1 #ifndef __ASM_POWERPC_MMU_CONTEXT_H
2 #define __ASM_POWERPC_MMU_CONTEXT_H
6 #include <asm/cputable.h>
7 #include <asm-generic/mm_hooks.h>
10 #include <asm/atomic.h>
11 #include <linux/bitops.h>
14 * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs
15 * (virtual segment identifiers) for each context. Although the
16 * hardware supports 24-bit VSIDs, and thus >1 million contexts,
17 * we only use 32,768 of them. That is ample, since there can be
18 * at most around 30,000 tasks in the system anyway, and it means
19 * that we can use a bitmap to indicate which contexts are in use.
20 * Using a bitmap means that we entirely avoid all of the problems
21 * that we used to have when the context number overflowed,
22 * particularly on SMP systems.
27 * This function defines the mapping from contexts to VSIDs (virtual
28 * segment IDs). We use a skew on both the context and the high 4 bits
29 * of the 32-bit virtual address (the "effective segment ID") in order
30 * to spread out the entries in the MMU hash table. Note, if this
31 * function is changed then arch/ppc/mm/hashtable.S will have to be
32 * changed to correspond.
34 #define CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
38 The MPC8xx has only 16 contexts. We rotate through them on each
39 task switch. A better way would be to keep track of tasks that
40 own contexts, and implement an LRU usage. That way very active
41 tasks don't always have to pay the TLB reload overhead. The
42 kernel pages are mapped shared, so the kernel can run on behalf
43 of any task that makes a kernel entry. Shared does not mean they
44 are not protected, just that the ASID comparison is not performed.
47 The IBM4xx has 256 contexts, so we can just rotate through these
48 as a way of "switching" contexts. If the TID of the TLB is zero,
49 the PID/TID comparison is disabled, so we can use a TID of zero
50 to represent all kernel pages as shared among all contexts.
54 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
60 #define LAST_CONTEXT 15
61 #define FIRST_CONTEXT 0
63 #elif defined(CONFIG_4xx)
64 #define NO_CONTEXT 256
65 #define LAST_CONTEXT 255
66 #define FIRST_CONTEXT 1
68 #elif defined(CONFIG_E200) || defined(CONFIG_E500)
69 #define NO_CONTEXT 256
70 #define LAST_CONTEXT 255
71 #define FIRST_CONTEXT 1
75 /* PPC 6xx, 7xx CPUs */
76 #define NO_CONTEXT ((unsigned long) -1)
77 #define LAST_CONTEXT 32767
78 #define FIRST_CONTEXT 1
82 * Set the current MMU context.
83 * On 32-bit PowerPCs (other than the 8xx embedded chips), this is done by
84 * loading up the segment registers for the user part of the address space.
86 * Since the PGD is immediately available, it is much faster to simply
87 * pass this along as a second parameter, which is required for 8xx and
88 * can be used for debugging on all processors (if you happen to have
91 extern void set_context(unsigned long contextid, pgd_t *pgd);
94 * Bitmap of contexts in use.
95 * The size of this bitmap is LAST_CONTEXT + 1 bits.
97 extern unsigned long context_map[];
100 * This caches the next context number that we expect to be free.
101 * Its use is an optimization only, we can't rely on this context
102 * number to be free, but it usually will be.
104 extern unsigned long next_mmu_context;
107 * If we don't have sufficient contexts to give one to every task
108 * that could be in the system, we need to be able to steal contexts.
109 * These variables support that.
111 #if LAST_CONTEXT < 30000
112 #define FEW_CONTEXTS 1
113 extern atomic_t nr_free_contexts;
114 extern struct mm_struct *context_mm[LAST_CONTEXT+1];
115 extern void steal_context(void);
119 * Get a new mmu context for the address space described by `mm'.
121 static inline void get_mmu_context(struct mm_struct *mm)
125 if (mm->context.id != NO_CONTEXT)
128 while (atomic_dec_if_positive(&nr_free_contexts) < 0)
131 ctx = next_mmu_context;
132 while (test_and_set_bit(ctx, context_map)) {
133 ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
134 if (ctx > LAST_CONTEXT)
137 next_mmu_context = (ctx + 1) & LAST_CONTEXT;
138 mm->context.id = ctx;
140 context_mm[ctx] = mm;
145 * Set up the context for a new address space.
147 static inline int init_new_context(struct task_struct *t, struct mm_struct *mm)
149 mm->context.id = NO_CONTEXT;
154 * We're finished using the context for an address space.
156 static inline void destroy_context(struct mm_struct *mm)
159 if (mm->context.id != NO_CONTEXT) {
160 clear_bit(mm->context.id, context_map);
161 mm->context.id = NO_CONTEXT;
163 atomic_inc(&nr_free_contexts);
169 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
170 struct task_struct *tsk)
172 #ifdef CONFIG_ALTIVEC
173 if (cpu_has_feature(CPU_FTR_ALTIVEC))
174 asm volatile ("dssall;\n"
175 #ifndef CONFIG_POWER4
176 "sync;\n" /* G4 needs a sync here, G5 apparently not */
179 #endif /* CONFIG_ALTIVEC */
181 tsk->thread.pgdir = next->pgd;
183 /* No need to flush userspace segments if the mm doesnt change */
187 /* Setup new userspace context */
188 get_mmu_context(next);
189 set_context(next->context.id, next->pgd);
192 #define deactivate_mm(tsk,mm) do { } while (0)
195 * After we have set current->mm to a new value, this activates
196 * the context for the new mm so we see the new mappings.
198 #define activate_mm(active_mm, mm) switch_mm(active_mm, mm, current)
200 extern void mmu_context_init(void);
205 #include <linux/kernel.h>
206 #include <linux/mm.h>
207 #include <linux/sched.h>
210 * Copyright (C) 2001 PPC 64 Team, IBM Corp
212 * This program is free software; you can redistribute it and/or
213 * modify it under the terms of the GNU General Public License
214 * as published by the Free Software Foundation; either version
215 * 2 of the License, or (at your option) any later version.
218 static inline void enter_lazy_tlb(struct mm_struct *mm,
219 struct task_struct *tsk)
224 * The proto-VSID space has 2^35 - 1 segments available for user mappings.
225 * Each segment contains 2^28 bytes. Each context maps 2^44 bytes,
226 * so we can support 2^19-1 contexts (19 == 35 + 28 - 44).
229 #define MAX_CONTEXT ((1UL << 19) - 1)
231 extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
232 extern void destroy_context(struct mm_struct *mm);
234 extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm);
235 extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm);
238 * switch_mm is the entry point called from the architecture independent
239 * code in kernel/sched.c
241 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
242 struct task_struct *tsk)
244 if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask))
245 cpu_set(smp_processor_id(), next->cpu_vm_mask);
247 /* No need to flush userspace segments if the mm doesnt change */
251 #ifdef CONFIG_ALTIVEC
252 if (cpu_has_feature(CPU_FTR_ALTIVEC))
253 asm volatile ("dssall");
254 #endif /* CONFIG_ALTIVEC */
256 if (cpu_has_feature(CPU_FTR_SLB))
257 switch_slb(tsk, next);
259 switch_stab(tsk, next);
262 #define deactivate_mm(tsk,mm) do { } while (0)
265 * After we have set current->mm to a new value, this activates
266 * the context for the new mm so we see the new mappings.
268 static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next)
272 local_irq_save(flags);
273 switch_mm(prev, next, current);
274 local_irq_restore(flags);
277 #endif /* CONFIG_PPC64 */
278 #endif /* __KERNEL__ */
279 #endif /* __ASM_POWERPC_MMU_CONTEXT_H */