->fifo_mapping[vlan_priority];
3993 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3994 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3995 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3998 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3999 /* Avoid "put" pointer going beyond "get" pointer */
4000 if (txdp->Host_Control ||
4001 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4002 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4003 netif_stop_queue(dev);
4005 spin_unlock_irqrestore(&sp->tx_lock, flags);
4009 offload_type = s2io_offload_type(skb);
4010 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4011 txdp->Control_1 |= TXD_TCP_LSO_EN;
4012 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4014 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4016 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4019 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4020 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4021 txdp->Control_2 |= config->tx_intr_type;
4023 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4024 txdp->Control_2 |= TXD_VLAN_ENABLE;
4025 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4028 frg_len = skb->len - skb->data_len;
4029 if (offload_type == SKB_GSO_UDP) {
4032 ufo_size = s2io_udp_mss(skb);
4034 txdp->Control_1 |= TXD_UFO_EN;
4035 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4036 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4038 sp->ufo_in_band_v[put_off] =
4039 (u64)skb_shinfo(skb)->ip6_frag_id;
4041 sp->ufo_in_band_v[put_off] =
4042 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4044 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4045 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4047 sizeof(u64), PCI_DMA_TODEVICE);
4048 if((txdp->Buffer_Pointer == 0) ||
4049 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4050 goto pci_map_failed;
4054 txdp->Buffer_Pointer = pci_map_single
4055 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4056 if((txdp->Buffer_Pointer == 0) ||
4057 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4058 goto pci_map_failed;
4060 txdp->Host_Control = (unsigned long) skb;
4061 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4062 if (offload_type == SKB_GSO_UDP)
4063 txdp->Control_1 |= TXD_UFO_EN;
4065 frg_cnt = skb_shinfo(skb)->nr_frags;
4066 /* For fragmented SKB. */
4067 for (i = 0; i < frg_cnt; i++) {
4068 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4069 /* A '0' length fragment will be ignored */
4073 txdp->Buffer_Pointer = (u64) pci_map_page
4074 (sp->pdev, frag->page, frag->page_offset,
4075 frag->size, PCI_DMA_TODEVICE);
4076 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4077 if (offload_type == SKB_GSO_UDP)
4078 txdp->Control_1 |= TXD_UFO_EN;
4080 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4082 if (offload_type == SKB_GSO_UDP)
4083 frg_cnt++; /* as Txd0 was used for inband header */
4085 tx_fifo = mac_control->tx_FIFO_start[queue];
4086 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4087 writeq(val64, &tx_fifo->TxDL_Pointer);
4089 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4092 val64 |= TX_FIFO_SPECIAL_FUNC;
4094 writeq(val64, &tx_fifo->List_Control);
4099 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4101 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4103 /* Avoid "put" pointer going beyond "get" pointer */
4104 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4105 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4107 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4109 netif_stop_queue(dev);
4111 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4112 dev->trans_start = jiffies;
4113 spin_unlock_irqrestore(&sp->tx_lock, flags);
4117 stats->pci_map_fail_cnt++;
4118 netif_stop_queue(dev);
4119 stats->mem_freed += skb->truesize;
4121 spin_unlock_irqrestore(&sp->tx_lock, flags);
4126 s2io_alarm_handle(unsigned long data)
4128 struct s2io_nic *sp = (struct s2io_nic *)data;
4129 struct net_device *dev = sp->dev;
4131 s2io_handle_errors(dev);
4132 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4135 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4137 int rxb_size, level;
4140 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4141 level = rx_buffer_level(sp, rxb_size, rng_n);
4143 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4145 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4146 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4147 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4148 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4150 clear_bit(0, (&sp->tasklet_status));
4153 clear_bit(0, (&sp->tasklet_status));
4154 } else if (level == LOW)
4155 tasklet_schedule(&sp->task);
4157 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4158 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4159 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4164 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4166 struct ring_info *ring = (struct ring_info *)dev_id;
4167 struct s2io_nic *sp = ring->nic;
4169 if (!is_s2io_card_up(sp))
4172 rx_intr_handler(ring);
4173 s2io_chk_rx_buffers(sp, ring->ring_no);
4178 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4180 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4181 struct s2io_nic *sp = fifo->nic;
4183 if (!is_s2io_card_up(sp))
4186 tx_intr_handler(fifo);
4189 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4191 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4194 val64 = readq(&bar0->pic_int_status);
4195 if (val64 & PIC_INT_GPIO) {
4196 val64 = readq(&bar0->gpio_int_reg);
4197 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4198 (val64 & GPIO_INT_REG_LINK_UP)) {
4200 * This is unstable state so clear both up/down
4201 * interrupt and adapter to re-evaluate the link state.
4203 val64 |= GPIO_INT_REG_LINK_DOWN;
4204 val64 |= GPIO_INT_REG_LINK_UP;
4205 writeq(val64, &bar0->gpio_int_reg);
4206 val64 = readq(&bar0->gpio_int_mask);
4207 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4208 GPIO_INT_MASK_LINK_DOWN);
4209 writeq(val64, &bar0->gpio_int_mask);
4211 else if (val64 & GPIO_INT_REG_LINK_UP) {
4212 val64 = readq(&bar0->adapter_status);
4213 /* Enable Adapter */
4214 val64 = readq(&bar0->adapter_control);
4215 val64 |= ADAPTER_CNTL_EN;
4216 writeq(val64, &bar0->adapter_control);
4217 val64 |= ADAPTER_LED_ON;
4218 writeq(val64, &bar0->adapter_control);
4219 if (!sp->device_enabled_once)
4220 sp->device_enabled_once = 1;
4222 s2io_link(sp, LINK_UP);
4224 * unmask link down interrupt and mask link-up
4227 val64 = readq(&bar0->gpio_int_mask);
4228 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4229 val64 |= GPIO_INT_MASK_LINK_UP;
4230 writeq(val64, &bar0->gpio_int_mask);
4232 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4233 val64 = readq(&bar0->adapter_status);
4234 s2io_link(sp, LINK_DOWN);
4235 /* Link is down so unmaks link up interrupt */
4236 val64 = readq(&bar0->gpio_int_mask);
4237 val64 &= ~GPIO_INT_MASK_LINK_UP;
4238 val64 |= GPIO_INT_MASK_LINK_DOWN;
4239 writeq(val64, &bar0->gpio_int_mask);
4242 val64 = readq(&bar0->adapter_control);
4243 val64 = val64 &(~ADAPTER_LED_ON);
4244 writeq(val64, &bar0->adapter_control);
4247 val64 = readq(&bar0->gpio_int_mask);
4251 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4252 * @value: alarm bits
4253 * @addr: address value
4254 * @cnt: counter variable
4255 * Description: Check for alarm and increment the counter
4257 * 1 - if alarm bit set
4258 * 0 - if alarm bit is not set
4260 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4261 unsigned long long *cnt)
4264 val64 = readq(addr);
4265 if ( val64 & value ) {
4266 writeq(val64, addr);
4275 * s2io_handle_errors - Xframe error indication handler
4276 * @nic: device private variable
4277 * Description: Handle alarms such as loss of link, single or
4278 * double ECC errors, critical and serious errors.
4282 static void s2io_handle_errors(void * dev_id)
4284 struct net_device *dev = (struct net_device *) dev_id;
4285 struct s2io_nic *sp = dev->priv;
4286 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4287 u64 temp64 = 0,val64=0;
4290 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4291 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4293 if (!is_s2io_card_up(sp))
4296 if (pci_channel_offline(sp->pdev))
4299 memset(&sw_stat->ring_full_cnt, 0,
4300 sizeof(sw_stat->ring_full_cnt));
4302 /* Handling the XPAK counters update */
4303 if(stats->xpak_timer_count < 72000) {
4304 /* waiting for an hour */
4305 stats->xpak_timer_count++;
4307 s2io_updt_xpak_counter(dev);
4308 /* reset the count to zero */
4309 stats->xpak_timer_count = 0;
4312 /* Handling link status change error Intr */
4313 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4314 val64 = readq(&bar0->mac_rmac_err_reg);
4315 writeq(val64, &bar0->mac_rmac_err_reg);
4316 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4317 schedule_work(&sp->set_link_task);
4320 /* In case of a serious error, the device will be Reset. */
4321 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4322 &sw_stat->serious_err_cnt))
4325 /* Check for data parity error */
4326 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4327 &sw_stat->parity_err_cnt))
4330 /* Check for ring full counter */
4331 if (sp->device_type == XFRAME_II_DEVICE) {
4332 val64 = readq(&bar0->ring_bump_counter1);
4333 for (i=0; i<4; i++) {
4334 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4335 temp64 >>= 64 - ((i+1)*16);
4336 sw_stat->ring_full_cnt[i] += temp64;
4339 val64 = readq(&bar0->ring_bump_counter2);
4340 for (i=0; i<4; i++) {
4341 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4342 temp64 >>= 64 - ((i+1)*16);
4343 sw_stat->ring_full_cnt[i+4] += temp64;
4347 val64 = readq(&bar0->txdma_int_status);
4348 /*check for pfc_err*/
4349 if (val64 & TXDMA_PFC_INT) {
4350 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4351 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4352 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4353 &sw_stat->pfc_err_cnt))
4355 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4356 &sw_stat->pfc_err_cnt);
4359 /*check for tda_err*/
4360 if (val64 & TXDMA_TDA_INT) {
4361 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4362 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4363 &sw_stat->tda_err_cnt))
4365 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4366 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4368 /*check for pcc_err*/
4369 if (val64 & TXDMA_PCC_INT) {
4370 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4371 | PCC_N_SERR | PCC_6_COF_OV_ERR
4372 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4373 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4374 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4375 &sw_stat->pcc_err_cnt))
4377 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4378 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4381 /*check for tti_err*/
4382 if (val64 & TXDMA_TTI_INT) {
4383 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4384 &sw_stat->tti_err_cnt))
4386 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4387 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4390 /*check for lso_err*/
4391 if (val64 & TXDMA_LSO_INT) {
4392 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4393 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4394 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4396 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4397 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4400 /*check for tpa_err*/
4401 if (val64 & TXDMA_TPA_INT) {
4402 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4403 &sw_stat->tpa_err_cnt))
4405 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4406 &sw_stat->tpa_err_cnt);
4409 /*check for sm_err*/
4410 if (val64 & TXDMA_SM_INT) {
4411 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4412 &sw_stat->sm_err_cnt))
4416 val64 = readq(&bar0->mac_int_status);
4417 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4418 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4419 &bar0->mac_tmac_err_reg,
4420 &sw_stat->mac_tmac_err_cnt))
4422 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4423 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4424 &bar0->mac_tmac_err_reg,
4425 &sw_stat->mac_tmac_err_cnt);
4428 val64 = readq(&bar0->xgxs_int_status);
4429 if (val64 & XGXS_INT_STATUS_TXGXS) {
4430 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4431 &bar0->xgxs_txgxs_err_reg,
4432 &sw_stat->xgxs_txgxs_err_cnt))
4434 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4435 &bar0->xgxs_txgxs_err_reg,
4436 &sw_stat->xgxs_txgxs_err_cnt);
4439 val64 = readq(&bar0->rxdma_int_status);
4440 if (val64 & RXDMA_INT_RC_INT_M) {
4441 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4442 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4443 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4445 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4446 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4447 &sw_stat->rc_err_cnt);
4448 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4449 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4450 &sw_stat->prc_pcix_err_cnt))
4452 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4453 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4454 &sw_stat->prc_pcix_err_cnt);
4457 if (val64 & RXDMA_INT_RPA_INT_M) {
4458 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4459 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4461 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4462 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4465 if (val64 & RXDMA_INT_RDA_INT_M) {
4466 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4467 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4468 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4469 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4471 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4472 | RDA_MISC_ERR | RDA_PCIX_ERR,
4473 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4476 if (val64 & RXDMA_INT_RTI_INT_M) {
4477 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4478 &sw_stat->rti_err_cnt))
4480 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4481 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4484 val64 = readq(&bar0->mac_int_status);
4485 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4486 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4487 &bar0->mac_rmac_err_reg,
4488 &sw_stat->mac_rmac_err_cnt))
4490 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4491 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4492 &sw_stat->mac_rmac_err_cnt);
4495 val64 = readq(&bar0->xgxs_int_status);
4496 if (val64 & XGXS_INT_STATUS_RXGXS) {
4497 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4498 &bar0->xgxs_rxgxs_err_reg,
4499 &sw_stat->xgxs_rxgxs_err_cnt))
4503 val64 = readq(&bar0->mc_int_status);
4504 if(val64 & MC_INT_STATUS_MC_INT) {
4505 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4506 &sw_stat->mc_err_cnt))
4509 /* Handling Ecc errors */
4510 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4511 writeq(val64, &bar0->mc_err_reg);
4512 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4513 sw_stat->double_ecc_errs++;
4514 if (sp->device_type != XFRAME_II_DEVICE) {
4516 * Reset XframeI only if critical error
4519 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4520 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4524 sw_stat->single_ecc_errs++;
4530 netif_stop_queue(dev);
4531 schedule_work(&sp->rst_timer_task);
4532 sw_stat->soft_reset_cnt++;
4537 * s2io_isr - ISR handler of the device .
4538 * @irq: the irq of the device.
4539 * @dev_id: a void pointer to the dev structure of the NIC.
4540 * Description: This function is the ISR handler of the device. It
4541 * identifies the reason for the interrupt and calls the relevant
4542 * service routines. As a contongency measure, this ISR allocates the
4543 * recv buffers, if their numbers are below the panic value which is
4544 * presently set to 25% of the original number of rcv buffers allocated.
4546 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4547 * IRQ_NONE: will be returned if interrupt is not from our device
4549 static irqreturn_t s2io_isr(int irq, void *dev_id)
4551 struct net_device *dev = (struct net_device *) dev_id;
4552 struct s2io_nic *sp = dev->priv;
4553 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4556 struct mac_info *mac_control;
4557 struct config_param *config;
4559 /* Pretend we handled any irq's from a disconnected card */
4560 if (pci_channel_offline(sp->pdev))
4563 if (!is_s2io_card_up(sp))
4566 mac_control = &sp->mac_control;
4567 config = &sp->config;
4570 * Identify the cause for interrupt and call the appropriate
4571 * interrupt handler. Causes for the interrupt could be;
4576 reason = readq(&bar0->general_int_status);
4578 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4579 /* Nothing much can be done. Get out */
4583 if (reason & (GEN_INTR_RXTRAFFIC |
4584 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4586 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4589 if (reason & GEN_INTR_RXTRAFFIC) {
4590 if (likely(netif_rx_schedule_prep(dev,
4592 __netif_rx_schedule(dev, &sp->napi);
4593 writeq(S2IO_MINUS_ONE,
4594 &bar0->rx_traffic_mask);
4596 writeq(S2IO_MINUS_ONE,
4597 &bar0->rx_traffic_int);
4601 * rx_traffic_int reg is an R1 register, writing all 1's
4602 * will ensure that the actual interrupt causing bit
4603 * get's cleared and hence a read can be avoided.
4605 if (reason & GEN_INTR_RXTRAFFIC)
4606 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4608 for (i = 0; i < config->rx_ring_num; i++)
4609 rx_intr_handler(&mac_control->rings[i]);
4613 * tx_traffic_int reg is an R1 register, writing all 1's
4614 * will ensure that the actual interrupt causing bit get's
4615 * cleared and hence a read can be avoided.
4617 if (reason & GEN_INTR_TXTRAFFIC)
4618 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4620 for (i = 0; i < config->tx_fifo_num; i++)
4621 tx_intr_handler(&mac_control->fifos[i]);
4623 if (reason & GEN_INTR_TXPIC)
4624 s2io_txpic_intr_handle(sp);
4627 * Reallocate the buffers from the interrupt handler itself.
4629 if (!config->napi) {
4630 for (i = 0; i < config->rx_ring_num; i++)
4631 s2io_chk_rx_buffers(sp, i);
4633 writeq(sp->general_int_mask, &bar0->general_int_mask);
4634 readl(&bar0->general_int_status);
4640 /* The interrupt was not raised by us */
4650 static void s2io_updt_stats(struct s2io_nic *sp)
4652 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4656 if (is_s2io_card_up(sp)) {
4657 /* Apprx 30us on a 133 MHz bus */
4658 val64 = SET_UPDT_CLICKS(10) |
4659 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4660 writeq(val64, &bar0->stat_cfg);
4663 val64 = readq(&bar0->stat_cfg);
4664 if (!(val64 & s2BIT(0)))
4668 break; /* Updt failed */
4674 * s2io_get_stats - Updates the device statistics structure.
4675 * @dev : pointer to the device structure.
4677 * This function updates the device statistics structure in the s2io_nic
4678 * structure and returns a pointer to the same.
4680 * pointer to the updated net_device_stats structure.
4683 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4685 struct s2io_nic *sp = dev->priv;
4686 struct mac_info *mac_control;
4687 struct config_param *config;
4690 mac_control = &sp->mac_control;
4691 config = &sp->config;
4693 /* Configure Stats for immediate updt */
4694 s2io_updt_stats(sp);
4696 sp->stats.tx_packets =
4697 le32_to_cpu(mac_control->stats_info->tmac_frms);
4698 sp->stats.tx_errors =
4699 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4700 sp->stats.rx_errors =
4701 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4702 sp->stats.multicast =
4703 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4704 sp->stats.rx_length_errors =
4705 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4707 return (&sp->stats);
4711 * s2io_set_multicast - entry point for multicast address enable/disable.
4712 * @dev : pointer to the device structure
4714 * This function is a driver entry point which gets called by the kernel
4715 * whenever multicast addresses must be enabled/disabled. This also gets
4716 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4717 * determine, if multicast address must be enabled or if promiscuous mode
4718 * is to be disabled etc.
4723 static void s2io_set_multicast(struct net_device *dev)
4726 struct dev_mc_list *mclist;
4727 struct s2io_nic *sp = dev->priv;
4728 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4729 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4731 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4734 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4735 /* Enable all Multicast addresses */
4736 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4737 &bar0->rmac_addr_data0_mem);
4738 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4739 &bar0->rmac_addr_data1_mem);
4740 val64 = RMAC_ADDR_CMD_MEM_WE |
4741 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4742 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4743 writeq(val64, &bar0->rmac_addr_cmd_mem);
4744 /* Wait till command completes */
4745 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4746 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4750 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4751 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4752 /* Disable all Multicast addresses */
4753 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4754 &bar0->rmac_addr_data0_mem);
4755 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4756 &bar0->rmac_addr_data1_mem);
4757 val64 = RMAC_ADDR_CMD_MEM_WE |
4758 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4759 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4760 writeq(val64, &bar0->rmac_addr_cmd_mem);
4761 /* Wait till command completes */
4762 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4763 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4767 sp->all_multi_pos = 0;
4770 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4771 /* Put the NIC into promiscuous mode */
4772 add = &bar0->mac_cfg;
4773 val64 = readq(&bar0->mac_cfg);
4774 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4776 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4777 writel((u32) val64, add);
4778 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4779 writel((u32) (val64 >> 32), (add + 4));
4781 if (vlan_tag_strip != 1) {
4782 val64 = readq(&bar0->rx_pa_cfg);
4783 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4784 writeq(val64, &bar0->rx_pa_cfg);
4785 vlan_strip_flag = 0;
4788 val64 = readq(&bar0->mac_cfg);
4789 sp->promisc_flg = 1;
4790 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4792 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4793 /* Remove the NIC from promiscuous mode */
4794 add = &bar0->mac_cfg;
4795 val64 = readq(&bar0->mac_cfg);
4796 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4798 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4799 writel((u32) val64, add);
4800 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4801 writel((u32) (val64 >> 32), (add + 4));
4803 if (vlan_tag_strip != 0) {
4804 val64 = readq(&bar0->rx_pa_cfg);
4805 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4806 writeq(val64, &bar0->rx_pa_cfg);
4807 vlan_strip_flag = 1;
4810 val64 = readq(&bar0->mac_cfg);
4811 sp->promisc_flg = 0;
4812 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4816 /* Update individual M_CAST address list */
4817 if ((!sp->m_cast_flg) && dev->mc_count) {
4819 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4820 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4822 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4823 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4827 prev_cnt = sp->mc_addr_count;
4828 sp->mc_addr_count = dev->mc_count;
4830 /* Clear out the previous list of Mc in the H/W. */
4831 for (i = 0; i < prev_cnt; i++) {
4832 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4833 &bar0->rmac_addr_data0_mem);
4834 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4835 &bar0->rmac_addr_data1_mem);
4836 val64 = RMAC_ADDR_CMD_MEM_WE |
4837 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4838 RMAC_ADDR_CMD_MEM_OFFSET
4839 (MAC_MC_ADDR_START_OFFSET + i);
4840 writeq(val64, &bar0->rmac_addr_cmd_mem);
4842 /* Wait for command completes */
4843 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4844 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4846 DBG_PRINT(ERR_DBG, "%s: Adding ",
4848 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4853 /* Create the new Rx filter list and update the same in H/W. */
4854 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4855 i++, mclist = mclist->next) {
4856 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4859 for (j = 0; j < ETH_ALEN; j++) {
4860 mac_addr |= mclist->dmi_addr[j];
4864 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4865 &bar0->rmac_addr_data0_mem);
4866 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4867 &bar0->rmac_addr_data1_mem);
4868 val64 = RMAC_ADDR_CMD_MEM_WE |
4869 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4870 RMAC_ADDR_CMD_MEM_OFFSET
4871 (i + MAC_MC_ADDR_START_OFFSET);
4872 writeq(val64, &bar0->rmac_addr_cmd_mem);
4874 /* Wait for command completes */
4875 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4876 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4878 DBG_PRINT(ERR_DBG, "%s: Adding ",
4880 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4887 /* add unicast MAC address to CAM */
4888 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4891 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4893 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4894 &bar0->rmac_addr_data0_mem);
4897 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4898 RMAC_ADDR_CMD_MEM_OFFSET(off);
4899 writeq(val64, &bar0->rmac_addr_cmd_mem);
4901 /* Wait till command completes */
4902 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4903 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4905 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4912 * s2io_set_mac_addr driver entry point
4914 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4916 struct sockaddr *addr = p;
4918 if (!is_valid_ether_addr(addr->sa_data))
4921 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4923 /* store the MAC address in CAM */
4924 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4928 * do_s2io_prog_unicast - Programs the Xframe mac address
4929 * @dev : pointer to the device structure.
4930 * @addr: a uchar pointer to the new mac address which is to be set.
4931 * Description : This procedure will program the Xframe to receive
4932 * frames with new Mac Address
4933 * Return value: SUCCESS on success and an appropriate (-)ve integer
4934 * as defined in errno.h file on failure.
4936 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4938 struct s2io_nic *sp = dev->priv;
4939 register u64 mac_addr = 0, perm_addr = 0;
4943 * Set the new MAC address as the new unicast filter and reflect this
4944 * change on the device address registered with the OS. It will be
4947 for (i = 0; i < ETH_ALEN; i++) {
4949 mac_addr |= addr[i];
4951 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4954 /* check if the dev_addr is different than perm_addr */
4955 if (mac_addr == perm_addr)
4958 /* Update the internal structure with this new mac address */
4959 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4960 return (do_s2io_add_unicast(sp, mac_addr, 0));
4964 * s2io_ethtool_sset - Sets different link parameters.
4965 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4966 * @info: pointer to the structure with parameters given by ethtool to set
4969 * The function sets different link parameters provided by the user onto
4975 static int s2io_ethtool_sset(struct net_device *dev,
4976 struct ethtool_cmd *info)
4978 struct s2io_nic *sp = dev->priv;
4979 if ((info->autoneg == AUTONEG_ENABLE) ||
4980 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4983 s2io_close(sp->dev);
4991 * s2io_ethtol_gset - Return link specific information.
4992 * @sp : private member of the device structure, pointer to the
4993 * s2io_nic structure.
4994 * @info : pointer to the structure with parameters given by ethtool
4995 * to return link information.
4997 * Returns link specific information like speed, duplex etc.. to ethtool.
4999 * return 0 on success.
5002 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5004 struct s2io_nic *sp = dev->priv;
5005 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5006 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5007 info->port = PORT_FIBRE;
5009 /* info->transceiver */
5010 info->transceiver = XCVR_EXTERNAL;
5012 if (netif_carrier_ok(sp->dev)) {
5013 info->speed = 10000;
5014 info->duplex = DUPLEX_FULL;
5020 info->autoneg = AUTONEG_DISABLE;
5025 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5026 * @sp : private member of the device structure, which is a pointer to the
5027 * s2io_nic structure.
5028 * @info : pointer to the structure with parameters given by ethtool to
5029 * return driver information.
5031 * Returns driver specefic information like name, version etc.. to ethtool.
5036 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5037 struct ethtool_drvinfo *info)
5039 struct s2io_nic *sp = dev->priv;
5041 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5042 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5043 strncpy(info->fw_version, "", sizeof(info->fw_version));
5044 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5045 info->regdump_len = XENA_REG_SPACE;
5046 info->eedump_len = XENA_EEPROM_SPACE;
5050 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5051 * @sp: private member of the device structure, which is a pointer to the
5052 * s2io_nic structure.
5053 * @regs : pointer to the structure with parameters given by ethtool for
5054 * dumping the registers.
5055 * @reg_space: The input argumnet into which all the registers are dumped.
5057 * Dumps the entire register space of xFrame NIC into the user given
5063 static void s2io_ethtool_gregs(struct net_device *dev,
5064 struct ethtool_regs *regs, void *space)
5068 u8 *reg_space = (u8 *) space;
5069 struct s2io_nic *sp = dev->priv;
5071 regs->len = XENA_REG_SPACE;
5072 regs->version = sp->pdev->subsystem_device;
5074 for (i = 0; i < regs->len; i += 8) {
5075 reg = readq(sp->bar0 + i);
5076 memcpy((reg_space + i), ®, 8);
5081 * s2io_phy_id - timer function that alternates adapter LED.
5082 * @data : address of the private member of the device structure, which
5083 * is a pointer to the s2io_nic structure, provided as an u32.
5084 * Description: This is actually the timer function that alternates the
5085 * adapter LED bit of the adapter control bit to set/reset every time on
5086 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5087 * once every second.
5089 static void s2io_phy_id(unsigned long data)
5091 struct s2io_nic *sp = (struct s2io_nic *) data;
5092 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5096 subid = sp->pdev->subsystem_device;
5097 if ((sp->device_type == XFRAME_II_DEVICE) ||
5098 ((subid & 0xFF) >= 0x07)) {
5099 val64 = readq(&bar0->gpio_control);
5100 val64 ^= GPIO_CTRL_GPIO_0;
5101 writeq(val64, &bar0->gpio_control);
5103 val64 = readq(&bar0->adapter_control);
5104 val64 ^= ADAPTER_LED_ON;
5105 writeq(val64, &bar0->adapter_control);
5108 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5112 * s2io_ethtool_idnic - To physically identify the nic on the system.
5113 * @sp : private member of the device structure, which is a pointer to the
5114 * s2io_nic structure.
5115 * @id : pointer to the structure with identification parameters given by
5117 * Description: Used to physically identify the NIC on the system.
5118 * The Link LED will blink for a time specified by the user for
5120 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5121 * identification is possible only if it's link is up.
5123 * int , returns 0 on success
5126 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5128 u64 val64 = 0, last_gpio_ctrl_val;
5129 struct s2io_nic *sp = dev->priv;
5130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5133 subid = sp->pdev->subsystem_device;
5134 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5135 if ((sp->device_type == XFRAME_I_DEVICE) &&
5136 ((subid & 0xFF) < 0x07)) {
5137 val64 = readq(&bar0->adapter_control);
5138 if (!(val64 & ADAPTER_CNTL_EN)) {
5140 "Adapter Link down, cannot blink LED\n");
5144 if (sp->id_timer.function == NULL) {
5145 init_timer(&sp->id_timer);
5146 sp->id_timer.function = s2io_phy_id;
5147 sp->id_timer.data = (unsigned long) sp;
5149 mod_timer(&sp->id_timer, jiffies);
5151 msleep_interruptible(data * HZ);
5153 msleep_interruptible(MAX_FLICKER_TIME);
5154 del_timer_sync(&sp->id_timer);
5156 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5157 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5158 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5164 static void s2io_ethtool_gringparam(struct net_device *dev,
5165 struct ethtool_ringparam *ering)
5167 struct s2io_nic *sp = dev->priv;
5168 int i,tx_desc_count=0,rx_desc_count=0;
5170 if (sp->rxd_mode == RXD_MODE_1)
5171 ering->rx_max_pending = MAX_RX_DESC_1;
5172 else if (sp->rxd_mode == RXD_MODE_3B)
5173 ering->rx_max_pending = MAX_RX_DESC_2;
5175 ering->tx_max_pending = MAX_TX_DESC;
5176 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5177 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5179 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5180 ering->tx_pending = tx_desc_count;
5182 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5183 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5185 ering->rx_pending = rx_desc_count;
5187 ering->rx_mini_max_pending = 0;
5188 ering->rx_mini_pending = 0;
5189 if(sp->rxd_mode == RXD_MODE_1)
5190 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5191 else if (sp->rxd_mode == RXD_MODE_3B)
5192 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5193 ering->rx_jumbo_pending = rx_desc_count;
5197 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5198 * @sp : private member of the device structure, which is a pointer to the
5199 * s2io_nic structure.
5200 * @ep : pointer to the structure with pause parameters given by ethtool.
5202 * Returns the Pause frame generation and reception capability of the NIC.
5206 static void s2io_ethtool_getpause_data(struct net_device *dev,
5207 struct ethtool_pauseparam *ep)
5210 struct s2io_nic *sp = dev->priv;
5211 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5213 val64 = readq(&bar0->rmac_pause_cfg);
5214 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5215 ep->tx_pause = TRUE;
5216 if (val64 & RMAC_PAUSE_RX_ENABLE)
5217 ep->rx_pause = TRUE;
5218 ep->autoneg = FALSE;
5222 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5223 * @sp : private member of the device structure, which is a pointer to the
5224 * s2io_nic structure.
5225 * @ep : pointer to the structure with pause parameters given by ethtool.
5227 * It can be used to set or reset Pause frame generation or reception
5228 * support of the NIC.
5230 * int, returns 0 on Success
5233 static int s2io_ethtool_setpause_data(struct net_device *dev,
5234 struct ethtool_pauseparam *ep)
5237 struct s2io_nic *sp = dev->priv;
5238 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5240 val64 = readq(&bar0->rmac_pause_cfg);
5242 val64 |= RMAC_PAUSE_GEN_ENABLE;
5244 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5246 val64 |= RMAC_PAUSE_RX_ENABLE;
5248 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5249 writeq(val64, &bar0->rmac_pause_cfg);
5254 * read_eeprom - reads 4 bytes of data from user given offset.
5255 * @sp : private member of the device structure, which is a pointer to the
5256 * s2io_nic structure.
5257 * @off : offset at which the data must be written
5258 * @data : Its an output parameter where the data read at the given
5261 * Will read 4 bytes of data from the user given offset and return the
5263 * NOTE: Will allow to read only part of the EEPROM visible through the
5266 * -1 on failure and 0 on success.
5269 #define S2IO_DEV_ID 5
5270 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5275 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5277 if (sp->device_type == XFRAME_I_DEVICE) {
5278 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5279 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5280 I2C_CONTROL_CNTL_START;
5281 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5283 while (exit_cnt < 5) {
5284 val64 = readq(&bar0->i2c_control);
5285 if (I2C_CONTROL_CNTL_END(val64)) {
5286 *data = I2C_CONTROL_GET_DATA(val64);
5295 if (sp->device_type == XFRAME_II_DEVICE) {
5296 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5297 SPI_CONTROL_BYTECNT(0x3) |
5298 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5299 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5300 val64 |= SPI_CONTROL_REQ;
5301 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5302 while (exit_cnt < 5) {
5303 val64 = readq(&bar0->spi_control);
5304 if (val64 & SPI_CONTROL_NACK) {
5307 } else if (val64 & SPI_CONTROL_DONE) {
5308 *data = readq(&bar0->spi_data);
5321 * write_eeprom - actually writes the relevant part of the data value.
5322 * @sp : private member of the device structure, which is a pointer to the
5323 * s2io_nic structure.
5324 * @off : offset at which the data must be written
5325 * @data : The data that is to be written
5326 * @cnt : Number of bytes of the data that are actually to be written into
5327 * the Eeprom. (max of 3)
5329 * Actually writes the relevant part of the data value into the Eeprom
5330 * through the I2C bus.
5332 * 0 on success, -1 on failure.
5335 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5337 int exit_cnt = 0, ret = -1;
5339 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5341 if (sp->device_type == XFRAME_I_DEVICE) {
5342 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5343 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5344 I2C_CONTROL_CNTL_START;
5345 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5347 while (exit_cnt < 5) {
5348 val64 = readq(&bar0->i2c_control);
5349 if (I2C_CONTROL_CNTL_END(val64)) {
5350 if (!(val64 & I2C_CONTROL_NACK))
5359 if (sp->device_type == XFRAME_II_DEVICE) {
5360 int write_cnt = (cnt == 8) ? 0 : cnt;
5361 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5363 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5364 SPI_CONTROL_BYTECNT(write_cnt) |
5365 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5366 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5367 val64 |= SPI_CONTROL_REQ;
5368 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5369 while (exit_cnt < 5) {
5370 val64 = readq(&bar0->spi_control);
5371 if (val64 & SPI_CONTROL_NACK) {
5374 } else if (val64 & SPI_CONTROL_DONE) {
5384 static void s2io_vpd_read(struct s2io_nic *nic)
5388 int i=0, cnt, fail = 0;
5389 int vpd_addr = 0x80;
5391 if (nic->device_type == XFRAME_II_DEVICE) {
5392 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5396 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5399 strcpy(nic->serial_num, "NOT AVAILABLE");
5401 vpd_data = kmalloc(256, GFP_KERNEL);
5403 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5406 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5408 for (i = 0; i < 256; i +=4 ) {
5409 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5410 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5411 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5412 for (cnt = 0; cnt <5; cnt++) {
5414 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5419 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5423 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5424 (u32 *)&vpd_data[i]);
5428 /* read serial number of adapter */
5429 for (cnt = 0; cnt < 256; cnt++) {
5430 if ((vpd_data[cnt] == 'S') &&
5431 (vpd_data[cnt+1] == 'N') &&
5432 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5433 memset(nic->serial_num, 0, VPD_STRING_LEN);
5434 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5441 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5442 memset(nic->product_name, 0, vpd_data[1]);
5443 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5446 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5450 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5451 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5452 * @eeprom : pointer to the user level structure provided by ethtool,
5453 * containing all relevant information.
5454 * @data_buf : user defined value to be written into Eeprom.
5455 * Description: Reads the values stored in the Eeprom at given offset
5456 * for a given length. Stores these values int the input argument data
5457 * buffer 'data_buf' and returns these to the caller (ethtool.)
5462 static int s2io_ethtool_geeprom(struct net_device *dev,
5463 struct ethtool_eeprom *eeprom, u8 * data_buf)
5467 struct s2io_nic *sp = dev->priv;
5469 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5471 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5472 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5474 for (i = 0; i < eeprom->len; i += 4) {
5475 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5476 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5480 memcpy((data_buf + i), &valid, 4);
5486 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5487 * @sp : private member of the device structure, which is a pointer to the
5488 * s2io_nic structure.
5489 * @eeprom : pointer to the user level structure provided by ethtool,
5490 * containing all relevant information.
5491 * @data_buf ; user defined value to be written into Eeprom.
5493 * Tries to write the user provided value in the Eeprom, at the offset
5494 * given by the user.
5496 * 0 on success, -EFAULT on failure.
5499 static int s2io_ethtool_seeprom(struct net_device *dev,
5500 struct ethtool_eeprom *eeprom,
5503 int len = eeprom->len, cnt = 0;
5504 u64 valid = 0, data;
5505 struct s2io_nic *sp = dev->priv;
5507 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5509 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5510 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5516 data = (u32) data_buf[cnt] & 0x000000FF;
5518 valid = (u32) (data << 24);
5522 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5524 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5526 "write into the specified offset\n");
5537 * s2io_register_test - reads and writes into all clock domains.
5538 * @sp : private member of the device structure, which is a pointer to the
5539 * s2io_nic structure.
5540 * @data : variable that returns the result of each of the test conducted b
5543 * Read and write into all clock domains. The NIC has 3 clock domains,
5544 * see that registers in all the three regions are accessible.
5549 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5551 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5552 u64 val64 = 0, exp_val;
5555 val64 = readq(&bar0->pif_rd_swapper_fb);
5556 if (val64 != 0x123456789abcdefULL) {
5558 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5561 val64 = readq(&bar0->rmac_pause_cfg);
5562 if (val64 != 0xc000ffff00000000ULL) {
5564 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5567 val64 = readq(&bar0->rx_queue_cfg);
5568 if (sp->device_type == XFRAME_II_DEVICE)
5569 exp_val = 0x0404040404040404ULL;
5571 exp_val = 0x0808080808080808ULL;
5572 if (val64 != exp_val) {
5574 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5577 val64 = readq(&bar0->xgxs_efifo_cfg);
5578 if (val64 != 0x000000001923141EULL) {
5580 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5583 val64 = 0x5A5A5A5A5A5A5A5AULL;
5584 writeq(val64, &bar0->xmsi_data);
5585 val64 = readq(&bar0->xmsi_data);
5586 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5588 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5591 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5592 writeq(val64, &bar0->xmsi_data);
5593 val64 = readq(&bar0->xmsi_data);
5594 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5596 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5604 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5605 * @sp : private member of the device structure, which is a pointer to the
5606 * s2io_nic structure.
5607 * @data:variable that returns the result of each of the test conducted by
5610 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5616 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5619 u64 ret_data, org_4F0, org_7F0;
5620 u8 saved_4F0 = 0, saved_7F0 = 0;
5621 struct net_device *dev = sp->dev;
5623 /* Test Write Error at offset 0 */
5624 /* Note that SPI interface allows write access to all areas
5625 * of EEPROM. Hence doing all negative testing only for Xframe I.
5627 if (sp->device_type == XFRAME_I_DEVICE)
5628 if (!write_eeprom(sp, 0, 0, 3))
5631 /* Save current values at offsets 0x4F0 and 0x7F0 */
5632 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5634 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5637 /* Test Write at offset 4f0 */
5638 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5640 if (read_eeprom(sp, 0x4F0, &ret_data))
5643 if (ret_data != 0x012345) {
5644 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5645 "Data written %llx Data read %llx\n",
5646 dev->name, (unsigned long long)0x12345,
5647 (unsigned long long)ret_data);
5651 /* Reset the EEPROM data go FFFF */
5652 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5654 /* Test Write Request Error at offset 0x7c */
5655 if (sp->device_type == XFRAME_I_DEVICE)
5656 if (!write_eeprom(sp, 0x07C, 0, 3))
5659 /* Test Write Request at offset 0x7f0 */
5660 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5662 if (read_eeprom(sp, 0x7F0, &ret_data))
5665 if (ret_data != 0x012345) {
5666 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5667 "Data written %llx Data read %llx\n",
5668 dev->name, (unsigned long long)0x12345,
5669 (unsigned long long)ret_data);
5673 /* Reset the EEPROM data go FFFF */
5674 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5676 if (sp->device_type == XFRAME_I_DEVICE) {
5677 /* Test Write Error at offset 0x80 */
5678 if (!write_eeprom(sp, 0x080, 0, 3))
5681 /* Test Write Error at offset 0xfc */
5682 if (!write_eeprom(sp, 0x0FC, 0, 3))
5685 /* Test Write Error at offset 0x100 */
5686 if (!write_eeprom(sp, 0x100, 0, 3))
5689 /* Test Write Error at offset 4ec */
5690 if (!write_eeprom(sp, 0x4EC, 0, 3))
5694 /* Restore values at offsets 0x4F0 and 0x7F0 */
5696 write_eeprom(sp, 0x4F0, org_4F0, 3);
5698 write_eeprom(sp, 0x7F0, org_7F0, 3);
5705 * s2io_bist_test - invokes the MemBist test of the card .
5706 * @sp : private member of the device structure, which is a pointer to the
5707 * s2io_nic structure.
5708 * @data:variable that returns the result of each of the test conducted by
5711 * This invokes the MemBist test of the card. We give around
5712 * 2 secs time for the Test to complete. If it's still not complete
5713 * within this peiod, we consider that the test failed.
5715 * 0 on success and -1 on failure.
5718 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5721 int cnt = 0, ret = -1;
5723 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5724 bist |= PCI_BIST_START;
5725 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5728 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5729 if (!(bist & PCI_BIST_START)) {
5730 *data = (bist & PCI_BIST_CODE_MASK);
5742 * s2io-link_test - verifies the link state of the nic
5743 * @sp ; private member of the device structure, which is a pointer to the
5744 * s2io_nic structure.
5745 * @data: variable that returns the result of each of the test conducted by
5748 * The function verifies the link state of the NIC and updates the input
5749 * argument 'data' appropriately.
5754 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5759 val64 = readq(&bar0->adapter_status);
5760 if(!(LINK_IS_UP(val64)))
5769 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5770 * @sp - private member of the device structure, which is a pointer to the
5771 * s2io_nic structure.
5772 * @data - variable that returns the result of each of the test
5773 * conducted by the driver.
5775 * This is one of the offline test that tests the read and write
5776 * access to the RldRam chip on the NIC.
5781 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5783 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5785 int cnt, iteration = 0, test_fail = 0;
5787 val64 = readq(&bar0->adapter_control);
5788 val64 &= ~ADAPTER_ECC_EN;
5789 writeq(val64, &bar0->adapter_control);
5791 val64 = readq(&bar0->mc_rldram_test_ctrl);
5792 val64 |= MC_RLDRAM_TEST_MODE;
5793 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5795 val64 = readq(&bar0->mc_rldram_mrs);
5796 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5797 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5799 val64 |= MC_RLDRAM_MRS_ENABLE;
5800 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5802 while (iteration < 2) {
5803 val64 = 0x55555555aaaa0000ULL;
5804 if (iteration == 1) {
5805 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5807 writeq(val64, &bar0->mc_rldram_test_d0);
5809 val64 = 0xaaaa5a5555550000ULL;
5810 if (iteration == 1) {
5811 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5813 writeq(val64, &bar0->mc_rldram_test_d1);
5815 val64 = 0x55aaaaaaaa5a0000ULL;
5816 if (iteration == 1) {
5817 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5819 writeq(val64, &bar0->mc_rldram_test_d2);
5821 val64 = (u64) (0x0000003ffffe0100ULL);
5822 writeq(val64, &bar0->mc_rldram_test_add);
5824 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5826 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5828 for (cnt = 0; cnt < 5; cnt++) {
5829 val64 = readq(&bar0->mc_rldram_test_ctrl);
5830 if (val64 & MC_RLDRAM_TEST_DONE)
5838 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5839 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5841 for (cnt = 0; cnt < 5; cnt++) {
5842 val64 = readq(&bar0->mc_rldram_test_ctrl);
5843 if (val64 & MC_RLDRAM_TEST_DONE)
5851 val64 = readq(&bar0->mc_rldram_test_ctrl);
5852 if (!(val64 & MC_RLDRAM_TEST_PASS))
5860 /* Bring the adapter out of test mode */
5861 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5867 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5868 * @sp : private member of the device structure, which is a pointer to the
5869 * s2io_nic structure.
5870 * @ethtest : pointer to a ethtool command specific structure that will be
5871 * returned to the user.
5872 * @data : variable that returns the result of each of the test
5873 * conducted by the driver.
5875 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5876 * the health of the card.
5881 static void s2io_ethtool_test(struct net_device *dev,
5882 struct ethtool_test *ethtest,
5885 struct s2io_nic *sp = dev->priv;
5886 int orig_state = netif_running(sp->dev);
5888 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5889 /* Offline Tests. */
5891 s2io_close(sp->dev);
5893 if (s2io_register_test(sp, &data[0]))
5894 ethtest->flags |= ETH_TEST_FL_FAILED;
5898 if (s2io_rldram_test(sp, &data[3]))
5899 ethtest->flags |= ETH_TEST_FL_FAILED;
5903 if (s2io_eeprom_test(sp, &data[1]))
5904 ethtest->flags |= ETH_TEST_FL_FAILED;
5906 if (s2io_bist_test(sp, &data[4]))
5907 ethtest->flags |= ETH_TEST_FL_FAILED;
5917 "%s: is not up, cannot run test\n",
5926 if (s2io_link_test(sp, &data[2]))
5927 ethtest->flags |= ETH_TEST_FL_FAILED;
5936 static void s2io_get_ethtool_stats(struct net_device *dev,
5937 struct ethtool_stats *estats,
5941 struct s2io_nic *sp = dev->priv;
5942 struct stat_block *stat_info = sp->mac_control.stats_info;
5944 s2io_updt_stats(sp);
5946 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5947 le32_to_cpu(stat_info->tmac_frms);
5949 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5950 le32_to_cpu(stat_info->tmac_data_octets);
5951 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5953 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5954 le32_to_cpu(stat_info->tmac_mcst_frms);
5956 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5957 le32_to_cpu(stat_info->tmac_bcst_frms);
5958 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5960 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5961 le32_to_cpu(stat_info->tmac_ttl_octets);
5963 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5964 le32_to_cpu(stat_info->tmac_ucst_frms);
5966 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5967 le32_to_cpu(stat_info->tmac_nucst_frms);
5969 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5970 le32_to_cpu(stat_info->tmac_any_err_frms);
5971 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5972 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5974 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5975 le32_to_cpu(stat_info->tmac_vld_ip);
5977 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5978 le32_to_cpu(stat_info->tmac_drop_ip);
5980 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5981 le32_to_cpu(stat_info->tmac_icmp);
5983 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5984 le32_to_cpu(stat_info->tmac_rst_tcp);
5985 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5986 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5987 le32_to_cpu(stat_info->tmac_udp);
5989 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5990 le32_to_cpu(stat_info->rmac_vld_frms);
5992 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5993 le32_to_cpu(stat_info->rmac_data_octets);
5994 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5995 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5997 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5998 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6000 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6001 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6002 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6003 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6004 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6005 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6006 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6008 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6009 le32_to_cpu(stat_info->rmac_ttl_octets);
6011 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6012 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6014 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6015 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6017 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6018 le32_to_cpu(stat_info->rmac_discarded_frms);
6020 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6021 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6022 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6023 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6025 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6026 le32_to_cpu(stat_info->rmac_usized_frms);
6028 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6029 le32_to_cpu(stat_info->rmac_osized_frms);
6031 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6032 le32_to_cpu(stat_info->rmac_frag_frms);
6034 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6035 le32_to_cpu(stat_info->rmac_jabber_frms);
6036 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6037 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6038 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6039 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6040 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6041 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6043 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6044 le32_to_cpu(stat_info->rmac_ip);
6045 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6046 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6048 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6049 le32_to_cpu(stat_info->rmac_drop_ip);
6051 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6052 le32_to_cpu(stat_info->rmac_icmp);
6053 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6055 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6056 le32_to_cpu(stat_info->rmac_udp);
6058 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6059 le32_to_cpu(stat_info->rmac_err_drp_udp);
6060 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6062 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6063 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6064 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6065 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6068 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6069 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6070 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6071 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6072 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6073 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6074 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6075 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6076 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6078 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6079 le32_to_cpu(stat_info->rmac_pause_cnt);
6080 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6081 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6083 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6084 le32_to_cpu(stat_info->rmac_accepted_ip);
6085 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6086 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6087 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6088 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6089 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6090 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6091 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6092 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6098 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6099 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6100 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6101 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6102 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6103 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6105 /* Enhanced statistics exist only for Hercules */
6106 if(sp->device_type == XFRAME_II_DEVICE) {
6108 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6110 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6112 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6113 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6114 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6115 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6116 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6117 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6118 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6119 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6120 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6121 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6122 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6123 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6124 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6125 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6129 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6130 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6131 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6132 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6133 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6134 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6135 for (k = 0; k < MAX_RX_RINGS; k++)
6136 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6137 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6138 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6139 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6140 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6141 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6142 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6143 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6144 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6145 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6146 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6147 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6148 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6149 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6150 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6151 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6152 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6153 if (stat_info->sw_stat.num_aggregations) {
6154 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6157 * Since 64-bit divide does not work on all platforms,
6158 * do repeated subtraction.
6160 while (tmp >= stat_info->sw_stat.num_aggregations) {
6161 tmp -= stat_info->sw_stat.num_aggregations;
6164 tmp_stats[i++] = count;
6168 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6169 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6170 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6171 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6172 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6173 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6174 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6175 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6176 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6178 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6179 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6180 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6181 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6184 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6185 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6186 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6191 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6204 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6205 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6206 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6207 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6208 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6209 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6212 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6214 return (XENA_REG_SPACE);
6218 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6220 struct s2io_nic *sp = dev->priv;
6222 return (sp->rx_csum);
6225 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6227 struct s2io_nic *sp = dev->priv;
6237 static int s2io_get_eeprom_len(struct net_device *dev)
6239 return (XENA_EEPROM_SPACE);
6242 static int s2io_get_sset_count(struct net_device *dev, int sset)
6244 struct s2io_nic *sp = dev->priv;
6248 return S2IO_TEST_LEN;
6250 switch(sp->device_type) {
6251 case XFRAME_I_DEVICE:
6252 return XFRAME_I_STAT_LEN;
6253 case XFRAME_II_DEVICE:
6254 return XFRAME_II_STAT_LEN;
6263 static void s2io_ethtool_get_strings(struct net_device *dev,
6264 u32 stringset, u8 * data)
6267 struct s2io_nic *sp = dev->priv;
6269 switch (stringset) {
6271 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6274 stat_size = sizeof(ethtool_xena_stats_keys);
6275 memcpy(data, ðtool_xena_stats_keys,stat_size);
6276 if(sp->device_type == XFRAME_II_DEVICE) {
6277 memcpy(data + stat_size,
6278 ðtool_enhanced_stats_keys,
6279 sizeof(ethtool_enhanced_stats_keys));
6280 stat_size += sizeof(ethtool_enhanced_stats_keys);
6283 memcpy(data + stat_size, ðtool_driver_stats_keys,
6284 sizeof(ethtool_driver_stats_keys));
6288 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6291 dev->features |= NETIF_F_IP_CSUM;
6293 dev->features &= ~NETIF_F_IP_CSUM;
6298 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6300 return (dev->features & NETIF_F_TSO) != 0;
6302 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6305 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6307 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6312 static const struct ethtool_ops netdev_ethtool_ops = {
6313 .get_settings = s2io_ethtool_gset,
6314 .set_settings = s2io_ethtool_sset,
6315 .get_drvinfo = s2io_ethtool_gdrvinfo,
6316 .get_regs_len = s2io_ethtool_get_regs_len,
6317 .get_regs = s2io_ethtool_gregs,
6318 .get_link = ethtool_op_get_link,
6319 .get_eeprom_len = s2io_get_eeprom_len,
6320 .get_eeprom = s2io_ethtool_geeprom,
6321 .set_eeprom = s2io_ethtool_seeprom,
6322 .get_ringparam = s2io_ethtool_gringparam,
6323 .get_pauseparam = s2io_ethtool_getpause_data,
6324 .set_pauseparam = s2io_ethtool_setpause_data,
6325 .get_rx_csum = s2io_ethtool_get_rx_csum,
6326 .set_rx_csum = s2io_ethtool_set_rx_csum,
6327 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6328 .set_sg = ethtool_op_set_sg,
6329 .get_tso = s2io_ethtool_op_get_tso,
6330 .set_tso = s2io_ethtool_op_set_tso,
6331 .set_ufo = ethtool_op_set_ufo,
6332 .self_test = s2io_ethtool_test,
6333 .get_strings = s2io_ethtool_get_strings,
6334 .phys_id = s2io_ethtool_idnic,
6335 .get_ethtool_stats = s2io_get_ethtool_stats,
6336 .get_sset_count = s2io_get_sset_count,
6340 * s2io_ioctl - Entry point for the Ioctl
6341 * @dev : Device pointer.
6342 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6343 * a proprietary structure used to pass information to the driver.
6344 * @cmd : This is used to distinguish between the different commands that
6345 * can be passed to the IOCTL functions.
6347 * Currently there are no special functionality supported in IOCTL, hence
6348 * function always return EOPNOTSUPPORTED
6351 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6357 * s2io_change_mtu - entry point to change MTU size for the device.
6358 * @dev : device pointer.
6359 * @new_mtu : the new MTU size for the device.
6360 * Description: A driver entry point to change MTU size for the device.
6361 * Before changing the MTU the device must be stopped.
6363 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6367 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6369 struct s2io_nic *sp = dev->priv;
6372 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6373 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6379 if (netif_running(dev)) {
6381 netif_stop_queue(dev);
6382 ret = s2io_card_up(sp);
6384 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6388 if (netif_queue_stopped(dev))
6389 netif_wake_queue(dev);
6390 } else { /* Device is down */
6391 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6392 u64 val64 = new_mtu;
6394 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6401 * s2io_tasklet - Bottom half of the ISR.
6402 * @dev_adr : address of the device structure in dma_addr_t format.
6404 * This is the tasklet or the bottom half of the ISR. This is
6405 * an extension of the ISR which is scheduled by the scheduler to be run
6406 * when the load on the CPU is low. All low priority tasks of the ISR can
6407 * be pushed into the tasklet. For now the tasklet is used only to
6408 * replenish the Rx buffers in the Rx buffer descriptors.
6413 static void s2io_tasklet(unsigned long dev_addr)
6415 struct net_device *dev = (struct net_device *) dev_addr;
6416 struct s2io_nic *sp = dev->priv;
6418 struct mac_info *mac_control;
6419 struct config_param *config;
6421 mac_control = &sp->mac_control;
6422 config = &sp->config;
6424 if (!TASKLET_IN_USE) {
6425 for (i = 0; i < config->rx_ring_num; i++) {
6426 ret = fill_rx_buffers(sp, i);
6427 if (ret == -ENOMEM) {
6428 DBG_PRINT(INFO_DBG, "%s: Out of ",
6430 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6432 } else if (ret == -EFILL) {
6434 "%s: Rx Ring %d is full\n",
6439 clear_bit(0, (&sp->tasklet_status));
6444 * s2io_set_link - Set the LInk status
6445 * @data: long pointer to device private structue
6446 * Description: Sets the link status for the adapter
6449 static void s2io_set_link(struct work_struct *work)
6451 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6452 struct net_device *dev = nic->dev;
6453 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6459 if (!netif_running(dev))
6462 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6463 /* The card is being reset, no point doing anything */
6467 subid = nic->pdev->subsystem_device;
6468 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6470 * Allow a small delay for the NICs self initiated
6471 * cleanup to complete.
6476 val64 = readq(&bar0->adapter_status);
6477 if (LINK_IS_UP(val64)) {
6478 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6479 if (verify_xena_quiescence(nic)) {
6480 val64 = readq(&bar0->adapter_control);
6481 val64 |= ADAPTER_CNTL_EN;
6482 writeq(val64, &bar0->adapter_control);
6483 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6484 nic->device_type, subid)) {
6485 val64 = readq(&bar0->gpio_control);
6486 val64 |= GPIO_CTRL_GPIO_0;
6487 writeq(val64, &bar0->gpio_control);
6488 val64 = readq(&bar0->gpio_control);
6490 val64 |= ADAPTER_LED_ON;
6491 writeq(val64, &bar0->adapter_control);
6493 nic->device_enabled_once = TRUE;
6495 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6496 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6497 netif_stop_queue(dev);
6500 val64 = readq(&bar0->adapter_control);
6501 val64 |= ADAPTER_LED_ON;
6502 writeq(val64, &bar0->adapter_control);
6503 s2io_link(nic, LINK_UP);
6505 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6507 val64 = readq(&bar0->gpio_control);
6508 val64 &= ~GPIO_CTRL_GPIO_0;
6509 writeq(val64, &bar0->gpio_control);
6510 val64 = readq(&bar0->gpio_control);
6513 val64 = readq(&bar0->adapter_control);
6514 val64 = val64 &(~ADAPTER_LED_ON);
6515 writeq(val64, &bar0->adapter_control);
6516 s2io_link(nic, LINK_DOWN);
6518 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6524 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6526 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6527 u64 *temp2, int size)
6529 struct net_device *dev = sp->dev;
6530 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6532 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6533 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6536 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6538 * As Rx frame are not going to be processed,
6539 * using same mapped address for the Rxd
6542 rxdp1->Buffer0_ptr = *temp0;
6544 *skb = dev_alloc_skb(size);
6546 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6547 DBG_PRINT(INFO_DBG, "memory to allocate ");
6548 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6549 sp->mac_control.stats_info->sw_stat. \
6550 mem_alloc_fail_cnt++;
6553 sp->mac_control.stats_info->sw_stat.mem_allocated
6554 += (*skb)->truesize;
6555 /* storing the mapped addr in a temp variable
6556 * such it will be used for next rxd whose
6557 * Host Control is NULL
6559 rxdp1->Buffer0_ptr = *temp0 =
6560 pci_map_single( sp->pdev, (*skb)->data,
6561 size - NET_IP_ALIGN,
6562 PCI_DMA_FROMDEVICE);
6563 if( (rxdp1->Buffer0_ptr == 0) ||
6564 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6565 goto memalloc_failed;
6567 rxdp->Host_Control = (unsigned long) (*skb);
6569 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6570 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6571 /* Two buffer Mode */
6573 rxdp3->Buffer2_ptr = *temp2;
6574 rxdp3->Buffer0_ptr = *temp0;
6575 rxdp3->Buffer1_ptr = *temp1;
6577 *skb = dev_alloc_skb(size);
6579 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6580 DBG_PRINT(INFO_DBG, "memory to allocate ");
6581 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6582 sp->mac_control.stats_info->sw_stat. \
6583 mem_alloc_fail_cnt++;
6586 sp->mac_control.stats_info->sw_stat.mem_allocated
6587 += (*skb)->truesize;
6588 rxdp3->Buffer2_ptr = *temp2 =
6589 pci_map_single(sp->pdev, (*skb)->data,
6591 PCI_DMA_FROMDEVICE);
6592 if( (rxdp3->Buffer2_ptr == 0) ||
6593 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6594 goto memalloc_failed;
6596 rxdp3->Buffer0_ptr = *temp0 =
6597 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6598 PCI_DMA_FROMDEVICE);
6599 if( (rxdp3->Buffer0_ptr == 0) ||
6600 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6601 pci_unmap_single (sp->pdev,
6602 (dma_addr_t)rxdp3->Buffer2_ptr,
6603 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6604 goto memalloc_failed;
6606 rxdp->Host_Control = (unsigned long) (*skb);
6608 /* Buffer-1 will be dummy buffer not used */
6609 rxdp3->Buffer1_ptr = *temp1 =
6610 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6611 PCI_DMA_FROMDEVICE);
6612 if( (rxdp3->Buffer1_ptr == 0) ||
6613 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6614 pci_unmap_single (sp->pdev,
6615 (dma_addr_t)rxdp3->Buffer0_ptr,
6616 BUF0_LEN, PCI_DMA_FROMDEVICE);
6617 pci_unmap_single (sp->pdev,
6618 (dma_addr_t)rxdp3->Buffer2_ptr,
6619 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6620 goto memalloc_failed;
6626 stats->pci_map_fail_cnt++;
6627 stats->mem_freed += (*skb)->truesize;
6628 dev_kfree_skb(*skb);
6632 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6635 struct net_device *dev = sp->dev;
6636 if (sp->rxd_mode == RXD_MODE_1) {
6637 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6638 } else if (sp->rxd_mode == RXD_MODE_3B) {
6639 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6640 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6641 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6645 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6647 int i, j, k, blk_cnt = 0, size;
6648 struct mac_info * mac_control = &sp->mac_control;
6649 struct config_param *config = &sp->config;
6650 struct net_device *dev = sp->dev;
6651 struct RxD_t *rxdp = NULL;
6652 struct sk_buff *skb = NULL;
6653 struct buffAdd *ba = NULL;
6654 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6656 /* Calculate the size based on ring mode */
6657 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6658 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6659 if (sp->rxd_mode == RXD_MODE_1)
6660 size += NET_IP_ALIGN;
6661 else if (sp->rxd_mode == RXD_MODE_3B)
6662 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6664 for (i = 0; i < config->rx_ring_num; i++) {
6665 blk_cnt = config->rx_cfg[i].num_rxd /
6666 (rxd_count[sp->rxd_mode] +1);
6668 for (j = 0; j < blk_cnt; j++) {
6669 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6670 rxdp = mac_control->rings[i].
6671 rx_blocks[j].rxds[k].virt_addr;
6672 if(sp->rxd_mode == RXD_MODE_3B)
6673 ba = &mac_control->rings[i].ba[j][k];
6674 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6675 &skb,(u64 *)&temp0_64,
6682 set_rxd_buffer_size(sp, rxdp, size);
6684 /* flip the Ownership bit to Hardware */
6685 rxdp->Control_1 |= RXD_OWN_XENA;
6693 static int s2io_add_isr(struct s2io_nic * sp)
6696 struct net_device *dev = sp->dev;
6699 if (sp->config.intr_type == MSI_X)
6700 ret = s2io_enable_msi_x(sp);
6702 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6703 sp->config.intr_type = INTA;
6706 /* Store the values of the MSIX table in the struct s2io_nic structure */
6707 store_xmsi_data(sp);
6709 /* After proper initialization of H/W, register ISR */
6710 if (sp->config.intr_type == MSI_X) {
6711 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6713 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6714 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6715 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6717 err = request_irq(sp->entries[i].vector,
6718 s2io_msix_fifo_handle, 0, sp->desc[i],
6719 sp->s2io_entries[i].arg);
6720 /* If either data or addr is zero print it */
6721 if(!(sp->msix_info[i].addr &&
6722 sp->msix_info[i].data)) {
6723 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6724 "Data:0x%lx\n",sp->desc[i],
6725 (unsigned long long)
6726 sp->msix_info[i].addr,
6728 ntohl(sp->msix_info[i].data));
6733 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6735 err = request_irq(sp->entries[i].vector,
6736 s2io_msix_ring_handle, 0, sp->desc[i],
6737 sp->s2io_entries[i].arg);
6738 /* If either data or addr is zero print it */
6739 if(!(sp->msix_info[i].addr &&
6740 sp->msix_info[i].data)) {
6741 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6742 "Data:0x%lx\n",sp->desc[i],
6743 (unsigned long long)
6744 sp->msix_info[i].addr,
6746 ntohl(sp->msix_info[i].data));
6752 remove_msix_isr(sp);
6753 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6754 "failed\n", dev->name, i);
6755 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6757 sp->config.intr_type = INTA;
6760 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6763 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6765 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6769 if (sp->config.intr_type == INTA) {
6770 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6773 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6780 static void s2io_rem_isr(struct s2io_nic * sp)
6782 if (sp->config.intr_type == MSI_X)
6783 remove_msix_isr(sp);
6785 remove_inta_isr(sp);
6788 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6791 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6792 unsigned long flags;
6793 register u64 val64 = 0;
6794 struct config_param *config;
6795 config = &sp->config;
6797 if (!is_s2io_card_up(sp))
6800 del_timer_sync(&sp->alarm_timer);
6801 /* If s2io_set_link task is executing, wait till it completes. */
6802 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6805 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6809 napi_disable(&sp->napi);
6811 /* disable Tx and Rx traffic on the NIC */
6818 tasklet_kill(&sp->task);
6820 /* Check if the device is Quiescent and then Reset the NIC */
6822 /* As per the HW requirement we need to replenish the
6823 * receive buffer to avoid the ring bump. Since there is
6824 * no intention of processing the Rx frame at this pointwe are
6825 * just settting the ownership bit of rxd in Each Rx
6826 * ring to HW and set the appropriate buffer size
6827 * based on the ring mode
6829 rxd_owner_bit_reset(sp);
6831 val64 = readq(&bar0->adapter_status);
6832 if (verify_xena_quiescence(sp)) {
6833 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6841 "s2io_close:Device not Quiescent ");
6842 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6843 (unsigned long long) val64);
6850 spin_lock_irqsave(&sp->tx_lock, flags);
6851 /* Free all Tx buffers */
6852 free_tx_buffers(sp);
6853 spin_unlock_irqrestore(&sp->tx_lock, flags);
6855 /* Free all Rx buffers */
6856 spin_lock_irqsave(&sp->rx_lock, flags);
6857 free_rx_buffers(sp);
6858 spin_unlock_irqrestore(&sp->rx_lock, flags);
6860 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6863 static void s2io_card_down(struct s2io_nic * sp)
6865 do_s2io_card_down(sp, 1);
6868 static int s2io_card_up(struct s2io_nic * sp)
6871 struct mac_info *mac_control;
6872 struct config_param *config;
6873 struct net_device *dev = (struct net_device *) sp->dev;
6876 /* Initialize the H/W I/O registers */
6879 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6887 * Initializing the Rx buffers. For now we are considering only 1
6888 * Rx ring and initializing buffers into 30 Rx blocks
6890 mac_control = &sp->mac_control;
6891 config = &sp->config;
6893 for (i = 0; i < config->rx_ring_num; i++) {
6894 if ((ret = fill_rx_buffers(sp, i))) {
6895 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6898 free_rx_buffers(sp);
6901 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6902 atomic_read(&sp->rx_bufs_left[i]));
6905 /* Initialise napi */
6907 napi_enable(&sp->napi);
6909 /* Maintain the state prior to the open */
6910 if (sp->promisc_flg)
6911 sp->promisc_flg = 0;
6912 if (sp->m_cast_flg) {
6914 sp->all_multi_pos= 0;
6917 /* Setting its receive mode */
6918 s2io_set_multicast(dev);
6921 /* Initialize max aggregatable pkts per session based on MTU */
6922 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6923 /* Check if we can use(if specified) user provided value */
6924 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6925 sp->lro_max_aggr_per_sess = lro_max_pkts;
6928 /* Enable Rx Traffic and interrupts on the NIC */
6929 if (start_nic(sp)) {
6930 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6932 free_rx_buffers(sp);
6936 /* Add interrupt service routine */
6937 if (s2io_add_isr(sp) != 0) {
6938 if (sp->config.intr_type == MSI_X)
6941 free_rx_buffers(sp);
6945 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6947 /* Enable tasklet for the device */
6948 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6950 /* Enable select interrupts */
6951 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6952 if (sp->config.intr_type != INTA)
6953 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6955 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6956 interruptible |= TX_PIC_INTR;
6957 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6960 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6965 * s2io_restart_nic - Resets the NIC.
6966 * @data : long pointer to the device private structure
6968 * This function is scheduled to be run by the s2io_tx_watchdog
6969 * function after 0.5 secs to reset the NIC. The idea is to reduce
6970 * the run time of the watch dog routine which is run holding a
6974 static void s2io_restart_nic(struct work_struct *work)
6976 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6977 struct net_device *dev = sp->dev;
6981 if (!netif_running(dev))
6985 if (s2io_card_up(sp)) {
6986 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6989 netif_wake_queue(dev);
6990 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6997 * s2io_tx_watchdog - Watchdog for transmit side.
6998 * @dev : Pointer to net device structure
7000 * This function is triggered if the Tx Queue is stopped
7001 * for a pre-defined amount of time when the Interface is still up.
7002 * If the Interface is jammed in such a situation, the hardware is
7003 * reset (by s2io_close) and restarted again (by s2io_open) to
7004 * overcome any problem that might have been caused in the hardware.
7009 static void s2io_tx_watchdog(struct net_device *dev)
7011 struct s2io_nic *sp = dev->priv;
7013 if (netif_carrier_ok(dev)) {
7014 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7015 schedule_work(&sp->rst_timer_task);
7016 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7021 * rx_osm_handler - To perform some OS related operations on SKB.
7022 * @sp: private member of the device structure,pointer to s2io_nic structure.
7023 * @skb : the socket buffer pointer.
7024 * @len : length of the packet
7025 * @cksum : FCS checksum of the frame.
7026 * @ring_no : the ring from which this RxD was extracted.
7028 * This function is called by the Rx interrupt serivce routine to perform
7029 * some OS related operations on the SKB before passing it to the upper
7030 * layers. It mainly checks if the checksum is OK, if so adds it to the
7031 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7032 * to the upper layer. If the checksum is wrong, it increments the Rx
7033 * packet error count, frees the SKB and returns error.
7035 * SUCCESS on success and -1 on failure.
7037 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7039 struct s2io_nic *sp = ring_data->nic;
7040 struct net_device *dev = (struct net_device *) sp->dev;
7041 struct sk_buff *skb = (struct sk_buff *)
7042 ((unsigned long) rxdp->Host_Control);
7043 int ring_no = ring_data->ring_no;
7044 u16 l3_csum, l4_csum;
7045 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7052 /* Check for parity error */
7054 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7056 err_mask = err >> 48;
7059 sp->mac_control.stats_info->sw_stat.
7060 rx_parity_err_cnt++;
7064 sp->mac_control.stats_info->sw_stat.
7069 sp->mac_control.stats_info->sw_stat.
7070 rx_parity_abort_cnt++;
7074 sp->mac_control.stats_info->sw_stat.
7079 sp->mac_control.stats_info->sw_stat.
7084 sp->mac_control.stats_info->sw_stat.
7089 sp->mac_control.stats_info->sw_stat.
7090 rx_buf_size_err_cnt++;
7094 sp->mac_control.stats_info->sw_stat.
7095 rx_rxd_corrupt_cnt++;
7099 sp->mac_control.stats_info->sw_stat.
7104 * Drop the packet if bad transfer code. Exception being
7105 * 0x5, which could be due to unsupported IPv6 extension header.
7106 * In this case, we let stack handle the packet.
7107 * Note that in this case, since checksum will be incorrect,
7108 * stack will validate the same.
7110 if (err_mask != 0x5) {
7111 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7112 dev->name, err_mask);
7113 sp->stats.rx_crc_errors++;
7114 sp->mac_control.stats_info->sw_stat.mem_freed
7117 atomic_dec(&sp->rx_bufs_left[ring_no]);
7118 rxdp->Host_Control = 0;
7123 /* Updating statistics */
7124 sp->stats.rx_packets++;
7125 rxdp->Host_Control = 0;
7126 if (sp->rxd_mode == RXD_MODE_1) {
7127 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7129 sp->stats.rx_bytes += len;
7132 } else if (sp->rxd_mode == RXD_MODE_3B) {
7133 int get_block = ring_data->rx_curr_get_info.block_index;
7134 int get_off = ring_data->rx_curr_get_info.offset;
7135 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7136 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7137 unsigned char *buff = skb_push(skb, buf0_len);
7139 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7140 sp->stats.rx_bytes += buf0_len + buf2_len;
7141 memcpy(buff, ba->ba_0, buf0_len);
7142 skb_put(skb, buf2_len);
7145 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7146 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7148 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7149 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7150 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7152 * NIC verifies if the Checksum of the received
7153 * frame is Ok or not and accordingly returns
7154 * a flag in the RxD.
7156 skb->ip_summed = CHECKSUM_UNNECESSARY;
7162 ret = s2io_club_tcp_session(skb->data, &tcp,
7166 case 3: /* Begin anew */
7169 case 1: /* Aggregate */
7171 lro_append_pkt(sp, lro,
7175 case 4: /* Flush session */
7177 lro_append_pkt(sp, lro,
7179 queue_rx_frame(lro->parent);
7180 clear_lro_session(lro);
7181 sp->mac_control.stats_info->
7182 sw_stat.flush_max_pkts++;
7185 case 2: /* Flush both */
7186 lro->parent->data_len =
7188 sp->mac_control.stats_info->
7189 sw_stat.sending_both++;
7190 queue_rx_frame(lro->parent);
7191 clear_lro_session(lro);
7193 case 0: /* sessions exceeded */
7194 case -1: /* non-TCP or not
7198 * First pkt in session not
7199 * L3/L4 aggregatable
7204 "%s: Samadhana!!\n",
7211 * Packet with erroneous checksum, let the
7212 * upper layers deal with it.
7214 skb->ip_summed = CHECKSUM_NONE;
7217 skb->ip_summed = CHECKSUM_NONE;
7219 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7221 skb->protocol = eth_type_trans(skb, dev);
7222 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7224 /* Queueing the vlan frame to the upper layer */
7226 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7227 RXD_GET_VLAN_TAG(rxdp->Control_2));
7229 vlan_hwaccel_rx(skb, sp->vlgrp,
7230 RXD_GET_VLAN_TAG(rxdp->Control_2));
7233 netif_receive_skb(skb);
7239 queue_rx_frame(skb);
7241 dev->last_rx = jiffies;
7243 atomic_dec(&sp->rx_bufs_left[ring_no]);
7248 * s2io_link - stops/starts the Tx queue.
7249 * @sp : private member of the device structure, which is a pointer to the
7250 * s2io_nic structure.
7251 * @link : inidicates whether link is UP/DOWN.
7253 * This function stops/starts the Tx queue depending on whether the link
7254 * status of the NIC is is down or up. This is called by the Alarm
7255 * interrupt handler whenever a link change interrupt comes up.
7260 static void s2io_link(struct s2io_nic * sp, int link)
7262 struct net_device *dev = (struct net_device *) sp->dev;
7264 if (link != sp->last_link_state) {
7265 if (link == LINK_DOWN) {
7266 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7267 netif_carrier_off(dev);
7268 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7269 sp->mac_control.stats_info->sw_stat.link_up_time =
7270 jiffies - sp->start_time;
7271 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7273 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7274 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7275 sp->mac_control.stats_info->sw_stat.link_down_time =
7276 jiffies - sp->start_time;
7277 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7278 netif_carrier_on(dev);
7281 sp->last_link_state = link;
7282 sp->start_time = jiffies;
7286 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7287 * @sp : private member of the device structure, which is a pointer to the
7288 * s2io_nic structure.
7290 * This function initializes a few of the PCI and PCI-X configuration registers
7291 * with recommended values.
7296 static void s2io_init_pci(struct s2io_nic * sp)
7298 u16 pci_cmd = 0, pcix_cmd = 0;
7300 /* Enable Data Parity Error Recovery in PCI-X command register. */
7301 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7303 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7305 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7308 /* Set the PErr Response bit in PCI command register. */
7309 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7310 pci_write_config_word(sp->pdev, PCI_COMMAND,
7311 (pci_cmd | PCI_COMMAND_PARITY));
7312 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7315 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7317 if ( tx_fifo_num > 8) {
7318 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7320 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7323 if ( rx_ring_num > 8) {
7324 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7326 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7329 if (*dev_intr_type != INTA)
7332 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7333 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7334 "Defaulting to INTA\n");
7335 *dev_intr_type = INTA;
7338 if ((*dev_intr_type == MSI_X) &&
7339 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7340 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7341 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7342 "Defaulting to INTA\n");
7343 *dev_intr_type = INTA;
7346 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7347 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7348 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7355 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7356 * or Traffic class respectively.
7357 * @nic: device peivate variable
7358 * Description: The function configures the receive steering to
7359 * desired receive ring.
7360 * Return Value: SUCCESS on success and
7361 * '-1' on failure (endian settings incorrect).
7363 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7365 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7366 register u64 val64 = 0;
7368 if (ds_codepoint > 63)
7371 val64 = RTS_DS_MEM_DATA(ring);
7372 writeq(val64, &bar0->rts_ds_mem_data);
7374 val64 = RTS_DS_MEM_CTRL_WE |
7375 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7376 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7378 writeq(val64, &bar0->rts_ds_mem_ctrl);
7380 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7381 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7386 * s2io_init_nic - Initialization of the adapter .
7387 * @pdev : structure containing the PCI related information of the device.
7388 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7390 * The function initializes an adapter identified by the pci_dec structure.
7391 * All OS related initialization including memory and device structure and
7392 * initlaization of the device private variable is done. Also the swapper
7393 * control register is initialized to enable read and write into the I/O
7394 * registers of the device.
7396 * returns 0 on success and negative on failure.
7399 static int __devinit
7400 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7402 struct s2io_nic *sp;
7403 struct net_device *dev;
7405 int dma_flag = FALSE;
7406 u32 mac_up, mac_down;
7407 u64 val64 = 0, tmp64 = 0;
7408 struct XENA_dev_config __iomem *bar0 = NULL;
7410 struct mac_info *mac_control;
7411 struct config_param *config;
7413 u8 dev_intr_type = intr_type;
7414 DECLARE_MAC_BUF(mac);
7416 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7419 if ((ret = pci_enable_device(pdev))) {
7421 "s2io_init_nic: pci_enable_device failed\n");
7425 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7426 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7428 if (pci_set_consistent_dma_mask
7429 (pdev, DMA_64BIT_MASK)) {
7431 "Unable to obtain 64bit DMA for \
7432 consistent allocations\n");
7433 pci_disable_device(pdev);
7436 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7437 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7439 pci_disable_device(pdev);
7442 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7443 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7444 pci_disable_device(pdev);
7448 dev = alloc_etherdev(sizeof(struct s2io_nic));
7450 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7451 pci_disable_device(pdev);
7452 pci_release_regions(pdev);
7456 pci_set_master(pdev);
7457 pci_set_drvdata(pdev, dev);
7458 SET_NETDEV_DEV(dev, &pdev->dev);
7460 /* Private member variable initialized to s2io NIC structure */
7462 memset(sp, 0, sizeof(struct s2io_nic));
7465 sp->high_dma_flag = dma_flag;
7466 sp->device_enabled_once = FALSE;
7467 if (rx_ring_mode == 1)
7468 sp->rxd_mode = RXD_MODE_1;
7469 if (rx_ring_mode == 2)
7470 sp->rxd_mode = RXD_MODE_3B;
7472 sp->config.intr_type = dev_intr_type;
7474 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7475 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7476 sp->device_type = XFRAME_II_DEVICE;
7478 sp->device_type = XFRAME_I_DEVICE;
7480 sp->lro = lro_enable;
7482 /* Initialize some PCI/PCI-X fields of the NIC. */
7486 * Setting the device configuration parameters.
7487 * Most of these parameters can be specified by the user during
7488 * module insertion as they are module loadable parameters. If
7489 * these parameters are not not specified during load time, they
7490 * are initialized with default values.
7492 mac_control = &sp->mac_control;
7493 config = &sp->config;
7495 config->napi = napi;
7497 /* Tx side parameters. */
7498 config->tx_fifo_num = tx_fifo_num;
7499 for (i = 0; i < MAX_TX_FIFOS; i++) {
7500 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7501 config->tx_cfg[i].fifo_priority = i;
7504 /* mapping the QoS priority to the configured fifos */
7505 for (i = 0; i < MAX_TX_FIFOS; i++)
7506 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7508 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7509 for (i = 0; i < config->tx_fifo_num; i++) {
7510 config->tx_cfg[i].f_no_snoop =
7511 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7512 if (config->tx_cfg[i].fifo_len < 65) {
7513 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7517 /* + 2 because one Txd for skb->data and one Txd for UFO */
7518 config->max_txds = MAX_SKB_FRAGS + 2;
7520 /* Rx side parameters. */
7521 config->rx_ring_num = rx_ring_num;
7522 for (i = 0; i < MAX_RX_RINGS; i++) {
7523 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7524 (rxd_count[sp->rxd_mode] + 1);
7525 config->rx_cfg[i].ring_priority = i;
7528 for (i = 0; i < rx_ring_num; i++) {
7529 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7530 config->rx_cfg[i].f_no_snoop =
7531 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7534 /* Setting Mac Control parameters */
7535 mac_control->rmac_pause_time = rmac_pause_time;
7536 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7537 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7540 /* Initialize Ring buffer parameters. */
7541 for (i = 0; i < config->rx_ring_num; i++)
7542 atomic_set(&sp->rx_bufs_left[i], 0);
7544 /* initialize the shared memory used by the NIC and the host */
7545 if (init_shared_mem(sp)) {
7546 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7549 goto mem_alloc_failed;
7552 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7553 pci_resource_len(pdev, 0));
7555 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7558 goto bar0_remap_failed;
7561 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7562 pci_resource_len(pdev, 2));
7564 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7567 goto bar1_remap_failed;
7570 dev->irq = pdev->irq;
7571 dev->base_addr = (unsigned long) sp->bar0;
7573 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7574 for (j = 0; j < MAX_TX_FIFOS; j++) {
7575 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7576 (sp->bar1 + (j * 0x00020000));
7579 /* Driver entry points */
7580 dev->open = &s2io_open;
7581 dev->stop = &s2io_close;
7582 dev->hard_start_xmit = &s2io_xmit;
7583 dev->get_stats = &s2io_get_stats;
7584 dev->set_multicast_list = &s2io_set_multicast;
7585 dev->do_ioctl = &s2io_ioctl;
7586 dev->set_mac_address = &s2io_set_mac_addr;
7587 dev->change_mtu = &s2io_change_mtu;
7588 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7589 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7590 dev->vlan_rx_register = s2io_vlan_rx_register;
7593 * will use eth_mac_addr() for dev->set_mac_address
7594 * mac address will be set every time dev->open() is called
7596 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7598 #ifdef CONFIG_NET_POLL_CONTROLLER
7599 dev->poll_controller = s2io_netpoll;
7602 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7603 if (sp->high_dma_flag == TRUE)
7604 dev->features |= NETIF_F_HIGHDMA;
7605 dev->features |= NETIF_F_TSO;
7606 dev->features |= NETIF_F_TSO6;
7607 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7608 dev->features |= NETIF_F_UFO;
7609 dev->features |= NETIF_F_HW_CSUM;
7612 dev->tx_timeout = &s2io_tx_watchdog;
7613 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7614 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7615 INIT_WORK(&sp->set_link_task, s2io_set_link);
7617 pci_save_state(sp->pdev);
7619 /* Setting swapper control on the NIC, for proper reset operation */
7620 if (s2io_set_swapper(sp)) {
7621 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7624 goto set_swap_failed;
7627 /* Verify if the Herc works on the slot its placed into */
7628 if (sp->device_type & XFRAME_II_DEVICE) {
7629 mode = s2io_verify_pci_mode(sp);
7631 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7632 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7634 goto set_swap_failed;
7638 /* Not needed for Herc */
7639 if (sp->device_type & XFRAME_I_DEVICE) {
7641 * Fix for all "FFs" MAC address problems observed on
7644 fix_mac_address(sp);
7649 * MAC address initialization.
7650 * For now only one mac address will be read and used.
7653 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7654 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7655 writeq(val64, &bar0->rmac_addr_cmd_mem);
7656 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7657 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7658 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7659 mac_down = (u32) tmp64;
7660 mac_up = (u32) (tmp64 >> 32);
7662 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7663 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7664 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7665 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7666 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7667 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7669 /* Set the factory defined MAC address initially */
7670 dev->addr_len = ETH_ALEN;
7671 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7672 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7674 /* Store the values of the MSIX table in the s2io_nic structure */
7675 store_xmsi_data(sp);
7676 /* reset Nic and bring it to known state */
7680 * Initialize the tasklet status and link state flags
7681 * and the card state parameter
7683 sp->tasklet_status = 0;
7686 /* Initialize spinlocks */
7687 spin_lock_init(&sp->tx_lock);
7690 spin_lock_init(&sp->put_lock);
7691 spin_lock_init(&sp->rx_lock);
7694 * SXE-002: Configure link and activity LED to init state
7697 subid = sp->pdev->subsystem_device;
7698 if ((subid & 0xFF) >= 0x07) {
7699 val64 = readq(&bar0->gpio_control);
7700 val64 |= 0x0000800000000000ULL;
7701 writeq(val64, &bar0->gpio_control);
7702 val64 = 0x0411040400000000ULL;
7703 writeq(val64, (void __iomem *) bar0 + 0x2700);
7704 val64 = readq(&bar0->gpio_control);
7707 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7709 if (register_netdev(dev)) {
7710 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7712 goto register_failed;
7715 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7716 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7717 sp->product_name, pdev->revision);
7718 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7719 s2io_driver_version);
7720 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7721 dev->name, print_mac(mac, dev->dev_addr));
7722 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7723 if (sp->device_type & XFRAME_II_DEVICE) {
7724 mode = s2io_print_pci_mode(sp);
7726 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7728 unregister_netdev(dev);
7729 goto set_swap_failed;
7732 switch(sp->rxd_mode) {
7734 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7738 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7744 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7745 switch(sp->config.intr_type) {
7747 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7750 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7754 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7757 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7758 " enabled\n", dev->name);
7759 /* Initialize device name */
7760 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7763 * Make Link state as off at this point, when the Link change
7764 * interrupt comes the state will be automatically changed to
7767 netif_carrier_off(dev);
7778 free_shared_mem(sp);
7779 pci_disable_device(pdev);
7780 pci_release_regions(pdev);
7781 pci_set_drvdata(pdev, NULL);
7788 * s2io_rem_nic - Free the PCI device
7789 * @pdev: structure containing the PCI related information of the device.
7790 * Description: This function is called by the Pci subsystem to release a
7791 * PCI device and free up all resource held up by the device. This could
7792 * be in response to a Hot plug event or when the driver is to be removed
7796 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7798 struct net_device *dev =
7799 (struct net_device *) pci_get_drvdata(pdev);
7800 struct s2io_nic *sp;
7803 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7807 flush_scheduled_work();
7810 unregister_netdev(dev);
7812 free_shared_mem(sp);
7815 pci_release_regions(pdev);
7816 pci_set_drvdata(pdev, NULL);
7818 pci_disable_device(pdev);
7822 * s2io_starter - Entry point for the driver
7823 * Description: This function is the entry point for the driver. It verifies
7824 * the module loadable parameters and initializes PCI configuration space.
7827 static int __init s2io_starter(void)
7829 return pci_register_driver(&s2io_driver);
7833 * s2io_closer - Cleanup routine for the driver
7834 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7837 static __exit void s2io_closer(void)
7839 pci_unregister_driver(&s2io_driver);
7840 DBG_PRINT(INIT_DBG, "cleanup done\n");
7843 module_init(s2io_starter);
7844 module_exit(s2io_closer);
7846 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7847 struct tcphdr **tcp, struct RxD_t *rxdp)
7850 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7852 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7853 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7859 * By default the VLAN field in the MAC is stripped by the card, if this
7860 * feature is turned off in rx_pa_cfg register, then the ip_off field
7861 * has to be shifted by a further 2 bytes
7864 case 0: /* DIX type */
7865 case 4: /* DIX type with VLAN */
7866 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7868 /* LLC, SNAP etc are considered non-mergeable */
7873 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7874 ip_len = (u8)((*ip)->ihl);
7876 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7881 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7884 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7885 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7886 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7891 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7893 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7896 static void initiate_new_session(struct lro *lro, u8 *l2h,
7897 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7899 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7903 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7904 lro->tcp_ack = ntohl(tcp->ack_seq);
7906 lro->total_len = ntohs(ip->tot_len);
7909 * check if we saw TCP timestamp. Other consistency checks have
7910 * already been done.
7912 if (tcp->doff == 8) {
7914 ptr = (u32 *)(tcp+1);
7916 lro->cur_tsval = *(ptr+1);
7917 lro->cur_tsecr = *(ptr+2);
7922 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7924 struct iphdr *ip = lro->iph;
7925 struct tcphdr *tcp = lro->tcph;
7927 struct stat_block *statinfo = sp->mac_control.stats_info;
7928 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7930 /* Update L3 header */
7931 ip->tot_len = htons(lro->total_len);
7933 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7936 /* Update L4 header */
7937 tcp->ack_seq = lro->tcp_ack;
7938 tcp->window = lro->window;
7940 /* Update tsecr field if this session has timestamps enabled */
7942 u32 *ptr = (u32 *)(tcp + 1);
7943 *(ptr+2) = lro->cur_tsecr;
7946 /* Update counters required for calculation of
7947 * average no. of packets aggregated.
7949 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7950 statinfo->sw_stat.num_aggregations++;
7953 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7954 struct tcphdr *tcp, u32 l4_pyld)
7956 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7957 lro->total_len += l4_pyld;
7958 lro->frags_len += l4_pyld;
7959 lro->tcp_next_seq += l4_pyld;
7962 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7963 lro->tcp_ack = tcp->ack_seq;
7964 lro->window = tcp->window;
7968 /* Update tsecr and tsval from this packet */
7969 ptr = (u32 *) (tcp + 1);
7970 lro->cur_tsval = *(ptr + 1);
7971 lro->cur_tsecr = *(ptr + 2);
7975 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7976 struct tcphdr *tcp, u32 tcp_pyld_len)
7980 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7982 if (!tcp_pyld_len) {
7983 /* Runt frame or a pure ack */
7987 if (ip->ihl != 5) /* IP has options */
7990 /* If we see CE codepoint in IP header, packet is not mergeable */
7991 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7994 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7995 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7996 tcp->ece || tcp->cwr || !tcp->ack) {
7998 * Currently recognize only the ack control word and
7999 * any other control field being set would result in
8000 * flushing the LRO session
8006 * Allow only one TCP timestamp option. Don't aggregate if
8007 * any other options are detected.
8009 if (tcp->doff != 5 && tcp->doff != 8)
8012 if (tcp->doff == 8) {
8013 ptr = (u8 *)(tcp + 1);
8014 while (*ptr == TCPOPT_NOP)
8016 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8019 /* Ensure timestamp value increases monotonically */
8021 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8024 /* timestamp echo reply should be non-zero */
8025 if (*((u32 *)(ptr+6)) == 0)
8033 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8034 struct RxD_t *rxdp, struct s2io_nic *sp)
8037 struct tcphdr *tcph;
8040 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8042 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8043 ip->saddr, ip->daddr);
8048 tcph = (struct tcphdr *)*tcp;
8049 *tcp_len = get_l4_pyld_length(ip, tcph);
8050 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8051 struct lro *l_lro = &sp->lro0_n[i];
8052 if (l_lro->in_use) {
8053 if (check_for_socket_match(l_lro, ip, tcph))
8055 /* Sock pair matched */
8058 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8059 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8060 "0x%x, actual 0x%x\n", __FUNCTION__,
8061 (*lro)->tcp_next_seq,
8064 sp->mac_control.stats_info->
8065 sw_stat.outof_sequence_pkts++;
8070 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8071 ret = 1; /* Aggregate */
8073 ret = 2; /* Flush both */
8079 /* Before searching for available LRO objects,
8080 * check if the pkt is L3/L4 aggregatable. If not
8081 * don't create new LRO session. Just send this
8084 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8088 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8089 struct lro *l_lro = &sp->lro0_n[i];
8090 if (!(l_lro->in_use)) {
8092 ret = 3; /* Begin anew */
8098 if (ret == 0) { /* sessions exceeded */
8099 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8107 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8110 update_L3L4_header(sp, *lro);
8113 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8114 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8115 update_L3L4_header(sp, *lro);
8116 ret = 4; /* Flush the LRO */
8120 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8128 static void clear_lro_session(struct lro *lro)
8130 static u16 lro_struct_size = sizeof(struct lro);
8132 memset(lro, 0, lro_struct_size);
8135 static void queue_rx_frame(struct sk_buff *skb)
8137 struct net_device *dev = skb->dev;
8139 skb->protocol = eth_type_trans(skb, dev);
8141 netif_receive_skb(skb);
8146 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8147 struct sk_buff *skb,
8150 struct sk_buff *first = lro->parent;
8152 first->len += tcp_len;
8153 first->data_len = lro->frags_len;
8154 skb_pull(skb, (skb->len - tcp_len));
8155 if (skb_shinfo(first)->frag_list)
8156 lro->last_frag->next = skb;
8158 skb_shinfo(first)->frag_list = skb;
8159 first->truesize += skb->truesize;
8160 lro->last_frag = skb;
8161 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8166 * s2io_io_error_detected - called when PCI error is detected
8167 * @pdev: Pointer to PCI device
8168 * @state: The current pci connection state
8170 * This function is called after a PCI bus error affecting
8171 * this device has been detected.
8173 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8174 pci_channel_state_t state)
8176 struct net_device *netdev = pci_get_drvdata(pdev);
8177 struct s2io_nic *sp = netdev->priv;
8179 netif_device_detach(netdev);
8181 if (netif_running(netdev)) {
8182 /* Bring down the card, while avoiding PCI I/O */
8183 do_s2io_card_down(sp, 0);
8185 pci_disable_device(pdev);
8187 return PCI_ERS_RESULT_NEED_RESET;
8191 * s2io_io_slot_reset - called after the pci bus has been reset.
8192 * @pdev: Pointer to PCI device
8194 * Restart the card from scratch, as if from a cold-boot.
8195 * At this point, the card has exprienced a hard reset,
8196 * followed by fixups by BIOS, and has its config space
8197 * set up identically to what it was at cold boot.
8199 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8201 struct net_device *netdev = pci_get_drvdata(pdev);
8202 struct s2io_nic *sp = netdev->priv;
8204 if (pci_enable_device(pdev)) {
8205 printk(KERN_ERR "s2io: "
8206 "Cannot re-enable PCI device after reset.\n");
8207 return PCI_ERS_RESULT_DISCONNECT;
8210 pci_set_master(pdev);
8213 return PCI_ERS_RESULT_RECOVERED;
8217 * s2io_io_resume - called when traffic can start flowing again.
8218 * @pdev: Pointer to PCI device
8220 * This callback is called when the error recovery driver tells
8221 * us that its OK to resume normal operation.
8223 static void s2io_io_resume(struct pci_dev *pdev)
8225 struct net_device *netdev = pci_get_drvdata(pdev);
8226 struct s2io_nic *sp = netdev->priv;
8228 if (netif_running(netdev)) {
8229 if (s2io_card_up(sp)) {
8230 printk(KERN_ERR "s2io: "
8231 "Can't bring device back up after reset.\n");
8235 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8237 printk(KERN_ERR "s2io: "
8238 "Can't resetore mac addr after reset.\n");
8243 netif_device_attach(netdev);
8244 netif_wake_queue(netdev);