2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 #include <trace/block.h>
35 DEFINE_TRACE(block_plug);
36 DEFINE_TRACE(block_unplug_io);
37 DEFINE_TRACE(block_unplug_timer);
38 DEFINE_TRACE(block_getrq);
39 DEFINE_TRACE(block_sleeprq);
40 DEFINE_TRACE(block_rq_requeue);
41 DEFINE_TRACE(block_bio_backmerge);
42 DEFINE_TRACE(block_bio_frontmerge);
43 DEFINE_TRACE(block_bio_queue);
44 DEFINE_TRACE(block_rq_complete);
45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
48 static int __make_request(struct request_queue *q, struct bio *bio);
51 * For the allocated request tables
53 static struct kmem_cache *request_cachep;
56 * For queue allocation
58 struct kmem_cache *blk_requestq_cachep;
61 * Controlling structure to kblockd
63 static struct workqueue_struct *kblockd_workqueue;
65 static void drive_stat_acct(struct request *rq, int new_io)
67 struct hd_struct *part;
68 int rw = rq_data_dir(rq);
71 if (!blk_do_io_stat(rq))
74 cpu = part_stat_lock();
75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
78 part_stat_inc(cpu, part, merges[rw]);
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
87 void blk_queue_congestion_threshold(struct request_queue *q)
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
94 q->nr_congestion_on = nr;
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
99 q->nr_congestion_off = nr;
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
106 * Locates the passed device's request queue and returns the address of its
109 * Will return NULL if the request queue cannot be located.
111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
113 struct backing_dev_info *ret = NULL;
114 struct request_queue *q = bdev_get_queue(bdev);
117 ret = &q->backing_dev_info;
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 void blk_rq_init(struct request_queue *q, struct request *rq)
124 memset(rq, 0, sizeof(*rq));
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->sector = rq->hard_sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd_len = BLK_MAX_CDB;
137 rq->start_time = jiffies;
139 EXPORT_SYMBOL(blk_rq_init);
141 static void req_bio_endio(struct request *rq, struct bio *bio,
142 unsigned int nbytes, int error)
144 struct request_queue *q = rq->q;
146 if (&q->bar_rq != rq) {
148 clear_bit(BIO_UPTODATE, &bio->bi_flags);
149 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
152 if (unlikely(nbytes > bio->bi_size)) {
153 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
154 __func__, nbytes, bio->bi_size);
155 nbytes = bio->bi_size;
158 if (unlikely(rq->cmd_flags & REQ_QUIET))
159 set_bit(BIO_QUIET, &bio->bi_flags);
161 bio->bi_size -= nbytes;
162 bio->bi_sector += (nbytes >> 9);
164 if (bio_integrity(bio))
165 bio_integrity_advance(bio, nbytes);
167 if (bio->bi_size == 0)
168 bio_endio(bio, error);
172 * Okay, this is the barrier request in progress, just
175 if (error && !q->orderr)
180 void blk_dump_rq_flags(struct request *rq, char *msg)
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
188 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
189 (unsigned long long)rq->sector,
191 rq->current_nr_sectors);
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail,
194 rq->buffer, rq->data_len);
196 if (blk_pc_request(rq)) {
197 printk(KERN_INFO " cdb: ");
198 for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 printk("%02x ", rq->cmd[bit]);
203 EXPORT_SYMBOL(blk_dump_rq_flags);
206 * "plug" the device if there are no outstanding requests: this will
207 * force the transfer to start only after we have put all the requests
210 * This is called with interrupts off and no requests on the queue and
211 * with the queue lock held.
213 void blk_plug_device(struct request_queue *q)
215 WARN_ON(!irqs_disabled());
218 * don't plug a stopped queue, it must be paired with blk_start_queue()
219 * which will restart the queueing
221 if (blk_queue_stopped(q))
224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
229 EXPORT_SYMBOL(blk_plug_device);
232 * blk_plug_device_unlocked - plug a device without queue lock held
233 * @q: The &struct request_queue to plug
236 * Like @blk_plug_device(), but grabs the queue lock and disables
239 void blk_plug_device_unlocked(struct request_queue *q)
243 spin_lock_irqsave(q->queue_lock, flags);
245 spin_unlock_irqrestore(q->queue_lock, flags);
247 EXPORT_SYMBOL(blk_plug_device_unlocked);
250 * remove the queue from the plugged list, if present. called with
251 * queue lock held and interrupts disabled.
253 int blk_remove_plug(struct request_queue *q)
255 WARN_ON(!irqs_disabled());
257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
260 del_timer(&q->unplug_timer);
263 EXPORT_SYMBOL(blk_remove_plug);
266 * remove the plug and let it rip..
268 void __generic_unplug_device(struct request_queue *q)
270 if (unlikely(blk_queue_stopped(q)))
272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
279 * generic_unplug_device - fire a request queue
280 * @q: The &struct request_queue in question
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
289 void generic_unplug_device(struct request_queue *q)
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
297 EXPORT_SYMBOL(generic_unplug_device);
299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
302 struct request_queue *q = bdi->unplug_io_data;
307 void blk_unplug_work(struct work_struct *work)
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
312 trace_block_unplug_io(q);
316 void blk_unplug_timeout(unsigned long data)
318 struct request_queue *q = (struct request_queue *)data;
320 trace_block_unplug_timer(q);
321 kblockd_schedule_work(q, &q->unplug_work);
324 void blk_unplug(struct request_queue *q)
327 * devices don't necessarily have an ->unplug_fn defined
330 trace_block_unplug_io(q);
334 EXPORT_SYMBOL(blk_unplug);
337 * blk_start_queue - restart a previously stopped queue
338 * @q: The &struct request_queue in question
341 * blk_start_queue() will clear the stop flag on the queue, and call
342 * the request_fn for the queue if it was in a stopped state when
343 * entered. Also see blk_stop_queue(). Queue lock must be held.
345 void blk_start_queue(struct request_queue *q)
347 WARN_ON(!irqs_disabled());
349 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
352 EXPORT_SYMBOL(blk_start_queue);
355 * blk_stop_queue - stop a queue
356 * @q: The &struct request_queue in question
359 * The Linux block layer assumes that a block driver will consume all
360 * entries on the request queue when the request_fn strategy is called.
361 * Often this will not happen, because of hardware limitations (queue
362 * depth settings). If a device driver gets a 'queue full' response,
363 * or if it simply chooses not to queue more I/O at one point, it can
364 * call this function to prevent the request_fn from being called until
365 * the driver has signalled it's ready to go again. This happens by calling
366 * blk_start_queue() to restart queue operations. Queue lock must be held.
368 void blk_stop_queue(struct request_queue *q)
371 queue_flag_set(QUEUE_FLAG_STOPPED, q);
373 EXPORT_SYMBOL(blk_stop_queue);
376 * blk_sync_queue - cancel any pending callbacks on a queue
380 * The block layer may perform asynchronous callback activity
381 * on a queue, such as calling the unplug function after a timeout.
382 * A block device may call blk_sync_queue to ensure that any
383 * such activity is cancelled, thus allowing it to release resources
384 * that the callbacks might use. The caller must already have made sure
385 * that its ->make_request_fn will not re-add plugging prior to calling
389 void blk_sync_queue(struct request_queue *q)
391 del_timer_sync(&q->unplug_timer);
392 del_timer_sync(&q->timeout);
393 cancel_work_sync(&q->unplug_work);
395 EXPORT_SYMBOL(blk_sync_queue);
398 * __blk_run_queue - run a single device queue
399 * @q: The queue to run
402 * See @blk_run_queue. This variant must be called with the queue lock
403 * held and interrupts disabled.
406 void __blk_run_queue(struct request_queue *q)
410 if (unlikely(blk_queue_stopped(q)))
413 if (elv_queue_empty(q))
417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there.
420 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
422 queue_flag_clear(QUEUE_FLAG_REENTER, q);
424 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
425 kblockd_schedule_work(q, &q->unplug_work);
428 EXPORT_SYMBOL(__blk_run_queue);
431 * blk_run_queue - run a single device queue
432 * @q: The queue to run
435 * Invoke request handling on this queue, if it has pending work to do.
436 * May be used to restart queueing when a request has completed.
438 void blk_run_queue(struct request_queue *q)
442 spin_lock_irqsave(q->queue_lock, flags);
444 spin_unlock_irqrestore(q->queue_lock, flags);
446 EXPORT_SYMBOL(blk_run_queue);
448 void blk_put_queue(struct request_queue *q)
450 kobject_put(&q->kobj);
453 void blk_cleanup_queue(struct request_queue *q)
456 * We know we have process context here, so we can be a little
457 * cautious and ensure that pending block actions on this device
458 * are done before moving on. Going into this function, we should
459 * not have processes doing IO to this device.
463 mutex_lock(&q->sysfs_lock);
464 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
465 mutex_unlock(&q->sysfs_lock);
468 elevator_exit(q->elevator);
472 EXPORT_SYMBOL(blk_cleanup_queue);
474 static int blk_init_free_list(struct request_queue *q)
476 struct request_list *rl = &q->rq;
478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
485 mempool_free_slab, request_cachep, q->node);
493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
495 return blk_alloc_queue_node(gfp_mask, -1);
497 EXPORT_SYMBOL(blk_alloc_queue);
499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
501 struct request_queue *q;
504 q = kmem_cache_alloc_node(blk_requestq_cachep,
505 gfp_mask | __GFP_ZERO, node_id);
509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
510 q->backing_dev_info.unplug_io_data = q;
511 err = bdi_init(&q->backing_dev_info);
513 kmem_cache_free(blk_requestq_cachep, q);
517 init_timer(&q->unplug_timer);
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list);
520 INIT_WORK(&q->unplug_work, blk_unplug_work);
522 kobject_init(&q->kobj, &blk_queue_ktype);
524 mutex_init(&q->sysfs_lock);
525 spin_lock_init(&q->__queue_lock);
529 EXPORT_SYMBOL(blk_alloc_queue_node);
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
552 * The queue spin lock must be held while manipulating the requests on the
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
556 * Function returns a pointer to the initialized request queue, or %NULL if
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
566 return blk_init_queue_node(rfn, lock, -1);
568 EXPORT_SYMBOL(blk_init_queue);
570 struct request_queue *
571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (blk_init_free_list(q)) {
580 kmem_cache_free(blk_requestq_cachep, q);
585 * if caller didn't supply a lock, they get per-queue locking with
589 lock = &q->__queue_lock;
592 q->prep_rq_fn = NULL;
593 q->unplug_fn = generic_unplug_device;
594 q->queue_flags = QUEUE_FLAG_DEFAULT;
595 q->queue_lock = lock;
598 * This also sets hw/phys segments, boundary and size
600 blk_queue_make_request(q, __make_request);
602 q->sg_reserved_size = INT_MAX;
604 blk_set_cmd_filter_defaults(&q->cmd_filter);
609 if (!elevator_init(q, NULL)) {
610 blk_queue_congestion_threshold(q);
617 EXPORT_SYMBOL(blk_init_queue_node);
619 int blk_get_queue(struct request_queue *q)
621 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
622 kobject_get(&q->kobj);
629 static inline void blk_free_request(struct request_queue *q, struct request *rq)
631 if (rq->cmd_flags & REQ_ELVPRIV)
632 elv_put_request(q, rq);
633 mempool_free(rq, q->rq.rq_pool);
636 static struct request *
637 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
639 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
646 rq->cmd_flags = flags | REQ_ALLOCED;
649 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
650 mempool_free(rq, q->rq.rq_pool);
653 rq->cmd_flags |= REQ_ELVPRIV;
660 * ioc_batching returns true if the ioc is a valid batching request and
661 * should be given priority access to a request.
663 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
669 * Make sure the process is able to allocate at least 1 request
670 * even if the batch times out, otherwise we could theoretically
673 return ioc->nr_batch_requests == q->nr_batching ||
674 (ioc->nr_batch_requests > 0
675 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
679 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
680 * will cause the process to be a "batcher" on all queues in the system. This
681 * is the behaviour we want though - once it gets a wakeup it should be given
684 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
686 if (!ioc || ioc_batching(q, ioc))
689 ioc->nr_batch_requests = q->nr_batching;
690 ioc->last_waited = jiffies;
693 static void __freed_request(struct request_queue *q, int sync)
695 struct request_list *rl = &q->rq;
697 if (rl->count[sync] < queue_congestion_off_threshold(q))
698 blk_clear_queue_congested(q, sync);
700 if (rl->count[sync] + 1 <= q->nr_requests) {
701 if (waitqueue_active(&rl->wait[sync]))
702 wake_up(&rl->wait[sync]);
704 blk_clear_queue_full(q, sync);
709 * A request has just been released. Account for it, update the full and
710 * congestion status, wake up any waiters. Called under q->queue_lock.
712 static void freed_request(struct request_queue *q, int sync, int priv)
714 struct request_list *rl = &q->rq;
720 __freed_request(q, sync);
722 if (unlikely(rl->starved[sync ^ 1]))
723 __freed_request(q, sync ^ 1);
727 * Get a free request, queue_lock must be held.
728 * Returns NULL on failure, with queue_lock held.
729 * Returns !NULL on success, with queue_lock *not held*.
731 static struct request *get_request(struct request_queue *q, int rw_flags,
732 struct bio *bio, gfp_t gfp_mask)
734 struct request *rq = NULL;
735 struct request_list *rl = &q->rq;
736 struct io_context *ioc = NULL;
737 const bool is_sync = rw_is_sync(rw_flags) != 0;
740 may_queue = elv_may_queue(q, rw_flags);
741 if (may_queue == ELV_MQUEUE_NO)
744 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
745 if (rl->count[is_sync]+1 >= q->nr_requests) {
746 ioc = current_io_context(GFP_ATOMIC, q->node);
748 * The queue will fill after this allocation, so set
749 * it as full, and mark this process as "batching".
750 * This process will be allowed to complete a batch of
751 * requests, others will be blocked.
753 if (!blk_queue_full(q, is_sync)) {
754 ioc_set_batching(q, ioc);
755 blk_set_queue_full(q, is_sync);
757 if (may_queue != ELV_MQUEUE_MUST
758 && !ioc_batching(q, ioc)) {
760 * The queue is full and the allocating
761 * process is not a "batcher", and not
762 * exempted by the IO scheduler
768 blk_set_queue_congested(q, is_sync);
772 * Only allow batching queuers to allocate up to 50% over the defined
773 * limit of requests, otherwise we could have thousands of requests
774 * allocated with any setting of ->nr_requests
776 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
779 rl->count[is_sync]++;
780 rl->starved[is_sync] = 0;
782 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
786 if (blk_queue_io_stat(q))
787 rw_flags |= REQ_IO_STAT;
788 spin_unlock_irq(q->queue_lock);
790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
799 spin_lock_irq(q->queue_lock);
800 freed_request(q, is_sync, priv);
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
810 if (unlikely(rl->count[is_sync] == 0))
811 rl->starved[is_sync] = 1;
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
825 trace_block_getrq(q, bio, rw_flags & 1);
831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available.
834 * Called with q->queue_lock held, and returns with it unlocked.
836 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
839 const bool is_sync = rw_is_sync(rw_flags) != 0;
842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
845 struct io_context *ioc;
846 struct request_list *rl = &q->rq;
848 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
849 TASK_UNINTERRUPTIBLE);
851 trace_block_sleeprq(q, bio, rw_flags & 1);
853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock);
858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching
863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc);
866 spin_lock_irq(q->queue_lock);
867 finish_wait(&rl->wait[is_sync], &wait);
869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
879 BUG_ON(rw != READ && rw != WRITE);
881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) {
883 rq = get_request_wait(q, rw, NULL);
885 rq = get_request(q, rw, NULL, gfp_mask);
887 spin_unlock_irq(q->queue_lock);
889 /* q->queue_lock is unlocked at this point */
893 EXPORT_SYMBOL(blk_get_request);
896 * blk_requeue_request - put a request back on queue
897 * @q: request queue where request should be inserted
898 * @rq: request to be inserted
901 * Drivers often keep queueing requests until the hardware cannot accept
902 * more, when that condition happens we need to put the request back
903 * on the queue. Must be called with queue lock held.
905 void blk_requeue_request(struct request_queue *q, struct request *rq)
907 blk_delete_timer(rq);
908 blk_clear_rq_complete(rq);
909 trace_block_rq_requeue(q, rq);
911 if (blk_rq_tagged(rq))
912 blk_queue_end_tag(q, rq);
914 elv_requeue_request(q, rq);
916 EXPORT_SYMBOL(blk_requeue_request);
919 * blk_insert_request - insert a special request into a request queue
920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted
922 * @at_head: insert request at head or tail of queue
923 * @data: private data
926 * Many block devices need to execute commands asynchronously, so they don't
927 * block the whole kernel from preemption during request execution. This is
928 * accomplished normally by inserting aritficial requests tagged as
929 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
930 * be scheduled for actual execution by the request queue.
932 * We have the option of inserting the head or the tail of the queue.
933 * Typically we use the tail for new ioctls and so forth. We use the head
934 * of the queue for things like a QUEUE_FULL message from a device, or a
935 * host that is unable to accept a particular command.
937 void blk_insert_request(struct request_queue *q, struct request *rq,
938 int at_head, void *data)
940 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
944 * tell I/O scheduler that this isn't a regular read/write (ie it
945 * must not attempt merges on this) and that it acts as a soft
948 rq->cmd_type = REQ_TYPE_SPECIAL;
952 spin_lock_irqsave(q->queue_lock, flags);
955 * If command is tagged, release the tag
957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq);
960 drive_stat_acct(rq, 1);
961 __elv_add_request(q, rq, where, 0);
963 spin_unlock_irqrestore(q->queue_lock, flags);
965 EXPORT_SYMBOL(blk_insert_request);
968 * add-request adds a request to the linked list.
969 * queue lock is held and interrupts disabled, as we muck with the
970 * request queue list.
972 static inline void add_request(struct request_queue *q, struct request *req)
974 drive_stat_acct(req, 1);
977 * elevator indicated where it wants this request to be
978 * inserted at elevator_merge time
980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
983 static void part_round_stats_single(int cpu, struct hd_struct *part,
986 if (now == part->stamp)
989 if (part->in_flight) {
990 __part_stat_add(cpu, part, time_in_queue,
991 part->in_flight * (now - part->stamp));
992 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
998 * part_round_stats() - Round off the performance stats on a struct disk_stats.
999 * @cpu: cpu number for stats access
1000 * @part: target partition
1002 * The average IO queue length and utilisation statistics are maintained
1003 * by observing the current state of the queue length and the amount of
1004 * time it has been in this state for.
1006 * Normally, that accounting is done on IO completion, but that can result
1007 * in more than a second's worth of IO being accounted for within any one
1008 * second, leading to >100% utilisation. To deal with that, we call this
1009 * function to do a round-off before returning the results when reading
1010 * /proc/diskstats. This accounts immediately for all queue usage up to
1011 * the current jiffies and restarts the counters again.
1013 void part_round_stats(int cpu, struct hd_struct *part)
1015 unsigned long now = jiffies;
1018 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1019 part_round_stats_single(cpu, part, now);
1021 EXPORT_SYMBOL_GPL(part_round_stats);
1024 * queue lock must be held
1026 void __blk_put_request(struct request_queue *q, struct request *req)
1030 if (unlikely(--req->ref_count))
1033 elv_completed_request(q, req);
1035 /* this is a bio leak */
1036 WARN_ON(req->bio != NULL);
1039 * Request may not have originated from ll_rw_blk. if not,
1040 * it didn't come out of our reserved rq pools
1042 if (req->cmd_flags & REQ_ALLOCED) {
1043 int is_sync = rq_is_sync(req) != 0;
1044 int priv = req->cmd_flags & REQ_ELVPRIV;
1046 BUG_ON(!list_empty(&req->queuelist));
1047 BUG_ON(!hlist_unhashed(&req->hash));
1049 blk_free_request(q, req);
1050 freed_request(q, is_sync, priv);
1053 EXPORT_SYMBOL_GPL(__blk_put_request);
1055 void blk_put_request(struct request *req)
1057 unsigned long flags;
1058 struct request_queue *q = req->q;
1060 spin_lock_irqsave(q->queue_lock, flags);
1061 __blk_put_request(q, req);
1062 spin_unlock_irqrestore(q->queue_lock, flags);
1064 EXPORT_SYMBOL(blk_put_request);
1066 void init_request_from_bio(struct request *req, struct bio *bio)
1068 req->cpu = bio->bi_comp_cpu;
1069 req->cmd_type = REQ_TYPE_FS;
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1074 if (bio_rw_ahead(bio))
1075 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1076 REQ_FAILFAST_DRIVER);
1077 if (bio_failfast_dev(bio))
1078 req->cmd_flags |= REQ_FAILFAST_DEV;
1079 if (bio_failfast_transport(bio))
1080 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1081 if (bio_failfast_driver(bio))
1082 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1084 if (unlikely(bio_discard(bio))) {
1085 req->cmd_flags |= REQ_DISCARD;
1086 if (bio_barrier(bio))
1087 req->cmd_flags |= REQ_SOFTBARRIER;
1088 req->q->prepare_discard_fn(req->q, req);
1089 } else if (unlikely(bio_barrier(bio)))
1090 req->cmd_flags |= REQ_HARDBARRIER;
1093 req->cmd_flags |= REQ_RW_SYNC;
1094 if (bio_rw_meta(bio))
1095 req->cmd_flags |= REQ_RW_META;
1096 if (bio_noidle(bio))
1097 req->cmd_flags |= REQ_NOIDLE;
1100 req->hard_sector = req->sector = bio->bi_sector;
1101 req->ioprio = bio_prio(bio);
1102 blk_rq_bio_prep(req->q, req, bio);
1106 * Only disabling plugging for non-rotational devices if it does tagging
1107 * as well, otherwise we do need the proper merging
1109 static inline bool queue_should_plug(struct request_queue *q)
1111 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1114 static int __make_request(struct request_queue *q, struct bio *bio)
1116 struct request *req;
1117 int el_ret, nr_sectors;
1118 const unsigned short prio = bio_prio(bio);
1119 const int sync = bio_sync(bio);
1120 const int unplug = bio_unplug(bio);
1123 nr_sectors = bio_sectors(bio);
1126 * low level driver can indicate that it wants pages above a
1127 * certain limit bounced to low memory (ie for highmem, or even
1128 * ISA dma in theory)
1130 blk_queue_bounce(q, &bio);
1132 spin_lock_irq(q->queue_lock);
1134 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1137 el_ret = elv_merge(q, &req, bio);
1139 case ELEVATOR_BACK_MERGE:
1140 BUG_ON(!rq_mergeable(req));
1142 if (!ll_back_merge_fn(q, req, bio))
1145 trace_block_bio_backmerge(q, bio);
1147 req->biotail->bi_next = bio;
1149 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1150 req->ioprio = ioprio_best(req->ioprio, prio);
1151 if (!blk_rq_cpu_valid(req))
1152 req->cpu = bio->bi_comp_cpu;
1153 drive_stat_acct(req, 0);
1154 if (!attempt_back_merge(q, req))
1155 elv_merged_request(q, req, el_ret);
1158 case ELEVATOR_FRONT_MERGE:
1159 BUG_ON(!rq_mergeable(req));
1161 if (!ll_front_merge_fn(q, req, bio))
1164 trace_block_bio_frontmerge(q, bio);
1166 bio->bi_next = req->bio;
1170 * may not be valid. if the low level driver said
1171 * it didn't need a bounce buffer then it better
1172 * not touch req->buffer either...
1174 req->buffer = bio_data(bio);
1175 req->current_nr_sectors = bio_cur_sectors(bio);
1176 req->hard_cur_sectors = req->current_nr_sectors;
1177 req->sector = req->hard_sector = bio->bi_sector;
1178 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1179 req->ioprio = ioprio_best(req->ioprio, prio);
1180 if (!blk_rq_cpu_valid(req))
1181 req->cpu = bio->bi_comp_cpu;
1182 drive_stat_acct(req, 0);
1183 if (!attempt_front_merge(q, req))
1184 elv_merged_request(q, req, el_ret);
1187 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1194 * This sync check and mask will be re-done in init_request_from_bio(),
1195 * but we need to set it earlier to expose the sync flag to the
1196 * rq allocator and io schedulers.
1198 rw_flags = bio_data_dir(bio);
1200 rw_flags |= REQ_RW_SYNC;
1203 * Grab a free request. This is might sleep but can not fail.
1204 * Returns with the queue unlocked.
1206 req = get_request_wait(q, rw_flags, bio);
1209 * After dropping the lock and possibly sleeping here, our request
1210 * may now be mergeable after it had proven unmergeable (above).
1211 * We don't worry about that case for efficiency. It won't happen
1212 * often, and the elevators are able to handle it.
1214 init_request_from_bio(req, bio);
1216 spin_lock_irq(q->queue_lock);
1217 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1218 bio_flagged(bio, BIO_CPU_AFFINE))
1219 req->cpu = blk_cpu_to_group(smp_processor_id());
1220 if (queue_should_plug(q) && elv_queue_empty(q))
1222 add_request(q, req);
1224 if (unplug || !queue_should_plug(q))
1225 __generic_unplug_device(q);
1226 spin_unlock_irq(q->queue_lock);
1231 * If bio->bi_dev is a partition, remap the location
1233 static inline void blk_partition_remap(struct bio *bio)
1235 struct block_device *bdev = bio->bi_bdev;
1237 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1238 struct hd_struct *p = bdev->bd_part;
1240 bio->bi_sector += p->start_sect;
1241 bio->bi_bdev = bdev->bd_contains;
1243 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1244 bdev->bd_dev, bio->bi_sector,
1245 bio->bi_sector - p->start_sect);
1249 static void handle_bad_sector(struct bio *bio)
1251 char b[BDEVNAME_SIZE];
1253 printk(KERN_INFO "attempt to access beyond end of device\n");
1254 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1255 bdevname(bio->bi_bdev, b),
1257 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1258 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1260 set_bit(BIO_EOF, &bio->bi_flags);
1263 #ifdef CONFIG_FAIL_MAKE_REQUEST
1265 static DECLARE_FAULT_ATTR(fail_make_request);
1267 static int __init setup_fail_make_request(char *str)
1269 return setup_fault_attr(&fail_make_request, str);
1271 __setup("fail_make_request=", setup_fail_make_request);
1273 static int should_fail_request(struct bio *bio)
1275 struct hd_struct *part = bio->bi_bdev->bd_part;
1277 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1278 return should_fail(&fail_make_request, bio->bi_size);
1283 static int __init fail_make_request_debugfs(void)
1285 return init_fault_attr_dentries(&fail_make_request,
1286 "fail_make_request");
1289 late_initcall(fail_make_request_debugfs);
1291 #else /* CONFIG_FAIL_MAKE_REQUEST */
1293 static inline int should_fail_request(struct bio *bio)
1298 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1301 * Check whether this bio extends beyond the end of the device.
1303 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1310 /* Test device or partition size, when known. */
1311 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1313 sector_t sector = bio->bi_sector;
1315 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1317 * This may well happen - the kernel calls bread()
1318 * without checking the size of the device, e.g., when
1319 * mounting a device.
1321 handle_bad_sector(bio);
1330 * generic_make_request - hand a buffer to its device driver for I/O
1331 * @bio: The bio describing the location in memory and on the device.
1333 * generic_make_request() is used to make I/O requests of block
1334 * devices. It is passed a &struct bio, which describes the I/O that needs
1337 * generic_make_request() does not return any status. The
1338 * success/failure status of the request, along with notification of
1339 * completion, is delivered asynchronously through the bio->bi_end_io
1340 * function described (one day) else where.
1342 * The caller of generic_make_request must make sure that bi_io_vec
1343 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1344 * set to describe the device address, and the
1345 * bi_end_io and optionally bi_private are set to describe how
1346 * completion notification should be signaled.
1348 * generic_make_request and the drivers it calls may use bi_next if this
1349 * bio happens to be merged with someone else, and may change bi_dev and
1350 * bi_sector for remaps as it sees fit. So the values of these fields
1351 * should NOT be depended on after the call to generic_make_request.
1353 static inline void __generic_make_request(struct bio *bio)
1355 struct request_queue *q;
1356 sector_t old_sector;
1357 int ret, nr_sectors = bio_sectors(bio);
1363 if (bio_check_eod(bio, nr_sectors))
1367 * Resolve the mapping until finished. (drivers are
1368 * still free to implement/resolve their own stacking
1369 * by explicitly returning 0)
1371 * NOTE: we don't repeat the blk_size check for each new device.
1372 * Stacking drivers are expected to know what they are doing.
1377 char b[BDEVNAME_SIZE];
1379 q = bdev_get_queue(bio->bi_bdev);
1382 "generic_make_request: Trying to access "
1383 "nonexistent block-device %s (%Lu)\n",
1384 bdevname(bio->bi_bdev, b),
1385 (long long) bio->bi_sector);
1389 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1390 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1391 bdevname(bio->bi_bdev, b),
1397 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1400 if (should_fail_request(bio))
1404 * If this device has partitions, remap block n
1405 * of partition p to block n+start(p) of the disk.
1407 blk_partition_remap(bio);
1409 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1412 if (old_sector != -1)
1413 trace_block_remap(q, bio, old_dev, bio->bi_sector,
1416 trace_block_bio_queue(q, bio);
1418 old_sector = bio->bi_sector;
1419 old_dev = bio->bi_bdev->bd_dev;
1421 if (bio_check_eod(bio, nr_sectors))
1424 if (bio_discard(bio) && !q->prepare_discard_fn) {
1428 if (bio_barrier(bio) && bio_has_data(bio) &&
1429 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1434 ret = q->make_request_fn(q, bio);
1440 bio_endio(bio, err);
1444 * We only want one ->make_request_fn to be active at a time,
1445 * else stack usage with stacked devices could be a problem.
1446 * So use current->bio_{list,tail} to keep a list of requests
1447 * submited by a make_request_fn function.
1448 * current->bio_tail is also used as a flag to say if
1449 * generic_make_request is currently active in this task or not.
1450 * If it is NULL, then no make_request is active. If it is non-NULL,
1451 * then a make_request is active, and new requests should be added
1454 void generic_make_request(struct bio *bio)
1456 if (current->bio_tail) {
1457 /* make_request is active */
1458 *(current->bio_tail) = bio;
1459 bio->bi_next = NULL;
1460 current->bio_tail = &bio->bi_next;
1463 /* following loop may be a bit non-obvious, and so deserves some
1465 * Before entering the loop, bio->bi_next is NULL (as all callers
1466 * ensure that) so we have a list with a single bio.
1467 * We pretend that we have just taken it off a longer list, so
1468 * we assign bio_list to the next (which is NULL) and bio_tail
1469 * to &bio_list, thus initialising the bio_list of new bios to be
1470 * added. __generic_make_request may indeed add some more bios
1471 * through a recursive call to generic_make_request. If it
1472 * did, we find a non-NULL value in bio_list and re-enter the loop
1473 * from the top. In this case we really did just take the bio
1474 * of the top of the list (no pretending) and so fixup bio_list and
1475 * bio_tail or bi_next, and call into __generic_make_request again.
1477 * The loop was structured like this to make only one call to
1478 * __generic_make_request (which is important as it is large and
1479 * inlined) and to keep the structure simple.
1481 BUG_ON(bio->bi_next);
1483 current->bio_list = bio->bi_next;
1484 if (bio->bi_next == NULL)
1485 current->bio_tail = ¤t->bio_list;
1487 bio->bi_next = NULL;
1488 __generic_make_request(bio);
1489 bio = current->bio_list;
1491 current->bio_tail = NULL; /* deactivate */
1493 EXPORT_SYMBOL(generic_make_request);
1496 * submit_bio - submit a bio to the block device layer for I/O
1497 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1498 * @bio: The &struct bio which describes the I/O
1500 * submit_bio() is very similar in purpose to generic_make_request(), and
1501 * uses that function to do most of the work. Both are fairly rough
1502 * interfaces; @bio must be presetup and ready for I/O.
1505 void submit_bio(int rw, struct bio *bio)
1507 int count = bio_sectors(bio);
1512 * If it's a regular read/write or a barrier with data attached,
1513 * go through the normal accounting stuff before submission.
1515 if (bio_has_data(bio)) {
1517 count_vm_events(PGPGOUT, count);
1519 task_io_account_read(bio->bi_size);
1520 count_vm_events(PGPGIN, count);
1523 if (unlikely(block_dump)) {
1524 char b[BDEVNAME_SIZE];
1525 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1526 current->comm, task_pid_nr(current),
1527 (rw & WRITE) ? "WRITE" : "READ",
1528 (unsigned long long)bio->bi_sector,
1529 bdevname(bio->bi_bdev, b));
1533 generic_make_request(bio);
1535 EXPORT_SYMBOL(submit_bio);
1538 * blk_rq_check_limits - Helper function to check a request for the queue limit
1540 * @rq: the request being checked
1543 * @rq may have been made based on weaker limitations of upper-level queues
1544 * in request stacking drivers, and it may violate the limitation of @q.
1545 * Since the block layer and the underlying device driver trust @rq
1546 * after it is inserted to @q, it should be checked against @q before
1547 * the insertion using this generic function.
1549 * This function should also be useful for request stacking drivers
1550 * in some cases below, so export this fuction.
1551 * Request stacking drivers like request-based dm may change the queue
1552 * limits while requests are in the queue (e.g. dm's table swapping).
1553 * Such request stacking drivers should check those requests agaist
1554 * the new queue limits again when they dispatch those requests,
1555 * although such checkings are also done against the old queue limits
1556 * when submitting requests.
1558 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1560 if (rq->nr_sectors > q->max_sectors ||
1561 rq->data_len > q->max_hw_sectors << 9) {
1562 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1567 * queue's settings related to segment counting like q->bounce_pfn
1568 * may differ from that of other stacking queues.
1569 * Recalculate it to check the request correctly on this queue's
1572 blk_recalc_rq_segments(rq);
1573 if (rq->nr_phys_segments > q->max_phys_segments ||
1574 rq->nr_phys_segments > q->max_hw_segments) {
1575 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1581 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1584 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1585 * @q: the queue to submit the request
1586 * @rq: the request being queued
1588 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1590 unsigned long flags;
1592 if (blk_rq_check_limits(q, rq))
1595 #ifdef CONFIG_FAIL_MAKE_REQUEST
1596 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1597 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1601 spin_lock_irqsave(q->queue_lock, flags);
1604 * Submitting request must be dequeued before calling this function
1605 * because it will be linked to another request_queue
1607 BUG_ON(blk_queued_rq(rq));
1609 drive_stat_acct(rq, 1);
1610 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1612 spin_unlock_irqrestore(q->queue_lock, flags);
1616 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1619 * blkdev_dequeue_request - dequeue request and start timeout timer
1620 * @req: request to dequeue
1622 * Dequeue @req and start timeout timer on it. This hands off the
1623 * request to the driver.
1625 * Block internal functions which don't want to start timer should
1626 * call elv_dequeue_request().
1628 void blkdev_dequeue_request(struct request *req)
1630 elv_dequeue_request(req->q, req);
1633 * We are now handing the request to the hardware, add the
1638 EXPORT_SYMBOL(blkdev_dequeue_request);
1640 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1642 if (blk_do_io_stat(req)) {
1643 const int rw = rq_data_dir(req);
1644 struct hd_struct *part;
1647 cpu = part_stat_lock();
1648 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1649 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1654 static void blk_account_io_done(struct request *req)
1657 * Account IO completion. bar_rq isn't accounted as a normal
1658 * IO on queueing nor completion. Accounting the containing
1659 * request is enough.
1661 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1662 unsigned long duration = jiffies - req->start_time;
1663 const int rw = rq_data_dir(req);
1664 struct hd_struct *part;
1667 cpu = part_stat_lock();
1668 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1670 part_stat_inc(cpu, part, ios[rw]);
1671 part_stat_add(cpu, part, ticks[rw], duration);
1672 part_round_stats(cpu, part);
1673 part_dec_in_flight(part);
1680 * blk_rq_bytes - Returns bytes left to complete in the entire request
1681 * @rq: the request being processed
1683 unsigned int blk_rq_bytes(struct request *rq)
1685 if (blk_fs_request(rq))
1686 return rq->hard_nr_sectors << 9;
1688 return rq->data_len;
1690 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1693 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1694 * @rq: the request being processed
1696 unsigned int blk_rq_cur_bytes(struct request *rq)
1698 if (blk_fs_request(rq))
1699 return rq->current_nr_sectors << 9;
1702 return rq->bio->bi_size;
1704 return rq->data_len;
1706 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1708 struct request *elv_next_request(struct request_queue *q)
1713 while ((rq = __elv_next_request(q)) != NULL) {
1714 if (!(rq->cmd_flags & REQ_STARTED)) {
1716 * This is the first time the device driver
1717 * sees this request (possibly after
1718 * requeueing). Notify IO scheduler.
1720 if (blk_sorted_rq(rq))
1721 elv_activate_rq(q, rq);
1724 * just mark as started even if we don't start
1725 * it, a request that has been delayed should
1726 * not be passed by new incoming requests
1728 rq->cmd_flags |= REQ_STARTED;
1729 trace_block_rq_issue(q, rq);
1732 if (!q->boundary_rq || q->boundary_rq == rq) {
1733 q->end_sector = rq_end_sector(rq);
1734 q->boundary_rq = NULL;
1737 if (rq->cmd_flags & REQ_DONTPREP)
1740 if (q->dma_drain_size && rq->data_len) {
1742 * make sure space for the drain appears we
1743 * know we can do this because max_hw_segments
1744 * has been adjusted to be one fewer than the
1747 rq->nr_phys_segments++;
1753 ret = q->prep_rq_fn(q, rq);
1754 if (ret == BLKPREP_OK) {
1756 } else if (ret == BLKPREP_DEFER) {
1758 * the request may have been (partially) prepped.
1759 * we need to keep this request in the front to
1760 * avoid resource deadlock. REQ_STARTED will
1761 * prevent other fs requests from passing this one.
1763 if (q->dma_drain_size && rq->data_len &&
1764 !(rq->cmd_flags & REQ_DONTPREP)) {
1766 * remove the space for the drain we added
1767 * so that we don't add it again
1769 --rq->nr_phys_segments;
1774 } else if (ret == BLKPREP_KILL) {
1775 rq->cmd_flags |= REQ_QUIET;
1776 __blk_end_request_all(rq, -EIO);
1778 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1785 EXPORT_SYMBOL(elv_next_request);
1787 void elv_dequeue_request(struct request_queue *q, struct request *rq)
1789 BUG_ON(list_empty(&rq->queuelist));
1790 BUG_ON(ELV_ON_HASH(rq));
1792 list_del_init(&rq->queuelist);
1795 * the time frame between a request being removed from the lists
1796 * and to it is freed is accounted as io that is in progress at
1799 if (blk_account_rq(rq))
1804 * blk_update_request - Special helper function for request stacking drivers
1805 * @rq: the request being processed
1806 * @error: %0 for success, < %0 for error
1807 * @nr_bytes: number of bytes to complete @rq
1810 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1811 * the request structure even if @rq doesn't have leftover.
1812 * If @rq has leftover, sets it up for the next range of segments.
1814 * This special helper function is only for request stacking drivers
1815 * (e.g. request-based dm) so that they can handle partial completion.
1816 * Actual device drivers should use blk_end_request instead.
1818 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1819 * %false return from this function.
1822 * %false - this request doesn't have any more data
1823 * %true - this request has more data
1825 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1827 int total_bytes, bio_nbytes, next_idx = 0;
1833 trace_block_rq_complete(req->q, req);
1836 * For fs requests, rq is just carrier of independent bio's
1837 * and each partial completion should be handled separately.
1838 * Reset per-request error on each partial completion.
1840 * TODO: tj: This is too subtle. It would be better to let
1841 * low level drivers do what they see fit.
1843 if (blk_fs_request(req))
1846 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1847 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1848 req->rq_disk ? req->rq_disk->disk_name : "?",
1849 (unsigned long long)req->sector);
1852 blk_account_io_completion(req, nr_bytes);
1854 total_bytes = bio_nbytes = 0;
1855 while ((bio = req->bio) != NULL) {
1858 if (nr_bytes >= bio->bi_size) {
1859 req->bio = bio->bi_next;
1860 nbytes = bio->bi_size;
1861 req_bio_endio(req, bio, nbytes, error);
1865 int idx = bio->bi_idx + next_idx;
1867 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1868 blk_dump_rq_flags(req, "__end_that");
1869 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1870 __func__, bio->bi_idx, bio->bi_vcnt);
1874 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1875 BIO_BUG_ON(nbytes > bio->bi_size);
1878 * not a complete bvec done
1880 if (unlikely(nbytes > nr_bytes)) {
1881 bio_nbytes += nr_bytes;
1882 total_bytes += nr_bytes;
1887 * advance to the next vector
1890 bio_nbytes += nbytes;
1893 total_bytes += nbytes;
1899 * end more in this run, or just return 'not-done'
1901 if (unlikely(nr_bytes <= 0))
1911 * Reset counters so that the request stacking driver
1912 * can find how many bytes remain in the request
1915 req->nr_sectors = req->hard_nr_sectors = 0;
1916 req->current_nr_sectors = req->hard_cur_sectors = 0;
1921 * if the request wasn't completed, update state
1924 req_bio_endio(req, bio, bio_nbytes, error);
1925 bio->bi_idx += next_idx;
1926 bio_iovec(bio)->bv_offset += nr_bytes;
1927 bio_iovec(bio)->bv_len -= nr_bytes;
1930 blk_recalc_rq_sectors(req, total_bytes >> 9);
1931 blk_recalc_rq_segments(req);
1934 EXPORT_SYMBOL_GPL(blk_update_request);
1936 static bool blk_update_bidi_request(struct request *rq, int error,
1937 unsigned int nr_bytes,
1938 unsigned int bidi_bytes)
1940 if (blk_update_request(rq, error, nr_bytes))
1943 /* Bidi request must be completed as a whole */
1944 if (unlikely(blk_bidi_rq(rq)) &&
1945 blk_update_request(rq->next_rq, error, bidi_bytes))
1948 add_disk_randomness(rq->rq_disk);
1954 * queue lock must be held
1956 static void blk_finish_request(struct request *req, int error)
1958 if (blk_rq_tagged(req))
1959 blk_queue_end_tag(req->q, req);
1961 if (blk_queued_rq(req))
1962 elv_dequeue_request(req->q, req);
1964 if (unlikely(laptop_mode) && blk_fs_request(req))
1965 laptop_io_completion();
1967 blk_delete_timer(req);
1969 blk_account_io_done(req);
1972 req->end_io(req, error);
1974 if (blk_bidi_rq(req))
1975 __blk_put_request(req->next_rq->q, req->next_rq);
1977 __blk_put_request(req->q, req);
1982 * blk_end_bidi_request - Complete a bidi request
1983 * @rq: the request to complete
1984 * @error: %0 for success, < %0 for error
1985 * @nr_bytes: number of bytes to complete @rq
1986 * @bidi_bytes: number of bytes to complete @rq->next_rq
1989 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1990 * Drivers that supports bidi can safely call this member for any
1991 * type of request, bidi or uni. In the later case @bidi_bytes is
1995 * %false - we are done with this request
1996 * %true - still buffers pending for this request
1998 bool blk_end_bidi_request(struct request *rq, int error,
1999 unsigned int nr_bytes, unsigned int bidi_bytes)
2001 struct request_queue *q = rq->q;
2002 unsigned long flags;
2004 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2007 spin_lock_irqsave(q->queue_lock, flags);
2008 blk_finish_request(rq, error);
2009 spin_unlock_irqrestore(q->queue_lock, flags);
2013 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2016 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2017 * @rq: the request to complete
2018 * @error: %0 for success, < %0 for error
2019 * @nr_bytes: number of bytes to complete @rq
2020 * @bidi_bytes: number of bytes to complete @rq->next_rq
2023 * Identical to blk_end_bidi_request() except that queue lock is
2024 * assumed to be locked on entry and remains so on return.
2027 * %false - we are done with this request
2028 * %true - still buffers pending for this request
2030 bool __blk_end_bidi_request(struct request *rq, int error,
2031 unsigned int nr_bytes, unsigned int bidi_bytes)
2033 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2036 blk_finish_request(rq, error);
2040 EXPORT_SYMBOL_GPL(__blk_end_bidi_request);
2042 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2045 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2046 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2047 rq->cmd_flags |= (bio->bi_rw & 3);
2049 if (bio_has_data(bio)) {
2050 rq->nr_phys_segments = bio_phys_segments(q, bio);
2051 rq->buffer = bio_data(bio);
2053 rq->current_nr_sectors = bio_cur_sectors(bio);
2054 rq->hard_cur_sectors = rq->current_nr_sectors;
2055 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2056 rq->data_len = bio->bi_size;
2058 rq->bio = rq->biotail = bio;
2061 rq->rq_disk = bio->bi_bdev->bd_disk;
2065 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2066 * @q : the queue of the device being checked
2069 * Check if underlying low-level drivers of a device are busy.
2070 * If the drivers want to export their busy state, they must set own
2071 * exporting function using blk_queue_lld_busy() first.
2073 * Basically, this function is used only by request stacking drivers
2074 * to stop dispatching requests to underlying devices when underlying
2075 * devices are busy. This behavior helps more I/O merging on the queue
2076 * of the request stacking driver and prevents I/O throughput regression
2077 * on burst I/O load.
2080 * 0 - Not busy (The request stacking driver should dispatch request)
2081 * 1 - Busy (The request stacking driver should stop dispatching request)
2083 int blk_lld_busy(struct request_queue *q)
2086 return q->lld_busy_fn(q);
2090 EXPORT_SYMBOL_GPL(blk_lld_busy);
2092 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2094 return queue_work(kblockd_workqueue, work);
2096 EXPORT_SYMBOL(kblockd_schedule_work);
2098 int __init blk_dev_init(void)
2100 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2101 sizeof(((struct request *)0)->cmd_flags));
2103 kblockd_workqueue = create_workqueue("kblockd");
2104 if (!kblockd_workqueue)
2105 panic("Failed to create kblockd\n");
2107 request_cachep = kmem_cache_create("blkdev_requests",
2108 sizeof(struct request), 0, SLAB_PANIC, NULL);
2110 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2111 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);