iwlwifi: add test to determine if interface in monitor mode
[linux-2.6] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b)        (-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b)        (-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a)         (-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a)         (-EINVAL)
76 #endif
77
78 /*
79  * this is where the system-wide overflow UID and GID are defined, for
80  * architectures that now have 32-bit UID/GID but didn't in the past
81  */
82
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90
91 /*
92  * the same as above, but for filesystems which can only store a 16-bit
93  * UID and GID. as such, this is needed on all architectures
94  */
95
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101
102 /*
103  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104  */
105
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109
110 /*
111  * If set, this is used for preparing the system to power off.
112  */
113
114 void (*pm_power_off_prepare)(void);
115
116 /*
117  * set the priority of a task
118  * - the caller must hold the RCU read lock
119  */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123         int no_nice;
124
125         if (pcred->uid  != cred->euid &&
126             pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127                 error = -EPERM;
128                 goto out;
129         }
130         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131                 error = -EACCES;
132                 goto out;
133         }
134         no_nice = security_task_setnice(p, niceval);
135         if (no_nice) {
136                 error = no_nice;
137                 goto out;
138         }
139         if (error == -ESRCH)
140                 error = 0;
141         set_user_nice(p, niceval);
142 out:
143         return error;
144 }
145
146 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
147 {
148         struct task_struct *g, *p;
149         struct user_struct *user;
150         const struct cred *cred = current_cred();
151         int error = -EINVAL;
152         struct pid *pgrp;
153
154         if (which > PRIO_USER || which < PRIO_PROCESS)
155                 goto out;
156
157         /* normalize: avoid signed division (rounding problems) */
158         error = -ESRCH;
159         if (niceval < -20)
160                 niceval = -20;
161         if (niceval > 19)
162                 niceval = 19;
163
164         read_lock(&tasklist_lock);
165         switch (which) {
166                 case PRIO_PROCESS:
167                         if (who)
168                                 p = find_task_by_vpid(who);
169                         else
170                                 p = current;
171                         if (p)
172                                 error = set_one_prio(p, niceval, error);
173                         break;
174                 case PRIO_PGRP:
175                         if (who)
176                                 pgrp = find_vpid(who);
177                         else
178                                 pgrp = task_pgrp(current);
179                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180                                 error = set_one_prio(p, niceval, error);
181                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182                         break;
183                 case PRIO_USER:
184                         user = (struct user_struct *) cred->user;
185                         if (!who)
186                                 who = cred->uid;
187                         else if ((who != cred->uid) &&
188                                  !(user = find_user(who)))
189                                 goto out_unlock;        /* No processes for this user */
190
191                         do_each_thread(g, p)
192                                 if (__task_cred(p)->uid == who)
193                                         error = set_one_prio(p, niceval, error);
194                         while_each_thread(g, p);
195                         if (who != cred->uid)
196                                 free_uid(user);         /* For find_user() */
197                         break;
198         }
199 out_unlock:
200         read_unlock(&tasklist_lock);
201 out:
202         return error;
203 }
204
205 /*
206  * Ugh. To avoid negative return values, "getpriority()" will
207  * not return the normal nice-value, but a negated value that
208  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209  * to stay compatible.
210  */
211 SYSCALL_DEFINE2(getpriority, int, which, int, who)
212 {
213         struct task_struct *g, *p;
214         struct user_struct *user;
215         const struct cred *cred = current_cred();
216         long niceval, retval = -ESRCH;
217         struct pid *pgrp;
218
219         if (which > PRIO_USER || which < PRIO_PROCESS)
220                 return -EINVAL;
221
222         read_lock(&tasklist_lock);
223         switch (which) {
224                 case PRIO_PROCESS:
225                         if (who)
226                                 p = find_task_by_vpid(who);
227                         else
228                                 p = current;
229                         if (p) {
230                                 niceval = 20 - task_nice(p);
231                                 if (niceval > retval)
232                                         retval = niceval;
233                         }
234                         break;
235                 case PRIO_PGRP:
236                         if (who)
237                                 pgrp = find_vpid(who);
238                         else
239                                 pgrp = task_pgrp(current);
240                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241                                 niceval = 20 - task_nice(p);
242                                 if (niceval > retval)
243                                         retval = niceval;
244                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245                         break;
246                 case PRIO_USER:
247                         user = (struct user_struct *) cred->user;
248                         if (!who)
249                                 who = cred->uid;
250                         else if ((who != cred->uid) &&
251                                  !(user = find_user(who)))
252                                 goto out_unlock;        /* No processes for this user */
253
254                         do_each_thread(g, p)
255                                 if (__task_cred(p)->uid == who) {
256                                         niceval = 20 - task_nice(p);
257                                         if (niceval > retval)
258                                                 retval = niceval;
259                                 }
260                         while_each_thread(g, p);
261                         if (who != cred->uid)
262                                 free_uid(user);         /* for find_user() */
263                         break;
264         }
265 out_unlock:
266         read_unlock(&tasklist_lock);
267
268         return retval;
269 }
270
271 /**
272  *      emergency_restart - reboot the system
273  *
274  *      Without shutting down any hardware or taking any locks
275  *      reboot the system.  This is called when we know we are in
276  *      trouble so this is our best effort to reboot.  This is
277  *      safe to call in interrupt context.
278  */
279 void emergency_restart(void)
280 {
281         machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284
285 void kernel_restart_prepare(char *cmd)
286 {
287         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288         system_state = SYSTEM_RESTART;
289         device_shutdown();
290         sysdev_shutdown();
291 }
292
293 /**
294  *      kernel_restart - reboot the system
295  *      @cmd: pointer to buffer containing command to execute for restart
296  *              or %NULL
297  *
298  *      Shutdown everything and perform a clean reboot.
299  *      This is not safe to call in interrupt context.
300  */
301 void kernel_restart(char *cmd)
302 {
303         kernel_restart_prepare(cmd);
304         if (!cmd)
305                 printk(KERN_EMERG "Restarting system.\n");
306         else
307                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308         machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314         blocking_notifier_call_chain(&reboot_notifier_list,
315                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316         system_state = state;
317         device_shutdown();
318 }
319 /**
320  *      kernel_halt - halt the system
321  *
322  *      Shutdown everything and perform a clean system halt.
323  */
324 void kernel_halt(void)
325 {
326         kernel_shutdown_prepare(SYSTEM_HALT);
327         sysdev_shutdown();
328         printk(KERN_EMERG "System halted.\n");
329         machine_halt();
330 }
331
332 EXPORT_SYMBOL_GPL(kernel_halt);
333
334 /**
335  *      kernel_power_off - power_off the system
336  *
337  *      Shutdown everything and perform a clean system power_off.
338  */
339 void kernel_power_off(void)
340 {
341         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342         if (pm_power_off_prepare)
343                 pm_power_off_prepare();
344         disable_nonboot_cpus();
345         sysdev_shutdown();
346         printk(KERN_EMERG "Power down.\n");
347         machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351  * Reboot system call: for obvious reasons only root may call it,
352  * and even root needs to set up some magic numbers in the registers
353  * so that some mistake won't make this reboot the whole machine.
354  * You can also set the meaning of the ctrl-alt-del-key here.
355  *
356  * reboot doesn't sync: do that yourself before calling this.
357  */
358 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
359                 void __user *, arg)
360 {
361         char buffer[256];
362
363         /* We only trust the superuser with rebooting the system. */
364         if (!capable(CAP_SYS_BOOT))
365                 return -EPERM;
366
367         /* For safety, we require "magic" arguments. */
368         if (magic1 != LINUX_REBOOT_MAGIC1 ||
369             (magic2 != LINUX_REBOOT_MAGIC2 &&
370                         magic2 != LINUX_REBOOT_MAGIC2A &&
371                         magic2 != LINUX_REBOOT_MAGIC2B &&
372                         magic2 != LINUX_REBOOT_MAGIC2C))
373                 return -EINVAL;
374
375         /* Instead of trying to make the power_off code look like
376          * halt when pm_power_off is not set do it the easy way.
377          */
378         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
379                 cmd = LINUX_REBOOT_CMD_HALT;
380
381         lock_kernel();
382         switch (cmd) {
383         case LINUX_REBOOT_CMD_RESTART:
384                 kernel_restart(NULL);
385                 break;
386
387         case LINUX_REBOOT_CMD_CAD_ON:
388                 C_A_D = 1;
389                 break;
390
391         case LINUX_REBOOT_CMD_CAD_OFF:
392                 C_A_D = 0;
393                 break;
394
395         case LINUX_REBOOT_CMD_HALT:
396                 kernel_halt();
397                 unlock_kernel();
398                 do_exit(0);
399                 break;
400
401         case LINUX_REBOOT_CMD_POWER_OFF:
402                 kernel_power_off();
403                 unlock_kernel();
404                 do_exit(0);
405                 break;
406
407         case LINUX_REBOOT_CMD_RESTART2:
408                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
409                         unlock_kernel();
410                         return -EFAULT;
411                 }
412                 buffer[sizeof(buffer) - 1] = '\0';
413
414                 kernel_restart(buffer);
415                 break;
416
417 #ifdef CONFIG_KEXEC
418         case LINUX_REBOOT_CMD_KEXEC:
419                 {
420                         int ret;
421                         ret = kernel_kexec();
422                         unlock_kernel();
423                         return ret;
424                 }
425 #endif
426
427 #ifdef CONFIG_HIBERNATION
428         case LINUX_REBOOT_CMD_SW_SUSPEND:
429                 {
430                         int ret = hibernate();
431                         unlock_kernel();
432                         return ret;
433                 }
434 #endif
435
436         default:
437                 unlock_kernel();
438                 return -EINVAL;
439         }
440         unlock_kernel();
441         return 0;
442 }
443
444 static void deferred_cad(struct work_struct *dummy)
445 {
446         kernel_restart(NULL);
447 }
448
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456         static DECLARE_WORK(cad_work, deferred_cad);
457
458         if (C_A_D)
459                 schedule_work(&cad_work);
460         else
461                 kill_cad_pid(SIGINT, 1);
462 }
463         
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs. 
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484         const struct cred *old;
485         struct cred *new;
486         int retval;
487
488         new = prepare_creds();
489         if (!new)
490                 return -ENOMEM;
491         old = current_cred();
492
493         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494         if (retval)
495                 goto error;
496
497         retval = -EPERM;
498         if (rgid != (gid_t) -1) {
499                 if (old->gid == rgid ||
500                     old->egid == rgid ||
501                     capable(CAP_SETGID))
502                         new->gid = rgid;
503                 else
504                         goto error;
505         }
506         if (egid != (gid_t) -1) {
507                 if (old->gid == egid ||
508                     old->egid == egid ||
509                     old->sgid == egid ||
510                     capable(CAP_SETGID))
511                         new->egid = egid;
512                 else
513                         goto error;
514         }
515
516         if (rgid != (gid_t) -1 ||
517             (egid != (gid_t) -1 && egid != old->gid))
518                 new->sgid = new->egid;
519         new->fsgid = new->egid;
520
521         return commit_creds(new);
522
523 error:
524         abort_creds(new);
525         return retval;
526 }
527
528 /*
529  * setgid() is implemented like SysV w/ SAVED_IDS 
530  *
531  * SMP: Same implicit races as above.
532  */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535         const struct cred *old;
536         struct cred *new;
537         int retval;
538
539         new = prepare_creds();
540         if (!new)
541                 return -ENOMEM;
542         old = current_cred();
543
544         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545         if (retval)
546                 goto error;
547
548         retval = -EPERM;
549         if (capable(CAP_SETGID))
550                 new->gid = new->egid = new->sgid = new->fsgid = gid;
551         else if (gid == old->gid || gid == old->sgid)
552                 new->egid = new->fsgid = gid;
553         else
554                 goto error;
555
556         return commit_creds(new);
557
558 error:
559         abort_creds(new);
560         return retval;
561 }
562   
563 /*
564  * change the user struct in a credentials set to match the new UID
565  */
566 static int set_user(struct cred *new)
567 {
568         struct user_struct *new_user;
569
570         new_user = alloc_uid(current_user_ns(), new->uid);
571         if (!new_user)
572                 return -EAGAIN;
573
574         if (atomic_read(&new_user->processes) >=
575                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
576                         new_user != INIT_USER) {
577                 free_uid(new_user);
578                 return -EAGAIN;
579         }
580
581         free_uid(new->user);
582         new->user = new_user;
583         return 0;
584 }
585
586 /*
587  * Unprivileged users may change the real uid to the effective uid
588  * or vice versa.  (BSD-style)
589  *
590  * If you set the real uid at all, or set the effective uid to a value not
591  * equal to the real uid, then the saved uid is set to the new effective uid.
592  *
593  * This makes it possible for a setuid program to completely drop its
594  * privileges, which is often a useful assertion to make when you are doing
595  * a security audit over a program.
596  *
597  * The general idea is that a program which uses just setreuid() will be
598  * 100% compatible with BSD.  A program which uses just setuid() will be
599  * 100% compatible with POSIX with saved IDs. 
600  */
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 {
603         const struct cred *old;
604         struct cred *new;
605         int retval;
606
607         new = prepare_creds();
608         if (!new)
609                 return -ENOMEM;
610         old = current_cred();
611
612         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613         if (retval)
614                 goto error;
615
616         retval = -EPERM;
617         if (ruid != (uid_t) -1) {
618                 new->uid = ruid;
619                 if (old->uid != ruid &&
620                     old->euid != ruid &&
621                     !capable(CAP_SETUID))
622                         goto error;
623         }
624
625         if (euid != (uid_t) -1) {
626                 new->euid = euid;
627                 if (old->uid != euid &&
628                     old->euid != euid &&
629                     old->suid != euid &&
630                     !capable(CAP_SETUID))
631                         goto error;
632         }
633
634         retval = -EAGAIN;
635         if (new->uid != old->uid && set_user(new) < 0)
636                 goto error;
637
638         if (ruid != (uid_t) -1 ||
639             (euid != (uid_t) -1 && euid != old->uid))
640                 new->suid = new->euid;
641         new->fsuid = new->euid;
642
643         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644         if (retval < 0)
645                 goto error;
646
647         return commit_creds(new);
648
649 error:
650         abort_creds(new);
651         return retval;
652 }
653                 
654 /*
655  * setuid() is implemented like SysV with SAVED_IDS 
656  * 
657  * Note that SAVED_ID's is deficient in that a setuid root program
658  * like sendmail, for example, cannot set its uid to be a normal 
659  * user and then switch back, because if you're root, setuid() sets
660  * the saved uid too.  If you don't like this, blame the bright people
661  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
662  * will allow a root program to temporarily drop privileges and be able to
663  * regain them by swapping the real and effective uid.  
664  */
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
666 {
667         const struct cred *old;
668         struct cred *new;
669         int retval;
670
671         new = prepare_creds();
672         if (!new)
673                 return -ENOMEM;
674         old = current_cred();
675
676         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
677         if (retval)
678                 goto error;
679
680         retval = -EPERM;
681         if (capable(CAP_SETUID)) {
682                 new->suid = new->uid = uid;
683                 if (uid != old->uid && set_user(new) < 0) {
684                         retval = -EAGAIN;
685                         goto error;
686                 }
687         } else if (uid != old->uid && uid != new->suid) {
688                 goto error;
689         }
690
691         new->fsuid = new->euid = uid;
692
693         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
694         if (retval < 0)
695                 goto error;
696
697         return commit_creds(new);
698
699 error:
700         abort_creds(new);
701         return retval;
702 }
703
704
705 /*
706  * This function implements a generic ability to update ruid, euid,
707  * and suid.  This allows you to implement the 4.4 compatible seteuid().
708  */
709 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
710 {
711         const struct cred *old;
712         struct cred *new;
713         int retval;
714
715         new = prepare_creds();
716         if (!new)
717                 return -ENOMEM;
718
719         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
720         if (retval)
721                 goto error;
722         old = current_cred();
723
724         retval = -EPERM;
725         if (!capable(CAP_SETUID)) {
726                 if (ruid != (uid_t) -1 && ruid != old->uid &&
727                     ruid != old->euid  && ruid != old->suid)
728                         goto error;
729                 if (euid != (uid_t) -1 && euid != old->uid &&
730                     euid != old->euid  && euid != old->suid)
731                         goto error;
732                 if (suid != (uid_t) -1 && suid != old->uid &&
733                     suid != old->euid  && suid != old->suid)
734                         goto error;
735         }
736
737         retval = -EAGAIN;
738         if (ruid != (uid_t) -1) {
739                 new->uid = ruid;
740                 if (ruid != old->uid && set_user(new) < 0)
741                         goto error;
742         }
743         if (euid != (uid_t) -1)
744                 new->euid = euid;
745         if (suid != (uid_t) -1)
746                 new->suid = suid;
747         new->fsuid = new->euid;
748
749         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
750         if (retval < 0)
751                 goto error;
752
753         return commit_creds(new);
754
755 error:
756         abort_creds(new);
757         return retval;
758 }
759
760 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
761 {
762         const struct cred *cred = current_cred();
763         int retval;
764
765         if (!(retval   = put_user(cred->uid,  ruid)) &&
766             !(retval   = put_user(cred->euid, euid)))
767                 retval = put_user(cred->suid, suid);
768
769         return retval;
770 }
771
772 /*
773  * Same as above, but for rgid, egid, sgid.
774  */
775 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
776 {
777         const struct cred *old;
778         struct cred *new;
779         int retval;
780
781         new = prepare_creds();
782         if (!new)
783                 return -ENOMEM;
784         old = current_cred();
785
786         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
787         if (retval)
788                 goto error;
789
790         retval = -EPERM;
791         if (!capable(CAP_SETGID)) {
792                 if (rgid != (gid_t) -1 && rgid != old->gid &&
793                     rgid != old->egid  && rgid != old->sgid)
794                         goto error;
795                 if (egid != (gid_t) -1 && egid != old->gid &&
796                     egid != old->egid  && egid != old->sgid)
797                         goto error;
798                 if (sgid != (gid_t) -1 && sgid != old->gid &&
799                     sgid != old->egid  && sgid != old->sgid)
800                         goto error;
801         }
802
803         if (rgid != (gid_t) -1)
804                 new->gid = rgid;
805         if (egid != (gid_t) -1)
806                 new->egid = egid;
807         if (sgid != (gid_t) -1)
808                 new->sgid = sgid;
809         new->fsgid = new->egid;
810
811         return commit_creds(new);
812
813 error:
814         abort_creds(new);
815         return retval;
816 }
817
818 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
819 {
820         const struct cred *cred = current_cred();
821         int retval;
822
823         if (!(retval   = put_user(cred->gid,  rgid)) &&
824             !(retval   = put_user(cred->egid, egid)))
825                 retval = put_user(cred->sgid, sgid);
826
827         return retval;
828 }
829
830
831 /*
832  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833  * is used for "access()" and for the NFS daemon (letting nfsd stay at
834  * whatever uid it wants to). It normally shadows "euid", except when
835  * explicitly set by setfsuid() or for access..
836  */
837 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
838 {
839         const struct cred *old;
840         struct cred *new;
841         uid_t old_fsuid;
842
843         new = prepare_creds();
844         if (!new)
845                 return current_fsuid();
846         old = current_cred();
847         old_fsuid = old->fsuid;
848
849         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
850                 goto error;
851
852         if (uid == old->uid  || uid == old->euid  ||
853             uid == old->suid || uid == old->fsuid ||
854             capable(CAP_SETUID)) {
855                 if (uid != old_fsuid) {
856                         new->fsuid = uid;
857                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
858                                 goto change_okay;
859                 }
860         }
861
862 error:
863         abort_creds(new);
864         return old_fsuid;
865
866 change_okay:
867         commit_creds(new);
868         return old_fsuid;
869 }
870
871 /*
872  * Samma pÃ¥ svenska..
873  */
874 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
875 {
876         const struct cred *old;
877         struct cred *new;
878         gid_t old_fsgid;
879
880         new = prepare_creds();
881         if (!new)
882                 return current_fsgid();
883         old = current_cred();
884         old_fsgid = old->fsgid;
885
886         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
887                 goto error;
888
889         if (gid == old->gid  || gid == old->egid  ||
890             gid == old->sgid || gid == old->fsgid ||
891             capable(CAP_SETGID)) {
892                 if (gid != old_fsgid) {
893                         new->fsgid = gid;
894                         goto change_okay;
895                 }
896         }
897
898 error:
899         abort_creds(new);
900         return old_fsgid;
901
902 change_okay:
903         commit_creds(new);
904         return old_fsgid;
905 }
906
907 void do_sys_times(struct tms *tms)
908 {
909         struct task_cputime cputime;
910         cputime_t cutime, cstime;
911
912         thread_group_cputime(current, &cputime);
913         spin_lock_irq(&current->sighand->siglock);
914         cutime = current->signal->cutime;
915         cstime = current->signal->cstime;
916         spin_unlock_irq(&current->sighand->siglock);
917         tms->tms_utime = cputime_to_clock_t(cputime.utime);
918         tms->tms_stime = cputime_to_clock_t(cputime.stime);
919         tms->tms_cutime = cputime_to_clock_t(cutime);
920         tms->tms_cstime = cputime_to_clock_t(cstime);
921 }
922
923 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
924 {
925         if (tbuf) {
926                 struct tms tmp;
927
928                 do_sys_times(&tmp);
929                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930                         return -EFAULT;
931         }
932         force_successful_syscall_return();
933         return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 }
935
936 /*
937  * This needs some heavy checking ...
938  * I just haven't the stomach for it. I also don't fully
939  * understand sessions/pgrp etc. Let somebody who does explain it.
940  *
941  * OK, I think I have the protection semantics right.... this is really
942  * only important on a multi-user system anyway, to make sure one user
943  * can't send a signal to a process owned by another.  -TYT, 12/12/91
944  *
945  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946  * LBT 04.03.94
947  */
948 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
949 {
950         struct task_struct *p;
951         struct task_struct *group_leader = current->group_leader;
952         struct pid *pgrp;
953         int err;
954
955         if (!pid)
956                 pid = task_pid_vnr(group_leader);
957         if (!pgid)
958                 pgid = pid;
959         if (pgid < 0)
960                 return -EINVAL;
961
962         /* From this point forward we keep holding onto the tasklist lock
963          * so that our parent does not change from under us. -DaveM
964          */
965         write_lock_irq(&tasklist_lock);
966
967         err = -ESRCH;
968         p = find_task_by_vpid(pid);
969         if (!p)
970                 goto out;
971
972         err = -EINVAL;
973         if (!thread_group_leader(p))
974                 goto out;
975
976         if (same_thread_group(p->real_parent, group_leader)) {
977                 err = -EPERM;
978                 if (task_session(p) != task_session(group_leader))
979                         goto out;
980                 err = -EACCES;
981                 if (p->did_exec)
982                         goto out;
983         } else {
984                 err = -ESRCH;
985                 if (p != group_leader)
986                         goto out;
987         }
988
989         err = -EPERM;
990         if (p->signal->leader)
991                 goto out;
992
993         pgrp = task_pid(p);
994         if (pgid != pid) {
995                 struct task_struct *g;
996
997                 pgrp = find_vpid(pgid);
998                 g = pid_task(pgrp, PIDTYPE_PGID);
999                 if (!g || task_session(g) != task_session(group_leader))
1000                         goto out;
1001         }
1002
1003         err = security_task_setpgid(p, pgid);
1004         if (err)
1005                 goto out;
1006
1007         if (task_pgrp(p) != pgrp) {
1008                 change_pid(p, PIDTYPE_PGID, pgrp);
1009                 set_task_pgrp(p, pid_nr(pgrp));
1010         }
1011
1012         err = 0;
1013 out:
1014         /* All paths lead to here, thus we are safe. -DaveM */
1015         write_unlock_irq(&tasklist_lock);
1016         return err;
1017 }
1018
1019 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1020 {
1021         struct task_struct *p;
1022         struct pid *grp;
1023         int retval;
1024
1025         rcu_read_lock();
1026         if (!pid)
1027                 grp = task_pgrp(current);
1028         else {
1029                 retval = -ESRCH;
1030                 p = find_task_by_vpid(pid);
1031                 if (!p)
1032                         goto out;
1033                 grp = task_pgrp(p);
1034                 if (!grp)
1035                         goto out;
1036
1037                 retval = security_task_getpgid(p);
1038                 if (retval)
1039                         goto out;
1040         }
1041         retval = pid_vnr(grp);
1042 out:
1043         rcu_read_unlock();
1044         return retval;
1045 }
1046
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1048
1049 SYSCALL_DEFINE0(getpgrp)
1050 {
1051         return sys_getpgid(0);
1052 }
1053
1054 #endif
1055
1056 SYSCALL_DEFINE1(getsid, pid_t, pid)
1057 {
1058         struct task_struct *p;
1059         struct pid *sid;
1060         int retval;
1061
1062         rcu_read_lock();
1063         if (!pid)
1064                 sid = task_session(current);
1065         else {
1066                 retval = -ESRCH;
1067                 p = find_task_by_vpid(pid);
1068                 if (!p)
1069                         goto out;
1070                 sid = task_session(p);
1071                 if (!sid)
1072                         goto out;
1073
1074                 retval = security_task_getsid(p);
1075                 if (retval)
1076                         goto out;
1077         }
1078         retval = pid_vnr(sid);
1079 out:
1080         rcu_read_unlock();
1081         return retval;
1082 }
1083
1084 SYSCALL_DEFINE0(setsid)
1085 {
1086         struct task_struct *group_leader = current->group_leader;
1087         struct pid *sid = task_pid(group_leader);
1088         pid_t session = pid_vnr(sid);
1089         int err = -EPERM;
1090
1091         write_lock_irq(&tasklist_lock);
1092         /* Fail if I am already a session leader */
1093         if (group_leader->signal->leader)
1094                 goto out;
1095
1096         /* Fail if a process group id already exists that equals the
1097          * proposed session id.
1098          */
1099         if (pid_task(sid, PIDTYPE_PGID))
1100                 goto out;
1101
1102         group_leader->signal->leader = 1;
1103         __set_special_pids(sid);
1104
1105         proc_clear_tty(group_leader);
1106
1107         err = session;
1108 out:
1109         write_unlock_irq(&tasklist_lock);
1110         return err;
1111 }
1112
1113 /*
1114  * Supplementary group IDs
1115  */
1116
1117 /* init to 2 - one for init_task, one to ensure it is never freed */
1118 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1119
1120 struct group_info *groups_alloc(int gidsetsize)
1121 {
1122         struct group_info *group_info;
1123         int nblocks;
1124         int i;
1125
1126         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1127         /* Make sure we always allocate at least one indirect block pointer */
1128         nblocks = nblocks ? : 1;
1129         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1130         if (!group_info)
1131                 return NULL;
1132         group_info->ngroups = gidsetsize;
1133         group_info->nblocks = nblocks;
1134         atomic_set(&group_info->usage, 1);
1135
1136         if (gidsetsize <= NGROUPS_SMALL)
1137                 group_info->blocks[0] = group_info->small_block;
1138         else {
1139                 for (i = 0; i < nblocks; i++) {
1140                         gid_t *b;
1141                         b = (void *)__get_free_page(GFP_USER);
1142                         if (!b)
1143                                 goto out_undo_partial_alloc;
1144                         group_info->blocks[i] = b;
1145                 }
1146         }
1147         return group_info;
1148
1149 out_undo_partial_alloc:
1150         while (--i >= 0) {
1151                 free_page((unsigned long)group_info->blocks[i]);
1152         }
1153         kfree(group_info);
1154         return NULL;
1155 }
1156
1157 EXPORT_SYMBOL(groups_alloc);
1158
1159 void groups_free(struct group_info *group_info)
1160 {
1161         if (group_info->blocks[0] != group_info->small_block) {
1162                 int i;
1163                 for (i = 0; i < group_info->nblocks; i++)
1164                         free_page((unsigned long)group_info->blocks[i]);
1165         }
1166         kfree(group_info);
1167 }
1168
1169 EXPORT_SYMBOL(groups_free);
1170
1171 /* export the group_info to a user-space array */
1172 static int groups_to_user(gid_t __user *grouplist,
1173                           const struct group_info *group_info)
1174 {
1175         int i;
1176         unsigned int count = group_info->ngroups;
1177
1178         for (i = 0; i < group_info->nblocks; i++) {
1179                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1180                 unsigned int len = cp_count * sizeof(*grouplist);
1181
1182                 if (copy_to_user(grouplist, group_info->blocks[i], len))
1183                         return -EFAULT;
1184
1185                 grouplist += NGROUPS_PER_BLOCK;
1186                 count -= cp_count;
1187         }
1188         return 0;
1189 }
1190
1191 /* fill a group_info from a user-space array - it must be allocated already */
1192 static int groups_from_user(struct group_info *group_info,
1193     gid_t __user *grouplist)
1194 {
1195         int i;
1196         unsigned int count = group_info->ngroups;
1197
1198         for (i = 0; i < group_info->nblocks; i++) {
1199                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1200                 unsigned int len = cp_count * sizeof(*grouplist);
1201
1202                 if (copy_from_user(group_info->blocks[i], grouplist, len))
1203                         return -EFAULT;
1204
1205                 grouplist += NGROUPS_PER_BLOCK;
1206                 count -= cp_count;
1207         }
1208         return 0;
1209 }
1210
1211 /* a simple Shell sort */
1212 static void groups_sort(struct group_info *group_info)
1213 {
1214         int base, max, stride;
1215         int gidsetsize = group_info->ngroups;
1216
1217         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1218                 ; /* nothing */
1219         stride /= 3;
1220
1221         while (stride) {
1222                 max = gidsetsize - stride;
1223                 for (base = 0; base < max; base++) {
1224                         int left = base;
1225                         int right = left + stride;
1226                         gid_t tmp = GROUP_AT(group_info, right);
1227
1228                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1229                                 GROUP_AT(group_info, right) =
1230                                     GROUP_AT(group_info, left);
1231                                 right = left;
1232                                 left -= stride;
1233                         }
1234                         GROUP_AT(group_info, right) = tmp;
1235                 }
1236                 stride /= 3;
1237         }
1238 }
1239
1240 /* a simple bsearch */
1241 int groups_search(const struct group_info *group_info, gid_t grp)
1242 {
1243         unsigned int left, right;
1244
1245         if (!group_info)
1246                 return 0;
1247
1248         left = 0;
1249         right = group_info->ngroups;
1250         while (left < right) {
1251                 unsigned int mid = (left+right)/2;
1252                 int cmp = grp - GROUP_AT(group_info, mid);
1253                 if (cmp > 0)
1254                         left = mid + 1;
1255                 else if (cmp < 0)
1256                         right = mid;
1257                 else
1258                         return 1;
1259         }
1260         return 0;
1261 }
1262
1263 /**
1264  * set_groups - Change a group subscription in a set of credentials
1265  * @new: The newly prepared set of credentials to alter
1266  * @group_info: The group list to install
1267  *
1268  * Validate a group subscription and, if valid, insert it into a set
1269  * of credentials.
1270  */
1271 int set_groups(struct cred *new, struct group_info *group_info)
1272 {
1273         int retval;
1274
1275         retval = security_task_setgroups(group_info);
1276         if (retval)
1277                 return retval;
1278
1279         put_group_info(new->group_info);
1280         groups_sort(group_info);
1281         get_group_info(group_info);
1282         new->group_info = group_info;
1283         return 0;
1284 }
1285
1286 EXPORT_SYMBOL(set_groups);
1287
1288 /**
1289  * set_current_groups - Change current's group subscription
1290  * @group_info: The group list to impose
1291  *
1292  * Validate a group subscription and, if valid, impose it upon current's task
1293  * security record.
1294  */
1295 int set_current_groups(struct group_info *group_info)
1296 {
1297         struct cred *new;
1298         int ret;
1299
1300         new = prepare_creds();
1301         if (!new)
1302                 return -ENOMEM;
1303
1304         ret = set_groups(new, group_info);
1305         if (ret < 0) {
1306                 abort_creds(new);
1307                 return ret;
1308         }
1309
1310         return commit_creds(new);
1311 }
1312
1313 EXPORT_SYMBOL(set_current_groups);
1314
1315 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1316 {
1317         const struct cred *cred = current_cred();
1318         int i;
1319
1320         if (gidsetsize < 0)
1321                 return -EINVAL;
1322
1323         /* no need to grab task_lock here; it cannot change */
1324         i = cred->group_info->ngroups;
1325         if (gidsetsize) {
1326                 if (i > gidsetsize) {
1327                         i = -EINVAL;
1328                         goto out;
1329                 }
1330                 if (groups_to_user(grouplist, cred->group_info)) {
1331                         i = -EFAULT;
1332                         goto out;
1333                 }
1334         }
1335 out:
1336         return i;
1337 }
1338
1339 /*
1340  *      SMP: Our groups are copy-on-write. We can set them safely
1341  *      without another task interfering.
1342  */
1343  
1344 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1345 {
1346         struct group_info *group_info;
1347         int retval;
1348
1349         if (!capable(CAP_SETGID))
1350                 return -EPERM;
1351         if ((unsigned)gidsetsize > NGROUPS_MAX)
1352                 return -EINVAL;
1353
1354         group_info = groups_alloc(gidsetsize);
1355         if (!group_info)
1356                 return -ENOMEM;
1357         retval = groups_from_user(group_info, grouplist);
1358         if (retval) {
1359                 put_group_info(group_info);
1360                 return retval;
1361         }
1362
1363         retval = set_current_groups(group_info);
1364         put_group_info(group_info);
1365
1366         return retval;
1367 }
1368
1369 /*
1370  * Check whether we're fsgid/egid or in the supplemental group..
1371  */
1372 int in_group_p(gid_t grp)
1373 {
1374         const struct cred *cred = current_cred();
1375         int retval = 1;
1376
1377         if (grp != cred->fsgid)
1378                 retval = groups_search(cred->group_info, grp);
1379         return retval;
1380 }
1381
1382 EXPORT_SYMBOL(in_group_p);
1383
1384 int in_egroup_p(gid_t grp)
1385 {
1386         const struct cred *cred = current_cred();
1387         int retval = 1;
1388
1389         if (grp != cred->egid)
1390                 retval = groups_search(cred->group_info, grp);
1391         return retval;
1392 }
1393
1394 EXPORT_SYMBOL(in_egroup_p);
1395
1396 DECLARE_RWSEM(uts_sem);
1397
1398 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1399 {
1400         int errno = 0;
1401
1402         down_read(&uts_sem);
1403         if (copy_to_user(name, utsname(), sizeof *name))
1404                 errno = -EFAULT;
1405         up_read(&uts_sem);
1406         return errno;
1407 }
1408
1409 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1410 {
1411         int errno;
1412         char tmp[__NEW_UTS_LEN];
1413
1414         if (!capable(CAP_SYS_ADMIN))
1415                 return -EPERM;
1416         if (len < 0 || len > __NEW_UTS_LEN)
1417                 return -EINVAL;
1418         down_write(&uts_sem);
1419         errno = -EFAULT;
1420         if (!copy_from_user(tmp, name, len)) {
1421                 struct new_utsname *u = utsname();
1422
1423                 memcpy(u->nodename, tmp, len);
1424                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1425                 errno = 0;
1426         }
1427         up_write(&uts_sem);
1428         return errno;
1429 }
1430
1431 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1432
1433 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1434 {
1435         int i, errno;
1436         struct new_utsname *u;
1437
1438         if (len < 0)
1439                 return -EINVAL;
1440         down_read(&uts_sem);
1441         u = utsname();
1442         i = 1 + strlen(u->nodename);
1443         if (i > len)
1444                 i = len;
1445         errno = 0;
1446         if (copy_to_user(name, u->nodename, i))
1447                 errno = -EFAULT;
1448         up_read(&uts_sem);
1449         return errno;
1450 }
1451
1452 #endif
1453
1454 /*
1455  * Only setdomainname; getdomainname can be implemented by calling
1456  * uname()
1457  */
1458 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1459 {
1460         int errno;
1461         char tmp[__NEW_UTS_LEN];
1462
1463         if (!capable(CAP_SYS_ADMIN))
1464                 return -EPERM;
1465         if (len < 0 || len > __NEW_UTS_LEN)
1466                 return -EINVAL;
1467
1468         down_write(&uts_sem);
1469         errno = -EFAULT;
1470         if (!copy_from_user(tmp, name, len)) {
1471                 struct new_utsname *u = utsname();
1472
1473                 memcpy(u->domainname, tmp, len);
1474                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1475                 errno = 0;
1476         }
1477         up_write(&uts_sem);
1478         return errno;
1479 }
1480
1481 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1482 {
1483         if (resource >= RLIM_NLIMITS)
1484                 return -EINVAL;
1485         else {
1486                 struct rlimit value;
1487                 task_lock(current->group_leader);
1488                 value = current->signal->rlim[resource];
1489                 task_unlock(current->group_leader);
1490                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1491         }
1492 }
1493
1494 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1495
1496 /*
1497  *      Back compatibility for getrlimit. Needed for some apps.
1498  */
1499  
1500 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1501                 struct rlimit __user *, rlim)
1502 {
1503         struct rlimit x;
1504         if (resource >= RLIM_NLIMITS)
1505                 return -EINVAL;
1506
1507         task_lock(current->group_leader);
1508         x = current->signal->rlim[resource];
1509         task_unlock(current->group_leader);
1510         if (x.rlim_cur > 0x7FFFFFFF)
1511                 x.rlim_cur = 0x7FFFFFFF;
1512         if (x.rlim_max > 0x7FFFFFFF)
1513                 x.rlim_max = 0x7FFFFFFF;
1514         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1515 }
1516
1517 #endif
1518
1519 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1520 {
1521         struct rlimit new_rlim, *old_rlim;
1522         int retval;
1523
1524         if (resource >= RLIM_NLIMITS)
1525                 return -EINVAL;
1526         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1527                 return -EFAULT;
1528         old_rlim = current->signal->rlim + resource;
1529         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1530             !capable(CAP_SYS_RESOURCE))
1531                 return -EPERM;
1532
1533         if (resource == RLIMIT_NOFILE) {
1534                 if (new_rlim.rlim_max == RLIM_INFINITY)
1535                         new_rlim.rlim_max = sysctl_nr_open;
1536                 if (new_rlim.rlim_cur == RLIM_INFINITY)
1537                         new_rlim.rlim_cur = sysctl_nr_open;
1538                 if (new_rlim.rlim_max > sysctl_nr_open)
1539                         return -EPERM;
1540         }
1541
1542         if (new_rlim.rlim_cur > new_rlim.rlim_max)
1543                 return -EINVAL;
1544
1545         retval = security_task_setrlimit(resource, &new_rlim);
1546         if (retval)
1547                 return retval;
1548
1549         if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1550                 /*
1551                  * The caller is asking for an immediate RLIMIT_CPU
1552                  * expiry.  But we use the zero value to mean "it was
1553                  * never set".  So let's cheat and make it one second
1554                  * instead
1555                  */
1556                 new_rlim.rlim_cur = 1;
1557         }
1558
1559         task_lock(current->group_leader);
1560         *old_rlim = new_rlim;
1561         task_unlock(current->group_leader);
1562
1563         if (resource != RLIMIT_CPU)
1564                 goto out;
1565
1566         /*
1567          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1568          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1569          * very long-standing error, and fixing it now risks breakage of
1570          * applications, so we live with it
1571          */
1572         if (new_rlim.rlim_cur == RLIM_INFINITY)
1573                 goto out;
1574
1575         update_rlimit_cpu(new_rlim.rlim_cur);
1576 out:
1577         return 0;
1578 }
1579
1580 /*
1581  * It would make sense to put struct rusage in the task_struct,
1582  * except that would make the task_struct be *really big*.  After
1583  * task_struct gets moved into malloc'ed memory, it would
1584  * make sense to do this.  It will make moving the rest of the information
1585  * a lot simpler!  (Which we're not doing right now because we're not
1586  * measuring them yet).
1587  *
1588  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1589  * races with threads incrementing their own counters.  But since word
1590  * reads are atomic, we either get new values or old values and we don't
1591  * care which for the sums.  We always take the siglock to protect reading
1592  * the c* fields from p->signal from races with exit.c updating those
1593  * fields when reaping, so a sample either gets all the additions of a
1594  * given child after it's reaped, or none so this sample is before reaping.
1595  *
1596  * Locking:
1597  * We need to take the siglock for CHILDEREN, SELF and BOTH
1598  * for  the cases current multithreaded, non-current single threaded
1599  * non-current multithreaded.  Thread traversal is now safe with
1600  * the siglock held.
1601  * Strictly speaking, we donot need to take the siglock if we are current and
1602  * single threaded,  as no one else can take our signal_struct away, no one
1603  * else can  reap the  children to update signal->c* counters, and no one else
1604  * can race with the signal-> fields. If we do not take any lock, the
1605  * signal-> fields could be read out of order while another thread was just
1606  * exiting. So we should  place a read memory barrier when we avoid the lock.
1607  * On the writer side,  write memory barrier is implied in  __exit_signal
1608  * as __exit_signal releases  the siglock spinlock after updating the signal->
1609  * fields. But we don't do this yet to keep things simple.
1610  *
1611  */
1612
1613 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1614 {
1615         r->ru_nvcsw += t->nvcsw;
1616         r->ru_nivcsw += t->nivcsw;
1617         r->ru_minflt += t->min_flt;
1618         r->ru_majflt += t->maj_flt;
1619         r->ru_inblock += task_io_get_inblock(t);
1620         r->ru_oublock += task_io_get_oublock(t);
1621 }
1622
1623 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1624 {
1625         struct task_struct *t;
1626         unsigned long flags;
1627         cputime_t utime, stime;
1628         struct task_cputime cputime;
1629
1630         memset((char *) r, 0, sizeof *r);
1631         utime = stime = cputime_zero;
1632
1633         if (who == RUSAGE_THREAD) {
1634                 utime = task_utime(current);
1635                 stime = task_stime(current);
1636                 accumulate_thread_rusage(p, r);
1637                 goto out;
1638         }
1639
1640         if (!lock_task_sighand(p, &flags))
1641                 return;
1642
1643         switch (who) {
1644                 case RUSAGE_BOTH:
1645                 case RUSAGE_CHILDREN:
1646                         utime = p->signal->cutime;
1647                         stime = p->signal->cstime;
1648                         r->ru_nvcsw = p->signal->cnvcsw;
1649                         r->ru_nivcsw = p->signal->cnivcsw;
1650                         r->ru_minflt = p->signal->cmin_flt;
1651                         r->ru_majflt = p->signal->cmaj_flt;
1652                         r->ru_inblock = p->signal->cinblock;
1653                         r->ru_oublock = p->signal->coublock;
1654
1655                         if (who == RUSAGE_CHILDREN)
1656                                 break;
1657
1658                 case RUSAGE_SELF:
1659                         thread_group_cputime(p, &cputime);
1660                         utime = cputime_add(utime, cputime.utime);
1661                         stime = cputime_add(stime, cputime.stime);
1662                         r->ru_nvcsw += p->signal->nvcsw;
1663                         r->ru_nivcsw += p->signal->nivcsw;
1664                         r->ru_minflt += p->signal->min_flt;
1665                         r->ru_majflt += p->signal->maj_flt;
1666                         r->ru_inblock += p->signal->inblock;
1667                         r->ru_oublock += p->signal->oublock;
1668                         t = p;
1669                         do {
1670                                 accumulate_thread_rusage(t, r);
1671                                 t = next_thread(t);
1672                         } while (t != p);
1673                         break;
1674
1675                 default:
1676                         BUG();
1677         }
1678         unlock_task_sighand(p, &flags);
1679
1680 out:
1681         cputime_to_timeval(utime, &r->ru_utime);
1682         cputime_to_timeval(stime, &r->ru_stime);
1683 }
1684
1685 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1686 {
1687         struct rusage r;
1688         k_getrusage(p, who, &r);
1689         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1690 }
1691
1692 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1693 {
1694         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1695             who != RUSAGE_THREAD)
1696                 return -EINVAL;
1697         return getrusage(current, who, ru);
1698 }
1699
1700 SYSCALL_DEFINE1(umask, int, mask)
1701 {
1702         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1703         return mask;
1704 }
1705
1706 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1707                 unsigned long, arg4, unsigned long, arg5)
1708 {
1709         struct task_struct *me = current;
1710         unsigned char comm[sizeof(me->comm)];
1711         long error;
1712
1713         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1714         if (error != -ENOSYS)
1715                 return error;
1716
1717         error = 0;
1718         switch (option) {
1719                 case PR_SET_PDEATHSIG:
1720                         if (!valid_signal(arg2)) {
1721                                 error = -EINVAL;
1722                                 break;
1723                         }
1724                         me->pdeath_signal = arg2;
1725                         error = 0;
1726                         break;
1727                 case PR_GET_PDEATHSIG:
1728                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1729                         break;
1730                 case PR_GET_DUMPABLE:
1731                         error = get_dumpable(me->mm);
1732                         break;
1733                 case PR_SET_DUMPABLE:
1734                         if (arg2 < 0 || arg2 > 1) {
1735                                 error = -EINVAL;
1736                                 break;
1737                         }
1738                         set_dumpable(me->mm, arg2);
1739                         error = 0;
1740                         break;
1741
1742                 case PR_SET_UNALIGN:
1743                         error = SET_UNALIGN_CTL(me, arg2);
1744                         break;
1745                 case PR_GET_UNALIGN:
1746                         error = GET_UNALIGN_CTL(me, arg2);
1747                         break;
1748                 case PR_SET_FPEMU:
1749                         error = SET_FPEMU_CTL(me, arg2);
1750                         break;
1751                 case PR_GET_FPEMU:
1752                         error = GET_FPEMU_CTL(me, arg2);
1753                         break;
1754                 case PR_SET_FPEXC:
1755                         error = SET_FPEXC_CTL(me, arg2);
1756                         break;
1757                 case PR_GET_FPEXC:
1758                         error = GET_FPEXC_CTL(me, arg2);
1759                         break;
1760                 case PR_GET_TIMING:
1761                         error = PR_TIMING_STATISTICAL;
1762                         break;
1763                 case PR_SET_TIMING:
1764                         if (arg2 != PR_TIMING_STATISTICAL)
1765                                 error = -EINVAL;
1766                         else
1767                                 error = 0;
1768                         break;
1769
1770                 case PR_SET_NAME:
1771                         comm[sizeof(me->comm)-1] = 0;
1772                         if (strncpy_from_user(comm, (char __user *)arg2,
1773                                               sizeof(me->comm) - 1) < 0)
1774                                 return -EFAULT;
1775                         set_task_comm(me, comm);
1776                         return 0;
1777                 case PR_GET_NAME:
1778                         get_task_comm(comm, me);
1779                         if (copy_to_user((char __user *)arg2, comm,
1780                                          sizeof(comm)))
1781                                 return -EFAULT;
1782                         return 0;
1783                 case PR_GET_ENDIAN:
1784                         error = GET_ENDIAN(me, arg2);
1785                         break;
1786                 case PR_SET_ENDIAN:
1787                         error = SET_ENDIAN(me, arg2);
1788                         break;
1789
1790                 case PR_GET_SECCOMP:
1791                         error = prctl_get_seccomp();
1792                         break;
1793                 case PR_SET_SECCOMP:
1794                         error = prctl_set_seccomp(arg2);
1795                         break;
1796                 case PR_GET_TSC:
1797                         error = GET_TSC_CTL(arg2);
1798                         break;
1799                 case PR_SET_TSC:
1800                         error = SET_TSC_CTL(arg2);
1801                         break;
1802                 case PR_GET_TIMERSLACK:
1803                         error = current->timer_slack_ns;
1804                         break;
1805                 case PR_SET_TIMERSLACK:
1806                         if (arg2 <= 0)
1807                                 current->timer_slack_ns =
1808                                         current->default_timer_slack_ns;
1809                         else
1810                                 current->timer_slack_ns = arg2;
1811                         error = 0;
1812                         break;
1813                 default:
1814                         error = -EINVAL;
1815                         break;
1816         }
1817         return error;
1818 }
1819
1820 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1821                 struct getcpu_cache __user *, unused)
1822 {
1823         int err = 0;
1824         int cpu = raw_smp_processor_id();
1825         if (cpup)
1826                 err |= put_user(cpu, cpup);
1827         if (nodep)
1828                 err |= put_user(cpu_to_node(cpu), nodep);
1829         return err ? -EFAULT : 0;
1830 }
1831
1832 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1833
1834 static void argv_cleanup(char **argv, char **envp)
1835 {
1836         argv_free(argv);
1837 }
1838
1839 /**
1840  * orderly_poweroff - Trigger an orderly system poweroff
1841  * @force: force poweroff if command execution fails
1842  *
1843  * This may be called from any context to trigger a system shutdown.
1844  * If the orderly shutdown fails, it will force an immediate shutdown.
1845  */
1846 int orderly_poweroff(bool force)
1847 {
1848         int argc;
1849         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1850         static char *envp[] = {
1851                 "HOME=/",
1852                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1853                 NULL
1854         };
1855         int ret = -ENOMEM;
1856         struct subprocess_info *info;
1857
1858         if (argv == NULL) {
1859                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1860                        __func__, poweroff_cmd);
1861                 goto out;
1862         }
1863
1864         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1865         if (info == NULL) {
1866                 argv_free(argv);
1867                 goto out;
1868         }
1869
1870         call_usermodehelper_setcleanup(info, argv_cleanup);
1871
1872         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1873
1874   out:
1875         if (ret && force) {
1876                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1877                        "forcing the issue\n");
1878
1879                 /* I guess this should try to kick off some daemon to
1880                    sync and poweroff asap.  Or not even bother syncing
1881                    if we're doing an emergency shutdown? */
1882                 emergency_sync();
1883                 kernel_power_off();
1884         }
1885
1886         return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(orderly_poweroff);