4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes)
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
83 if (!list_empty(&rq->queuelist))
84 blkdev_dequeue_request(rq);
85 HWGROUP(drive)->rq = NULL;
86 end_that_request_last(rq, uptodate);
94 * ide_end_request - complete an IDE I/O
95 * @drive: IDE device for the I/O
97 * @nr_sectors: number of sectors completed
99 * This is our end_request wrapper function. We complete the I/O
100 * update random number input and dequeue the request, which if
101 * it was tagged may be out of order.
104 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 unsigned int nr_bytes = nr_sectors << 9;
112 * room for locking improvements here, the calls below don't
113 * need the queue lock held at all
115 spin_lock_irqsave(&ide_lock, flags);
116 rq = HWGROUP(drive)->rq;
119 if (blk_pc_request(rq))
120 nr_bytes = rq->data_len;
122 nr_bytes = rq->hard_cur_sectors << 9;
125 ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
127 spin_unlock_irqrestore(&ide_lock, flags);
130 EXPORT_SYMBOL(ide_end_request);
133 * Power Management state machine. This one is rather trivial for now,
134 * we should probably add more, like switching back to PIO on suspend
135 * to help some BIOSes, re-do the door locking on resume, etc...
139 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_restore_pio = ide_pm_state_start_resume,
147 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 struct request_pm_state *pm = rq->data;
151 if (drive->media != ide_disk)
154 switch (pm->pm_step) {
155 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
156 if (pm->pm_state == PM_EVENT_FREEZE)
157 pm->pm_step = ide_pm_state_completed;
159 pm->pm_step = idedisk_pm_standby;
161 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
162 pm->pm_step = ide_pm_state_completed;
164 case idedisk_pm_restore_pio: /* Resume step 1 complete */
165 pm->pm_step = idedisk_pm_idle;
167 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
168 pm->pm_step = ide_pm_restore_dma;
173 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 struct request_pm_state *pm = rq->data;
176 ide_task_t *args = rq->special;
178 memset(args, 0, sizeof(*args));
180 switch (pm->pm_step) {
181 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
182 if (drive->media != ide_disk)
184 /* Not supported? Switch to next step now. */
185 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186 ide_complete_power_step(drive, rq, 0, 0);
189 if (ide_id_has_flush_cache_ext(drive->id))
190 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
192 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193 args->command_type = IDE_DRIVE_TASK_NO_DATA;
194 args->handler = &task_no_data_intr;
195 return do_rw_taskfile(drive, args);
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199 args->command_type = IDE_DRIVE_TASK_NO_DATA;
200 args->handler = &task_no_data_intr;
201 return do_rw_taskfile(drive, args);
203 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
204 ide_set_max_pio(drive);
206 * skip idedisk_pm_idle for ATAPI devices
208 if (drive->media != ide_disk)
209 pm->pm_step = ide_pm_restore_dma;
211 ide_complete_power_step(drive, rq, 0, 0);
214 case idedisk_pm_idle: /* Resume step 2 (idle) */
215 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
216 args->command_type = IDE_DRIVE_TASK_NO_DATA;
217 args->handler = task_no_data_intr;
218 return do_rw_taskfile(drive, args);
220 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
222 * Right now, all we do is call hwif->ide_dma_check(drive),
223 * we could be smarter and check for current xfer_speed
224 * in struct drive etc...
226 if (drive->hwif->ide_dma_check == NULL)
228 drive->hwif->dma_off_quietly(drive);
230 * TODO: respect ->using_dma setting
235 pm->pm_step = ide_pm_state_completed;
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
243 * @nr_sectors: number of sectors completed
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
250 * NOTE: This path does not handle barrier, but barrier is not supported
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
260 spin_lock_irqsave(&ide_lock, flags);
262 BUG_ON(!blk_rq_started(rq));
265 * if failfast is set on a request, override number of sectors and
266 * complete the whole request right now
268 if (blk_noretry_request(rq) && end_io_error(uptodate))
269 nr_sectors = rq->hard_nr_sectors;
271 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
275 * decide whether to reenable DMA -- 3 is a random magic for now,
276 * if we DMA timeout more than 3 times, just stay in PIO
278 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
280 HWGROUP(drive)->hwif->ide_dma_on(drive);
283 if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284 add_disk_randomness(rq->rq_disk);
285 if (blk_rq_tagged(rq))
286 blk_queue_end_tag(drive->queue, rq);
287 end_that_request_last(rq, uptodate);
290 spin_unlock_irqrestore(&ide_lock, flags);
293 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
297 * ide_complete_pm_request - end the current Power Management request
298 * @drive: target drive
301 * This function cleans up the current PM request and stops the queue
304 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
309 printk("%s: completing PM request, %s\n", drive->name,
310 blk_pm_suspend_request(rq) ? "suspend" : "resume");
312 spin_lock_irqsave(&ide_lock, flags);
313 if (blk_pm_suspend_request(rq)) {
314 blk_stop_queue(drive->queue);
317 blk_start_queue(drive->queue);
319 blkdev_dequeue_request(rq);
320 HWGROUP(drive)->rq = NULL;
321 end_that_request_last(rq, 1);
322 spin_unlock_irqrestore(&ide_lock, flags);
326 * FIXME: probably move this somewhere else, name is bad too :)
328 u64 ide_get_error_location(ide_drive_t *drive, char *args)
339 if (ide_id_has_flush_cache_ext(drive->id)) {
340 low = (hcyl << 16) | (lcyl << 8) | sect;
341 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
342 high = ide_read_24(drive);
344 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
347 low = (hcyl << 16) | (lcyl << 8) | sect;
349 low = hcyl * drive->head * drive->sect;
350 low += lcyl * drive->sect;
355 sector = ((u64) high << 24) | low;
358 EXPORT_SYMBOL(ide_get_error_location);
361 * ide_end_drive_cmd - end an explicit drive command
366 * Clean up after success/failure of an explicit drive command.
367 * These get thrown onto the queue so they are synchronized with
368 * real I/O operations on the drive.
370 * In LBA48 mode we have to read the register set twice to get
371 * all the extra information out.
374 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
376 ide_hwif_t *hwif = HWIF(drive);
380 spin_lock_irqsave(&ide_lock, flags);
381 rq = HWGROUP(drive)->rq;
382 spin_unlock_irqrestore(&ide_lock, flags);
384 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
385 u8 *args = (u8 *) rq->buffer;
387 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
392 args[2] = hwif->INB(IDE_NSECTOR_REG);
394 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
395 u8 *args = (u8 *) rq->buffer;
397 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
402 args[2] = hwif->INB(IDE_NSECTOR_REG);
403 args[3] = hwif->INB(IDE_SECTOR_REG);
404 args[4] = hwif->INB(IDE_LCYL_REG);
405 args[5] = hwif->INB(IDE_HCYL_REG);
406 args[6] = hwif->INB(IDE_SELECT_REG);
408 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
409 ide_task_t *args = (ide_task_t *) rq->special;
411 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
414 if (args->tf_in_flags.b.data) {
415 u16 data = hwif->INW(IDE_DATA_REG);
416 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
417 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
419 args->tfRegister[IDE_ERROR_OFFSET] = err;
420 /* be sure we're looking at the low order bits */
421 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
422 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
423 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
424 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
425 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
426 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
427 args->tfRegister[IDE_STATUS_OFFSET] = stat;
429 if (drive->addressing == 1) {
430 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
431 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
432 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
433 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
434 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
435 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
438 } else if (blk_pm_request(rq)) {
439 struct request_pm_state *pm = rq->data;
441 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
442 drive->name, rq->pm->pm_step, stat, err);
444 ide_complete_power_step(drive, rq, stat, err);
445 if (pm->pm_step == ide_pm_state_completed)
446 ide_complete_pm_request(drive, rq);
450 spin_lock_irqsave(&ide_lock, flags);
451 blkdev_dequeue_request(rq);
452 HWGROUP(drive)->rq = NULL;
454 end_that_request_last(rq, !rq->errors);
455 spin_unlock_irqrestore(&ide_lock, flags);
458 EXPORT_SYMBOL(ide_end_drive_cmd);
461 * try_to_flush_leftover_data - flush junk
462 * @drive: drive to flush
464 * try_to_flush_leftover_data() is invoked in response to a drive
465 * unexpectedly having its DRQ_STAT bit set. As an alternative to
466 * resetting the drive, this routine tries to clear the condition
467 * by read a sector's worth of data from the drive. Of course,
468 * this may not help if the drive is *waiting* for data from *us*.
470 static void try_to_flush_leftover_data (ide_drive_t *drive)
472 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
474 if (drive->media != ide_disk)
478 u32 wcount = (i > 16) ? 16 : i;
481 HWIF(drive)->ata_input_data(drive, buffer, wcount);
485 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
490 drv = *(ide_driver_t **)rq->rq_disk->private_data;
491 drv->end_request(drive, 0, 0);
493 ide_end_request(drive, 0, 0);
496 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
498 ide_hwif_t *hwif = drive->hwif;
500 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
501 /* other bits are useless when BUSY */
502 rq->errors |= ERROR_RESET;
503 } else if (stat & ERR_STAT) {
504 /* err has different meaning on cdrom and tape */
505 if (err == ABRT_ERR) {
506 if (drive->select.b.lba &&
507 /* some newer drives don't support WIN_SPECIFY */
508 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
510 } else if ((err & BAD_CRC) == BAD_CRC) {
511 /* UDMA crc error, just retry the operation */
513 } else if (err & (BBD_ERR | ECC_ERR)) {
514 /* retries won't help these */
515 rq->errors = ERROR_MAX;
516 } else if (err & TRK0_ERR) {
517 /* help it find track zero */
518 rq->errors |= ERROR_RECAL;
522 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
523 try_to_flush_leftover_data(drive);
525 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
526 ide_kill_rq(drive, rq);
530 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
531 rq->errors |= ERROR_RESET;
533 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
535 return ide_do_reset(drive);
538 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
539 drive->special.b.recalibrate = 1;
546 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
548 ide_hwif_t *hwif = drive->hwif;
550 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
551 /* other bits are useless when BUSY */
552 rq->errors |= ERROR_RESET;
554 /* add decoding error stuff */
557 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
559 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
561 if (rq->errors >= ERROR_MAX) {
562 ide_kill_rq(drive, rq);
564 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
566 return ide_do_reset(drive);
575 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
577 if (drive->media == ide_disk)
578 return ide_ata_error(drive, rq, stat, err);
579 return ide_atapi_error(drive, rq, stat, err);
582 EXPORT_SYMBOL_GPL(__ide_error);
585 * ide_error - handle an error on the IDE
586 * @drive: drive the error occurred on
587 * @msg: message to report
590 * ide_error() takes action based on the error returned by the drive.
591 * For normal I/O that may well include retries. We deal with
592 * both new-style (taskfile) and old style command handling here.
593 * In the case of taskfile command handling there is work left to
597 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
602 err = ide_dump_status(drive, msg, stat);
604 if ((rq = HWGROUP(drive)->rq) == NULL)
607 /* retry only "normal" I/O: */
608 if (!blk_fs_request(rq)) {
610 ide_end_drive_cmd(drive, stat, err);
617 drv = *(ide_driver_t **)rq->rq_disk->private_data;
618 return drv->error(drive, rq, stat, err);
620 return __ide_error(drive, rq, stat, err);
623 EXPORT_SYMBOL_GPL(ide_error);
625 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
627 if (drive->media != ide_disk)
628 rq->errors |= ERROR_RESET;
630 ide_kill_rq(drive, rq);
635 EXPORT_SYMBOL_GPL(__ide_abort);
638 * ide_abort - abort pending IDE operations
639 * @drive: drive the error occurred on
640 * @msg: message to report
642 * ide_abort kills and cleans up when we are about to do a
643 * host initiated reset on active commands. Longer term we
644 * want handlers to have sensible abort handling themselves
646 * This differs fundamentally from ide_error because in
647 * this case the command is doing just fine when we
651 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
655 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
658 /* retry only "normal" I/O: */
659 if (!blk_fs_request(rq)) {
661 ide_end_drive_cmd(drive, BUSY_STAT, 0);
668 drv = *(ide_driver_t **)rq->rq_disk->private_data;
669 return drv->abort(drive, rq);
671 return __ide_abort(drive, rq);
675 * ide_cmd - issue a simple drive command
676 * @drive: drive the command is for
678 * @nsect: sector byte
679 * @handler: handler for the command completion
681 * Issue a simple drive command with interrupts.
682 * The drive must be selected beforehand.
685 static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
686 ide_handler_t *handler)
688 ide_hwif_t *hwif = HWIF(drive);
690 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
691 SELECT_MASK(drive,0);
692 hwif->OUTB(nsect,IDE_NSECTOR_REG);
693 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
697 * drive_cmd_intr - drive command completion interrupt
698 * @drive: drive the completion interrupt occurred on
700 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
701 * We do any necessary data reading and then wait for the drive to
702 * go non busy. At that point we may read the error data and complete
706 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
708 struct request *rq = HWGROUP(drive)->rq;
709 ide_hwif_t *hwif = HWIF(drive);
710 u8 *args = (u8 *) rq->buffer;
711 u8 stat = hwif->INB(IDE_STATUS_REG);
714 local_irq_enable_in_hardirq();
715 if ((stat & DRQ_STAT) && args && args[3]) {
716 u8 io_32bit = drive->io_32bit;
718 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
719 drive->io_32bit = io_32bit;
720 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
724 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
725 return ide_error(drive, "drive_cmd", stat);
726 /* calls ide_end_drive_cmd */
727 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
731 static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
733 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
734 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
735 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
736 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
737 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
738 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
740 task->handler = &set_geometry_intr;
743 static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
745 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
746 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
748 task->handler = &recal_intr;
751 static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
753 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
754 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
756 task->handler = &set_multmode_intr;
759 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
761 special_t *s = &drive->special;
764 memset(&args, 0, sizeof(ide_task_t));
765 args.command_type = IDE_DRIVE_TASK_NO_DATA;
767 if (s->b.set_geometry) {
768 s->b.set_geometry = 0;
769 ide_init_specify_cmd(drive, &args);
770 } else if (s->b.recalibrate) {
771 s->b.recalibrate = 0;
772 ide_init_restore_cmd(drive, &args);
773 } else if (s->b.set_multmode) {
774 s->b.set_multmode = 0;
775 if (drive->mult_req > drive->id->max_multsect)
776 drive->mult_req = drive->id->max_multsect;
777 ide_init_setmult_cmd(drive, &args);
779 int special = s->all;
781 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
785 do_rw_taskfile(drive, &args);
791 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
793 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
802 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
805 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
808 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
815 * do_special - issue some special commands
816 * @drive: drive the command is for
818 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
819 * commands to a drive. It used to do much more, but has been scaled
823 static ide_startstop_t do_special (ide_drive_t *drive)
825 special_t *s = &drive->special;
828 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
831 ide_hwif_t *hwif = drive->hwif;
832 u8 req_pio = drive->tune_req;
836 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
837 if (hwif->set_pio_mode)
838 hwif->set_pio_mode(drive, req_pio);
840 ide_set_pio(drive, req_pio);
844 if (drive->media == ide_disk)
845 return ide_disk_special(drive);
853 void ide_map_sg(ide_drive_t *drive, struct request *rq)
855 ide_hwif_t *hwif = drive->hwif;
856 struct scatterlist *sg = hwif->sg_table;
858 if (hwif->sg_mapped) /* needed by ide-scsi */
861 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
862 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
864 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
869 EXPORT_SYMBOL_GPL(ide_map_sg);
871 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
873 ide_hwif_t *hwif = drive->hwif;
875 hwif->nsect = hwif->nleft = rq->nr_sectors;
876 hwif->cursg = hwif->cursg_ofs = 0;
879 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
882 * execute_drive_command - issue special drive command
883 * @drive: the drive to issue the command on
884 * @rq: the request structure holding the command
886 * execute_drive_cmd() issues a special drive command, usually
887 * initiated by ioctl() from the external hdparm program. The
888 * command can be a drive command, drive task or taskfile
889 * operation. Weirdly you can call it with NULL to wait for
890 * all commands to finish. Don't do this as that is due to change
893 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
896 ide_hwif_t *hwif = HWIF(drive);
897 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
898 ide_task_t *args = rq->special;
903 hwif->data_phase = args->data_phase;
905 switch (hwif->data_phase) {
906 case TASKFILE_MULTI_OUT:
908 case TASKFILE_MULTI_IN:
910 ide_init_sg_cmd(drive, rq);
911 ide_map_sg(drive, rq);
916 if (args->tf_out_flags.all != 0)
917 return flagged_taskfile(drive, args);
918 return do_rw_taskfile(drive, args);
919 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
920 u8 *args = rq->buffer;
926 printk("%s: DRIVE_TASK_CMD ", drive->name);
927 printk("cmd=0x%02x ", args[0]);
928 printk("fr=0x%02x ", args[1]);
929 printk("ns=0x%02x ", args[2]);
930 printk("sc=0x%02x ", args[3]);
931 printk("lcyl=0x%02x ", args[4]);
932 printk("hcyl=0x%02x ", args[5]);
933 printk("sel=0x%02x\n", args[6]);
935 hwif->OUTB(args[1], IDE_FEATURE_REG);
936 hwif->OUTB(args[3], IDE_SECTOR_REG);
937 hwif->OUTB(args[4], IDE_LCYL_REG);
938 hwif->OUTB(args[5], IDE_HCYL_REG);
939 sel = (args[6] & ~0x10);
940 if (drive->select.b.unit)
942 hwif->OUTB(sel, IDE_SELECT_REG);
943 ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
945 } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
946 u8 *args = rq->buffer;
951 printk("%s: DRIVE_CMD ", drive->name);
952 printk("cmd=0x%02x ", args[0]);
953 printk("sc=0x%02x ", args[1]);
954 printk("fr=0x%02x ", args[2]);
955 printk("xx=0x%02x\n", args[3]);
957 if (args[0] == WIN_SMART) {
958 hwif->OUTB(0x4f, IDE_LCYL_REG);
959 hwif->OUTB(0xc2, IDE_HCYL_REG);
960 hwif->OUTB(args[2],IDE_FEATURE_REG);
961 hwif->OUTB(args[1],IDE_SECTOR_REG);
962 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
965 hwif->OUTB(args[2],IDE_FEATURE_REG);
966 ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
972 * NULL is actually a valid way of waiting for
973 * all current requests to be flushed from the queue.
976 printk("%s: DRIVE_CMD (null)\n", drive->name);
978 ide_end_drive_cmd(drive,
979 hwif->INB(IDE_STATUS_REG),
980 hwif->INB(IDE_ERROR_REG));
984 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
986 struct request_pm_state *pm = rq->data;
988 if (blk_pm_suspend_request(rq) &&
989 pm->pm_step == ide_pm_state_start_suspend)
990 /* Mark drive blocked when starting the suspend sequence. */
992 else if (blk_pm_resume_request(rq) &&
993 pm->pm_step == ide_pm_state_start_resume) {
995 * The first thing we do on wakeup is to wait for BSY bit to
996 * go away (with a looong timeout) as a drive on this hwif may
997 * just be POSTing itself.
998 * We do that before even selecting as the "other" device on
999 * the bus may be broken enough to walk on our toes at this
1004 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
1006 rc = ide_wait_not_busy(HWIF(drive), 35000);
1008 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
1009 SELECT_DRIVE(drive);
1010 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
1011 rc = ide_wait_not_busy(HWIF(drive), 100000);
1013 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
1018 * start_request - start of I/O and command issuing for IDE
1020 * start_request() initiates handling of a new I/O request. It
1021 * accepts commands and I/O (read/write) requests. It also does
1022 * the final remapping for weird stuff like EZDrive. Once
1023 * device mapper can work sector level the EZDrive stuff can go away
1025 * FIXME: this function needs a rename
1028 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1030 ide_startstop_t startstop;
1033 BUG_ON(!blk_rq_started(rq));
1036 printk("%s: start_request: current=0x%08lx\n",
1037 HWIF(drive)->name, (unsigned long) rq);
1040 /* bail early if we've exceeded max_failures */
1041 if (drive->max_failures && (drive->failures > drive->max_failures)) {
1046 if (blk_fs_request(rq) &&
1047 (drive->media == ide_disk || drive->media == ide_floppy)) {
1048 block += drive->sect0;
1050 /* Yecch - this will shift the entire interval,
1051 possibly killing some innocent following sector */
1052 if (block == 0 && drive->remap_0_to_1 == 1)
1053 block = 1; /* redirect MBR access to EZ-Drive partn table */
1055 if (blk_pm_request(rq))
1056 ide_check_pm_state(drive, rq);
1058 SELECT_DRIVE(drive);
1059 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1060 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1063 if (!drive->special.all) {
1067 * We reset the drive so we need to issue a SETFEATURES.
1068 * Do it _after_ do_special() restored device parameters.
1070 if (drive->current_speed == 0xff)
1071 ide_config_drive_speed(drive, drive->desired_speed);
1073 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1074 rq->cmd_type == REQ_TYPE_ATA_TASK ||
1075 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1076 return execute_drive_cmd(drive, rq);
1077 else if (blk_pm_request(rq)) {
1078 struct request_pm_state *pm = rq->data;
1080 printk("%s: start_power_step(step: %d)\n",
1081 drive->name, rq->pm->pm_step);
1083 startstop = ide_start_power_step(drive, rq);
1084 if (startstop == ide_stopped &&
1085 pm->pm_step == ide_pm_state_completed)
1086 ide_complete_pm_request(drive, rq);
1090 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1091 return drv->do_request(drive, rq, block);
1093 return do_special(drive);
1095 ide_kill_rq(drive, rq);
1100 * ide_stall_queue - pause an IDE device
1101 * @drive: drive to stall
1102 * @timeout: time to stall for (jiffies)
1104 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1105 * to the hwgroup by sleeping for timeout jiffies.
1108 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1110 if (timeout > WAIT_WORSTCASE)
1111 timeout = WAIT_WORSTCASE;
1112 drive->sleep = timeout + jiffies;
1113 drive->sleeping = 1;
1116 EXPORT_SYMBOL(ide_stall_queue);
1118 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1121 * choose_drive - select a drive to service
1122 * @hwgroup: hardware group to select on
1124 * choose_drive() selects the next drive which will be serviced.
1125 * This is necessary because the IDE layer can't issue commands
1126 * to both drives on the same cable, unlike SCSI.
1129 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1131 ide_drive_t *drive, *best;
1135 drive = hwgroup->drive;
1138 * drive is doing pre-flush, ordered write, post-flush sequence. even
1139 * though that is 3 requests, it must be seen as a single transaction.
1140 * we must not preempt this drive until that is complete
1142 if (blk_queue_flushing(drive->queue)) {
1144 * small race where queue could get replugged during
1145 * the 3-request flush cycle, just yank the plug since
1146 * we want it to finish asap
1148 blk_remove_plug(drive->queue);
1153 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1154 && !elv_queue_empty(drive->queue)) {
1156 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1157 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1159 if (!blk_queue_plugged(drive->queue))
1163 } while ((drive = drive->next) != hwgroup->drive);
1164 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1165 long t = (signed long)(WAKEUP(best) - jiffies);
1166 if (t >= WAIT_MIN_SLEEP) {
1168 * We *may* have some time to spare, but first let's see if
1169 * someone can potentially benefit from our nice mood today..
1173 if (!drive->sleeping
1174 && time_before(jiffies - best->service_time, WAKEUP(drive))
1175 && time_before(WAKEUP(drive), jiffies + t))
1177 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1180 } while ((drive = drive->next) != best);
1187 * Issue a new request to a drive from hwgroup
1188 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1190 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1191 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1192 * may have both interfaces in a single hwgroup to "serialize" access.
1193 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1194 * together into one hwgroup for serialized access.
1196 * Note also that several hwgroups can end up sharing a single IRQ,
1197 * possibly along with many other devices. This is especially common in
1198 * PCI-based systems with off-board IDE controller cards.
1200 * The IDE driver uses the single global ide_lock spinlock to protect
1201 * access to the request queues, and to protect the hwgroup->busy flag.
1203 * The first thread into the driver for a particular hwgroup sets the
1204 * hwgroup->busy flag to indicate that this hwgroup is now active,
1205 * and then initiates processing of the top request from the request queue.
1207 * Other threads attempting entry notice the busy setting, and will simply
1208 * queue their new requests and exit immediately. Note that hwgroup->busy
1209 * remains set even when the driver is merely awaiting the next interrupt.
1210 * Thus, the meaning is "this hwgroup is busy processing a request".
1212 * When processing of a request completes, the completing thread or IRQ-handler
1213 * will start the next request from the queue. If no more work remains,
1214 * the driver will clear the hwgroup->busy flag and exit.
1216 * The ide_lock (spinlock) is used to protect all access to the
1217 * hwgroup->busy flag, but is otherwise not needed for most processing in
1218 * the driver. This makes the driver much more friendlier to shared IRQs
1219 * than previous designs, while remaining 100% (?) SMP safe and capable.
1221 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1226 ide_startstop_t startstop;
1229 /* for atari only: POSSIBLY BROKEN HERE(?) */
1230 ide_get_lock(ide_intr, hwgroup);
1232 /* caller must own ide_lock */
1233 BUG_ON(!irqs_disabled());
1235 while (!hwgroup->busy) {
1237 drive = choose_drive(hwgroup);
1238 if (drive == NULL) {
1240 unsigned long sleep = 0; /* shut up, gcc */
1242 drive = hwgroup->drive;
1244 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1246 sleep = drive->sleep;
1248 } while ((drive = drive->next) != hwgroup->drive);
1251 * Take a short snooze, and then wake up this hwgroup again.
1252 * This gives other hwgroups on the same a chance to
1253 * play fairly with us, just in case there are big differences
1254 * in relative throughputs.. don't want to hog the cpu too much.
1256 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1257 sleep = jiffies + WAIT_MIN_SLEEP;
1259 if (timer_pending(&hwgroup->timer))
1260 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1262 /* so that ide_timer_expiry knows what to do */
1263 hwgroup->sleeping = 1;
1264 hwgroup->req_gen_timer = hwgroup->req_gen;
1265 mod_timer(&hwgroup->timer, sleep);
1266 /* we purposely leave hwgroup->busy==1
1269 /* Ugly, but how can we sleep for the lock
1270 * otherwise? perhaps from tq_disk?
1273 /* for atari only */
1278 /* no more work for this hwgroup (for now) */
1283 if (hwgroup->hwif->sharing_irq &&
1284 hwif != hwgroup->hwif &&
1285 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1286 /* set nIEN for previous hwif */
1287 SELECT_INTERRUPT(drive);
1289 hwgroup->hwif = hwif;
1290 hwgroup->drive = drive;
1291 drive->sleeping = 0;
1292 drive->service_start = jiffies;
1294 if (blk_queue_plugged(drive->queue)) {
1295 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1300 * we know that the queue isn't empty, but this can happen
1301 * if the q->prep_rq_fn() decides to kill a request
1303 rq = elv_next_request(drive->queue);
1310 * Sanity: don't accept a request that isn't a PM request
1311 * if we are currently power managed. This is very important as
1312 * blk_stop_queue() doesn't prevent the elv_next_request()
1313 * above to return us whatever is in the queue. Since we call
1314 * ide_do_request() ourselves, we end up taking requests while
1315 * the queue is blocked...
1317 * We let requests forced at head of queue with ide-preempt
1318 * though. I hope that doesn't happen too much, hopefully not
1319 * unless the subdriver triggers such a thing in its own PM
1322 * We count how many times we loop here to make sure we service
1323 * all drives in the hwgroup without looping for ever
1325 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1326 drive = drive->next ? drive->next : hwgroup->drive;
1327 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1329 /* We clear busy, there should be no pending ATA command at this point. */
1337 * Some systems have trouble with IDE IRQs arriving while
1338 * the driver is still setting things up. So, here we disable
1339 * the IRQ used by this interface while the request is being started.
1340 * This may look bad at first, but pretty much the same thing
1341 * happens anyway when any interrupt comes in, IDE or otherwise
1342 * -- the kernel masks the IRQ while it is being handled.
1344 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1345 disable_irq_nosync(hwif->irq);
1346 spin_unlock(&ide_lock);
1347 local_irq_enable_in_hardirq();
1348 /* allow other IRQs while we start this request */
1349 startstop = start_request(drive, rq);
1350 spin_lock_irq(&ide_lock);
1351 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1352 enable_irq(hwif->irq);
1353 if (startstop == ide_stopped)
1359 * Passes the stuff to ide_do_request
1361 void do_ide_request(struct request_queue *q)
1363 ide_drive_t *drive = q->queuedata;
1365 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1369 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1370 * retry the current request in pio mode instead of risking tossing it
1373 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1375 ide_hwif_t *hwif = HWIF(drive);
1377 ide_startstop_t ret = ide_stopped;
1380 * end current dma transaction
1384 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1385 (void)HWIF(drive)->ide_dma_end(drive);
1386 ret = ide_error(drive, "dma timeout error",
1387 hwif->INB(IDE_STATUS_REG));
1389 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1390 hwif->dma_timeout(drive);
1394 * disable dma for now, but remember that we did so because of
1395 * a timeout -- we'll reenable after we finish this next request
1396 * (or rather the first chunk of it) in pio.
1399 drive->state = DMA_PIO_RETRY;
1400 hwif->dma_off_quietly(drive);
1403 * un-busy drive etc (hwgroup->busy is cleared on return) and
1404 * make sure request is sane
1406 rq = HWGROUP(drive)->rq;
1411 HWGROUP(drive)->rq = NULL;
1418 rq->sector = rq->bio->bi_sector;
1419 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1420 rq->hard_cur_sectors = rq->current_nr_sectors;
1421 rq->buffer = bio_data(rq->bio);
1427 * ide_timer_expiry - handle lack of an IDE interrupt
1428 * @data: timer callback magic (hwgroup)
1430 * An IDE command has timed out before the expected drive return
1431 * occurred. At this point we attempt to clean up the current
1432 * mess. If the current handler includes an expiry handler then
1433 * we invoke the expiry handler, and providing it is happy the
1434 * work is done. If that fails we apply generic recovery rules
1435 * invoking the handler and checking the drive DMA status. We
1436 * have an excessively incestuous relationship with the DMA
1437 * logic that wants cleaning up.
1440 void ide_timer_expiry (unsigned long data)
1442 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1443 ide_handler_t *handler;
1444 ide_expiry_t *expiry;
1445 unsigned long flags;
1446 unsigned long wait = -1;
1448 spin_lock_irqsave(&ide_lock, flags);
1450 if (((handler = hwgroup->handler) == NULL) ||
1451 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1453 * Either a marginal timeout occurred
1454 * (got the interrupt just as timer expired),
1455 * or we were "sleeping" to give other devices a chance.
1456 * Either way, we don't really want to complain about anything.
1458 if (hwgroup->sleeping) {
1459 hwgroup->sleeping = 0;
1463 ide_drive_t *drive = hwgroup->drive;
1465 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1466 hwgroup->handler = NULL;
1469 ide_startstop_t startstop = ide_stopped;
1470 if (!hwgroup->busy) {
1471 hwgroup->busy = 1; /* paranoia */
1472 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1474 if ((expiry = hwgroup->expiry) != NULL) {
1476 if ((wait = expiry(drive)) > 0) {
1478 hwgroup->timer.expires = jiffies + wait;
1479 hwgroup->req_gen_timer = hwgroup->req_gen;
1480 add_timer(&hwgroup->timer);
1481 spin_unlock_irqrestore(&ide_lock, flags);
1485 hwgroup->handler = NULL;
1487 * We need to simulate a real interrupt when invoking
1488 * the handler() function, which means we need to
1489 * globally mask the specific IRQ:
1491 spin_unlock(&ide_lock);
1493 #if DISABLE_IRQ_NOSYNC
1494 disable_irq_nosync(hwif->irq);
1496 /* disable_irq_nosync ?? */
1497 disable_irq(hwif->irq);
1498 #endif /* DISABLE_IRQ_NOSYNC */
1500 * as if we were handling an interrupt */
1501 local_irq_disable();
1502 if (hwgroup->polling) {
1503 startstop = handler(drive);
1504 } else if (drive_is_ready(drive)) {
1505 if (drive->waiting_for_dma)
1506 hwgroup->hwif->dma_lost_irq(drive);
1507 (void)ide_ack_intr(hwif);
1508 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1509 startstop = handler(drive);
1511 if (drive->waiting_for_dma) {
1512 startstop = ide_dma_timeout_retry(drive, wait);
1515 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1517 drive->service_time = jiffies - drive->service_start;
1518 spin_lock_irq(&ide_lock);
1519 enable_irq(hwif->irq);
1520 if (startstop == ide_stopped)
1524 ide_do_request(hwgroup, IDE_NO_IRQ);
1525 spin_unlock_irqrestore(&ide_lock, flags);
1529 * unexpected_intr - handle an unexpected IDE interrupt
1530 * @irq: interrupt line
1531 * @hwgroup: hwgroup being processed
1533 * There's nothing really useful we can do with an unexpected interrupt,
1534 * other than reading the status register (to clear it), and logging it.
1535 * There should be no way that an irq can happen before we're ready for it,
1536 * so we needn't worry much about losing an "important" interrupt here.
1538 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1539 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1540 * looks "good", we just ignore the interrupt completely.
1542 * This routine assumes __cli() is in effect when called.
1544 * If an unexpected interrupt happens on irq15 while we are handling irq14
1545 * and if the two interfaces are "serialized" (CMD640), then it looks like
1546 * we could screw up by interfering with a new request being set up for
1549 * In reality, this is a non-issue. The new command is not sent unless
1550 * the drive is ready to accept one, in which case we know the drive is
1551 * not trying to interrupt us. And ide_set_handler() is always invoked
1552 * before completing the issuance of any new drive command, so we will not
1553 * be accidentally invoked as a result of any valid command completion
1556 * Note that we must walk the entire hwgroup here. We know which hwif
1557 * is doing the current command, but we don't know which hwif burped
1561 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1564 ide_hwif_t *hwif = hwgroup->hwif;
1567 * handle the unexpected interrupt
1570 if (hwif->irq == irq) {
1571 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1572 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1573 /* Try to not flood the console with msgs */
1574 static unsigned long last_msgtime, count;
1576 if (time_after(jiffies, last_msgtime + HZ)) {
1577 last_msgtime = jiffies;
1578 printk(KERN_ERR "%s%s: unexpected interrupt, "
1579 "status=0x%02x, count=%ld\n",
1581 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1585 } while ((hwif = hwif->next) != hwgroup->hwif);
1589 * ide_intr - default IDE interrupt handler
1590 * @irq: interrupt number
1591 * @dev_id: hwif group
1592 * @regs: unused weirdness from the kernel irq layer
1594 * This is the default IRQ handler for the IDE layer. You should
1595 * not need to override it. If you do be aware it is subtle in
1598 * hwgroup->hwif is the interface in the group currently performing
1599 * a command. hwgroup->drive is the drive and hwgroup->handler is
1600 * the IRQ handler to call. As we issue a command the handlers
1601 * step through multiple states, reassigning the handler to the
1602 * next step in the process. Unlike a smart SCSI controller IDE
1603 * expects the main processor to sequence the various transfer
1604 * stages. We also manage a poll timer to catch up with most
1605 * timeout situations. There are still a few where the handlers
1606 * don't ever decide to give up.
1608 * The handler eventually returns ide_stopped to indicate the
1609 * request completed. At this point we issue the next request
1610 * on the hwgroup and the process begins again.
1613 irqreturn_t ide_intr (int irq, void *dev_id)
1615 unsigned long flags;
1616 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1619 ide_handler_t *handler;
1620 ide_startstop_t startstop;
1622 spin_lock_irqsave(&ide_lock, flags);
1623 hwif = hwgroup->hwif;
1625 if (!ide_ack_intr(hwif)) {
1626 spin_unlock_irqrestore(&ide_lock, flags);
1630 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1632 * Not expecting an interrupt from this drive.
1633 * That means this could be:
1634 * (1) an interrupt from another PCI device
1635 * sharing the same PCI INT# as us.
1636 * or (2) a drive just entered sleep or standby mode,
1637 * and is interrupting to let us know.
1638 * or (3) a spurious interrupt of unknown origin.
1640 * For PCI, we cannot tell the difference,
1641 * so in that case we just ignore it and hope it goes away.
1643 * FIXME: unexpected_intr should be hwif-> then we can
1644 * remove all the ifdef PCI crap
1646 #ifdef CONFIG_BLK_DEV_IDEPCI
1647 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1648 #endif /* CONFIG_BLK_DEV_IDEPCI */
1651 * Probably not a shared PCI interrupt,
1652 * so we can safely try to do something about it:
1654 unexpected_intr(irq, hwgroup);
1655 #ifdef CONFIG_BLK_DEV_IDEPCI
1658 * Whack the status register, just in case
1659 * we have a leftover pending IRQ.
1661 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1662 #endif /* CONFIG_BLK_DEV_IDEPCI */
1664 spin_unlock_irqrestore(&ide_lock, flags);
1667 drive = hwgroup->drive;
1670 * This should NEVER happen, and there isn't much
1671 * we could do about it here.
1673 * [Note - this can occur if the drive is hot unplugged]
1675 spin_unlock_irqrestore(&ide_lock, flags);
1678 if (!drive_is_ready(drive)) {
1680 * This happens regularly when we share a PCI IRQ with
1681 * another device. Unfortunately, it can also happen
1682 * with some buggy drives that trigger the IRQ before
1683 * their status register is up to date. Hopefully we have
1684 * enough advance overhead that the latter isn't a problem.
1686 spin_unlock_irqrestore(&ide_lock, flags);
1689 if (!hwgroup->busy) {
1690 hwgroup->busy = 1; /* paranoia */
1691 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1693 hwgroup->handler = NULL;
1695 del_timer(&hwgroup->timer);
1696 spin_unlock(&ide_lock);
1698 /* Some controllers might set DMA INTR no matter DMA or PIO;
1699 * bmdma status might need to be cleared even for
1700 * PIO interrupts to prevent spurious/lost irq.
1702 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1703 /* ide_dma_end() needs bmdma status for error checking.
1704 * So, skip clearing bmdma status here and leave it
1705 * to ide_dma_end() if this is dma interrupt.
1707 hwif->ide_dma_clear_irq(drive);
1710 local_irq_enable_in_hardirq();
1711 /* service this interrupt, may set handler for next interrupt */
1712 startstop = handler(drive);
1713 spin_lock_irq(&ide_lock);
1716 * Note that handler() may have set things up for another
1717 * interrupt to occur soon, but it cannot happen until
1718 * we exit from this routine, because it will be the
1719 * same irq as is currently being serviced here, and Linux
1720 * won't allow another of the same (on any CPU) until we return.
1722 drive->service_time = jiffies - drive->service_start;
1723 if (startstop == ide_stopped) {
1724 if (hwgroup->handler == NULL) { /* paranoia */
1726 ide_do_request(hwgroup, hwif->irq);
1728 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1729 "on exit\n", drive->name);
1732 spin_unlock_irqrestore(&ide_lock, flags);
1737 * ide_init_drive_cmd - initialize a drive command request
1738 * @rq: request object
1740 * Initialize a request before we fill it in and send it down to
1741 * ide_do_drive_cmd. Commands must be set up by this function. Right
1742 * now it doesn't do a lot, but if that changes abusers will have a
1746 void ide_init_drive_cmd (struct request *rq)
1748 memset(rq, 0, sizeof(*rq));
1749 rq->cmd_type = REQ_TYPE_ATA_CMD;
1753 EXPORT_SYMBOL(ide_init_drive_cmd);
1756 * ide_do_drive_cmd - issue IDE special command
1757 * @drive: device to issue command
1758 * @rq: request to issue
1759 * @action: action for processing
1761 * This function issues a special IDE device request
1762 * onto the request queue.
1764 * If action is ide_wait, then the rq is queued at the end of the
1765 * request queue, and the function sleeps until it has been processed.
1766 * This is for use when invoked from an ioctl handler.
1768 * If action is ide_preempt, then the rq is queued at the head of
1769 * the request queue, displacing the currently-being-processed
1770 * request and this function returns immediately without waiting
1771 * for the new rq to be completed. This is VERY DANGEROUS, and is
1772 * intended for careful use by the ATAPI tape/cdrom driver code.
1774 * If action is ide_end, then the rq is queued at the end of the
1775 * request queue, and the function returns immediately without waiting
1776 * for the new rq to be completed. This is again intended for careful
1777 * use by the ATAPI tape/cdrom driver code.
1780 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1782 unsigned long flags;
1783 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1784 DECLARE_COMPLETION_ONSTACK(wait);
1785 int where = ELEVATOR_INSERT_BACK, err;
1786 int must_wait = (action == ide_wait || action == ide_head_wait);
1791 * we need to hold an extra reference to request for safe inspection
1796 rq->end_io_data = &wait;
1797 rq->end_io = blk_end_sync_rq;
1800 spin_lock_irqsave(&ide_lock, flags);
1801 if (action == ide_preempt)
1803 if (action == ide_preempt || action == ide_head_wait) {
1804 where = ELEVATOR_INSERT_FRONT;
1805 rq->cmd_flags |= REQ_PREEMPT;
1807 __elv_add_request(drive->queue, rq, where, 0);
1808 ide_do_request(hwgroup, IDE_NO_IRQ);
1809 spin_unlock_irqrestore(&ide_lock, flags);
1813 wait_for_completion(&wait);
1817 blk_put_request(rq);
1823 EXPORT_SYMBOL(ide_do_drive_cmd);