Staging: comedi: Fixed minor numbers for subdevice files.
[linux-2.6] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43
44 #include <asm/mman.h>
45
46
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock               (vmtruncate)
63  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock             (exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
73  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page               (access_process_vm)
77  *
78  *  ->i_mutex                   (generic_file_buffered_write)
79  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock                 (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
103  *    ->inode_lock              (zap_pte_range->set_page_dirty)
104  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock             (proc_pid_lookup)
108  */
109
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117         struct address_space *mapping = page->mapping;
118
119         radix_tree_delete(&mapping->page_tree, page->index);
120         page->mapping = NULL;
121         mapping->nrpages--;
122         __dec_zone_page_state(page, NR_FILE_PAGES);
123         BUG_ON(page_mapped(page));
124         mem_cgroup_uncharge_cache_page(page);
125
126         /*
127          * Some filesystems seem to re-dirty the page even after
128          * the VM has canceled the dirty bit (eg ext3 journaling).
129          *
130          * Fix it up by doing a final dirty accounting check after
131          * having removed the page entirely.
132          */
133         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134                 dec_zone_page_state(page, NR_FILE_DIRTY);
135                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136         }
137 }
138
139 void remove_from_page_cache(struct page *page)
140 {
141         struct address_space *mapping = page->mapping;
142
143         BUG_ON(!PageLocked(page));
144
145         spin_lock_irq(&mapping->tree_lock);
146         __remove_from_page_cache(page);
147         spin_unlock_irq(&mapping->tree_lock);
148 }
149
150 static int sync_page(void *word)
151 {
152         struct address_space *mapping;
153         struct page *page;
154
155         page = container_of((unsigned long *)word, struct page, flags);
156
157         /*
158          * page_mapping() is being called without PG_locked held.
159          * Some knowledge of the state and use of the page is used to
160          * reduce the requirements down to a memory barrier.
161          * The danger here is of a stale page_mapping() return value
162          * indicating a struct address_space different from the one it's
163          * associated with when it is associated with one.
164          * After smp_mb(), it's either the correct page_mapping() for
165          * the page, or an old page_mapping() and the page's own
166          * page_mapping() has gone NULL.
167          * The ->sync_page() address_space operation must tolerate
168          * page_mapping() going NULL. By an amazing coincidence,
169          * this comes about because none of the users of the page
170          * in the ->sync_page() methods make essential use of the
171          * page_mapping(), merely passing the page down to the backing
172          * device's unplug functions when it's non-NULL, which in turn
173          * ignore it for all cases but swap, where only page_private(page) is
174          * of interest. When page_mapping() does go NULL, the entire
175          * call stack gracefully ignores the page and returns.
176          * -- wli
177          */
178         smp_mb();
179         mapping = page_mapping(page);
180         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181                 mapping->a_ops->sync_page(page);
182         io_schedule();
183         return 0;
184 }
185
186 static int sync_page_killable(void *word)
187 {
188         sync_page(word);
189         return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:    address space structure to write
195  * @start:      offset in bytes where the range starts
196  * @end:        offset in bytes where the range ends (inclusive)
197  * @sync_mode:  enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208                                 loff_t end, int sync_mode)
209 {
210         int ret;
211         struct writeback_control wbc = {
212                 .sync_mode = sync_mode,
213                 .nr_to_write = LONG_MAX,
214                 .range_start = start,
215                 .range_end = end,
216         };
217
218         if (!mapping_cap_writeback_dirty(mapping))
219                 return 0;
220
221         ret = do_writepages(mapping, &wbc);
222         return ret;
223 }
224
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226         int sync_mode)
227 {
228         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238                                 loff_t end)
239 {
240         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:    target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:    target address_space
260  * @start:      beginning page index
261  * @end:        ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267                                 pgoff_t start, pgoff_t end)
268 {
269         struct pagevec pvec;
270         int nr_pages;
271         int ret = 0;
272         pgoff_t index;
273
274         if (end < start)
275                 return 0;
276
277         pagevec_init(&pvec, 0);
278         index = start;
279         while ((index <= end) &&
280                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281                         PAGECACHE_TAG_WRITEBACK,
282                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283                 unsigned i;
284
285                 for (i = 0; i < nr_pages; i++) {
286                         struct page *page = pvec.pages[i];
287
288                         /* until radix tree lookup accepts end_index */
289                         if (page->index > end)
290                                 continue;
291
292                         wait_on_page_writeback(page);
293                         if (PageError(page))
294                                 ret = -EIO;
295                 }
296                 pagevec_release(&pvec);
297                 cond_resched();
298         }
299
300         /* Check for outstanding write errors */
301         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302                 ret = -ENOSPC;
303         if (test_and_clear_bit(AS_EIO, &mapping->flags))
304                 ret = -EIO;
305
306         return ret;
307 }
308
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:      target inode
312  * @mapping:    target address_space
313  * @pos:        beginning offset in pages to write
314  * @count:      number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324                         loff_t pos, loff_t count)
325 {
326         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328         int ret;
329
330         if (!mapping_cap_writeback_dirty(mapping) || !count)
331                 return 0;
332         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333         if (ret == 0) {
334                 mutex_lock(&inode->i_mutex);
335                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336                 mutex_unlock(&inode->i_mutex);
337         }
338         if (ret == 0)
339                 ret = wait_on_page_writeback_range(mapping, start, end);
340         return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:      target inode
347  * @mapping:    target address_space
348  * @pos:        beginning offset in pages to write
349  * @count:      number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356                            loff_t pos, loff_t count)
357 {
358         pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359         pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360         int ret;
361
362         if (!mapping_cap_writeback_dirty(mapping) || !count)
363                 return 0;
364         ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365         if (ret == 0)
366                 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367         if (ret == 0)
368                 ret = wait_on_page_writeback_range(mapping, start, end);
369         return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382         loff_t i_size = i_size_read(mapping->host);
383
384         if (i_size == 0)
385                 return 0;
386
387         return wait_on_page_writeback_range(mapping, 0,
388                                 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394         int err = 0;
395
396         if (mapping->nrpages) {
397                 err = filemap_fdatawrite(mapping);
398                 /*
399                  * Even if the above returned error, the pages may be
400                  * written partially (e.g. -ENOSPC), so we wait for it.
401                  * But the -EIO is special case, it may indicate the worst
402                  * thing (e.g. bug) happened, so we avoid waiting for it.
403                  */
404                 if (err != -EIO) {
405                         int err2 = filemap_fdatawait(mapping);
406                         if (!err)
407                                 err = err2;
408                 }
409         }
410         return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:    the address_space for the pages
417  * @lstart:     offset in bytes where the range starts
418  * @lend:       offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426                                  loff_t lstart, loff_t lend)
427 {
428         int err = 0;
429
430         if (mapping->nrpages) {
431                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432                                                  WB_SYNC_ALL);
433                 /* See comment of filemap_write_and_wait() */
434                 if (err != -EIO) {
435                         int err2 = wait_on_page_writeback_range(mapping,
436                                                 lstart >> PAGE_CACHE_SHIFT,
437                                                 lend >> PAGE_CACHE_SHIFT);
438                         if (!err)
439                                 err = err2;
440                 }
441         }
442         return err;
443 }
444
445 /**
446  * add_to_page_cache_locked - add a locked page to the pagecache
447  * @page:       page to add
448  * @mapping:    the page's address_space
449  * @offset:     page index
450  * @gfp_mask:   page allocation mode
451  *
452  * This function is used to add a page to the pagecache. It must be locked.
453  * This function does not add the page to the LRU.  The caller must do that.
454  */
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456                 pgoff_t offset, gfp_t gfp_mask)
457 {
458         int error;
459
460         VM_BUG_ON(!PageLocked(page));
461
462         error = mem_cgroup_cache_charge(page, current->mm,
463                                         gfp_mask & GFP_RECLAIM_MASK);
464         if (error)
465                 goto out;
466
467         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468         if (error == 0) {
469                 page_cache_get(page);
470                 page->mapping = mapping;
471                 page->index = offset;
472
473                 spin_lock_irq(&mapping->tree_lock);
474                 error = radix_tree_insert(&mapping->page_tree, offset, page);
475                 if (likely(!error)) {
476                         mapping->nrpages++;
477                         __inc_zone_page_state(page, NR_FILE_PAGES);
478                 } else {
479                         page->mapping = NULL;
480                         mem_cgroup_uncharge_cache_page(page);
481                         page_cache_release(page);
482                 }
483
484                 spin_unlock_irq(&mapping->tree_lock);
485                 radix_tree_preload_end();
486         } else
487                 mem_cgroup_uncharge_cache_page(page);
488 out:
489         return error;
490 }
491 EXPORT_SYMBOL(add_to_page_cache_locked);
492
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494                                 pgoff_t offset, gfp_t gfp_mask)
495 {
496         int ret;
497
498         /*
499          * Splice_read and readahead add shmem/tmpfs pages into the page cache
500          * before shmem_readpage has a chance to mark them as SwapBacked: they
501          * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502          * (called in add_to_page_cache) needs to know where they're going too.
503          */
504         if (mapping_cap_swap_backed(mapping))
505                 SetPageSwapBacked(page);
506
507         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508         if (ret == 0) {
509                 if (page_is_file_cache(page))
510                         lru_cache_add_file(page);
511                 else
512                         lru_cache_add_active_anon(page);
513         }
514         return ret;
515 }
516 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
517
518 #ifdef CONFIG_NUMA
519 struct page *__page_cache_alloc(gfp_t gfp)
520 {
521         if (cpuset_do_page_mem_spread()) {
522                 int n = cpuset_mem_spread_node();
523                 return alloc_pages_node(n, gfp, 0);
524         }
525         return alloc_pages(gfp, 0);
526 }
527 EXPORT_SYMBOL(__page_cache_alloc);
528 #endif
529
530 static int __sleep_on_page_lock(void *word)
531 {
532         io_schedule();
533         return 0;
534 }
535
536 /*
537  * In order to wait for pages to become available there must be
538  * waitqueues associated with pages. By using a hash table of
539  * waitqueues where the bucket discipline is to maintain all
540  * waiters on the same queue and wake all when any of the pages
541  * become available, and for the woken contexts to check to be
542  * sure the appropriate page became available, this saves space
543  * at a cost of "thundering herd" phenomena during rare hash
544  * collisions.
545  */
546 static wait_queue_head_t *page_waitqueue(struct page *page)
547 {
548         const struct zone *zone = page_zone(page);
549
550         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
551 }
552
553 static inline void wake_up_page(struct page *page, int bit)
554 {
555         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
556 }
557
558 void wait_on_page_bit(struct page *page, int bit_nr)
559 {
560         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561
562         if (test_bit(bit_nr, &page->flags))
563                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
564                                                         TASK_UNINTERRUPTIBLE);
565 }
566 EXPORT_SYMBOL(wait_on_page_bit);
567
568 /**
569  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
570  * @page - Page defining the wait queue of interest
571  * @waiter - Waiter to add to the queue
572  *
573  * Add an arbitrary @waiter to the wait queue for the nominated @page.
574  */
575 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
576 {
577         wait_queue_head_t *q = page_waitqueue(page);
578         unsigned long flags;
579
580         spin_lock_irqsave(&q->lock, flags);
581         __add_wait_queue(q, waiter);
582         spin_unlock_irqrestore(&q->lock, flags);
583 }
584 EXPORT_SYMBOL_GPL(add_page_wait_queue);
585
586 /**
587  * unlock_page - unlock a locked page
588  * @page: the page
589  *
590  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
591  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
592  * mechananism between PageLocked pages and PageWriteback pages is shared.
593  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
594  *
595  * The mb is necessary to enforce ordering between the clear_bit and the read
596  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
597  */
598 void unlock_page(struct page *page)
599 {
600         VM_BUG_ON(!PageLocked(page));
601         clear_bit_unlock(PG_locked, &page->flags);
602         smp_mb__after_clear_bit();
603         wake_up_page(page, PG_locked);
604 }
605 EXPORT_SYMBOL(unlock_page);
606
607 /**
608  * end_page_writeback - end writeback against a page
609  * @page: the page
610  */
611 void end_page_writeback(struct page *page)
612 {
613         if (TestClearPageReclaim(page))
614                 rotate_reclaimable_page(page);
615
616         if (!test_clear_page_writeback(page))
617                 BUG();
618
619         smp_mb__after_clear_bit();
620         wake_up_page(page, PG_writeback);
621 }
622 EXPORT_SYMBOL(end_page_writeback);
623
624 /**
625  * __lock_page - get a lock on the page, assuming we need to sleep to get it
626  * @page: the page to lock
627  *
628  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
629  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
630  * chances are that on the second loop, the block layer's plug list is empty,
631  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
632  */
633 void __lock_page(struct page *page)
634 {
635         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636
637         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
638                                                         TASK_UNINTERRUPTIBLE);
639 }
640 EXPORT_SYMBOL(__lock_page);
641
642 int __lock_page_killable(struct page *page)
643 {
644         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645
646         return __wait_on_bit_lock(page_waitqueue(page), &wait,
647                                         sync_page_killable, TASK_KILLABLE);
648 }
649 EXPORT_SYMBOL_GPL(__lock_page_killable);
650
651 /**
652  * __lock_page_nosync - get a lock on the page, without calling sync_page()
653  * @page: the page to lock
654  *
655  * Variant of lock_page that does not require the caller to hold a reference
656  * on the page's mapping.
657  */
658 void __lock_page_nosync(struct page *page)
659 {
660         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
661         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
662                                                         TASK_UNINTERRUPTIBLE);
663 }
664
665 /**
666  * find_get_page - find and get a page reference
667  * @mapping: the address_space to search
668  * @offset: the page index
669  *
670  * Is there a pagecache struct page at the given (mapping, offset) tuple?
671  * If yes, increment its refcount and return it; if no, return NULL.
672  */
673 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
674 {
675         void **pagep;
676         struct page *page;
677
678         rcu_read_lock();
679 repeat:
680         page = NULL;
681         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
682         if (pagep) {
683                 page = radix_tree_deref_slot(pagep);
684                 if (unlikely(!page || page == RADIX_TREE_RETRY))
685                         goto repeat;
686
687                 if (!page_cache_get_speculative(page))
688                         goto repeat;
689
690                 /*
691                  * Has the page moved?
692                  * This is part of the lockless pagecache protocol. See
693                  * include/linux/pagemap.h for details.
694                  */
695                 if (unlikely(page != *pagep)) {
696                         page_cache_release(page);
697                         goto repeat;
698                 }
699         }
700         rcu_read_unlock();
701
702         return page;
703 }
704 EXPORT_SYMBOL(find_get_page);
705
706 /**
707  * find_lock_page - locate, pin and lock a pagecache page
708  * @mapping: the address_space to search
709  * @offset: the page index
710  *
711  * Locates the desired pagecache page, locks it, increments its reference
712  * count and returns its address.
713  *
714  * Returns zero if the page was not present. find_lock_page() may sleep.
715  */
716 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
717 {
718         struct page *page;
719
720 repeat:
721         page = find_get_page(mapping, offset);
722         if (page) {
723                 lock_page(page);
724                 /* Has the page been truncated? */
725                 if (unlikely(page->mapping != mapping)) {
726                         unlock_page(page);
727                         page_cache_release(page);
728                         goto repeat;
729                 }
730                 VM_BUG_ON(page->index != offset);
731         }
732         return page;
733 }
734 EXPORT_SYMBOL(find_lock_page);
735
736 /**
737  * find_or_create_page - locate or add a pagecache page
738  * @mapping: the page's address_space
739  * @index: the page's index into the mapping
740  * @gfp_mask: page allocation mode
741  *
742  * Locates a page in the pagecache.  If the page is not present, a new page
743  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
744  * LRU list.  The returned page is locked and has its reference count
745  * incremented.
746  *
747  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
748  * allocation!
749  *
750  * find_or_create_page() returns the desired page's address, or zero on
751  * memory exhaustion.
752  */
753 struct page *find_or_create_page(struct address_space *mapping,
754                 pgoff_t index, gfp_t gfp_mask)
755 {
756         struct page *page;
757         int err;
758 repeat:
759         page = find_lock_page(mapping, index);
760         if (!page) {
761                 page = __page_cache_alloc(gfp_mask);
762                 if (!page)
763                         return NULL;
764                 /*
765                  * We want a regular kernel memory (not highmem or DMA etc)
766                  * allocation for the radix tree nodes, but we need to honour
767                  * the context-specific requirements the caller has asked for.
768                  * GFP_RECLAIM_MASK collects those requirements.
769                  */
770                 err = add_to_page_cache_lru(page, mapping, index,
771                         (gfp_mask & GFP_RECLAIM_MASK));
772                 if (unlikely(err)) {
773                         page_cache_release(page);
774                         page = NULL;
775                         if (err == -EEXIST)
776                                 goto repeat;
777                 }
778         }
779         return page;
780 }
781 EXPORT_SYMBOL(find_or_create_page);
782
783 /**
784  * find_get_pages - gang pagecache lookup
785  * @mapping:    The address_space to search
786  * @start:      The starting page index
787  * @nr_pages:   The maximum number of pages
788  * @pages:      Where the resulting pages are placed
789  *
790  * find_get_pages() will search for and return a group of up to
791  * @nr_pages pages in the mapping.  The pages are placed at @pages.
792  * find_get_pages() takes a reference against the returned pages.
793  *
794  * The search returns a group of mapping-contiguous pages with ascending
795  * indexes.  There may be holes in the indices due to not-present pages.
796  *
797  * find_get_pages() returns the number of pages which were found.
798  */
799 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
800                             unsigned int nr_pages, struct page **pages)
801 {
802         unsigned int i;
803         unsigned int ret;
804         unsigned int nr_found;
805
806         rcu_read_lock();
807 restart:
808         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
809                                 (void ***)pages, start, nr_pages);
810         ret = 0;
811         for (i = 0; i < nr_found; i++) {
812                 struct page *page;
813 repeat:
814                 page = radix_tree_deref_slot((void **)pages[i]);
815                 if (unlikely(!page))
816                         continue;
817                 /*
818                  * this can only trigger if nr_found == 1, making livelock
819                  * a non issue.
820                  */
821                 if (unlikely(page == RADIX_TREE_RETRY))
822                         goto restart;
823
824                 if (!page_cache_get_speculative(page))
825                         goto repeat;
826
827                 /* Has the page moved? */
828                 if (unlikely(page != *((void **)pages[i]))) {
829                         page_cache_release(page);
830                         goto repeat;
831                 }
832
833                 pages[ret] = page;
834                 ret++;
835         }
836         rcu_read_unlock();
837         return ret;
838 }
839
840 /**
841  * find_get_pages_contig - gang contiguous pagecache lookup
842  * @mapping:    The address_space to search
843  * @index:      The starting page index
844  * @nr_pages:   The maximum number of pages
845  * @pages:      Where the resulting pages are placed
846  *
847  * find_get_pages_contig() works exactly like find_get_pages(), except
848  * that the returned number of pages are guaranteed to be contiguous.
849  *
850  * find_get_pages_contig() returns the number of pages which were found.
851  */
852 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
853                                unsigned int nr_pages, struct page **pages)
854 {
855         unsigned int i;
856         unsigned int ret;
857         unsigned int nr_found;
858
859         rcu_read_lock();
860 restart:
861         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
862                                 (void ***)pages, index, nr_pages);
863         ret = 0;
864         for (i = 0; i < nr_found; i++) {
865                 struct page *page;
866 repeat:
867                 page = radix_tree_deref_slot((void **)pages[i]);
868                 if (unlikely(!page))
869                         continue;
870                 /*
871                  * this can only trigger if nr_found == 1, making livelock
872                  * a non issue.
873                  */
874                 if (unlikely(page == RADIX_TREE_RETRY))
875                         goto restart;
876
877                 if (page->mapping == NULL || page->index != index)
878                         break;
879
880                 if (!page_cache_get_speculative(page))
881                         goto repeat;
882
883                 /* Has the page moved? */
884                 if (unlikely(page != *((void **)pages[i]))) {
885                         page_cache_release(page);
886                         goto repeat;
887                 }
888
889                 pages[ret] = page;
890                 ret++;
891                 index++;
892         }
893         rcu_read_unlock();
894         return ret;
895 }
896 EXPORT_SYMBOL(find_get_pages_contig);
897
898 /**
899  * find_get_pages_tag - find and return pages that match @tag
900  * @mapping:    the address_space to search
901  * @index:      the starting page index
902  * @tag:        the tag index
903  * @nr_pages:   the maximum number of pages
904  * @pages:      where the resulting pages are placed
905  *
906  * Like find_get_pages, except we only return pages which are tagged with
907  * @tag.   We update @index to index the next page for the traversal.
908  */
909 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
910                         int tag, unsigned int nr_pages, struct page **pages)
911 {
912         unsigned int i;
913         unsigned int ret;
914         unsigned int nr_found;
915
916         rcu_read_lock();
917 restart:
918         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
919                                 (void ***)pages, *index, nr_pages, tag);
920         ret = 0;
921         for (i = 0; i < nr_found; i++) {
922                 struct page *page;
923 repeat:
924                 page = radix_tree_deref_slot((void **)pages[i]);
925                 if (unlikely(!page))
926                         continue;
927                 /*
928                  * this can only trigger if nr_found == 1, making livelock
929                  * a non issue.
930                  */
931                 if (unlikely(page == RADIX_TREE_RETRY))
932                         goto restart;
933
934                 if (!page_cache_get_speculative(page))
935                         goto repeat;
936
937                 /* Has the page moved? */
938                 if (unlikely(page != *((void **)pages[i]))) {
939                         page_cache_release(page);
940                         goto repeat;
941                 }
942
943                 pages[ret] = page;
944                 ret++;
945         }
946         rcu_read_unlock();
947
948         if (ret)
949                 *index = pages[ret - 1]->index + 1;
950
951         return ret;
952 }
953 EXPORT_SYMBOL(find_get_pages_tag);
954
955 /**
956  * grab_cache_page_nowait - returns locked page at given index in given cache
957  * @mapping: target address_space
958  * @index: the page index
959  *
960  * Same as grab_cache_page(), but do not wait if the page is unavailable.
961  * This is intended for speculative data generators, where the data can
962  * be regenerated if the page couldn't be grabbed.  This routine should
963  * be safe to call while holding the lock for another page.
964  *
965  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
966  * and deadlock against the caller's locked page.
967  */
968 struct page *
969 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
970 {
971         struct page *page = find_get_page(mapping, index);
972
973         if (page) {
974                 if (trylock_page(page))
975                         return page;
976                 page_cache_release(page);
977                 return NULL;
978         }
979         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
980         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
981                 page_cache_release(page);
982                 page = NULL;
983         }
984         return page;
985 }
986 EXPORT_SYMBOL(grab_cache_page_nowait);
987
988 /*
989  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
990  * a _large_ part of the i/o request. Imagine the worst scenario:
991  *
992  *      ---R__________________________________________B__________
993  *         ^ reading here                             ^ bad block(assume 4k)
994  *
995  * read(R) => miss => readahead(R...B) => media error => frustrating retries
996  * => failing the whole request => read(R) => read(R+1) =>
997  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
998  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
999  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1000  *
1001  * It is going insane. Fix it by quickly scaling down the readahead size.
1002  */
1003 static void shrink_readahead_size_eio(struct file *filp,
1004                                         struct file_ra_state *ra)
1005 {
1006         if (!ra->ra_pages)
1007                 return;
1008
1009         ra->ra_pages /= 4;
1010 }
1011
1012 /**
1013  * do_generic_file_read - generic file read routine
1014  * @filp:       the file to read
1015  * @ppos:       current file position
1016  * @desc:       read_descriptor
1017  * @actor:      read method
1018  *
1019  * This is a generic file read routine, and uses the
1020  * mapping->a_ops->readpage() function for the actual low-level stuff.
1021  *
1022  * This is really ugly. But the goto's actually try to clarify some
1023  * of the logic when it comes to error handling etc.
1024  */
1025 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1026                 read_descriptor_t *desc, read_actor_t actor)
1027 {
1028         struct address_space *mapping = filp->f_mapping;
1029         struct inode *inode = mapping->host;
1030         struct file_ra_state *ra = &filp->f_ra;
1031         pgoff_t index;
1032         pgoff_t last_index;
1033         pgoff_t prev_index;
1034         unsigned long offset;      /* offset into pagecache page */
1035         unsigned int prev_offset;
1036         int error;
1037
1038         index = *ppos >> PAGE_CACHE_SHIFT;
1039         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1040         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1041         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1042         offset = *ppos & ~PAGE_CACHE_MASK;
1043
1044         for (;;) {
1045                 struct page *page;
1046                 pgoff_t end_index;
1047                 loff_t isize;
1048                 unsigned long nr, ret;
1049
1050                 cond_resched();
1051 find_page:
1052                 page = find_get_page(mapping, index);
1053                 if (!page) {
1054                         page_cache_sync_readahead(mapping,
1055                                         ra, filp,
1056                                         index, last_index - index);
1057                         page = find_get_page(mapping, index);
1058                         if (unlikely(page == NULL))
1059                                 goto no_cached_page;
1060                 }
1061                 if (PageReadahead(page)) {
1062                         page_cache_async_readahead(mapping,
1063                                         ra, filp, page,
1064                                         index, last_index - index);
1065                 }
1066                 if (!PageUptodate(page)) {
1067                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1068                                         !mapping->a_ops->is_partially_uptodate)
1069                                 goto page_not_up_to_date;
1070                         if (!trylock_page(page))
1071                                 goto page_not_up_to_date;
1072                         if (!mapping->a_ops->is_partially_uptodate(page,
1073                                                                 desc, offset))
1074                                 goto page_not_up_to_date_locked;
1075                         unlock_page(page);
1076                 }
1077 page_ok:
1078                 /*
1079                  * i_size must be checked after we know the page is Uptodate.
1080                  *
1081                  * Checking i_size after the check allows us to calculate
1082                  * the correct value for "nr", which means the zero-filled
1083                  * part of the page is not copied back to userspace (unless
1084                  * another truncate extends the file - this is desired though).
1085                  */
1086
1087                 isize = i_size_read(inode);
1088                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1089                 if (unlikely(!isize || index > end_index)) {
1090                         page_cache_release(page);
1091                         goto out;
1092                 }
1093
1094                 /* nr is the maximum number of bytes to copy from this page */
1095                 nr = PAGE_CACHE_SIZE;
1096                 if (index == end_index) {
1097                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1098                         if (nr <= offset) {
1099                                 page_cache_release(page);
1100                                 goto out;
1101                         }
1102                 }
1103                 nr = nr - offset;
1104
1105                 /* If users can be writing to this page using arbitrary
1106                  * virtual addresses, take care about potential aliasing
1107                  * before reading the page on the kernel side.
1108                  */
1109                 if (mapping_writably_mapped(mapping))
1110                         flush_dcache_page(page);
1111
1112                 /*
1113                  * When a sequential read accesses a page several times,
1114                  * only mark it as accessed the first time.
1115                  */
1116                 if (prev_index != index || offset != prev_offset)
1117                         mark_page_accessed(page);
1118                 prev_index = index;
1119
1120                 /*
1121                  * Ok, we have the page, and it's up-to-date, so
1122                  * now we can copy it to user space...
1123                  *
1124                  * The actor routine returns how many bytes were actually used..
1125                  * NOTE! This may not be the same as how much of a user buffer
1126                  * we filled up (we may be padding etc), so we can only update
1127                  * "pos" here (the actor routine has to update the user buffer
1128                  * pointers and the remaining count).
1129                  */
1130                 ret = actor(desc, page, offset, nr);
1131                 offset += ret;
1132                 index += offset >> PAGE_CACHE_SHIFT;
1133                 offset &= ~PAGE_CACHE_MASK;
1134                 prev_offset = offset;
1135
1136                 page_cache_release(page);
1137                 if (ret == nr && desc->count)
1138                         continue;
1139                 goto out;
1140
1141 page_not_up_to_date:
1142                 /* Get exclusive access to the page ... */
1143                 error = lock_page_killable(page);
1144                 if (unlikely(error))
1145                         goto readpage_error;
1146
1147 page_not_up_to_date_locked:
1148                 /* Did it get truncated before we got the lock? */
1149                 if (!page->mapping) {
1150                         unlock_page(page);
1151                         page_cache_release(page);
1152                         continue;
1153                 }
1154
1155                 /* Did somebody else fill it already? */
1156                 if (PageUptodate(page)) {
1157                         unlock_page(page);
1158                         goto page_ok;
1159                 }
1160
1161 readpage:
1162                 /* Start the actual read. The read will unlock the page. */
1163                 error = mapping->a_ops->readpage(filp, page);
1164
1165                 if (unlikely(error)) {
1166                         if (error == AOP_TRUNCATED_PAGE) {
1167                                 page_cache_release(page);
1168                                 goto find_page;
1169                         }
1170                         goto readpage_error;
1171                 }
1172
1173                 if (!PageUptodate(page)) {
1174                         error = lock_page_killable(page);
1175                         if (unlikely(error))
1176                                 goto readpage_error;
1177                         if (!PageUptodate(page)) {
1178                                 if (page->mapping == NULL) {
1179                                         /*
1180                                          * invalidate_inode_pages got it
1181                                          */
1182                                         unlock_page(page);
1183                                         page_cache_release(page);
1184                                         goto find_page;
1185                                 }
1186                                 unlock_page(page);
1187                                 shrink_readahead_size_eio(filp, ra);
1188                                 error = -EIO;
1189                                 goto readpage_error;
1190                         }
1191                         unlock_page(page);
1192                 }
1193
1194                 goto page_ok;
1195
1196 readpage_error:
1197                 /* UHHUH! A synchronous read error occurred. Report it */
1198                 desc->error = error;
1199                 page_cache_release(page);
1200                 goto out;
1201
1202 no_cached_page:
1203                 /*
1204                  * Ok, it wasn't cached, so we need to create a new
1205                  * page..
1206                  */
1207                 page = page_cache_alloc_cold(mapping);
1208                 if (!page) {
1209                         desc->error = -ENOMEM;
1210                         goto out;
1211                 }
1212                 error = add_to_page_cache_lru(page, mapping,
1213                                                 index, GFP_KERNEL);
1214                 if (error) {
1215                         page_cache_release(page);
1216                         if (error == -EEXIST)
1217                                 goto find_page;
1218                         desc->error = error;
1219                         goto out;
1220                 }
1221                 goto readpage;
1222         }
1223
1224 out:
1225         ra->prev_pos = prev_index;
1226         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1227         ra->prev_pos |= prev_offset;
1228
1229         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1230         file_accessed(filp);
1231 }
1232
1233 int file_read_actor(read_descriptor_t *desc, struct page *page,
1234                         unsigned long offset, unsigned long size)
1235 {
1236         char *kaddr;
1237         unsigned long left, count = desc->count;
1238
1239         if (size > count)
1240                 size = count;
1241
1242         /*
1243          * Faults on the destination of a read are common, so do it before
1244          * taking the kmap.
1245          */
1246         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1247                 kaddr = kmap_atomic(page, KM_USER0);
1248                 left = __copy_to_user_inatomic(desc->arg.buf,
1249                                                 kaddr + offset, size);
1250                 kunmap_atomic(kaddr, KM_USER0);
1251                 if (left == 0)
1252                         goto success;
1253         }
1254
1255         /* Do it the slow way */
1256         kaddr = kmap(page);
1257         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1258         kunmap(page);
1259
1260         if (left) {
1261                 size -= left;
1262                 desc->error = -EFAULT;
1263         }
1264 success:
1265         desc->count = count - size;
1266         desc->written += size;
1267         desc->arg.buf += size;
1268         return size;
1269 }
1270
1271 /*
1272  * Performs necessary checks before doing a write
1273  * @iov:        io vector request
1274  * @nr_segs:    number of segments in the iovec
1275  * @count:      number of bytes to write
1276  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1277  *
1278  * Adjust number of segments and amount of bytes to write (nr_segs should be
1279  * properly initialized first). Returns appropriate error code that caller
1280  * should return or zero in case that write should be allowed.
1281  */
1282 int generic_segment_checks(const struct iovec *iov,
1283                         unsigned long *nr_segs, size_t *count, int access_flags)
1284 {
1285         unsigned long   seg;
1286         size_t cnt = 0;
1287         for (seg = 0; seg < *nr_segs; seg++) {
1288                 const struct iovec *iv = &iov[seg];
1289
1290                 /*
1291                  * If any segment has a negative length, or the cumulative
1292                  * length ever wraps negative then return -EINVAL.
1293                  */
1294                 cnt += iv->iov_len;
1295                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1296                         return -EINVAL;
1297                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1298                         continue;
1299                 if (seg == 0)
1300                         return -EFAULT;
1301                 *nr_segs = seg;
1302                 cnt -= iv->iov_len;     /* This segment is no good */
1303                 break;
1304         }
1305         *count = cnt;
1306         return 0;
1307 }
1308 EXPORT_SYMBOL(generic_segment_checks);
1309
1310 /**
1311  * generic_file_aio_read - generic filesystem read routine
1312  * @iocb:       kernel I/O control block
1313  * @iov:        io vector request
1314  * @nr_segs:    number of segments in the iovec
1315  * @pos:        current file position
1316  *
1317  * This is the "read()" routine for all filesystems
1318  * that can use the page cache directly.
1319  */
1320 ssize_t
1321 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1322                 unsigned long nr_segs, loff_t pos)
1323 {
1324         struct file *filp = iocb->ki_filp;
1325         ssize_t retval;
1326         unsigned long seg;
1327         size_t count;
1328         loff_t *ppos = &iocb->ki_pos;
1329
1330         count = 0;
1331         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1332         if (retval)
1333                 return retval;
1334
1335         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1336         if (filp->f_flags & O_DIRECT) {
1337                 loff_t size;
1338                 struct address_space *mapping;
1339                 struct inode *inode;
1340
1341                 mapping = filp->f_mapping;
1342                 inode = mapping->host;
1343                 if (!count)
1344                         goto out; /* skip atime */
1345                 size = i_size_read(inode);
1346                 if (pos < size) {
1347                         retval = filemap_write_and_wait_range(mapping, pos,
1348                                         pos + iov_length(iov, nr_segs) - 1);
1349                         if (!retval) {
1350                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1351                                                         iov, pos, nr_segs);
1352                         }
1353                         if (retval > 0)
1354                                 *ppos = pos + retval;
1355                         if (retval) {
1356                                 file_accessed(filp);
1357                                 goto out;
1358                         }
1359                 }
1360         }
1361
1362         for (seg = 0; seg < nr_segs; seg++) {
1363                 read_descriptor_t desc;
1364
1365                 desc.written = 0;
1366                 desc.arg.buf = iov[seg].iov_base;
1367                 desc.count = iov[seg].iov_len;
1368                 if (desc.count == 0)
1369                         continue;
1370                 desc.error = 0;
1371                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1372                 retval += desc.written;
1373                 if (desc.error) {
1374                         retval = retval ?: desc.error;
1375                         break;
1376                 }
1377                 if (desc.count > 0)
1378                         break;
1379         }
1380 out:
1381         return retval;
1382 }
1383 EXPORT_SYMBOL(generic_file_aio_read);
1384
1385 static ssize_t
1386 do_readahead(struct address_space *mapping, struct file *filp,
1387              pgoff_t index, unsigned long nr)
1388 {
1389         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1390                 return -EINVAL;
1391
1392         force_page_cache_readahead(mapping, filp, index,
1393                                         max_sane_readahead(nr));
1394         return 0;
1395 }
1396
1397 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1398 {
1399         ssize_t ret;
1400         struct file *file;
1401
1402         ret = -EBADF;
1403         file = fget(fd);
1404         if (file) {
1405                 if (file->f_mode & FMODE_READ) {
1406                         struct address_space *mapping = file->f_mapping;
1407                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1408                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1409                         unsigned long len = end - start + 1;
1410                         ret = do_readahead(mapping, file, start, len);
1411                 }
1412                 fput(file);
1413         }
1414         return ret;
1415 }
1416 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1417 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1418 {
1419         return SYSC_readahead((int) fd, offset, (size_t) count);
1420 }
1421 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1422 #endif
1423
1424 #ifdef CONFIG_MMU
1425 /**
1426  * page_cache_read - adds requested page to the page cache if not already there
1427  * @file:       file to read
1428  * @offset:     page index
1429  *
1430  * This adds the requested page to the page cache if it isn't already there,
1431  * and schedules an I/O to read in its contents from disk.
1432  */
1433 static int page_cache_read(struct file *file, pgoff_t offset)
1434 {
1435         struct address_space *mapping = file->f_mapping;
1436         struct page *page; 
1437         int ret;
1438
1439         do {
1440                 page = page_cache_alloc_cold(mapping);
1441                 if (!page)
1442                         return -ENOMEM;
1443
1444                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1445                 if (ret == 0)
1446                         ret = mapping->a_ops->readpage(file, page);
1447                 else if (ret == -EEXIST)
1448                         ret = 0; /* losing race to add is OK */
1449
1450                 page_cache_release(page);
1451
1452         } while (ret == AOP_TRUNCATED_PAGE);
1453                 
1454         return ret;
1455 }
1456
1457 #define MMAP_LOTSAMISS  (100)
1458
1459 /**
1460  * filemap_fault - read in file data for page fault handling
1461  * @vma:        vma in which the fault was taken
1462  * @vmf:        struct vm_fault containing details of the fault
1463  *
1464  * filemap_fault() is invoked via the vma operations vector for a
1465  * mapped memory region to read in file data during a page fault.
1466  *
1467  * The goto's are kind of ugly, but this streamlines the normal case of having
1468  * it in the page cache, and handles the special cases reasonably without
1469  * having a lot of duplicated code.
1470  */
1471 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1472 {
1473         int error;
1474         struct file *file = vma->vm_file;
1475         struct address_space *mapping = file->f_mapping;
1476         struct file_ra_state *ra = &file->f_ra;
1477         struct inode *inode = mapping->host;
1478         struct page *page;
1479         pgoff_t size;
1480         int did_readaround = 0;
1481         int ret = 0;
1482
1483         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1484         if (vmf->pgoff >= size)
1485                 return VM_FAULT_SIGBUS;
1486
1487         /* If we don't want any read-ahead, don't bother */
1488         if (VM_RandomReadHint(vma))
1489                 goto no_cached_page;
1490
1491         /*
1492          * Do we have something in the page cache already?
1493          */
1494 retry_find:
1495         page = find_lock_page(mapping, vmf->pgoff);
1496         /*
1497          * For sequential accesses, we use the generic readahead logic.
1498          */
1499         if (VM_SequentialReadHint(vma)) {
1500                 if (!page) {
1501                         page_cache_sync_readahead(mapping, ra, file,
1502                                                            vmf->pgoff, 1);
1503                         page = find_lock_page(mapping, vmf->pgoff);
1504                         if (!page)
1505                                 goto no_cached_page;
1506                 }
1507                 if (PageReadahead(page)) {
1508                         page_cache_async_readahead(mapping, ra, file, page,
1509                                                            vmf->pgoff, 1);
1510                 }
1511         }
1512
1513         if (!page) {
1514                 unsigned long ra_pages;
1515
1516                 ra->mmap_miss++;
1517
1518                 /*
1519                  * Do we miss much more than hit in this file? If so,
1520                  * stop bothering with read-ahead. It will only hurt.
1521                  */
1522                 if (ra->mmap_miss > MMAP_LOTSAMISS)
1523                         goto no_cached_page;
1524
1525                 /*
1526                  * To keep the pgmajfault counter straight, we need to
1527                  * check did_readaround, as this is an inner loop.
1528                  */
1529                 if (!did_readaround) {
1530                         ret = VM_FAULT_MAJOR;
1531                         count_vm_event(PGMAJFAULT);
1532                 }
1533                 did_readaround = 1;
1534                 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1535                 if (ra_pages) {
1536                         pgoff_t start = 0;
1537
1538                         if (vmf->pgoff > ra_pages / 2)
1539                                 start = vmf->pgoff - ra_pages / 2;
1540                         do_page_cache_readahead(mapping, file, start, ra_pages);
1541                 }
1542                 page = find_lock_page(mapping, vmf->pgoff);
1543                 if (!page)
1544                         goto no_cached_page;
1545         }
1546
1547         if (!did_readaround)
1548                 ra->mmap_miss--;
1549
1550         /*
1551          * We have a locked page in the page cache, now we need to check
1552          * that it's up-to-date. If not, it is going to be due to an error.
1553          */
1554         if (unlikely(!PageUptodate(page)))
1555                 goto page_not_uptodate;
1556
1557         /* Must recheck i_size under page lock */
1558         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1559         if (unlikely(vmf->pgoff >= size)) {
1560                 unlock_page(page);
1561                 page_cache_release(page);
1562                 return VM_FAULT_SIGBUS;
1563         }
1564
1565         /*
1566          * Found the page and have a reference on it.
1567          */
1568         ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1569         vmf->page = page;
1570         return ret | VM_FAULT_LOCKED;
1571
1572 no_cached_page:
1573         /*
1574          * We're only likely to ever get here if MADV_RANDOM is in
1575          * effect.
1576          */
1577         error = page_cache_read(file, vmf->pgoff);
1578
1579         /*
1580          * The page we want has now been added to the page cache.
1581          * In the unlikely event that someone removed it in the
1582          * meantime, we'll just come back here and read it again.
1583          */
1584         if (error >= 0)
1585                 goto retry_find;
1586
1587         /*
1588          * An error return from page_cache_read can result if the
1589          * system is low on memory, or a problem occurs while trying
1590          * to schedule I/O.
1591          */
1592         if (error == -ENOMEM)
1593                 return VM_FAULT_OOM;
1594         return VM_FAULT_SIGBUS;
1595
1596 page_not_uptodate:
1597         /* IO error path */
1598         if (!did_readaround) {
1599                 ret = VM_FAULT_MAJOR;
1600                 count_vm_event(PGMAJFAULT);
1601         }
1602
1603         /*
1604          * Umm, take care of errors if the page isn't up-to-date.
1605          * Try to re-read it _once_. We do this synchronously,
1606          * because there really aren't any performance issues here
1607          * and we need to check for errors.
1608          */
1609         ClearPageError(page);
1610         error = mapping->a_ops->readpage(file, page);
1611         if (!error) {
1612                 wait_on_page_locked(page);
1613                 if (!PageUptodate(page))
1614                         error = -EIO;
1615         }
1616         page_cache_release(page);
1617
1618         if (!error || error == AOP_TRUNCATED_PAGE)
1619                 goto retry_find;
1620
1621         /* Things didn't work out. Return zero to tell the mm layer so. */
1622         shrink_readahead_size_eio(file, ra);
1623         return VM_FAULT_SIGBUS;
1624 }
1625 EXPORT_SYMBOL(filemap_fault);
1626
1627 struct vm_operations_struct generic_file_vm_ops = {
1628         .fault          = filemap_fault,
1629 };
1630
1631 /* This is used for a general mmap of a disk file */
1632
1633 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1634 {
1635         struct address_space *mapping = file->f_mapping;
1636
1637         if (!mapping->a_ops->readpage)
1638                 return -ENOEXEC;
1639         file_accessed(file);
1640         vma->vm_ops = &generic_file_vm_ops;
1641         vma->vm_flags |= VM_CAN_NONLINEAR;
1642         return 0;
1643 }
1644
1645 /*
1646  * This is for filesystems which do not implement ->writepage.
1647  */
1648 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1649 {
1650         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1651                 return -EINVAL;
1652         return generic_file_mmap(file, vma);
1653 }
1654 #else
1655 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1656 {
1657         return -ENOSYS;
1658 }
1659 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1660 {
1661         return -ENOSYS;
1662 }
1663 #endif /* CONFIG_MMU */
1664
1665 EXPORT_SYMBOL(generic_file_mmap);
1666 EXPORT_SYMBOL(generic_file_readonly_mmap);
1667
1668 static struct page *__read_cache_page(struct address_space *mapping,
1669                                 pgoff_t index,
1670                                 int (*filler)(void *,struct page*),
1671                                 void *data)
1672 {
1673         struct page *page;
1674         int err;
1675 repeat:
1676         page = find_get_page(mapping, index);
1677         if (!page) {
1678                 page = page_cache_alloc_cold(mapping);
1679                 if (!page)
1680                         return ERR_PTR(-ENOMEM);
1681                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1682                 if (unlikely(err)) {
1683                         page_cache_release(page);
1684                         if (err == -EEXIST)
1685                                 goto repeat;
1686                         /* Presumably ENOMEM for radix tree node */
1687                         return ERR_PTR(err);
1688                 }
1689                 err = filler(data, page);
1690                 if (err < 0) {
1691                         page_cache_release(page);
1692                         page = ERR_PTR(err);
1693                 }
1694         }
1695         return page;
1696 }
1697
1698 /**
1699  * read_cache_page_async - read into page cache, fill it if needed
1700  * @mapping:    the page's address_space
1701  * @index:      the page index
1702  * @filler:     function to perform the read
1703  * @data:       destination for read data
1704  *
1705  * Same as read_cache_page, but don't wait for page to become unlocked
1706  * after submitting it to the filler.
1707  *
1708  * Read into the page cache. If a page already exists, and PageUptodate() is
1709  * not set, try to fill the page but don't wait for it to become unlocked.
1710  *
1711  * If the page does not get brought uptodate, return -EIO.
1712  */
1713 struct page *read_cache_page_async(struct address_space *mapping,
1714                                 pgoff_t index,
1715                                 int (*filler)(void *,struct page*),
1716                                 void *data)
1717 {
1718         struct page *page;
1719         int err;
1720
1721 retry:
1722         page = __read_cache_page(mapping, index, filler, data);
1723         if (IS_ERR(page))
1724                 return page;
1725         if (PageUptodate(page))
1726                 goto out;
1727
1728         lock_page(page);
1729         if (!page->mapping) {
1730                 unlock_page(page);
1731                 page_cache_release(page);
1732                 goto retry;
1733         }
1734         if (PageUptodate(page)) {
1735                 unlock_page(page);
1736                 goto out;
1737         }
1738         err = filler(data, page);
1739         if (err < 0) {
1740                 page_cache_release(page);
1741                 return ERR_PTR(err);
1742         }
1743 out:
1744         mark_page_accessed(page);
1745         return page;
1746 }
1747 EXPORT_SYMBOL(read_cache_page_async);
1748
1749 /**
1750  * read_cache_page - read into page cache, fill it if needed
1751  * @mapping:    the page's address_space
1752  * @index:      the page index
1753  * @filler:     function to perform the read
1754  * @data:       destination for read data
1755  *
1756  * Read into the page cache. If a page already exists, and PageUptodate() is
1757  * not set, try to fill the page then wait for it to become unlocked.
1758  *
1759  * If the page does not get brought uptodate, return -EIO.
1760  */
1761 struct page *read_cache_page(struct address_space *mapping,
1762                                 pgoff_t index,
1763                                 int (*filler)(void *,struct page*),
1764                                 void *data)
1765 {
1766         struct page *page;
1767
1768         page = read_cache_page_async(mapping, index, filler, data);
1769         if (IS_ERR(page))
1770                 goto out;
1771         wait_on_page_locked(page);
1772         if (!PageUptodate(page)) {
1773                 page_cache_release(page);
1774                 page = ERR_PTR(-EIO);
1775         }
1776  out:
1777         return page;
1778 }
1779 EXPORT_SYMBOL(read_cache_page);
1780
1781 /*
1782  * The logic we want is
1783  *
1784  *      if suid or (sgid and xgrp)
1785  *              remove privs
1786  */
1787 int should_remove_suid(struct dentry *dentry)
1788 {
1789         mode_t mode = dentry->d_inode->i_mode;
1790         int kill = 0;
1791
1792         /* suid always must be killed */
1793         if (unlikely(mode & S_ISUID))
1794                 kill = ATTR_KILL_SUID;
1795
1796         /*
1797          * sgid without any exec bits is just a mandatory locking mark; leave
1798          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1799          */
1800         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1801                 kill |= ATTR_KILL_SGID;
1802
1803         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1804                 return kill;
1805
1806         return 0;
1807 }
1808 EXPORT_SYMBOL(should_remove_suid);
1809
1810 static int __remove_suid(struct dentry *dentry, int kill)
1811 {
1812         struct iattr newattrs;
1813
1814         newattrs.ia_valid = ATTR_FORCE | kill;
1815         return notify_change(dentry, &newattrs);
1816 }
1817
1818 int file_remove_suid(struct file *file)
1819 {
1820         struct dentry *dentry = file->f_path.dentry;
1821         int killsuid = should_remove_suid(dentry);
1822         int killpriv = security_inode_need_killpriv(dentry);
1823         int error = 0;
1824
1825         if (killpriv < 0)
1826                 return killpriv;
1827         if (killpriv)
1828                 error = security_inode_killpriv(dentry);
1829         if (!error && killsuid)
1830                 error = __remove_suid(dentry, killsuid);
1831
1832         return error;
1833 }
1834 EXPORT_SYMBOL(file_remove_suid);
1835
1836 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1837                         const struct iovec *iov, size_t base, size_t bytes)
1838 {
1839         size_t copied = 0, left = 0;
1840
1841         while (bytes) {
1842                 char __user *buf = iov->iov_base + base;
1843                 int copy = min(bytes, iov->iov_len - base);
1844
1845                 base = 0;
1846                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1847                 copied += copy;
1848                 bytes -= copy;
1849                 vaddr += copy;
1850                 iov++;
1851
1852                 if (unlikely(left))
1853                         break;
1854         }
1855         return copied - left;
1856 }
1857
1858 /*
1859  * Copy as much as we can into the page and return the number of bytes which
1860  * were sucessfully copied.  If a fault is encountered then return the number of
1861  * bytes which were copied.
1862  */
1863 size_t iov_iter_copy_from_user_atomic(struct page *page,
1864                 struct iov_iter *i, unsigned long offset, size_t bytes)
1865 {
1866         char *kaddr;
1867         size_t copied;
1868
1869         BUG_ON(!in_atomic());
1870         kaddr = kmap_atomic(page, KM_USER0);
1871         if (likely(i->nr_segs == 1)) {
1872                 int left;
1873                 char __user *buf = i->iov->iov_base + i->iov_offset;
1874                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1875                 copied = bytes - left;
1876         } else {
1877                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1878                                                 i->iov, i->iov_offset, bytes);
1879         }
1880         kunmap_atomic(kaddr, KM_USER0);
1881
1882         return copied;
1883 }
1884 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1885
1886 /*
1887  * This has the same sideeffects and return value as
1888  * iov_iter_copy_from_user_atomic().
1889  * The difference is that it attempts to resolve faults.
1890  * Page must not be locked.
1891  */
1892 size_t iov_iter_copy_from_user(struct page *page,
1893                 struct iov_iter *i, unsigned long offset, size_t bytes)
1894 {
1895         char *kaddr;
1896         size_t copied;
1897
1898         kaddr = kmap(page);
1899         if (likely(i->nr_segs == 1)) {
1900                 int left;
1901                 char __user *buf = i->iov->iov_base + i->iov_offset;
1902                 left = __copy_from_user(kaddr + offset, buf, bytes);
1903                 copied = bytes - left;
1904         } else {
1905                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1906                                                 i->iov, i->iov_offset, bytes);
1907         }
1908         kunmap(page);
1909         return copied;
1910 }
1911 EXPORT_SYMBOL(iov_iter_copy_from_user);
1912
1913 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1914 {
1915         BUG_ON(i->count < bytes);
1916
1917         if (likely(i->nr_segs == 1)) {
1918                 i->iov_offset += bytes;
1919                 i->count -= bytes;
1920         } else {
1921                 const struct iovec *iov = i->iov;
1922                 size_t base = i->iov_offset;
1923
1924                 /*
1925                  * The !iov->iov_len check ensures we skip over unlikely
1926                  * zero-length segments (without overruning the iovec).
1927                  */
1928                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1929                         int copy;
1930
1931                         copy = min(bytes, iov->iov_len - base);
1932                         BUG_ON(!i->count || i->count < copy);
1933                         i->count -= copy;
1934                         bytes -= copy;
1935                         base += copy;
1936                         if (iov->iov_len == base) {
1937                                 iov++;
1938                                 base = 0;
1939                         }
1940                 }
1941                 i->iov = iov;
1942                 i->iov_offset = base;
1943         }
1944 }
1945 EXPORT_SYMBOL(iov_iter_advance);
1946
1947 /*
1948  * Fault in the first iovec of the given iov_iter, to a maximum length
1949  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1950  * accessed (ie. because it is an invalid address).
1951  *
1952  * writev-intensive code may want this to prefault several iovecs -- that
1953  * would be possible (callers must not rely on the fact that _only_ the
1954  * first iovec will be faulted with the current implementation).
1955  */
1956 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1957 {
1958         char __user *buf = i->iov->iov_base + i->iov_offset;
1959         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1960         return fault_in_pages_readable(buf, bytes);
1961 }
1962 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1963
1964 /*
1965  * Return the count of just the current iov_iter segment.
1966  */
1967 size_t iov_iter_single_seg_count(struct iov_iter *i)
1968 {
1969         const struct iovec *iov = i->iov;
1970         if (i->nr_segs == 1)
1971                 return i->count;
1972         else
1973                 return min(i->count, iov->iov_len - i->iov_offset);
1974 }
1975 EXPORT_SYMBOL(iov_iter_single_seg_count);
1976
1977 /*
1978  * Performs necessary checks before doing a write
1979  *
1980  * Can adjust writing position or amount of bytes to write.
1981  * Returns appropriate error code that caller should return or
1982  * zero in case that write should be allowed.
1983  */
1984 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1985 {
1986         struct inode *inode = file->f_mapping->host;
1987         unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1988
1989         if (unlikely(*pos < 0))
1990                 return -EINVAL;
1991
1992         if (!isblk) {
1993                 /* FIXME: this is for backwards compatibility with 2.4 */
1994                 if (file->f_flags & O_APPEND)
1995                         *pos = i_size_read(inode);
1996
1997                 if (limit != RLIM_INFINITY) {
1998                         if (*pos >= limit) {
1999                                 send_sig(SIGXFSZ, current, 0);
2000                                 return -EFBIG;
2001                         }
2002                         if (*count > limit - (typeof(limit))*pos) {
2003                                 *count = limit - (typeof(limit))*pos;
2004                         }
2005                 }
2006         }
2007
2008         /*
2009          * LFS rule
2010          */
2011         if (unlikely(*pos + *count > MAX_NON_LFS &&
2012                                 !(file->f_flags & O_LARGEFILE))) {
2013                 if (*pos >= MAX_NON_LFS) {
2014                         return -EFBIG;
2015                 }
2016                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2017                         *count = MAX_NON_LFS - (unsigned long)*pos;
2018                 }
2019         }
2020
2021         /*
2022          * Are we about to exceed the fs block limit ?
2023          *
2024          * If we have written data it becomes a short write.  If we have
2025          * exceeded without writing data we send a signal and return EFBIG.
2026          * Linus frestrict idea will clean these up nicely..
2027          */
2028         if (likely(!isblk)) {
2029                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2030                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2031                                 return -EFBIG;
2032                         }
2033                         /* zero-length writes at ->s_maxbytes are OK */
2034                 }
2035
2036                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2037                         *count = inode->i_sb->s_maxbytes - *pos;
2038         } else {
2039 #ifdef CONFIG_BLOCK
2040                 loff_t isize;
2041                 if (bdev_read_only(I_BDEV(inode)))
2042                         return -EPERM;
2043                 isize = i_size_read(inode);
2044                 if (*pos >= isize) {
2045                         if (*count || *pos > isize)
2046                                 return -ENOSPC;
2047                 }
2048
2049                 if (*pos + *count > isize)
2050                         *count = isize - *pos;
2051 #else
2052                 return -EPERM;
2053 #endif
2054         }
2055         return 0;
2056 }
2057 EXPORT_SYMBOL(generic_write_checks);
2058
2059 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2060                                 loff_t pos, unsigned len, unsigned flags,
2061                                 struct page **pagep, void **fsdata)
2062 {
2063         const struct address_space_operations *aops = mapping->a_ops;
2064
2065         return aops->write_begin(file, mapping, pos, len, flags,
2066                                                         pagep, fsdata);
2067 }
2068 EXPORT_SYMBOL(pagecache_write_begin);
2069
2070 int pagecache_write_end(struct file *file, struct address_space *mapping,
2071                                 loff_t pos, unsigned len, unsigned copied,
2072                                 struct page *page, void *fsdata)
2073 {
2074         const struct address_space_operations *aops = mapping->a_ops;
2075
2076         mark_page_accessed(page);
2077         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2078 }
2079 EXPORT_SYMBOL(pagecache_write_end);
2080
2081 ssize_t
2082 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2083                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2084                 size_t count, size_t ocount)
2085 {
2086         struct file     *file = iocb->ki_filp;
2087         struct address_space *mapping = file->f_mapping;
2088         struct inode    *inode = mapping->host;
2089         ssize_t         written;
2090         size_t          write_len;
2091         pgoff_t         end;
2092
2093         if (count != ocount)
2094                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2095
2096         write_len = iov_length(iov, *nr_segs);
2097         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2098
2099         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2100         if (written)
2101                 goto out;
2102
2103         /*
2104          * After a write we want buffered reads to be sure to go to disk to get
2105          * the new data.  We invalidate clean cached page from the region we're
2106          * about to write.  We do this *before* the write so that we can return
2107          * without clobbering -EIOCBQUEUED from ->direct_IO().
2108          */
2109         if (mapping->nrpages) {
2110                 written = invalidate_inode_pages2_range(mapping,
2111                                         pos >> PAGE_CACHE_SHIFT, end);
2112                 /*
2113                  * If a page can not be invalidated, return 0 to fall back
2114                  * to buffered write.
2115                  */
2116                 if (written) {
2117                         if (written == -EBUSY)
2118                                 return 0;
2119                         goto out;
2120                 }
2121         }
2122
2123         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2124
2125         /*
2126          * Finally, try again to invalidate clean pages which might have been
2127          * cached by non-direct readahead, or faulted in by get_user_pages()
2128          * if the source of the write was an mmap'ed region of the file
2129          * we're writing.  Either one is a pretty crazy thing to do,
2130          * so we don't support it 100%.  If this invalidation
2131          * fails, tough, the write still worked...
2132          */
2133         if (mapping->nrpages) {
2134                 invalidate_inode_pages2_range(mapping,
2135                                               pos >> PAGE_CACHE_SHIFT, end);
2136         }
2137
2138         if (written > 0) {
2139                 loff_t end = pos + written;
2140                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2141                         i_size_write(inode,  end);
2142                         mark_inode_dirty(inode);
2143                 }
2144                 *ppos = end;
2145         }
2146
2147         /*
2148          * Sync the fs metadata but not the minor inode changes and
2149          * of course not the data as we did direct DMA for the IO.
2150          * i_mutex is held, which protects generic_osync_inode() from
2151          * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2152          */
2153 out:
2154         if ((written >= 0 || written == -EIOCBQUEUED) &&
2155             ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2156                 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2157                 if (err < 0)
2158                         written = err;
2159         }
2160         return written;
2161 }
2162 EXPORT_SYMBOL(generic_file_direct_write);
2163
2164 /*
2165  * Find or create a page at the given pagecache position. Return the locked
2166  * page. This function is specifically for buffered writes.
2167  */
2168 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2169                                         pgoff_t index, unsigned flags)
2170 {
2171         int status;
2172         struct page *page;
2173         gfp_t gfp_notmask = 0;
2174         if (flags & AOP_FLAG_NOFS)
2175                 gfp_notmask = __GFP_FS;
2176 repeat:
2177         page = find_lock_page(mapping, index);
2178         if (likely(page))
2179                 return page;
2180
2181         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2182         if (!page)
2183                 return NULL;
2184         status = add_to_page_cache_lru(page, mapping, index,
2185                                                 GFP_KERNEL & ~gfp_notmask);
2186         if (unlikely(status)) {
2187                 page_cache_release(page);
2188                 if (status == -EEXIST)
2189                         goto repeat;
2190                 return NULL;
2191         }
2192         return page;
2193 }
2194 EXPORT_SYMBOL(grab_cache_page_write_begin);
2195
2196 static ssize_t generic_perform_write(struct file *file,
2197                                 struct iov_iter *i, loff_t pos)
2198 {
2199         struct address_space *mapping = file->f_mapping;
2200         const struct address_space_operations *a_ops = mapping->a_ops;
2201         long status = 0;
2202         ssize_t written = 0;
2203         unsigned int flags = 0;
2204
2205         /*
2206          * Copies from kernel address space cannot fail (NFSD is a big user).
2207          */
2208         if (segment_eq(get_fs(), KERNEL_DS))
2209                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2210
2211         do {
2212                 struct page *page;
2213                 pgoff_t index;          /* Pagecache index for current page */
2214                 unsigned long offset;   /* Offset into pagecache page */
2215                 unsigned long bytes;    /* Bytes to write to page */
2216                 size_t copied;          /* Bytes copied from user */
2217                 void *fsdata;
2218
2219                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2220                 index = pos >> PAGE_CACHE_SHIFT;
2221                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2222                                                 iov_iter_count(i));
2223
2224 again:
2225
2226                 /*
2227                  * Bring in the user page that we will copy from _first_.
2228                  * Otherwise there's a nasty deadlock on copying from the
2229                  * same page as we're writing to, without it being marked
2230                  * up-to-date.
2231                  *
2232                  * Not only is this an optimisation, but it is also required
2233                  * to check that the address is actually valid, when atomic
2234                  * usercopies are used, below.
2235                  */
2236                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2237                         status = -EFAULT;
2238                         break;
2239                 }
2240
2241                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2242                                                 &page, &fsdata);
2243                 if (unlikely(status))
2244                         break;
2245
2246                 pagefault_disable();
2247                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2248                 pagefault_enable();
2249                 flush_dcache_page(page);
2250
2251                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2252                                                 page, fsdata);
2253                 if (unlikely(status < 0))
2254                         break;
2255                 copied = status;
2256
2257                 cond_resched();
2258
2259                 iov_iter_advance(i, copied);
2260                 if (unlikely(copied == 0)) {
2261                         /*
2262                          * If we were unable to copy any data at all, we must
2263                          * fall back to a single segment length write.
2264                          *
2265                          * If we didn't fallback here, we could livelock
2266                          * because not all segments in the iov can be copied at
2267                          * once without a pagefault.
2268                          */
2269                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2270                                                 iov_iter_single_seg_count(i));
2271                         goto again;
2272                 }
2273                 pos += copied;
2274                 written += copied;
2275
2276                 balance_dirty_pages_ratelimited(mapping);
2277
2278         } while (iov_iter_count(i));
2279
2280         return written ? written : status;
2281 }
2282
2283 ssize_t
2284 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2285                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2286                 size_t count, ssize_t written)
2287 {
2288         struct file *file = iocb->ki_filp;
2289         struct address_space *mapping = file->f_mapping;
2290         const struct address_space_operations *a_ops = mapping->a_ops;
2291         struct inode *inode = mapping->host;
2292         ssize_t status;
2293         struct iov_iter i;
2294
2295         iov_iter_init(&i, iov, nr_segs, count, written);
2296         status = generic_perform_write(file, &i, pos);
2297
2298         if (likely(status >= 0)) {
2299                 written += status;
2300                 *ppos = pos + status;
2301
2302                 /*
2303                  * For now, when the user asks for O_SYNC, we'll actually give
2304                  * O_DSYNC
2305                  */
2306                 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2307                         if (!a_ops->writepage || !is_sync_kiocb(iocb))
2308                                 status = generic_osync_inode(inode, mapping,
2309                                                 OSYNC_METADATA|OSYNC_DATA);
2310                 }
2311         }
2312         
2313         /*
2314          * If we get here for O_DIRECT writes then we must have fallen through
2315          * to buffered writes (block instantiation inside i_size).  So we sync
2316          * the file data here, to try to honour O_DIRECT expectations.
2317          */
2318         if (unlikely(file->f_flags & O_DIRECT) && written)
2319                 status = filemap_write_and_wait_range(mapping,
2320                                         pos, pos + written - 1);
2321
2322         return written ? written : status;
2323 }
2324 EXPORT_SYMBOL(generic_file_buffered_write);
2325
2326 static ssize_t
2327 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2328                                 unsigned long nr_segs, loff_t *ppos)
2329 {
2330         struct file *file = iocb->ki_filp;
2331         struct address_space * mapping = file->f_mapping;
2332         size_t ocount;          /* original count */
2333         size_t count;           /* after file limit checks */
2334         struct inode    *inode = mapping->host;
2335         loff_t          pos;
2336         ssize_t         written;
2337         ssize_t         err;
2338
2339         ocount = 0;
2340         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2341         if (err)
2342                 return err;
2343
2344         count = ocount;
2345         pos = *ppos;
2346
2347         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2348
2349         /* We can write back this queue in page reclaim */
2350         current->backing_dev_info = mapping->backing_dev_info;
2351         written = 0;
2352
2353         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2354         if (err)
2355                 goto out;
2356
2357         if (count == 0)
2358                 goto out;
2359
2360         err = file_remove_suid(file);
2361         if (err)
2362                 goto out;
2363
2364         file_update_time(file);
2365
2366         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2367         if (unlikely(file->f_flags & O_DIRECT)) {
2368                 loff_t endbyte;
2369                 ssize_t written_buffered;
2370
2371                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2372                                                         ppos, count, ocount);
2373                 if (written < 0 || written == count)
2374                         goto out;
2375                 /*
2376                  * direct-io write to a hole: fall through to buffered I/O
2377                  * for completing the rest of the request.
2378                  */
2379                 pos += written;
2380                 count -= written;
2381                 written_buffered = generic_file_buffered_write(iocb, iov,
2382                                                 nr_segs, pos, ppos, count,
2383                                                 written);
2384                 /*
2385                  * If generic_file_buffered_write() retuned a synchronous error
2386                  * then we want to return the number of bytes which were
2387                  * direct-written, or the error code if that was zero.  Note
2388                  * that this differs from normal direct-io semantics, which
2389                  * will return -EFOO even if some bytes were written.
2390                  */
2391                 if (written_buffered < 0) {
2392                         err = written_buffered;
2393                         goto out;
2394                 }
2395
2396                 /*
2397                  * We need to ensure that the page cache pages are written to
2398                  * disk and invalidated to preserve the expected O_DIRECT
2399                  * semantics.
2400                  */
2401                 endbyte = pos + written_buffered - written - 1;
2402                 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2403                                             SYNC_FILE_RANGE_WAIT_BEFORE|
2404                                             SYNC_FILE_RANGE_WRITE|
2405                                             SYNC_FILE_RANGE_WAIT_AFTER);
2406                 if (err == 0) {
2407                         written = written_buffered;
2408                         invalidate_mapping_pages(mapping,
2409                                                  pos >> PAGE_CACHE_SHIFT,
2410                                                  endbyte >> PAGE_CACHE_SHIFT);
2411                 } else {
2412                         /*
2413                          * We don't know how much we wrote, so just return
2414                          * the number of bytes which were direct-written
2415                          */
2416                 }
2417         } else {
2418                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2419                                 pos, ppos, count, written);
2420         }
2421 out:
2422         current->backing_dev_info = NULL;
2423         return written ? written : err;
2424 }
2425
2426 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2427                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2428 {
2429         struct file *file = iocb->ki_filp;
2430         struct address_space *mapping = file->f_mapping;
2431         struct inode *inode = mapping->host;
2432         ssize_t ret;
2433
2434         BUG_ON(iocb->ki_pos != pos);
2435
2436         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2437                         &iocb->ki_pos);
2438
2439         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2440                 ssize_t err;
2441
2442                 err = sync_page_range_nolock(inode, mapping, pos, ret);
2443                 if (err < 0)
2444                         ret = err;
2445         }
2446         return ret;
2447 }
2448 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2449
2450 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2451                 unsigned long nr_segs, loff_t pos)
2452 {
2453         struct file *file = iocb->ki_filp;
2454         struct address_space *mapping = file->f_mapping;
2455         struct inode *inode = mapping->host;
2456         ssize_t ret;
2457
2458         BUG_ON(iocb->ki_pos != pos);
2459
2460         mutex_lock(&inode->i_mutex);
2461         ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2462                         &iocb->ki_pos);
2463         mutex_unlock(&inode->i_mutex);
2464
2465         if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2466                 ssize_t err;
2467
2468                 err = sync_page_range(inode, mapping, pos, ret);
2469                 if (err < 0)
2470                         ret = err;
2471         }
2472         return ret;
2473 }
2474 EXPORT_SYMBOL(generic_file_aio_write);
2475
2476 /**
2477  * try_to_release_page() - release old fs-specific metadata on a page
2478  *
2479  * @page: the page which the kernel is trying to free
2480  * @gfp_mask: memory allocation flags (and I/O mode)
2481  *
2482  * The address_space is to try to release any data against the page
2483  * (presumably at page->private).  If the release was successful, return `1'.
2484  * Otherwise return zero.
2485  *
2486  * This may also be called if PG_fscache is set on a page, indicating that the
2487  * page is known to the local caching routines.
2488  *
2489  * The @gfp_mask argument specifies whether I/O may be performed to release
2490  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2491  *
2492  */
2493 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2494 {
2495         struct address_space * const mapping = page->mapping;
2496
2497         BUG_ON(!PageLocked(page));
2498         if (PageWriteback(page))
2499                 return 0;
2500
2501         if (mapping && mapping->a_ops->releasepage)
2502                 return mapping->a_ops->releasepage(page, gfp_mask);
2503         return try_to_free_buffers(page);
2504 }
2505
2506 EXPORT_SYMBOL(try_to_release_page);