2 * PS3 address space management.
4 * Copyright (C) 2006 Sony Computer Entertainment Inc.
5 * Copyright 2006 Sony Corp.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/lmb.h>
26 #include <asm/firmware.h>
29 #include <asm/lv1call.h>
34 #define DBG udbg_printf
40 #if defined(CONFIG_PS3_DYNAMIC_DMA)
53 static unsigned long make_page_sizes(unsigned long a, unsigned long b)
55 return (a << 56) | (b << 48);
59 ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04,
60 ALLOCATE_MEMORY_ADDR_ZERO = 0X08,
63 /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */
66 HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */
67 HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */
70 /*============================================================================*/
71 /* virtual address space routines */
72 /*============================================================================*/
75 * struct mem_region - memory region structure
77 * @size: size in bytes
78 * @offset: difference between base and rm.size
88 * struct map - address space state variables holder
89 * @total: total memory available as reported by HV
90 * @vas_id - HV virtual address space id
91 * @htab_size: htab size in bytes
93 * The HV virtual address space (vas) allows for hotplug memory regions.
94 * Memory regions can be created and destroyed in the vas at runtime.
95 * @rm: real mode (bootmem) region
96 * @r1: hotplug memory region(s)
99 * virt_addr: a cpu 'translated' effective address
100 * phys_addr: an address in what Linux thinks is the physical address space
101 * lpar_addr: an address in the HV virtual address space
102 * bus_addr: an io controller 'translated' address on a device bus
109 struct mem_region rm;
110 struct mem_region r1;
113 #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__)
114 static void __maybe_unused _debug_dump_map(const struct map *m,
115 const char *func, int line)
117 DBG("%s:%d: map.total = %llxh\n", func, line, m->total);
118 DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size);
119 DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id);
120 DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size);
121 DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base);
122 DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset);
123 DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size);
126 static struct map map;
129 * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address
130 * @phys_addr: linux physical address
133 unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr)
135 BUG_ON(is_kernel_addr(phys_addr));
136 return (phys_addr < map.rm.size || phys_addr >= map.total)
137 ? phys_addr : phys_addr + map.r1.offset;
140 EXPORT_SYMBOL(ps3_mm_phys_to_lpar);
143 * ps3_mm_vas_create - create the virtual address space
146 void __init ps3_mm_vas_create(unsigned long* htab_size)
155 result = lv1_query_logical_partition_address_region_info(0,
156 &start_address, &size, &access_right, &max_page_size,
160 DBG("%s:%d: lv1_query_logical_partition_address_region_info "
161 "failed: %s\n", __func__, __LINE__,
166 if (max_page_size < PAGE_SHIFT_16M) {
167 DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__,
172 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX);
173 BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN);
175 result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE,
176 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K),
177 &map.vas_id, &map.htab_size);
180 DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n",
181 __func__, __LINE__, ps3_result(result));
185 result = lv1_select_virtual_address_space(map.vas_id);
188 DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n",
189 __func__, __LINE__, ps3_result(result));
193 *htab_size = map.htab_size;
195 debug_dump_map(&map);
200 panic("ps3_mm_vas_create failed");
204 * ps3_mm_vas_destroy -
207 void ps3_mm_vas_destroy(void)
211 DBG("%s:%d: map.vas_id = %llu\n", __func__, __LINE__, map.vas_id);
214 result = lv1_select_virtual_address_space(0);
216 result = lv1_destruct_virtual_address_space(map.vas_id);
222 /*============================================================================*/
223 /* memory hotplug routines */
224 /*============================================================================*/
227 * ps3_mm_region_create - create a memory region in the vas
228 * @r: pointer to a struct mem_region to accept initialized values
229 * @size: requested region size
231 * This implementation creates the region with the vas large page size.
232 * @size is rounded down to a multiple of the vas large page size.
235 static int ps3_mm_region_create(struct mem_region *r, unsigned long size)
240 r->size = _ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M);
242 DBG("%s:%d requested %lxh\n", __func__, __LINE__, size);
243 DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size);
244 DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__,
245 size - r->size, (size - r->size) / 1024 / 1024);
248 DBG("%s:%d: size == 0\n", __func__, __LINE__);
253 result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0,
254 ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid);
256 if (result || r->base < map.rm.size) {
257 DBG("%s:%d: lv1_allocate_memory failed: %s\n",
258 __func__, __LINE__, ps3_result(result));
262 r->offset = r->base - map.rm.size;
266 r->size = r->base = r->offset = 0;
271 * ps3_mm_region_destroy - destroy a memory region
272 * @r: pointer to struct mem_region
275 static void ps3_mm_region_destroy(struct mem_region *r)
279 DBG("%s:%d: r->base = %llxh\n", __func__, __LINE__, r->base);
281 result = lv1_release_memory(r->base);
283 r->size = r->base = r->offset = 0;
284 map.total = map.rm.size;
289 * ps3_mm_add_memory - hot add memory
292 static int __init ps3_mm_add_memory(void)
295 unsigned long start_addr;
296 unsigned long start_pfn;
297 unsigned long nr_pages;
299 if (!firmware_has_feature(FW_FEATURE_PS3_LV1))
302 BUG_ON(!mem_init_done);
304 start_addr = map.rm.size;
305 start_pfn = start_addr >> PAGE_SHIFT;
306 nr_pages = (map.r1.size + PAGE_SIZE - 1) >> PAGE_SHIFT;
308 DBG("%s:%d: start_addr %lxh, start_pfn %lxh, nr_pages %lxh\n",
309 __func__, __LINE__, start_addr, start_pfn, nr_pages);
311 result = add_memory(0, start_addr, map.r1.size);
314 DBG("%s:%d: add_memory failed: (%d)\n",
315 __func__, __LINE__, result);
319 lmb_add(start_addr, map.r1.size);
322 result = online_pages(start_pfn, nr_pages);
325 DBG("%s:%d: online_pages failed: (%d)\n",
326 __func__, __LINE__, result);
331 device_initcall(ps3_mm_add_memory);
333 /*============================================================================*/
335 /*============================================================================*/
338 * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address.
339 * @r: pointer to dma region structure
340 * @lpar_addr: HV lpar address
343 static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r,
344 unsigned long lpar_addr)
346 if (lpar_addr >= map.rm.size)
347 lpar_addr -= map.r1.offset;
348 BUG_ON(lpar_addr < r->offset);
349 BUG_ON(lpar_addr >= r->offset + r->len);
350 return r->bus_addr + lpar_addr - r->offset;
353 #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__)
354 static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r,
355 const char *func, int line)
357 DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id,
359 DBG("%s:%d: page_size %u\n", func, line, r->page_size);
360 DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr);
361 DBG("%s:%d: len %lxh\n", func, line, r->len);
362 DBG("%s:%d: offset %lxh\n", func, line, r->offset);
366 * dma_chunk - A chunk of dma pages mapped by the io controller.
367 * @region - The dma region that owns this chunk.
368 * @lpar_addr: Starting lpar address of the area to map.
369 * @bus_addr: Starting ioc bus address of the area to map.
370 * @len: Length in bytes of the area to map.
371 * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the
372 * list of all chuncks owned by the region.
374 * This implementation uses a very simple dma page manager
375 * based on the dma_chunk structure. This scheme assumes
376 * that all drivers use very well behaved dma ops.
380 struct ps3_dma_region *region;
381 unsigned long lpar_addr;
382 unsigned long bus_addr;
384 struct list_head link;
385 unsigned int usage_count;
388 #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__)
389 static void _dma_dump_chunk (const struct dma_chunk* c, const char* func,
392 DBG("%s:%d: r.dev %llu:%llu\n", func, line,
393 c->region->dev->bus_id, c->region->dev->dev_id);
394 DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr);
395 DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size);
396 DBG("%s:%d: r.len %lxh\n", func, line, c->region->len);
397 DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset);
398 DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr);
399 DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr);
400 DBG("%s:%d: c.len %lxh\n", func, line, c->len);
403 static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r,
404 unsigned long bus_addr, unsigned long len)
407 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr, 1 << r->page_size);
408 unsigned long aligned_len = _ALIGN_UP(len+bus_addr-aligned_bus,
411 list_for_each_entry(c, &r->chunk_list.head, link) {
413 if (aligned_bus >= c->bus_addr &&
414 aligned_bus + aligned_len <= c->bus_addr + c->len)
418 if (aligned_bus + aligned_len <= c->bus_addr)
422 if (aligned_bus >= c->bus_addr + c->len)
425 /* we don't handle the multi-chunk case for now */
432 static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r,
433 unsigned long lpar_addr, unsigned long len)
436 unsigned long aligned_lpar = _ALIGN_DOWN(lpar_addr, 1 << r->page_size);
437 unsigned long aligned_len = _ALIGN_UP(len + lpar_addr - aligned_lpar,
440 list_for_each_entry(c, &r->chunk_list.head, link) {
442 if (c->lpar_addr <= aligned_lpar &&
443 aligned_lpar < c->lpar_addr + c->len) {
444 if (aligned_lpar + aligned_len <= c->lpar_addr + c->len)
452 if (aligned_lpar + aligned_len <= c->lpar_addr) {
456 if (c->lpar_addr + c->len <= aligned_lpar) {
463 static int dma_sb_free_chunk(struct dma_chunk *c)
468 result = lv1_unmap_device_dma_region(c->region->dev->bus_id,
469 c->region->dev->dev_id, c->bus_addr, c->len);
477 static int dma_ioc0_free_chunk(struct dma_chunk *c)
481 unsigned long offset;
482 struct ps3_dma_region *r = c->region;
484 DBG("%s:start\n", __func__);
485 for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) {
486 offset = (1 << r->page_size) * iopage;
487 /* put INVALID entry */
488 result = lv1_put_iopte(0,
489 c->bus_addr + offset,
490 c->lpar_addr + offset,
493 DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__,
494 c->bus_addr + offset,
495 c->lpar_addr + offset,
499 DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__,
500 __LINE__, ps3_result(result));
504 DBG("%s:end\n", __func__);
509 * dma_sb_map_pages - Maps dma pages into the io controller bus address space.
510 * @r: Pointer to a struct ps3_dma_region.
511 * @phys_addr: Starting physical address of the area to map.
512 * @len: Length in bytes of the area to map.
513 * c_out: A pointer to receive an allocated struct dma_chunk for this area.
515 * This is the lowest level dma mapping routine, and is the one that will
516 * make the HV call to add the pages into the io controller address space.
519 static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
520 unsigned long len, struct dma_chunk **c_out, u64 iopte_flag)
525 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
533 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
534 c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr);
537 BUG_ON(iopte_flag != 0xf800000000000000UL);
538 result = lv1_map_device_dma_region(c->region->dev->bus_id,
539 c->region->dev->dev_id, c->lpar_addr,
540 c->bus_addr, c->len, iopte_flag);
542 DBG("%s:%d: lv1_map_device_dma_region failed: %s\n",
543 __func__, __LINE__, ps3_result(result));
547 list_add(&c->link, &r->chunk_list.head);
556 DBG(" <- %s:%d\n", __func__, __LINE__);
560 static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr,
561 unsigned long len, struct dma_chunk **c_out,
565 struct dma_chunk *c, *last;
567 unsigned long offset;
569 DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__,
570 phys_addr, ps3_mm_phys_to_lpar(phys_addr), len);
571 c = kzalloc(sizeof(struct dma_chunk), GFP_ATOMIC);
580 c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
581 /* allocate IO address */
582 if (list_empty(&r->chunk_list.head)) {
584 c->bus_addr = r->bus_addr;
586 /* derive from last bus addr*/
587 last = list_entry(r->chunk_list.head.next,
588 struct dma_chunk, link);
589 c->bus_addr = last->bus_addr + last->len;
590 DBG("%s: last bus=%#lx, len=%#lx\n", __func__,
591 last->bus_addr, last->len);
594 /* FIXME: check whether length exceeds region size */
596 /* build ioptes for the area */
597 pages = len >> r->page_size;
598 DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__,
599 r->page_size, r->len, pages, iopte_flag);
600 for (iopage = 0; iopage < pages; iopage++) {
601 offset = (1 << r->page_size) * iopage;
602 result = lv1_put_iopte(0,
603 c->bus_addr + offset,
604 c->lpar_addr + offset,
608 printk(KERN_WARNING "%s:%d: lv1_map_device_dma_region "
609 "failed: %s\n", __func__, __LINE__,
613 DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__,
614 iopage, c->bus_addr + offset, c->lpar_addr + offset,
618 /* be sure that last allocated one is inserted at head */
619 list_add(&c->link, &r->chunk_list.head);
622 DBG("%s: end\n", __func__);
626 for (iopage--; 0 <= iopage; iopage--) {
628 c->bus_addr + offset,
629 c->lpar_addr + offset,
640 * dma_sb_region_create - Create a device dma region.
641 * @r: Pointer to a struct ps3_dma_region.
643 * This is the lowest level dma region create routine, and is the one that
644 * will make the HV call to create the region.
647 static int dma_sb_region_create(struct ps3_dma_region *r)
652 DBG(" -> %s:%d:\n", __func__, __LINE__);
656 if (!r->dev->bus_id) {
657 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
658 r->dev->bus_id, r->dev->dev_id);
662 DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__,
663 __LINE__, r->len, r->page_size, r->offset);
666 BUG_ON(!r->page_size);
667 BUG_ON(!r->region_ops);
669 INIT_LIST_HEAD(&r->chunk_list.head);
670 spin_lock_init(&r->chunk_list.lock);
672 result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id,
673 roundup_pow_of_two(r->len), r->page_size, r->region_type,
675 r->bus_addr = bus_addr;
678 DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n",
679 __func__, __LINE__, ps3_result(result));
680 r->len = r->bus_addr = 0;
686 static int dma_ioc0_region_create(struct ps3_dma_region *r)
691 INIT_LIST_HEAD(&r->chunk_list.head);
692 spin_lock_init(&r->chunk_list.lock);
694 result = lv1_allocate_io_segment(0,
698 r->bus_addr = bus_addr;
700 DBG("%s:%d: lv1_allocate_io_segment failed: %s\n",
701 __func__, __LINE__, ps3_result(result));
702 r->len = r->bus_addr = 0;
704 DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__,
705 r->len, r->page_size, r->bus_addr);
710 * dma_region_free - Free a device dma region.
711 * @r: Pointer to a struct ps3_dma_region.
713 * This is the lowest level dma region free routine, and is the one that
714 * will make the HV call to free the region.
717 static int dma_sb_region_free(struct ps3_dma_region *r)
721 struct dma_chunk *tmp;
725 if (!r->dev->bus_id) {
726 pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__,
727 r->dev->bus_id, r->dev->dev_id);
731 list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) {
733 dma_sb_free_chunk(c);
736 result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id,
740 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
741 __func__, __LINE__, ps3_result(result));
748 static int dma_ioc0_region_free(struct ps3_dma_region *r)
751 struct dma_chunk *c, *n;
753 DBG("%s: start\n", __func__);
754 list_for_each_entry_safe(c, n, &r->chunk_list.head, link) {
756 dma_ioc0_free_chunk(c);
759 result = lv1_release_io_segment(0, r->bus_addr);
762 DBG("%s:%d: lv1_free_device_dma_region failed: %s\n",
763 __func__, __LINE__, ps3_result(result));
766 DBG("%s: end\n", __func__);
772 * dma_sb_map_area - Map an area of memory into a device dma region.
773 * @r: Pointer to a struct ps3_dma_region.
774 * @virt_addr: Starting virtual address of the area to map.
775 * @len: Length in bytes of the area to map.
776 * @bus_addr: A pointer to return the starting ioc bus address of the area to
779 * This is the common dma mapping routine.
782 static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
783 unsigned long len, dma_addr_t *bus_addr,
789 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
791 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
792 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
794 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
796 if (!USE_DYNAMIC_DMA) {
797 unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr);
798 DBG(" -> %s:%d\n", __func__, __LINE__);
799 DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__,
801 DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__,
803 DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__,
805 DBG("%s:%d len %lxh\n", __func__, __LINE__, len);
806 DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__,
810 spin_lock_irqsave(&r->chunk_list.lock, flags);
811 c = dma_find_chunk(r, *bus_addr, len);
814 DBG("%s:%d: reusing mapped chunk", __func__, __LINE__);
817 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
821 result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag);
825 DBG("%s:%d: dma_sb_map_pages failed (%d)\n",
826 __func__, __LINE__, result);
827 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
833 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
837 static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr,
838 unsigned long len, dma_addr_t *bus_addr,
844 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
846 unsigned long aligned_phys = _ALIGN_DOWN(phys_addr, 1 << r->page_size);
847 unsigned long aligned_len = _ALIGN_UP(len + phys_addr - aligned_phys,
850 DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__,
852 DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__,
853 phys_addr, aligned_phys, aligned_len);
855 spin_lock_irqsave(&r->chunk_list.lock, flags);
856 c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len);
861 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
863 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
867 result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c,
872 DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n",
873 __func__, __LINE__, result);
874 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
877 *bus_addr = c->bus_addr + phys_addr - aligned_phys;
878 DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__,
879 virt_addr, phys_addr, aligned_phys, *bus_addr);
882 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
887 * dma_sb_unmap_area - Unmap an area of memory from a device dma region.
888 * @r: Pointer to a struct ps3_dma_region.
889 * @bus_addr: The starting ioc bus address of the area to unmap.
890 * @len: Length in bytes of the area to unmap.
892 * This is the common dma unmap routine.
895 static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr,
901 spin_lock_irqsave(&r->chunk_list.lock, flags);
902 c = dma_find_chunk(r, bus_addr, len);
905 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
907 unsigned long aligned_len = _ALIGN_UP(len + bus_addr
908 - aligned_bus, 1 << r->page_size);
909 DBG("%s:%d: not found: bus_addr %llxh\n",
910 __func__, __LINE__, bus_addr);
911 DBG("%s:%d: not found: len %lxh\n",
912 __func__, __LINE__, len);
913 DBG("%s:%d: not found: aligned_bus %lxh\n",
914 __func__, __LINE__, aligned_bus);
915 DBG("%s:%d: not found: aligned_len %lxh\n",
916 __func__, __LINE__, aligned_len);
922 if (!c->usage_count) {
924 dma_sb_free_chunk(c);
927 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
931 static int dma_ioc0_unmap_area(struct ps3_dma_region *r,
932 dma_addr_t bus_addr, unsigned long len)
937 DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len);
938 spin_lock_irqsave(&r->chunk_list.lock, flags);
939 c = dma_find_chunk(r, bus_addr, len);
942 unsigned long aligned_bus = _ALIGN_DOWN(bus_addr,
944 unsigned long aligned_len = _ALIGN_UP(len + bus_addr
947 DBG("%s:%d: not found: bus_addr %llxh\n",
948 __func__, __LINE__, bus_addr);
949 DBG("%s:%d: not found: len %lxh\n",
950 __func__, __LINE__, len);
951 DBG("%s:%d: not found: aligned_bus %lxh\n",
952 __func__, __LINE__, aligned_bus);
953 DBG("%s:%d: not found: aligned_len %lxh\n",
954 __func__, __LINE__, aligned_len);
960 if (!c->usage_count) {
962 dma_ioc0_free_chunk(c);
965 spin_unlock_irqrestore(&r->chunk_list.lock, flags);
966 DBG("%s: end\n", __func__);
971 * dma_sb_region_create_linear - Setup a linear dma mapping for a device.
972 * @r: Pointer to a struct ps3_dma_region.
974 * This routine creates an HV dma region for the device and maps all available
975 * ram into the io controller bus address space.
978 static int dma_sb_region_create_linear(struct ps3_dma_region *r)
981 unsigned long virt_addr, len;
984 if (r->len > 16*1024*1024) { /* FIXME: need proper fix */
985 /* force 16M dma pages for linear mapping */
986 if (r->page_size != PS3_DMA_16M) {
987 pr_info("%s:%d: forcing 16M pages for linear map\n",
989 r->page_size = PS3_DMA_16M;
990 r->len = _ALIGN_UP(r->len, 1 << r->page_size);
994 result = dma_sb_region_create(r);
997 if (r->offset < map.rm.size) {
998 /* Map (part of) 1st RAM chunk */
999 virt_addr = map.rm.base + r->offset;
1000 len = map.rm.size - r->offset;
1003 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1004 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
1008 if (r->offset + r->len > map.rm.size) {
1009 /* Map (part of) 2nd RAM chunk */
1010 virt_addr = map.rm.size;
1012 if (r->offset >= map.rm.size)
1013 virt_addr += r->offset - map.rm.size;
1015 len -= map.rm.size - r->offset;
1016 result = dma_sb_map_area(r, virt_addr, len, &tmp,
1017 IOPTE_PP_W | IOPTE_PP_R | IOPTE_SO_RW | IOPTE_M);
1025 * dma_sb_region_free_linear - Free a linear dma mapping for a device.
1026 * @r: Pointer to a struct ps3_dma_region.
1028 * This routine will unmap all mapped areas and free the HV dma region.
1031 static int dma_sb_region_free_linear(struct ps3_dma_region *r)
1034 dma_addr_t bus_addr;
1035 unsigned long len, lpar_addr;
1037 if (r->offset < map.rm.size) {
1038 /* Unmap (part of) 1st RAM chunk */
1039 lpar_addr = map.rm.base + r->offset;
1040 len = map.rm.size - r->offset;
1043 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1044 result = dma_sb_unmap_area(r, bus_addr, len);
1048 if (r->offset + r->len > map.rm.size) {
1049 /* Unmap (part of) 2nd RAM chunk */
1050 lpar_addr = map.r1.base;
1052 if (r->offset >= map.rm.size)
1053 lpar_addr += r->offset - map.rm.size;
1055 len -= map.rm.size - r->offset;
1056 bus_addr = dma_sb_lpar_to_bus(r, lpar_addr);
1057 result = dma_sb_unmap_area(r, bus_addr, len);
1061 result = dma_sb_region_free(r);
1068 * dma_sb_map_area_linear - Map an area of memory into a device dma region.
1069 * @r: Pointer to a struct ps3_dma_region.
1070 * @virt_addr: Starting virtual address of the area to map.
1071 * @len: Length in bytes of the area to map.
1072 * @bus_addr: A pointer to return the starting ioc bus address of the area to
1075 * This routine just returns the corresponding bus address. Actual mapping
1076 * occurs in dma_region_create_linear().
1079 static int dma_sb_map_area_linear(struct ps3_dma_region *r,
1080 unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr,
1083 unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr)
1085 *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr));
1090 * dma_unmap_area_linear - Unmap an area of memory from a device dma region.
1091 * @r: Pointer to a struct ps3_dma_region.
1092 * @bus_addr: The starting ioc bus address of the area to unmap.
1093 * @len: Length in bytes of the area to unmap.
1095 * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear().
1098 static int dma_sb_unmap_area_linear(struct ps3_dma_region *r,
1099 dma_addr_t bus_addr, unsigned long len)
1104 static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = {
1105 .create = dma_sb_region_create,
1106 .free = dma_sb_region_free,
1107 .map = dma_sb_map_area,
1108 .unmap = dma_sb_unmap_area
1111 static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = {
1112 .create = dma_sb_region_create_linear,
1113 .free = dma_sb_region_free_linear,
1114 .map = dma_sb_map_area_linear,
1115 .unmap = dma_sb_unmap_area_linear
1118 static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = {
1119 .create = dma_ioc0_region_create,
1120 .free = dma_ioc0_region_free,
1121 .map = dma_ioc0_map_area,
1122 .unmap = dma_ioc0_unmap_area
1125 int ps3_dma_region_init(struct ps3_system_bus_device *dev,
1126 struct ps3_dma_region *r, enum ps3_dma_page_size page_size,
1127 enum ps3_dma_region_type region_type, void *addr, unsigned long len)
1129 unsigned long lpar_addr;
1131 lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0;
1134 r->page_size = page_size;
1135 r->region_type = region_type;
1136 r->offset = lpar_addr;
1137 if (r->offset >= map.rm.size)
1138 r->offset -= map.r1.offset;
1139 r->len = len ? len : _ALIGN_UP(map.total, 1 << r->page_size);
1141 switch (dev->dev_type) {
1142 case PS3_DEVICE_TYPE_SB:
1143 r->region_ops = (USE_DYNAMIC_DMA)
1144 ? &ps3_dma_sb_region_ops
1145 : &ps3_dma_sb_region_linear_ops;
1147 case PS3_DEVICE_TYPE_IOC0:
1148 r->region_ops = &ps3_dma_ioc0_region_ops;
1156 EXPORT_SYMBOL(ps3_dma_region_init);
1158 int ps3_dma_region_create(struct ps3_dma_region *r)
1161 BUG_ON(!r->region_ops);
1162 BUG_ON(!r->region_ops->create);
1163 return r->region_ops->create(r);
1165 EXPORT_SYMBOL(ps3_dma_region_create);
1167 int ps3_dma_region_free(struct ps3_dma_region *r)
1170 BUG_ON(!r->region_ops);
1171 BUG_ON(!r->region_ops->free);
1172 return r->region_ops->free(r);
1174 EXPORT_SYMBOL(ps3_dma_region_free);
1176 int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr,
1177 unsigned long len, dma_addr_t *bus_addr,
1180 return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag);
1183 int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr,
1186 return r->region_ops->unmap(r, bus_addr, len);
1189 /*============================================================================*/
1190 /* system startup routines */
1191 /*============================================================================*/
1194 * ps3_mm_init - initialize the address space state variables
1197 void __init ps3_mm_init(void)
1201 DBG(" -> %s:%d\n", __func__, __LINE__);
1203 result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size,
1207 panic("ps3_repository_read_mm_info() failed");
1209 map.rm.offset = map.rm.base;
1210 map.vas_id = map.htab_size = 0;
1212 /* this implementation assumes map.rm.base is zero */
1214 BUG_ON(map.rm.base);
1215 BUG_ON(!map.rm.size);
1218 /* arrange to do this in ps3_mm_add_memory */
1219 ps3_mm_region_create(&map.r1, map.total - map.rm.size);
1221 /* correct map.total for the real total amount of memory we use */
1222 map.total = map.rm.size + map.r1.size;
1224 DBG(" <- %s:%d\n", __func__, __LINE__);
1228 * ps3_mm_shutdown - final cleanup of address space
1231 void ps3_mm_shutdown(void)
1233 ps3_mm_region_destroy(&map.r1);