igb: add link check function
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125
126 static int igb_suspend(struct pci_dev *, pm_message_t);
127 #ifdef CONFIG_PM
128 static int igb_resume(struct pci_dev *);
129 #endif
130 static void igb_shutdown(struct pci_dev *);
131 #ifdef CONFIG_IGB_DCA
132 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
133 static struct notifier_block dca_notifier = {
134         .notifier_call  = igb_notify_dca,
135         .next           = NULL,
136         .priority       = 0
137 };
138 #endif
139
140 #ifdef CONFIG_NET_POLL_CONTROLLER
141 /* for netdump / net console */
142 static void igb_netpoll(struct net_device *);
143 #endif
144
145 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
146                      pci_channel_state_t);
147 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
148 static void igb_io_resume(struct pci_dev *);
149
150 static struct pci_error_handlers igb_err_handler = {
151         .error_detected = igb_io_error_detected,
152         .slot_reset = igb_io_slot_reset,
153         .resume = igb_io_resume,
154 };
155
156
157 static struct pci_driver igb_driver = {
158         .name     = igb_driver_name,
159         .id_table = igb_pci_tbl,
160         .probe    = igb_probe,
161         .remove   = __devexit_p(igb_remove),
162 #ifdef CONFIG_PM
163         /* Power Managment Hooks */
164         .suspend  = igb_suspend,
165         .resume   = igb_resume,
166 #endif
167         .shutdown = igb_shutdown,
168         .err_handler = &igb_err_handler
169 };
170
171 static int global_quad_port_a; /* global quad port a indication */
172
173 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
174 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177
178 #ifdef DEBUG
179 /**
180  * igb_get_hw_dev_name - return device name string
181  * used by hardware layer to print debugging information
182  **/
183 char *igb_get_hw_dev_name(struct e1000_hw *hw)
184 {
185         struct igb_adapter *adapter = hw->back;
186         return adapter->netdev->name;
187 }
188 #endif
189
190 /**
191  * igb_init_module - Driver Registration Routine
192  *
193  * igb_init_module is the first routine called when the driver is
194  * loaded. All it does is register with the PCI subsystem.
195  **/
196 static int __init igb_init_module(void)
197 {
198         int ret;
199         printk(KERN_INFO "%s - version %s\n",
200                igb_driver_string, igb_driver_version);
201
202         printk(KERN_INFO "%s\n", igb_copyright);
203
204         global_quad_port_a = 0;
205
206 #ifdef CONFIG_IGB_DCA
207         dca_register_notify(&dca_notifier);
208 #endif
209
210         ret = pci_register_driver(&igb_driver);
211         return ret;
212 }
213
214 module_init(igb_init_module);
215
216 /**
217  * igb_exit_module - Driver Exit Cleanup Routine
218  *
219  * igb_exit_module is called just before the driver is removed
220  * from memory.
221  **/
222 static void __exit igb_exit_module(void)
223 {
224 #ifdef CONFIG_IGB_DCA
225         dca_unregister_notify(&dca_notifier);
226 #endif
227         pci_unregister_driver(&igb_driver);
228 }
229
230 module_exit(igb_exit_module);
231
232 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
233 /**
234  * igb_cache_ring_register - Descriptor ring to register mapping
235  * @adapter: board private structure to initialize
236  *
237  * Once we know the feature-set enabled for the device, we'll cache
238  * the register offset the descriptor ring is assigned to.
239  **/
240 static void igb_cache_ring_register(struct igb_adapter *adapter)
241 {
242         int i;
243
244         switch (adapter->hw.mac.type) {
245         case e1000_82576:
246                 /* The queues are allocated for virtualization such that VF 0
247                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
248                  * In order to avoid collision we start at the first free queue
249                  * and continue consuming queues in the same sequence
250                  */
251                 for (i = 0; i < adapter->num_rx_queues; i++)
252                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
253                 for (i = 0; i < adapter->num_tx_queues; i++)
254                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
255                 break;
256         case e1000_82575:
257         default:
258                 for (i = 0; i < adapter->num_rx_queues; i++)
259                         adapter->rx_ring[i].reg_idx = i;
260                 for (i = 0; i < adapter->num_tx_queues; i++)
261                         adapter->tx_ring[i].reg_idx = i;
262                 break;
263         }
264 }
265
266 /**
267  * igb_alloc_queues - Allocate memory for all rings
268  * @adapter: board private structure to initialize
269  *
270  * We allocate one ring per queue at run-time since we don't know the
271  * number of queues at compile-time.
272  **/
273 static int igb_alloc_queues(struct igb_adapter *adapter)
274 {
275         int i;
276
277         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
278                                    sizeof(struct igb_ring), GFP_KERNEL);
279         if (!adapter->tx_ring)
280                 return -ENOMEM;
281
282         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
283                                    sizeof(struct igb_ring), GFP_KERNEL);
284         if (!adapter->rx_ring) {
285                 kfree(adapter->tx_ring);
286                 return -ENOMEM;
287         }
288
289         adapter->rx_ring->buddy = adapter->tx_ring;
290
291         for (i = 0; i < adapter->num_tx_queues; i++) {
292                 struct igb_ring *ring = &(adapter->tx_ring[i]);
293                 ring->count = adapter->tx_ring_count;
294                 ring->adapter = adapter;
295                 ring->queue_index = i;
296         }
297         for (i = 0; i < adapter->num_rx_queues; i++) {
298                 struct igb_ring *ring = &(adapter->rx_ring[i]);
299                 ring->count = adapter->rx_ring_count;
300                 ring->adapter = adapter;
301                 ring->queue_index = i;
302                 ring->itr_register = E1000_ITR;
303
304                 /* set a default napi handler for each rx_ring */
305                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
306         }
307
308         igb_cache_ring_register(adapter);
309         return 0;
310 }
311
312 static void igb_free_queues(struct igb_adapter *adapter)
313 {
314         int i;
315
316         for (i = 0; i < adapter->num_rx_queues; i++)
317                 netif_napi_del(&adapter->rx_ring[i].napi);
318
319         kfree(adapter->tx_ring);
320         kfree(adapter->rx_ring);
321 }
322
323 #define IGB_N0_QUEUE -1
324 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
325                               int tx_queue, int msix_vector)
326 {
327         u32 msixbm = 0;
328         struct e1000_hw *hw = &adapter->hw;
329         u32 ivar, index;
330
331         switch (hw->mac.type) {
332         case e1000_82575:
333                 /* The 82575 assigns vectors using a bitmask, which matches the
334                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
335                    or more queues to a vector, we write the appropriate bits
336                    into the MSIXBM register for that vector. */
337                 if (rx_queue > IGB_N0_QUEUE) {
338                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
339                         adapter->rx_ring[rx_queue].eims_value = msixbm;
340                 }
341                 if (tx_queue > IGB_N0_QUEUE) {
342                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
343                         adapter->tx_ring[tx_queue].eims_value =
344                                   E1000_EICR_TX_QUEUE0 << tx_queue;
345                 }
346                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
347                 break;
348         case e1000_82576:
349                 /* 82576 uses a table-based method for assigning vectors.
350                    Each queue has a single entry in the table to which we write
351                    a vector number along with a "valid" bit.  Sadly, the layout
352                    of the table is somewhat counterintuitive. */
353                 if (rx_queue > IGB_N0_QUEUE) {
354                         index = (rx_queue >> 1);
355                         ivar = array_rd32(E1000_IVAR0, index);
356                         if (rx_queue & 0x1) {
357                                 /* vector goes into third byte of register */
358                                 ivar = ivar & 0xFF00FFFF;
359                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
360                         } else {
361                                 /* vector goes into low byte of register */
362                                 ivar = ivar & 0xFFFFFF00;
363                                 ivar |= msix_vector | E1000_IVAR_VALID;
364                         }
365                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
366                         array_wr32(E1000_IVAR0, index, ivar);
367                 }
368                 if (tx_queue > IGB_N0_QUEUE) {
369                         index = (tx_queue >> 1);
370                         ivar = array_rd32(E1000_IVAR0, index);
371                         if (tx_queue & 0x1) {
372                                 /* vector goes into high byte of register */
373                                 ivar = ivar & 0x00FFFFFF;
374                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
375                         } else {
376                                 /* vector goes into second byte of register */
377                                 ivar = ivar & 0xFFFF00FF;
378                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
379                         }
380                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
381                         array_wr32(E1000_IVAR0, index, ivar);
382                 }
383                 break;
384         default:
385                 BUG();
386                 break;
387         }
388 }
389
390 /**
391  * igb_configure_msix - Configure MSI-X hardware
392  *
393  * igb_configure_msix sets up the hardware to properly
394  * generate MSI-X interrupts.
395  **/
396 static void igb_configure_msix(struct igb_adapter *adapter)
397 {
398         u32 tmp;
399         int i, vector = 0;
400         struct e1000_hw *hw = &adapter->hw;
401
402         adapter->eims_enable_mask = 0;
403         if (hw->mac.type == e1000_82576)
404                 /* Turn on MSI-X capability first, or our settings
405                  * won't stick.  And it will take days to debug. */
406                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
407                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
408                                    E1000_GPIE_NSICR);
409
410         for (i = 0; i < adapter->num_tx_queues; i++) {
411                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
412                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
413                 adapter->eims_enable_mask |= tx_ring->eims_value;
414                 if (tx_ring->itr_val)
415                         writel(tx_ring->itr_val,
416                                hw->hw_addr + tx_ring->itr_register);
417                 else
418                         writel(1, hw->hw_addr + tx_ring->itr_register);
419         }
420
421         for (i = 0; i < adapter->num_rx_queues; i++) {
422                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
423                 rx_ring->buddy = NULL;
424                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
425                 adapter->eims_enable_mask |= rx_ring->eims_value;
426                 if (rx_ring->itr_val)
427                         writel(rx_ring->itr_val,
428                                hw->hw_addr + rx_ring->itr_register);
429                 else
430                         writel(1, hw->hw_addr + rx_ring->itr_register);
431         }
432
433
434         /* set vector for other causes, i.e. link changes */
435         switch (hw->mac.type) {
436         case e1000_82575:
437                 array_wr32(E1000_MSIXBM(0), vector++,
438                                       E1000_EIMS_OTHER);
439
440                 tmp = rd32(E1000_CTRL_EXT);
441                 /* enable MSI-X PBA support*/
442                 tmp |= E1000_CTRL_EXT_PBA_CLR;
443
444                 /* Auto-Mask interrupts upon ICR read. */
445                 tmp |= E1000_CTRL_EXT_EIAME;
446                 tmp |= E1000_CTRL_EXT_IRCA;
447
448                 wr32(E1000_CTRL_EXT, tmp);
449                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
450                 adapter->eims_other = E1000_EIMS_OTHER;
451
452                 break;
453
454         case e1000_82576:
455                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
456                 wr32(E1000_IVAR_MISC, tmp);
457
458                 adapter->eims_enable_mask = (1 << (vector)) - 1;
459                 adapter->eims_other = 1 << (vector - 1);
460                 break;
461         default:
462                 /* do nothing, since nothing else supports MSI-X */
463                 break;
464         } /* switch (hw->mac.type) */
465         wrfl();
466 }
467
468 /**
469  * igb_request_msix - Initialize MSI-X interrupts
470  *
471  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
472  * kernel.
473  **/
474 static int igb_request_msix(struct igb_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         int i, err = 0, vector = 0;
478
479         vector = 0;
480
481         for (i = 0; i < adapter->num_tx_queues; i++) {
482                 struct igb_ring *ring = &(adapter->tx_ring[i]);
483                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
484                 err = request_irq(adapter->msix_entries[vector].vector,
485                                   &igb_msix_tx, 0, ring->name,
486                                   &(adapter->tx_ring[i]));
487                 if (err)
488                         goto out;
489                 ring->itr_register = E1000_EITR(0) + (vector << 2);
490                 ring->itr_val = 976; /* ~4000 ints/sec */
491                 vector++;
492         }
493         for (i = 0; i < adapter->num_rx_queues; i++) {
494                 struct igb_ring *ring = &(adapter->rx_ring[i]);
495                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
496                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
497                 else
498                         memcpy(ring->name, netdev->name, IFNAMSIZ);
499                 err = request_irq(adapter->msix_entries[vector].vector,
500                                   &igb_msix_rx, 0, ring->name,
501                                   &(adapter->rx_ring[i]));
502                 if (err)
503                         goto out;
504                 ring->itr_register = E1000_EITR(0) + (vector << 2);
505                 ring->itr_val = adapter->itr;
506                 /* overwrite the poll routine for MSIX, we've already done
507                  * netif_napi_add */
508                 ring->napi.poll = &igb_clean_rx_ring_msix;
509                 vector++;
510         }
511
512         err = request_irq(adapter->msix_entries[vector].vector,
513                           &igb_msix_other, 0, netdev->name, netdev);
514         if (err)
515                 goto out;
516
517         igb_configure_msix(adapter);
518         return 0;
519 out:
520         return err;
521 }
522
523 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
524 {
525         if (adapter->msix_entries) {
526                 pci_disable_msix(adapter->pdev);
527                 kfree(adapter->msix_entries);
528                 adapter->msix_entries = NULL;
529         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
530                 pci_disable_msi(adapter->pdev);
531         return;
532 }
533
534
535 /**
536  * igb_set_interrupt_capability - set MSI or MSI-X if supported
537  *
538  * Attempt to configure interrupts using the best available
539  * capabilities of the hardware and kernel.
540  **/
541 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
542 {
543         int err;
544         int numvecs, i;
545
546         /* Number of supported queues. */
547         /* Having more queues than CPUs doesn't make sense. */
548         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
549         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
550
551         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
552         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
553                                         GFP_KERNEL);
554         if (!adapter->msix_entries)
555                 goto msi_only;
556
557         for (i = 0; i < numvecs; i++)
558                 adapter->msix_entries[i].entry = i;
559
560         err = pci_enable_msix(adapter->pdev,
561                               adapter->msix_entries,
562                               numvecs);
563         if (err == 0)
564                 goto out;
565
566         igb_reset_interrupt_capability(adapter);
567
568         /* If we can't do MSI-X, try MSI */
569 msi_only:
570         adapter->num_rx_queues = 1;
571         adapter->num_tx_queues = 1;
572         if (!pci_enable_msi(adapter->pdev))
573                 adapter->flags |= IGB_FLAG_HAS_MSI;
574 out:
575         /* Notify the stack of the (possibly) reduced Tx Queue count. */
576         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
577         return;
578 }
579
580 /**
581  * igb_request_irq - initialize interrupts
582  *
583  * Attempts to configure interrupts using the best available
584  * capabilities of the hardware and kernel.
585  **/
586 static int igb_request_irq(struct igb_adapter *adapter)
587 {
588         struct net_device *netdev = adapter->netdev;
589         struct e1000_hw *hw = &adapter->hw;
590         int err = 0;
591
592         if (adapter->msix_entries) {
593                 err = igb_request_msix(adapter);
594                 if (!err)
595                         goto request_done;
596                 /* fall back to MSI */
597                 igb_reset_interrupt_capability(adapter);
598                 if (!pci_enable_msi(adapter->pdev))
599                         adapter->flags |= IGB_FLAG_HAS_MSI;
600                 igb_free_all_tx_resources(adapter);
601                 igb_free_all_rx_resources(adapter);
602                 adapter->num_rx_queues = 1;
603                 igb_alloc_queues(adapter);
604         } else {
605                 switch (hw->mac.type) {
606                 case e1000_82575:
607                         wr32(E1000_MSIXBM(0),
608                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
609                         break;
610                 case e1000_82576:
611                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
612                         break;
613                 default:
614                         break;
615                 }
616         }
617
618         if (adapter->flags & IGB_FLAG_HAS_MSI) {
619                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
620                                   netdev->name, netdev);
621                 if (!err)
622                         goto request_done;
623                 /* fall back to legacy interrupts */
624                 igb_reset_interrupt_capability(adapter);
625                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
626         }
627
628         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
629                           netdev->name, netdev);
630
631         if (err)
632                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
633                         err);
634
635 request_done:
636         return err;
637 }
638
639 static void igb_free_irq(struct igb_adapter *adapter)
640 {
641         struct net_device *netdev = adapter->netdev;
642
643         if (adapter->msix_entries) {
644                 int vector = 0, i;
645
646                 for (i = 0; i < adapter->num_tx_queues; i++)
647                         free_irq(adapter->msix_entries[vector++].vector,
648                                 &(adapter->tx_ring[i]));
649                 for (i = 0; i < adapter->num_rx_queues; i++)
650                         free_irq(adapter->msix_entries[vector++].vector,
651                                 &(adapter->rx_ring[i]));
652
653                 free_irq(adapter->msix_entries[vector++].vector, netdev);
654                 return;
655         }
656
657         free_irq(adapter->pdev->irq, netdev);
658 }
659
660 /**
661  * igb_irq_disable - Mask off interrupt generation on the NIC
662  * @adapter: board private structure
663  **/
664 static void igb_irq_disable(struct igb_adapter *adapter)
665 {
666         struct e1000_hw *hw = &adapter->hw;
667
668         if (adapter->msix_entries) {
669                 wr32(E1000_EIAM, 0);
670                 wr32(E1000_EIMC, ~0);
671                 wr32(E1000_EIAC, 0);
672         }
673
674         wr32(E1000_IAM, 0);
675         wr32(E1000_IMC, ~0);
676         wrfl();
677         synchronize_irq(adapter->pdev->irq);
678 }
679
680 /**
681  * igb_irq_enable - Enable default interrupt generation settings
682  * @adapter: board private structure
683  **/
684 static void igb_irq_enable(struct igb_adapter *adapter)
685 {
686         struct e1000_hw *hw = &adapter->hw;
687
688         if (adapter->msix_entries) {
689                 wr32(E1000_EIAC, adapter->eims_enable_mask);
690                 wr32(E1000_EIAM, adapter->eims_enable_mask);
691                 wr32(E1000_EIMS, adapter->eims_enable_mask);
692                 wr32(E1000_IMS, E1000_IMS_LSC);
693         } else {
694                 wr32(E1000_IMS, IMS_ENABLE_MASK);
695                 wr32(E1000_IAM, IMS_ENABLE_MASK);
696         }
697 }
698
699 static void igb_update_mng_vlan(struct igb_adapter *adapter)
700 {
701         struct net_device *netdev = adapter->netdev;
702         u16 vid = adapter->hw.mng_cookie.vlan_id;
703         u16 old_vid = adapter->mng_vlan_id;
704         if (adapter->vlgrp) {
705                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
706                         if (adapter->hw.mng_cookie.status &
707                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
708                                 igb_vlan_rx_add_vid(netdev, vid);
709                                 adapter->mng_vlan_id = vid;
710                         } else
711                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
712
713                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
714                                         (vid != old_vid) &&
715                             !vlan_group_get_device(adapter->vlgrp, old_vid))
716                                 igb_vlan_rx_kill_vid(netdev, old_vid);
717                 } else
718                         adapter->mng_vlan_id = vid;
719         }
720 }
721
722 /**
723  * igb_release_hw_control - release control of the h/w to f/w
724  * @adapter: address of board private structure
725  *
726  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
727  * For ASF and Pass Through versions of f/w this means that the
728  * driver is no longer loaded.
729  *
730  **/
731 static void igb_release_hw_control(struct igb_adapter *adapter)
732 {
733         struct e1000_hw *hw = &adapter->hw;
734         u32 ctrl_ext;
735
736         /* Let firmware take over control of h/w */
737         ctrl_ext = rd32(E1000_CTRL_EXT);
738         wr32(E1000_CTRL_EXT,
739                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
740 }
741
742
743 /**
744  * igb_get_hw_control - get control of the h/w from f/w
745  * @adapter: address of board private structure
746  *
747  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
748  * For ASF and Pass Through versions of f/w this means that
749  * the driver is loaded.
750  *
751  **/
752 static void igb_get_hw_control(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755         u32 ctrl_ext;
756
757         /* Let firmware know the driver has taken over */
758         ctrl_ext = rd32(E1000_CTRL_EXT);
759         wr32(E1000_CTRL_EXT,
760                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
761 }
762
763 /**
764  * igb_configure - configure the hardware for RX and TX
765  * @adapter: private board structure
766  **/
767 static void igb_configure(struct igb_adapter *adapter)
768 {
769         struct net_device *netdev = adapter->netdev;
770         int i;
771
772         igb_get_hw_control(adapter);
773         igb_set_multi(netdev);
774
775         igb_restore_vlan(adapter);
776
777         igb_configure_tx(adapter);
778         igb_setup_rctl(adapter);
779         igb_configure_rx(adapter);
780
781         igb_rx_fifo_flush_82575(&adapter->hw);
782
783         /* call IGB_DESC_UNUSED which always leaves
784          * at least 1 descriptor unused to make sure
785          * next_to_use != next_to_clean */
786         for (i = 0; i < adapter->num_rx_queues; i++) {
787                 struct igb_ring *ring = &adapter->rx_ring[i];
788                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
789         }
790
791
792         adapter->tx_queue_len = netdev->tx_queue_len;
793 }
794
795
796 /**
797  * igb_up - Open the interface and prepare it to handle traffic
798  * @adapter: board private structure
799  **/
800
801 int igb_up(struct igb_adapter *adapter)
802 {
803         struct e1000_hw *hw = &adapter->hw;
804         int i;
805
806         /* hardware has been reset, we need to reload some things */
807         igb_configure(adapter);
808
809         clear_bit(__IGB_DOWN, &adapter->state);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_enable(&adapter->rx_ring[i].napi);
813         if (adapter->msix_entries)
814                 igb_configure_msix(adapter);
815
816         /* Clear any pending interrupts. */
817         rd32(E1000_ICR);
818         igb_irq_enable(adapter);
819
820         /* Fire a link change interrupt to start the watchdog. */
821         wr32(E1000_ICS, E1000_ICS_LSC);
822         return 0;
823 }
824
825 void igb_down(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         struct net_device *netdev = adapter->netdev;
829         u32 tctl, rctl;
830         int i;
831
832         /* signal that we're down so the interrupt handler does not
833          * reschedule our watchdog timer */
834         set_bit(__IGB_DOWN, &adapter->state);
835
836         /* disable receives in the hardware */
837         rctl = rd32(E1000_RCTL);
838         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
839         /* flush and sleep below */
840
841         netif_tx_stop_all_queues(netdev);
842
843         /* disable transmits in the hardware */
844         tctl = rd32(E1000_TCTL);
845         tctl &= ~E1000_TCTL_EN;
846         wr32(E1000_TCTL, tctl);
847         /* flush both disables and wait for them to finish */
848         wrfl();
849         msleep(10);
850
851         for (i = 0; i < adapter->num_rx_queues; i++)
852                 napi_disable(&adapter->rx_ring[i].napi);
853
854         igb_irq_disable(adapter);
855
856         del_timer_sync(&adapter->watchdog_timer);
857         del_timer_sync(&adapter->phy_info_timer);
858
859         netdev->tx_queue_len = adapter->tx_queue_len;
860         netif_carrier_off(netdev);
861         adapter->link_speed = 0;
862         adapter->link_duplex = 0;
863
864         if (!pci_channel_offline(adapter->pdev))
865                 igb_reset(adapter);
866         igb_clean_all_tx_rings(adapter);
867         igb_clean_all_rx_rings(adapter);
868 }
869
870 void igb_reinit_locked(struct igb_adapter *adapter)
871 {
872         WARN_ON(in_interrupt());
873         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
874                 msleep(1);
875         igb_down(adapter);
876         igb_up(adapter);
877         clear_bit(__IGB_RESETTING, &adapter->state);
878 }
879
880 void igb_reset(struct igb_adapter *adapter)
881 {
882         struct e1000_hw *hw = &adapter->hw;
883         struct e1000_mac_info *mac = &hw->mac;
884         struct e1000_fc_info *fc = &hw->fc;
885         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
886         u16 hwm;
887
888         /* Repartition Pba for greater than 9k mtu
889          * To take effect CTRL.RST is required.
890          */
891         if (mac->type != e1000_82576) {
892         pba = E1000_PBA_34K;
893         }
894         else {
895                 pba = E1000_PBA_64K;
896         }
897
898         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
899             (mac->type < e1000_82576)) {
900                 /* adjust PBA for jumbo frames */
901                 wr32(E1000_PBA, pba);
902
903                 /* To maintain wire speed transmits, the Tx FIFO should be
904                  * large enough to accommodate two full transmit packets,
905                  * rounded up to the next 1KB and expressed in KB.  Likewise,
906                  * the Rx FIFO should be large enough to accommodate at least
907                  * one full receive packet and is similarly rounded up and
908                  * expressed in KB. */
909                 pba = rd32(E1000_PBA);
910                 /* upper 16 bits has Tx packet buffer allocation size in KB */
911                 tx_space = pba >> 16;
912                 /* lower 16 bits has Rx packet buffer allocation size in KB */
913                 pba &= 0xffff;
914                 /* the tx fifo also stores 16 bytes of information about the tx
915                  * but don't include ethernet FCS because hardware appends it */
916                 min_tx_space = (adapter->max_frame_size +
917                                 sizeof(struct e1000_tx_desc) -
918                                 ETH_FCS_LEN) * 2;
919                 min_tx_space = ALIGN(min_tx_space, 1024);
920                 min_tx_space >>= 10;
921                 /* software strips receive CRC, so leave room for it */
922                 min_rx_space = adapter->max_frame_size;
923                 min_rx_space = ALIGN(min_rx_space, 1024);
924                 min_rx_space >>= 10;
925
926                 /* If current Tx allocation is less than the min Tx FIFO size,
927                  * and the min Tx FIFO size is less than the current Rx FIFO
928                  * allocation, take space away from current Rx allocation */
929                 if (tx_space < min_tx_space &&
930                     ((min_tx_space - tx_space) < pba)) {
931                         pba = pba - (min_tx_space - tx_space);
932
933                         /* if short on rx space, rx wins and must trump tx
934                          * adjustment */
935                         if (pba < min_rx_space)
936                                 pba = min_rx_space;
937                 }
938                 wr32(E1000_PBA, pba);
939         }
940
941         /* flow control settings */
942         /* The high water mark must be low enough to fit one full frame
943          * (or the size used for early receive) above it in the Rx FIFO.
944          * Set it to the lower of:
945          * - 90% of the Rx FIFO size, or
946          * - the full Rx FIFO size minus one full frame */
947         hwm = min(((pba << 10) * 9 / 10),
948                         ((pba << 10) - 2 * adapter->max_frame_size));
949
950         if (mac->type < e1000_82576) {
951                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
952                 fc->low_water = fc->high_water - 8;
953         } else {
954                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
955                 fc->low_water = fc->high_water - 16;
956         }
957         fc->pause_time = 0xFFFF;
958         fc->send_xon = 1;
959         fc->type = fc->original_type;
960
961         /* Allow time for pending master requests to run */
962         adapter->hw.mac.ops.reset_hw(&adapter->hw);
963         wr32(E1000_WUC, 0);
964
965         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
966                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
967
968         igb_update_mng_vlan(adapter);
969
970         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
971         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
972
973         igb_reset_adaptive(&adapter->hw);
974         igb_get_phy_info(&adapter->hw);
975 }
976
977 static const struct net_device_ops igb_netdev_ops = {
978         .ndo_open               = igb_open,
979         .ndo_stop               = igb_close,
980         .ndo_start_xmit         = igb_xmit_frame_adv,
981         .ndo_get_stats          = igb_get_stats,
982         .ndo_set_multicast_list = igb_set_multi,
983         .ndo_set_mac_address    = igb_set_mac,
984         .ndo_change_mtu         = igb_change_mtu,
985         .ndo_do_ioctl           = igb_ioctl,
986         .ndo_tx_timeout         = igb_tx_timeout,
987         .ndo_validate_addr      = eth_validate_addr,
988         .ndo_vlan_rx_register   = igb_vlan_rx_register,
989         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
990         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
991 #ifdef CONFIG_NET_POLL_CONTROLLER
992         .ndo_poll_controller    = igb_netpoll,
993 #endif
994 };
995
996 /**
997  * igb_probe - Device Initialization Routine
998  * @pdev: PCI device information struct
999  * @ent: entry in igb_pci_tbl
1000  *
1001  * Returns 0 on success, negative on failure
1002  *
1003  * igb_probe initializes an adapter identified by a pci_dev structure.
1004  * The OS initialization, configuring of the adapter private structure,
1005  * and a hardware reset occur.
1006  **/
1007 static int __devinit igb_probe(struct pci_dev *pdev,
1008                                const struct pci_device_id *ent)
1009 {
1010         struct net_device *netdev;
1011         struct igb_adapter *adapter;
1012         struct e1000_hw *hw;
1013         struct pci_dev *us_dev;
1014         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1015         unsigned long mmio_start, mmio_len;
1016         int i, err, pci_using_dac, pos;
1017         u16 eeprom_data = 0, state = 0;
1018         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1019         u32 part_num;
1020
1021         err = pci_enable_device_mem(pdev);
1022         if (err)
1023                 return err;
1024
1025         pci_using_dac = 0;
1026         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1027         if (!err) {
1028                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1029                 if (!err)
1030                         pci_using_dac = 1;
1031         } else {
1032                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1033                 if (err) {
1034                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1035                         if (err) {
1036                                 dev_err(&pdev->dev, "No usable DMA "
1037                                         "configuration, aborting\n");
1038                                 goto err_dma;
1039                         }
1040                 }
1041         }
1042
1043         /* 82575 requires that the pci-e link partner disable the L0s state */
1044         switch (pdev->device) {
1045         case E1000_DEV_ID_82575EB_COPPER:
1046         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1047         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1048                 us_dev = pdev->bus->self;
1049                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1050                 if (pos) {
1051                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1052                                              &state);
1053                         state &= ~PCIE_LINK_STATE_L0S;
1054                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1055                                               state);
1056                         dev_info(&pdev->dev,
1057                                  "Disabling ASPM L0s upstream switch port %s\n",
1058                                  pci_name(us_dev));
1059                 }
1060         default:
1061                 break;
1062         }
1063
1064         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1065                                            IORESOURCE_MEM),
1066                                            igb_driver_name);
1067         if (err)
1068                 goto err_pci_reg;
1069
1070         err = pci_enable_pcie_error_reporting(pdev);
1071         if (err) {
1072                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1073                         "0x%x\n", err);
1074                 /* non-fatal, continue */
1075         }
1076
1077         pci_set_master(pdev);
1078         pci_save_state(pdev);
1079
1080         err = -ENOMEM;
1081         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1082         if (!netdev)
1083                 goto err_alloc_etherdev;
1084
1085         SET_NETDEV_DEV(netdev, &pdev->dev);
1086
1087         pci_set_drvdata(pdev, netdev);
1088         adapter = netdev_priv(netdev);
1089         adapter->netdev = netdev;
1090         adapter->pdev = pdev;
1091         hw = &adapter->hw;
1092         hw->back = adapter;
1093         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1094
1095         mmio_start = pci_resource_start(pdev, 0);
1096         mmio_len = pci_resource_len(pdev, 0);
1097
1098         err = -EIO;
1099         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1100         if (!adapter->hw.hw_addr)
1101                 goto err_ioremap;
1102
1103         netdev->netdev_ops = &igb_netdev_ops;
1104         igb_set_ethtool_ops(netdev);
1105         netdev->watchdog_timeo = 5 * HZ;
1106
1107         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1108
1109         netdev->mem_start = mmio_start;
1110         netdev->mem_end = mmio_start + mmio_len;
1111
1112         /* PCI config space info */
1113         hw->vendor_id = pdev->vendor;
1114         hw->device_id = pdev->device;
1115         hw->revision_id = pdev->revision;
1116         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1117         hw->subsystem_device_id = pdev->subsystem_device;
1118
1119         /* setup the private structure */
1120         hw->back = adapter;
1121         /* Copy the default MAC, PHY and NVM function pointers */
1122         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1123         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1124         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1125         /* Initialize skew-specific constants */
1126         err = ei->get_invariants(hw);
1127         if (err)
1128                 goto err_hw_init;
1129
1130         err = igb_sw_init(adapter);
1131         if (err)
1132                 goto err_sw_init;
1133
1134         igb_get_bus_info_pcie(hw);
1135
1136         /* set flags */
1137         switch (hw->mac.type) {
1138         case e1000_82575:
1139                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1140                 break;
1141         case e1000_82576:
1142         default:
1143                 break;
1144         }
1145
1146         hw->phy.autoneg_wait_to_complete = false;
1147         hw->mac.adaptive_ifs = true;
1148
1149         /* Copper options */
1150         if (hw->phy.media_type == e1000_media_type_copper) {
1151                 hw->phy.mdix = AUTO_ALL_MODES;
1152                 hw->phy.disable_polarity_correction = false;
1153                 hw->phy.ms_type = e1000_ms_hw_default;
1154         }
1155
1156         if (igb_check_reset_block(hw))
1157                 dev_info(&pdev->dev,
1158                         "PHY reset is blocked due to SOL/IDER session.\n");
1159
1160         netdev->features = NETIF_F_SG |
1161                            NETIF_F_HW_CSUM |
1162                            NETIF_F_HW_VLAN_TX |
1163                            NETIF_F_HW_VLAN_RX |
1164                            NETIF_F_HW_VLAN_FILTER;
1165
1166         netdev->features |= NETIF_F_TSO;
1167         netdev->features |= NETIF_F_TSO6;
1168
1169 #ifdef CONFIG_IGB_LRO
1170         netdev->features |= NETIF_F_GRO;
1171 #endif
1172
1173         netdev->vlan_features |= NETIF_F_TSO;
1174         netdev->vlan_features |= NETIF_F_TSO6;
1175         netdev->vlan_features |= NETIF_F_HW_CSUM;
1176         netdev->vlan_features |= NETIF_F_SG;
1177
1178         if (pci_using_dac)
1179                 netdev->features |= NETIF_F_HIGHDMA;
1180
1181         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1182
1183         /* before reading the NVM, reset the controller to put the device in a
1184          * known good starting state */
1185         hw->mac.ops.reset_hw(hw);
1186
1187         /* make sure the NVM is good */
1188         if (igb_validate_nvm_checksum(hw) < 0) {
1189                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1190                 err = -EIO;
1191                 goto err_eeprom;
1192         }
1193
1194         /* copy the MAC address out of the NVM */
1195         if (hw->mac.ops.read_mac_addr(hw))
1196                 dev_err(&pdev->dev, "NVM Read Error\n");
1197
1198         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1199         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1200
1201         if (!is_valid_ether_addr(netdev->perm_addr)) {
1202                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1203                 err = -EIO;
1204                 goto err_eeprom;
1205         }
1206
1207         init_timer(&adapter->watchdog_timer);
1208         adapter->watchdog_timer.function = &igb_watchdog;
1209         adapter->watchdog_timer.data = (unsigned long) adapter;
1210
1211         init_timer(&adapter->phy_info_timer);
1212         adapter->phy_info_timer.function = &igb_update_phy_info;
1213         adapter->phy_info_timer.data = (unsigned long) adapter;
1214
1215         INIT_WORK(&adapter->reset_task, igb_reset_task);
1216         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1217
1218         /* Initialize link & ring properties that are user-changeable */
1219         adapter->tx_ring->count = 256;
1220         for (i = 0; i < adapter->num_tx_queues; i++)
1221                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1222         adapter->rx_ring->count = 256;
1223         for (i = 0; i < adapter->num_rx_queues; i++)
1224                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1225
1226         adapter->fc_autoneg = true;
1227         hw->mac.autoneg = true;
1228         hw->phy.autoneg_advertised = 0x2f;
1229
1230         hw->fc.original_type = e1000_fc_default;
1231         hw->fc.type = e1000_fc_default;
1232
1233         adapter->itr_setting = 3;
1234         adapter->itr = IGB_START_ITR;
1235
1236         igb_validate_mdi_setting(hw);
1237
1238         adapter->rx_csum = 1;
1239
1240         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1241          * enable the ACPI Magic Packet filter
1242          */
1243
1244         if (hw->bus.func == 0 ||
1245             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1246                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1247                                      &eeprom_data);
1248
1249         if (eeprom_data & eeprom_apme_mask)
1250                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1251
1252         /* now that we have the eeprom settings, apply the special cases where
1253          * the eeprom may be wrong or the board simply won't support wake on
1254          * lan on a particular port */
1255         switch (pdev->device) {
1256         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1257                 adapter->eeprom_wol = 0;
1258                 break;
1259         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1260         case E1000_DEV_ID_82576_FIBER:
1261         case E1000_DEV_ID_82576_SERDES:
1262                 /* Wake events only supported on port A for dual fiber
1263                  * regardless of eeprom setting */
1264                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1265                         adapter->eeprom_wol = 0;
1266                 break;
1267         }
1268
1269         /* initialize the wol settings based on the eeprom settings */
1270         adapter->wol = adapter->eeprom_wol;
1271         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1272
1273         /* reset the hardware with the new settings */
1274         igb_reset(adapter);
1275
1276         /* let the f/w know that the h/w is now under the control of the
1277          * driver. */
1278         igb_get_hw_control(adapter);
1279
1280         /* tell the stack to leave us alone until igb_open() is called */
1281         netif_carrier_off(netdev);
1282         netif_tx_stop_all_queues(netdev);
1283
1284         strcpy(netdev->name, "eth%d");
1285         err = register_netdev(netdev);
1286         if (err)
1287                 goto err_register;
1288
1289 #ifdef CONFIG_IGB_DCA
1290         if (dca_add_requester(&pdev->dev) == 0) {
1291                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1292                 dev_info(&pdev->dev, "DCA enabled\n");
1293                 /* Always use CB2 mode, difference is masked
1294                  * in the CB driver. */
1295                 wr32(E1000_DCA_CTRL, 2);
1296                 igb_setup_dca(adapter);
1297         }
1298 #endif
1299
1300         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1301         /* print bus type/speed/width info */
1302         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1303                  netdev->name,
1304                  ((hw->bus.speed == e1000_bus_speed_2500)
1305                   ? "2.5Gb/s" : "unknown"),
1306                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1307                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1308                   ? "Width x1" : "unknown"),
1309                  netdev->dev_addr);
1310
1311         igb_read_part_num(hw, &part_num);
1312         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1313                 (part_num >> 8), (part_num & 0xff));
1314
1315         dev_info(&pdev->dev,
1316                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1317                 adapter->msix_entries ? "MSI-X" :
1318                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1319                 adapter->num_rx_queues, adapter->num_tx_queues);
1320
1321         return 0;
1322
1323 err_register:
1324         igb_release_hw_control(adapter);
1325 err_eeprom:
1326         if (!igb_check_reset_block(hw))
1327                 igb_reset_phy(hw);
1328
1329         if (hw->flash_address)
1330                 iounmap(hw->flash_address);
1331
1332         igb_remove_device(hw);
1333         igb_free_queues(adapter);
1334 err_sw_init:
1335 err_hw_init:
1336         iounmap(hw->hw_addr);
1337 err_ioremap:
1338         free_netdev(netdev);
1339 err_alloc_etherdev:
1340         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1341                                      IORESOURCE_MEM));
1342 err_pci_reg:
1343 err_dma:
1344         pci_disable_device(pdev);
1345         return err;
1346 }
1347
1348 /**
1349  * igb_remove - Device Removal Routine
1350  * @pdev: PCI device information struct
1351  *
1352  * igb_remove is called by the PCI subsystem to alert the driver
1353  * that it should release a PCI device.  The could be caused by a
1354  * Hot-Plug event, or because the driver is going to be removed from
1355  * memory.
1356  **/
1357 static void __devexit igb_remove(struct pci_dev *pdev)
1358 {
1359         struct net_device *netdev = pci_get_drvdata(pdev);
1360         struct igb_adapter *adapter = netdev_priv(netdev);
1361 #ifdef CONFIG_IGB_DCA
1362         struct e1000_hw *hw = &adapter->hw;
1363 #endif
1364         int err;
1365
1366         /* flush_scheduled work may reschedule our watchdog task, so
1367          * explicitly disable watchdog tasks from being rescheduled  */
1368         set_bit(__IGB_DOWN, &adapter->state);
1369         del_timer_sync(&adapter->watchdog_timer);
1370         del_timer_sync(&adapter->phy_info_timer);
1371
1372         flush_scheduled_work();
1373
1374 #ifdef CONFIG_IGB_DCA
1375         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1376                 dev_info(&pdev->dev, "DCA disabled\n");
1377                 dca_remove_requester(&pdev->dev);
1378                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1379                 wr32(E1000_DCA_CTRL, 1);
1380         }
1381 #endif
1382
1383         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1384          * would have already happened in close and is redundant. */
1385         igb_release_hw_control(adapter);
1386
1387         unregister_netdev(netdev);
1388
1389         if (!igb_check_reset_block(&adapter->hw))
1390                 igb_reset_phy(&adapter->hw);
1391
1392         igb_remove_device(&adapter->hw);
1393         igb_reset_interrupt_capability(adapter);
1394
1395         igb_free_queues(adapter);
1396
1397         iounmap(adapter->hw.hw_addr);
1398         if (adapter->hw.flash_address)
1399                 iounmap(adapter->hw.flash_address);
1400         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1401                                      IORESOURCE_MEM));
1402
1403         free_netdev(netdev);
1404
1405         err = pci_disable_pcie_error_reporting(pdev);
1406         if (err)
1407                 dev_err(&pdev->dev,
1408                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1409
1410         pci_disable_device(pdev);
1411 }
1412
1413 /**
1414  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1415  * @adapter: board private structure to initialize
1416  *
1417  * igb_sw_init initializes the Adapter private data structure.
1418  * Fields are initialized based on PCI device information and
1419  * OS network device settings (MTU size).
1420  **/
1421 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1422 {
1423         struct e1000_hw *hw = &adapter->hw;
1424         struct net_device *netdev = adapter->netdev;
1425         struct pci_dev *pdev = adapter->pdev;
1426
1427         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1428
1429         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1430         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1431         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1432         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1433         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1434         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1435
1436         /* This call may decrease the number of queues depending on
1437          * interrupt mode. */
1438         igb_set_interrupt_capability(adapter);
1439
1440         if (igb_alloc_queues(adapter)) {
1441                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1442                 return -ENOMEM;
1443         }
1444
1445         /* Explicitly disable IRQ since the NIC can be in any state. */
1446         igb_irq_disable(adapter);
1447
1448         set_bit(__IGB_DOWN, &adapter->state);
1449         return 0;
1450 }
1451
1452 /**
1453  * igb_open - Called when a network interface is made active
1454  * @netdev: network interface device structure
1455  *
1456  * Returns 0 on success, negative value on failure
1457  *
1458  * The open entry point is called when a network interface is made
1459  * active by the system (IFF_UP).  At this point all resources needed
1460  * for transmit and receive operations are allocated, the interrupt
1461  * handler is registered with the OS, the watchdog timer is started,
1462  * and the stack is notified that the interface is ready.
1463  **/
1464 static int igb_open(struct net_device *netdev)
1465 {
1466         struct igb_adapter *adapter = netdev_priv(netdev);
1467         struct e1000_hw *hw = &adapter->hw;
1468         int err;
1469         int i;
1470
1471         /* disallow open during test */
1472         if (test_bit(__IGB_TESTING, &adapter->state))
1473                 return -EBUSY;
1474
1475         /* allocate transmit descriptors */
1476         err = igb_setup_all_tx_resources(adapter);
1477         if (err)
1478                 goto err_setup_tx;
1479
1480         /* allocate receive descriptors */
1481         err = igb_setup_all_rx_resources(adapter);
1482         if (err)
1483                 goto err_setup_rx;
1484
1485         /* e1000_power_up_phy(adapter); */
1486
1487         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1488         if ((adapter->hw.mng_cookie.status &
1489              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1490                 igb_update_mng_vlan(adapter);
1491
1492         /* before we allocate an interrupt, we must be ready to handle it.
1493          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1494          * as soon as we call pci_request_irq, so we have to setup our
1495          * clean_rx handler before we do so.  */
1496         igb_configure(adapter);
1497
1498         err = igb_request_irq(adapter);
1499         if (err)
1500                 goto err_req_irq;
1501
1502         /* From here on the code is the same as igb_up() */
1503         clear_bit(__IGB_DOWN, &adapter->state);
1504
1505         for (i = 0; i < adapter->num_rx_queues; i++)
1506                 napi_enable(&adapter->rx_ring[i].napi);
1507
1508         /* Clear any pending interrupts. */
1509         rd32(E1000_ICR);
1510
1511         igb_irq_enable(adapter);
1512
1513         netif_tx_start_all_queues(netdev);
1514
1515         /* Fire a link status change interrupt to start the watchdog. */
1516         wr32(E1000_ICS, E1000_ICS_LSC);
1517
1518         return 0;
1519
1520 err_req_irq:
1521         igb_release_hw_control(adapter);
1522         /* e1000_power_down_phy(adapter); */
1523         igb_free_all_rx_resources(adapter);
1524 err_setup_rx:
1525         igb_free_all_tx_resources(adapter);
1526 err_setup_tx:
1527         igb_reset(adapter);
1528
1529         return err;
1530 }
1531
1532 /**
1533  * igb_close - Disables a network interface
1534  * @netdev: network interface device structure
1535  *
1536  * Returns 0, this is not allowed to fail
1537  *
1538  * The close entry point is called when an interface is de-activated
1539  * by the OS.  The hardware is still under the driver's control, but
1540  * needs to be disabled.  A global MAC reset is issued to stop the
1541  * hardware, and all transmit and receive resources are freed.
1542  **/
1543 static int igb_close(struct net_device *netdev)
1544 {
1545         struct igb_adapter *adapter = netdev_priv(netdev);
1546
1547         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1548         igb_down(adapter);
1549
1550         igb_free_irq(adapter);
1551
1552         igb_free_all_tx_resources(adapter);
1553         igb_free_all_rx_resources(adapter);
1554
1555         /* kill manageability vlan ID if supported, but not if a vlan with
1556          * the same ID is registered on the host OS (let 8021q kill it) */
1557         if ((adapter->hw.mng_cookie.status &
1558                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1559              !(adapter->vlgrp &&
1560                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1561                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1562
1563         return 0;
1564 }
1565
1566 /**
1567  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1568  * @adapter: board private structure
1569  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573
1574 int igb_setup_tx_resources(struct igb_adapter *adapter,
1575                            struct igb_ring *tx_ring)
1576 {
1577         struct pci_dev *pdev = adapter->pdev;
1578         int size;
1579
1580         size = sizeof(struct igb_buffer) * tx_ring->count;
1581         tx_ring->buffer_info = vmalloc(size);
1582         if (!tx_ring->buffer_info)
1583                 goto err;
1584         memset(tx_ring->buffer_info, 0, size);
1585
1586         /* round up to nearest 4K */
1587         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1588         tx_ring->size = ALIGN(tx_ring->size, 4096);
1589
1590         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1591                                              &tx_ring->dma);
1592
1593         if (!tx_ring->desc)
1594                 goto err;
1595
1596         tx_ring->adapter = adapter;
1597         tx_ring->next_to_use = 0;
1598         tx_ring->next_to_clean = 0;
1599         return 0;
1600
1601 err:
1602         vfree(tx_ring->buffer_info);
1603         dev_err(&adapter->pdev->dev,
1604                 "Unable to allocate memory for the transmit descriptor ring\n");
1605         return -ENOMEM;
1606 }
1607
1608 /**
1609  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1610  *                                (Descriptors) for all queues
1611  * @adapter: board private structure
1612  *
1613  * Return 0 on success, negative on failure
1614  **/
1615 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1616 {
1617         int i, err = 0;
1618         int r_idx;
1619
1620         for (i = 0; i < adapter->num_tx_queues; i++) {
1621                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1622                 if (err) {
1623                         dev_err(&adapter->pdev->dev,
1624                                 "Allocation for Tx Queue %u failed\n", i);
1625                         for (i--; i >= 0; i--)
1626                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1627                         break;
1628                 }
1629         }
1630
1631         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1632                 r_idx = i % adapter->num_tx_queues;
1633                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1634         }       
1635         return err;
1636 }
1637
1638 /**
1639  * igb_configure_tx - Configure transmit Unit after Reset
1640  * @adapter: board private structure
1641  *
1642  * Configure the Tx unit of the MAC after a reset.
1643  **/
1644 static void igb_configure_tx(struct igb_adapter *adapter)
1645 {
1646         u64 tdba;
1647         struct e1000_hw *hw = &adapter->hw;
1648         u32 tctl;
1649         u32 txdctl, txctrl;
1650         int i, j;
1651
1652         for (i = 0; i < adapter->num_tx_queues; i++) {
1653                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1654                 j = ring->reg_idx;
1655                 wr32(E1000_TDLEN(j),
1656                                 ring->count * sizeof(struct e1000_tx_desc));
1657                 tdba = ring->dma;
1658                 wr32(E1000_TDBAL(j),
1659                                 tdba & 0x00000000ffffffffULL);
1660                 wr32(E1000_TDBAH(j), tdba >> 32);
1661
1662                 ring->head = E1000_TDH(j);
1663                 ring->tail = E1000_TDT(j);
1664                 writel(0, hw->hw_addr + ring->tail);
1665                 writel(0, hw->hw_addr + ring->head);
1666                 txdctl = rd32(E1000_TXDCTL(j));
1667                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1668                 wr32(E1000_TXDCTL(j), txdctl);
1669
1670                 /* Turn off Relaxed Ordering on head write-backs.  The
1671                  * writebacks MUST be delivered in order or it will
1672                  * completely screw up our bookeeping.
1673                  */
1674                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1675                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1676                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1677         }
1678
1679
1680
1681         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1682
1683         /* Program the Transmit Control Register */
1684
1685         tctl = rd32(E1000_TCTL);
1686         tctl &= ~E1000_TCTL_CT;
1687         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1688                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1689
1690         igb_config_collision_dist(hw);
1691
1692         /* Setup Transmit Descriptor Settings for eop descriptor */
1693         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1694
1695         /* Enable transmits */
1696         tctl |= E1000_TCTL_EN;
1697
1698         wr32(E1000_TCTL, tctl);
1699 }
1700
1701 /**
1702  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1703  * @adapter: board private structure
1704  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1705  *
1706  * Returns 0 on success, negative on failure
1707  **/
1708
1709 int igb_setup_rx_resources(struct igb_adapter *adapter,
1710                            struct igb_ring *rx_ring)
1711 {
1712         struct pci_dev *pdev = adapter->pdev;
1713         int size, desc_len;
1714
1715         size = sizeof(struct igb_buffer) * rx_ring->count;
1716         rx_ring->buffer_info = vmalloc(size);
1717         if (!rx_ring->buffer_info)
1718                 goto err;
1719         memset(rx_ring->buffer_info, 0, size);
1720
1721         desc_len = sizeof(union e1000_adv_rx_desc);
1722
1723         /* Round up to nearest 4K */
1724         rx_ring->size = rx_ring->count * desc_len;
1725         rx_ring->size = ALIGN(rx_ring->size, 4096);
1726
1727         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1728                                              &rx_ring->dma);
1729
1730         if (!rx_ring->desc)
1731                 goto err;
1732
1733         rx_ring->next_to_clean = 0;
1734         rx_ring->next_to_use = 0;
1735
1736         rx_ring->adapter = adapter;
1737
1738         return 0;
1739
1740 err:
1741         vfree(rx_ring->buffer_info);
1742         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1743                 "the receive descriptor ring\n");
1744         return -ENOMEM;
1745 }
1746
1747 /**
1748  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1749  *                                (Descriptors) for all queues
1750  * @adapter: board private structure
1751  *
1752  * Return 0 on success, negative on failure
1753  **/
1754 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1755 {
1756         int i, err = 0;
1757
1758         for (i = 0; i < adapter->num_rx_queues; i++) {
1759                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1760                 if (err) {
1761                         dev_err(&adapter->pdev->dev,
1762                                 "Allocation for Rx Queue %u failed\n", i);
1763                         for (i--; i >= 0; i--)
1764                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1765                         break;
1766                 }
1767         }
1768
1769         return err;
1770 }
1771
1772 /**
1773  * igb_setup_rctl - configure the receive control registers
1774  * @adapter: Board private structure
1775  **/
1776 static void igb_setup_rctl(struct igb_adapter *adapter)
1777 {
1778         struct e1000_hw *hw = &adapter->hw;
1779         u32 rctl;
1780         u32 srrctl = 0;
1781         int i, j;
1782
1783         rctl = rd32(E1000_RCTL);
1784
1785         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1786         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1787
1788         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1789                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1790
1791         /*
1792          * enable stripping of CRC. It's unlikely this will break BMC
1793          * redirection as it did with e1000. Newer features require
1794          * that the HW strips the CRC.
1795         */
1796         rctl |= E1000_RCTL_SECRC;
1797
1798         /*
1799          * disable store bad packets and clear size bits.
1800          */
1801         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1802
1803         /* enable LPE when to prevent packets larger than max_frame_size */
1804                 rctl |= E1000_RCTL_LPE;
1805
1806         /* Setup buffer sizes */
1807         switch (adapter->rx_buffer_len) {
1808         case IGB_RXBUFFER_256:
1809                 rctl |= E1000_RCTL_SZ_256;
1810                 break;
1811         case IGB_RXBUFFER_512:
1812                 rctl |= E1000_RCTL_SZ_512;
1813                 break;
1814         default:
1815                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1816                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1817                 break;
1818         }
1819
1820         /* 82575 and greater support packet-split where the protocol
1821          * header is placed in skb->data and the packet data is
1822          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1823          * In the case of a non-split, skb->data is linearly filled,
1824          * followed by the page buffers.  Therefore, skb->data is
1825          * sized to hold the largest protocol header.
1826          */
1827         /* allocations using alloc_page take too long for regular MTU
1828          * so only enable packet split for jumbo frames */
1829         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1830                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1831                 srrctl |= adapter->rx_ps_hdr_size <<
1832                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1833                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1834         } else {
1835                 adapter->rx_ps_hdr_size = 0;
1836                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1837         }
1838
1839         for (i = 0; i < adapter->num_rx_queues; i++) {
1840                 j = adapter->rx_ring[i].reg_idx;
1841                 wr32(E1000_SRRCTL(j), srrctl);
1842         }
1843
1844         wr32(E1000_RCTL, rctl);
1845 }
1846
1847 /**
1848  * igb_configure_rx - Configure receive Unit after Reset
1849  * @adapter: board private structure
1850  *
1851  * Configure the Rx unit of the MAC after a reset.
1852  **/
1853 static void igb_configure_rx(struct igb_adapter *adapter)
1854 {
1855         u64 rdba;
1856         struct e1000_hw *hw = &adapter->hw;
1857         u32 rctl, rxcsum;
1858         u32 rxdctl;
1859         int i, j;
1860
1861         /* disable receives while setting up the descriptors */
1862         rctl = rd32(E1000_RCTL);
1863         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1864         wrfl();
1865         mdelay(10);
1866
1867         if (adapter->itr_setting > 3)
1868                 wr32(E1000_ITR, adapter->itr);
1869
1870         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1871          * the Base and Length of the Rx Descriptor Ring */
1872         for (i = 0; i < adapter->num_rx_queues; i++) {
1873                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1874                 j = ring->reg_idx;
1875                 rdba = ring->dma;
1876                 wr32(E1000_RDBAL(j),
1877                                 rdba & 0x00000000ffffffffULL);
1878                 wr32(E1000_RDBAH(j), rdba >> 32);
1879                 wr32(E1000_RDLEN(j),
1880                                ring->count * sizeof(union e1000_adv_rx_desc));
1881
1882                 ring->head = E1000_RDH(j);
1883                 ring->tail = E1000_RDT(j);
1884                 writel(0, hw->hw_addr + ring->tail);
1885                 writel(0, hw->hw_addr + ring->head);
1886
1887                 rxdctl = rd32(E1000_RXDCTL(j));
1888                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1889                 rxdctl &= 0xFFF00000;
1890                 rxdctl |= IGB_RX_PTHRESH;
1891                 rxdctl |= IGB_RX_HTHRESH << 8;
1892                 rxdctl |= IGB_RX_WTHRESH << 16;
1893                 wr32(E1000_RXDCTL(j), rxdctl);
1894         }
1895
1896         if (adapter->num_rx_queues > 1) {
1897                 u32 random[10];
1898                 u32 mrqc;
1899                 u32 j, shift;
1900                 union e1000_reta {
1901                         u32 dword;
1902                         u8  bytes[4];
1903                 } reta;
1904
1905                 get_random_bytes(&random[0], 40);
1906
1907                 if (hw->mac.type >= e1000_82576)
1908                         shift = 0;
1909                 else
1910                         shift = 6;
1911                 for (j = 0; j < (32 * 4); j++) {
1912                         reta.bytes[j & 3] =
1913                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1914                         if ((j & 3) == 3)
1915                                 writel(reta.dword,
1916                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1917                 }
1918                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1919
1920                 /* Fill out hash function seeds */
1921                 for (j = 0; j < 10; j++)
1922                         array_wr32(E1000_RSSRK(0), j, random[j]);
1923
1924                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1925                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1926                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1927                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1928                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1929                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1930                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1931                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1932
1933
1934                 wr32(E1000_MRQC, mrqc);
1935
1936                 /* Multiqueue and raw packet checksumming are mutually
1937                  * exclusive.  Note that this not the same as TCP/IP
1938                  * checksumming, which works fine. */
1939                 rxcsum = rd32(E1000_RXCSUM);
1940                 rxcsum |= E1000_RXCSUM_PCSD;
1941                 wr32(E1000_RXCSUM, rxcsum);
1942         } else {
1943                 /* Enable Receive Checksum Offload for TCP and UDP */
1944                 rxcsum = rd32(E1000_RXCSUM);
1945                 if (adapter->rx_csum) {
1946                         rxcsum |= E1000_RXCSUM_TUOFL;
1947
1948                         /* Enable IPv4 payload checksum for UDP fragments
1949                          * Must be used in conjunction with packet-split. */
1950                         if (adapter->rx_ps_hdr_size)
1951                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1952                 } else {
1953                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1954                         /* don't need to clear IPPCSE as it defaults to 0 */
1955                 }
1956                 wr32(E1000_RXCSUM, rxcsum);
1957         }
1958
1959         if (adapter->vlgrp)
1960                 wr32(E1000_RLPML,
1961                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1962         else
1963                 wr32(E1000_RLPML, adapter->max_frame_size);
1964
1965         /* Enable Receives */
1966         wr32(E1000_RCTL, rctl);
1967 }
1968
1969 /**
1970  * igb_free_tx_resources - Free Tx Resources per Queue
1971  * @tx_ring: Tx descriptor ring for a specific queue
1972  *
1973  * Free all transmit software resources
1974  **/
1975 void igb_free_tx_resources(struct igb_ring *tx_ring)
1976 {
1977         struct pci_dev *pdev = tx_ring->adapter->pdev;
1978
1979         igb_clean_tx_ring(tx_ring);
1980
1981         vfree(tx_ring->buffer_info);
1982         tx_ring->buffer_info = NULL;
1983
1984         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1985
1986         tx_ring->desc = NULL;
1987 }
1988
1989 /**
1990  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1991  * @adapter: board private structure
1992  *
1993  * Free all transmit software resources
1994  **/
1995 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1996 {
1997         int i;
1998
1999         for (i = 0; i < adapter->num_tx_queues; i++)
2000                 igb_free_tx_resources(&adapter->tx_ring[i]);
2001 }
2002
2003 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2004                                            struct igb_buffer *buffer_info)
2005 {
2006         if (buffer_info->dma) {
2007                 pci_unmap_page(adapter->pdev,
2008                                 buffer_info->dma,
2009                                 buffer_info->length,
2010                                 PCI_DMA_TODEVICE);
2011                 buffer_info->dma = 0;
2012         }
2013         if (buffer_info->skb) {
2014                 dev_kfree_skb_any(buffer_info->skb);
2015                 buffer_info->skb = NULL;
2016         }
2017         buffer_info->time_stamp = 0;
2018         /* buffer_info must be completely set up in the transmit path */
2019 }
2020
2021 /**
2022  * igb_clean_tx_ring - Free Tx Buffers
2023  * @tx_ring: ring to be cleaned
2024  **/
2025 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2026 {
2027         struct igb_adapter *adapter = tx_ring->adapter;
2028         struct igb_buffer *buffer_info;
2029         unsigned long size;
2030         unsigned int i;
2031
2032         if (!tx_ring->buffer_info)
2033                 return;
2034         /* Free all the Tx ring sk_buffs */
2035
2036         for (i = 0; i < tx_ring->count; i++) {
2037                 buffer_info = &tx_ring->buffer_info[i];
2038                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2039         }
2040
2041         size = sizeof(struct igb_buffer) * tx_ring->count;
2042         memset(tx_ring->buffer_info, 0, size);
2043
2044         /* Zero out the descriptor ring */
2045
2046         memset(tx_ring->desc, 0, tx_ring->size);
2047
2048         tx_ring->next_to_use = 0;
2049         tx_ring->next_to_clean = 0;
2050
2051         writel(0, adapter->hw.hw_addr + tx_ring->head);
2052         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2053 }
2054
2055 /**
2056  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2057  * @adapter: board private structure
2058  **/
2059 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2060 {
2061         int i;
2062
2063         for (i = 0; i < adapter->num_tx_queues; i++)
2064                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2065 }
2066
2067 /**
2068  * igb_free_rx_resources - Free Rx Resources
2069  * @rx_ring: ring to clean the resources from
2070  *
2071  * Free all receive software resources
2072  **/
2073 void igb_free_rx_resources(struct igb_ring *rx_ring)
2074 {
2075         struct pci_dev *pdev = rx_ring->adapter->pdev;
2076
2077         igb_clean_rx_ring(rx_ring);
2078
2079         vfree(rx_ring->buffer_info);
2080         rx_ring->buffer_info = NULL;
2081
2082         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2083
2084         rx_ring->desc = NULL;
2085 }
2086
2087 /**
2088  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2089  * @adapter: board private structure
2090  *
2091  * Free all receive software resources
2092  **/
2093 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2094 {
2095         int i;
2096
2097         for (i = 0; i < adapter->num_rx_queues; i++)
2098                 igb_free_rx_resources(&adapter->rx_ring[i]);
2099 }
2100
2101 /**
2102  * igb_clean_rx_ring - Free Rx Buffers per Queue
2103  * @rx_ring: ring to free buffers from
2104  **/
2105 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2106 {
2107         struct igb_adapter *adapter = rx_ring->adapter;
2108         struct igb_buffer *buffer_info;
2109         struct pci_dev *pdev = adapter->pdev;
2110         unsigned long size;
2111         unsigned int i;
2112
2113         if (!rx_ring->buffer_info)
2114                 return;
2115         /* Free all the Rx ring sk_buffs */
2116         for (i = 0; i < rx_ring->count; i++) {
2117                 buffer_info = &rx_ring->buffer_info[i];
2118                 if (buffer_info->dma) {
2119                         if (adapter->rx_ps_hdr_size)
2120                                 pci_unmap_single(pdev, buffer_info->dma,
2121                                                  adapter->rx_ps_hdr_size,
2122                                                  PCI_DMA_FROMDEVICE);
2123                         else
2124                                 pci_unmap_single(pdev, buffer_info->dma,
2125                                                  adapter->rx_buffer_len,
2126                                                  PCI_DMA_FROMDEVICE);
2127                         buffer_info->dma = 0;
2128                 }
2129
2130                 if (buffer_info->skb) {
2131                         dev_kfree_skb(buffer_info->skb);
2132                         buffer_info->skb = NULL;
2133                 }
2134                 if (buffer_info->page) {
2135                         if (buffer_info->page_dma)
2136                                 pci_unmap_page(pdev, buffer_info->page_dma,
2137                                                PAGE_SIZE / 2,
2138                                                PCI_DMA_FROMDEVICE);
2139                         put_page(buffer_info->page);
2140                         buffer_info->page = NULL;
2141                         buffer_info->page_dma = 0;
2142                         buffer_info->page_offset = 0;
2143                 }
2144         }
2145
2146         size = sizeof(struct igb_buffer) * rx_ring->count;
2147         memset(rx_ring->buffer_info, 0, size);
2148
2149         /* Zero out the descriptor ring */
2150         memset(rx_ring->desc, 0, rx_ring->size);
2151
2152         rx_ring->next_to_clean = 0;
2153         rx_ring->next_to_use = 0;
2154
2155         writel(0, adapter->hw.hw_addr + rx_ring->head);
2156         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2157 }
2158
2159 /**
2160  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2161  * @adapter: board private structure
2162  **/
2163 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2164 {
2165         int i;
2166
2167         for (i = 0; i < adapter->num_rx_queues; i++)
2168                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2169 }
2170
2171 /**
2172  * igb_set_mac - Change the Ethernet Address of the NIC
2173  * @netdev: network interface device structure
2174  * @p: pointer to an address structure
2175  *
2176  * Returns 0 on success, negative on failure
2177  **/
2178 static int igb_set_mac(struct net_device *netdev, void *p)
2179 {
2180         struct igb_adapter *adapter = netdev_priv(netdev);
2181         struct sockaddr *addr = p;
2182
2183         if (!is_valid_ether_addr(addr->sa_data))
2184                 return -EADDRNOTAVAIL;
2185
2186         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2187         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2188
2189         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2190
2191         return 0;
2192 }
2193
2194 /**
2195  * igb_set_multi - Multicast and Promiscuous mode set
2196  * @netdev: network interface device structure
2197  *
2198  * The set_multi entry point is called whenever the multicast address
2199  * list or the network interface flags are updated.  This routine is
2200  * responsible for configuring the hardware for proper multicast,
2201  * promiscuous mode, and all-multi behavior.
2202  **/
2203 static void igb_set_multi(struct net_device *netdev)
2204 {
2205         struct igb_adapter *adapter = netdev_priv(netdev);
2206         struct e1000_hw *hw = &adapter->hw;
2207         struct e1000_mac_info *mac = &hw->mac;
2208         struct dev_mc_list *mc_ptr;
2209         u8  *mta_list;
2210         u32 rctl;
2211         int i;
2212
2213         /* Check for Promiscuous and All Multicast modes */
2214
2215         rctl = rd32(E1000_RCTL);
2216
2217         if (netdev->flags & IFF_PROMISC) {
2218                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2219                 rctl &= ~E1000_RCTL_VFE;
2220         } else {
2221                 if (netdev->flags & IFF_ALLMULTI) {
2222                         rctl |= E1000_RCTL_MPE;
2223                         rctl &= ~E1000_RCTL_UPE;
2224                 } else
2225                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2226                 rctl |= E1000_RCTL_VFE;
2227         }
2228         wr32(E1000_RCTL, rctl);
2229
2230         if (!netdev->mc_count) {
2231                 /* nothing to program, so clear mc list */
2232                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2233                                           mac->rar_entry_count);
2234                 return;
2235         }
2236
2237         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2238         if (!mta_list)
2239                 return;
2240
2241         /* The shared function expects a packed array of only addresses. */
2242         mc_ptr = netdev->mc_list;
2243
2244         for (i = 0; i < netdev->mc_count; i++) {
2245                 if (!mc_ptr)
2246                         break;
2247                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2248                 mc_ptr = mc_ptr->next;
2249         }
2250         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2251                                       mac->rar_entry_count);
2252         kfree(mta_list);
2253 }
2254
2255 /* Need to wait a few seconds after link up to get diagnostic information from
2256  * the phy */
2257 static void igb_update_phy_info(unsigned long data)
2258 {
2259         struct igb_adapter *adapter = (struct igb_adapter *) data;
2260         igb_get_phy_info(&adapter->hw);
2261 }
2262
2263 /**
2264  * igb_has_link - check shared code for link and determine up/down
2265  * @adapter: pointer to driver private info
2266  **/
2267 static bool igb_has_link(struct igb_adapter *adapter)
2268 {
2269         struct e1000_hw *hw = &adapter->hw;
2270         bool link_active = false;
2271         s32 ret_val = 0;
2272
2273         /* get_link_status is set on LSC (link status) interrupt or
2274          * rx sequence error interrupt.  get_link_status will stay
2275          * false until the e1000_check_for_link establishes link
2276          * for copper adapters ONLY
2277          */
2278         switch (hw->phy.media_type) {
2279         case e1000_media_type_copper:
2280                 if (hw->mac.get_link_status) {
2281                         ret_val = hw->mac.ops.check_for_link(hw);
2282                         link_active = !hw->mac.get_link_status;
2283                 } else {
2284                         link_active = true;
2285                 }
2286                 break;
2287         case e1000_media_type_fiber:
2288                 ret_val = hw->mac.ops.check_for_link(hw);
2289                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2290                 break;
2291         case e1000_media_type_internal_serdes:
2292                 ret_val = hw->mac.ops.check_for_link(hw);
2293                 link_active = hw->mac.serdes_has_link;
2294                 break;
2295         default:
2296         case e1000_media_type_unknown:
2297                 break;
2298         }
2299
2300         return link_active;
2301 }
2302
2303 /**
2304  * igb_watchdog - Timer Call-back
2305  * @data: pointer to adapter cast into an unsigned long
2306  **/
2307 static void igb_watchdog(unsigned long data)
2308 {
2309         struct igb_adapter *adapter = (struct igb_adapter *)data;
2310         /* Do the rest outside of interrupt context */
2311         schedule_work(&adapter->watchdog_task);
2312 }
2313
2314 static void igb_watchdog_task(struct work_struct *work)
2315 {
2316         struct igb_adapter *adapter = container_of(work,
2317                                         struct igb_adapter, watchdog_task);
2318         struct e1000_hw *hw = &adapter->hw;
2319
2320         struct net_device *netdev = adapter->netdev;
2321         struct igb_ring *tx_ring = adapter->tx_ring;
2322         struct e1000_mac_info *mac = &adapter->hw.mac;
2323         u32 link;
2324         u32 eics = 0;
2325         s32 ret_val;
2326         int i;
2327
2328         link = igb_has_link(adapter);
2329         if ((netif_carrier_ok(netdev)) && link)
2330                 goto link_up;
2331
2332         if (link) {
2333                 if (!netif_carrier_ok(netdev)) {
2334                         u32 ctrl;
2335                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2336                                                    &adapter->link_speed,
2337                                                    &adapter->link_duplex);
2338
2339                         ctrl = rd32(E1000_CTRL);
2340                         /* Links status message must follow this format */
2341                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2342                                  "Flow Control: %s\n",
2343                                  netdev->name,
2344                                  adapter->link_speed,
2345                                  adapter->link_duplex == FULL_DUPLEX ?
2346                                  "Full Duplex" : "Half Duplex",
2347                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2348                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2349                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2350                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2351
2352                         /* tweak tx_queue_len according to speed/duplex and
2353                          * adjust the timeout factor */
2354                         netdev->tx_queue_len = adapter->tx_queue_len;
2355                         adapter->tx_timeout_factor = 1;
2356                         switch (adapter->link_speed) {
2357                         case SPEED_10:
2358                                 netdev->tx_queue_len = 10;
2359                                 adapter->tx_timeout_factor = 14;
2360                                 break;
2361                         case SPEED_100:
2362                                 netdev->tx_queue_len = 100;
2363                                 /* maybe add some timeout factor ? */
2364                                 break;
2365                         }
2366
2367                         netif_carrier_on(netdev);
2368                         netif_tx_wake_all_queues(netdev);
2369
2370                         if (!test_bit(__IGB_DOWN, &adapter->state))
2371                                 mod_timer(&adapter->phy_info_timer,
2372                                           round_jiffies(jiffies + 2 * HZ));
2373                 }
2374         } else {
2375                 if (netif_carrier_ok(netdev)) {
2376                         adapter->link_speed = 0;
2377                         adapter->link_duplex = 0;
2378                         /* Links status message must follow this format */
2379                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2380                                netdev->name);
2381                         netif_carrier_off(netdev);
2382                         netif_tx_stop_all_queues(netdev);
2383                         if (!test_bit(__IGB_DOWN, &adapter->state))
2384                                 mod_timer(&adapter->phy_info_timer,
2385                                           round_jiffies(jiffies + 2 * HZ));
2386                 }
2387         }
2388
2389 link_up:
2390         igb_update_stats(adapter);
2391
2392         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2393         adapter->tpt_old = adapter->stats.tpt;
2394         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2395         adapter->colc_old = adapter->stats.colc;
2396
2397         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2398         adapter->gorc_old = adapter->stats.gorc;
2399         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2400         adapter->gotc_old = adapter->stats.gotc;
2401
2402         igb_update_adaptive(&adapter->hw);
2403
2404         if (!netif_carrier_ok(netdev)) {
2405                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2406                         /* We've lost link, so the controller stops DMA,
2407                          * but we've got queued Tx work that's never going
2408                          * to get done, so reset controller to flush Tx.
2409                          * (Do the reset outside of interrupt context). */
2410                         adapter->tx_timeout_count++;
2411                         schedule_work(&adapter->reset_task);
2412                 }
2413         }
2414
2415         /* Cause software interrupt to ensure rx ring is cleaned */
2416         if (adapter->msix_entries) {
2417                 for (i = 0; i < adapter->num_rx_queues; i++)
2418                         eics |= adapter->rx_ring[i].eims_value;
2419                 wr32(E1000_EICS, eics);
2420         } else {
2421                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2422         }
2423
2424         /* Force detection of hung controller every watchdog period */
2425         tx_ring->detect_tx_hung = true;
2426
2427         /* Reset the timer */
2428         if (!test_bit(__IGB_DOWN, &adapter->state))
2429                 mod_timer(&adapter->watchdog_timer,
2430                           round_jiffies(jiffies + 2 * HZ));
2431 }
2432
2433 enum latency_range {
2434         lowest_latency = 0,
2435         low_latency = 1,
2436         bulk_latency = 2,
2437         latency_invalid = 255
2438 };
2439
2440
2441 /**
2442  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2443  *
2444  *      Stores a new ITR value based on strictly on packet size.  This
2445  *      algorithm is less sophisticated than that used in igb_update_itr,
2446  *      due to the difficulty of synchronizing statistics across multiple
2447  *      receive rings.  The divisors and thresholds used by this fuction
2448  *      were determined based on theoretical maximum wire speed and testing
2449  *      data, in order to minimize response time while increasing bulk
2450  *      throughput.
2451  *      This functionality is controlled by the InterruptThrottleRate module
2452  *      parameter (see igb_param.c)
2453  *      NOTE:  This function is called only when operating in a multiqueue
2454  *             receive environment.
2455  * @rx_ring: pointer to ring
2456  **/
2457 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2458 {
2459         int new_val = rx_ring->itr_val;
2460         int avg_wire_size = 0;
2461         struct igb_adapter *adapter = rx_ring->adapter;
2462
2463         if (!rx_ring->total_packets)
2464                 goto clear_counts; /* no packets, so don't do anything */
2465
2466         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2467          * ints/sec - ITR timer value of 120 ticks.
2468          */
2469         if (adapter->link_speed != SPEED_1000) {
2470                 new_val = 120;
2471                 goto set_itr_val;
2472         }
2473         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2474
2475         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2476         avg_wire_size += 24;
2477
2478         /* Don't starve jumbo frames */
2479         avg_wire_size = min(avg_wire_size, 3000);
2480
2481         /* Give a little boost to mid-size frames */
2482         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2483                 new_val = avg_wire_size / 3;
2484         else
2485                 new_val = avg_wire_size / 2;
2486
2487 set_itr_val:
2488         if (new_val != rx_ring->itr_val) {
2489                 rx_ring->itr_val = new_val;
2490                 rx_ring->set_itr = 1;
2491         }
2492 clear_counts:
2493         rx_ring->total_bytes = 0;
2494         rx_ring->total_packets = 0;
2495 }
2496
2497 /**
2498  * igb_update_itr - update the dynamic ITR value based on statistics
2499  *      Stores a new ITR value based on packets and byte
2500  *      counts during the last interrupt.  The advantage of per interrupt
2501  *      computation is faster updates and more accurate ITR for the current
2502  *      traffic pattern.  Constants in this function were computed
2503  *      based on theoretical maximum wire speed and thresholds were set based
2504  *      on testing data as well as attempting to minimize response time
2505  *      while increasing bulk throughput.
2506  *      this functionality is controlled by the InterruptThrottleRate module
2507  *      parameter (see igb_param.c)
2508  *      NOTE:  These calculations are only valid when operating in a single-
2509  *             queue environment.
2510  * @adapter: pointer to adapter
2511  * @itr_setting: current adapter->itr
2512  * @packets: the number of packets during this measurement interval
2513  * @bytes: the number of bytes during this measurement interval
2514  **/
2515 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2516                                    int packets, int bytes)
2517 {
2518         unsigned int retval = itr_setting;
2519
2520         if (packets == 0)
2521                 goto update_itr_done;
2522
2523         switch (itr_setting) {
2524         case lowest_latency:
2525                 /* handle TSO and jumbo frames */
2526                 if (bytes/packets > 8000)
2527                         retval = bulk_latency;
2528                 else if ((packets < 5) && (bytes > 512))
2529                         retval = low_latency;
2530                 break;
2531         case low_latency:  /* 50 usec aka 20000 ints/s */
2532                 if (bytes > 10000) {
2533                         /* this if handles the TSO accounting */
2534                         if (bytes/packets > 8000) {
2535                                 retval = bulk_latency;
2536                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2537                                 retval = bulk_latency;
2538                         } else if ((packets > 35)) {
2539                                 retval = lowest_latency;
2540                         }
2541                 } else if (bytes/packets > 2000) {
2542                         retval = bulk_latency;
2543                 } else if (packets <= 2 && bytes < 512) {
2544                         retval = lowest_latency;
2545                 }
2546                 break;
2547         case bulk_latency: /* 250 usec aka 4000 ints/s */
2548                 if (bytes > 25000) {
2549                         if (packets > 35)
2550                                 retval = low_latency;
2551                 } else if (bytes < 6000) {
2552                         retval = low_latency;
2553                 }
2554                 break;
2555         }
2556
2557 update_itr_done:
2558         return retval;
2559 }
2560
2561 static void igb_set_itr(struct igb_adapter *adapter)
2562 {
2563         u16 current_itr;
2564         u32 new_itr = adapter->itr;
2565
2566         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2567         if (adapter->link_speed != SPEED_1000) {
2568                 current_itr = 0;
2569                 new_itr = 4000;
2570                 goto set_itr_now;
2571         }
2572
2573         adapter->rx_itr = igb_update_itr(adapter,
2574                                     adapter->rx_itr,
2575                                     adapter->rx_ring->total_packets,
2576                                     adapter->rx_ring->total_bytes);
2577
2578         if (adapter->rx_ring->buddy) {
2579                 adapter->tx_itr = igb_update_itr(adapter,
2580                                             adapter->tx_itr,
2581                                             adapter->tx_ring->total_packets,
2582                                             adapter->tx_ring->total_bytes);
2583
2584                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2585         } else {
2586                 current_itr = adapter->rx_itr;
2587         }
2588
2589         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590         if (adapter->itr_setting == 3 &&
2591             current_itr == lowest_latency)
2592                 current_itr = low_latency;
2593
2594         switch (current_itr) {
2595         /* counts and packets in update_itr are dependent on these numbers */
2596         case lowest_latency:
2597                 new_itr = 70000;
2598                 break;
2599         case low_latency:
2600                 new_itr = 20000; /* aka hwitr = ~200 */
2601                 break;
2602         case bulk_latency:
2603                 new_itr = 4000;
2604                 break;
2605         default:
2606                 break;
2607         }
2608
2609 set_itr_now:
2610         adapter->rx_ring->total_bytes = 0;
2611         adapter->rx_ring->total_packets = 0;
2612         if (adapter->rx_ring->buddy) {
2613                 adapter->rx_ring->buddy->total_bytes = 0;
2614                 adapter->rx_ring->buddy->total_packets = 0;
2615         }
2616
2617         if (new_itr != adapter->itr) {
2618                 /* this attempts to bias the interrupt rate towards Bulk
2619                  * by adding intermediate steps when interrupt rate is
2620                  * increasing */
2621                 new_itr = new_itr > adapter->itr ?
2622                              min(adapter->itr + (new_itr >> 2), new_itr) :
2623                              new_itr;
2624                 /* Don't write the value here; it resets the adapter's
2625                  * internal timer, and causes us to delay far longer than
2626                  * we should between interrupts.  Instead, we write the ITR
2627                  * value at the beginning of the next interrupt so the timing
2628                  * ends up being correct.
2629                  */
2630                 adapter->itr = new_itr;
2631                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2632                 adapter->rx_ring->set_itr = 1;
2633         }
2634
2635         return;
2636 }
2637
2638
2639 #define IGB_TX_FLAGS_CSUM               0x00000001
2640 #define IGB_TX_FLAGS_VLAN               0x00000002
2641 #define IGB_TX_FLAGS_TSO                0x00000004
2642 #define IGB_TX_FLAGS_IPV4               0x00000008
2643 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2644 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2645
2646 static inline int igb_tso_adv(struct igb_adapter *adapter,
2647                               struct igb_ring *tx_ring,
2648                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2649 {
2650         struct e1000_adv_tx_context_desc *context_desc;
2651         unsigned int i;
2652         int err;
2653         struct igb_buffer *buffer_info;
2654         u32 info = 0, tu_cmd = 0;
2655         u32 mss_l4len_idx, l4len;
2656         *hdr_len = 0;
2657
2658         if (skb_header_cloned(skb)) {
2659                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2660                 if (err)
2661                         return err;
2662         }
2663
2664         l4len = tcp_hdrlen(skb);
2665         *hdr_len += l4len;
2666
2667         if (skb->protocol == htons(ETH_P_IP)) {
2668                 struct iphdr *iph = ip_hdr(skb);
2669                 iph->tot_len = 0;
2670                 iph->check = 0;
2671                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2672                                                          iph->daddr, 0,
2673                                                          IPPROTO_TCP,
2674                                                          0);
2675         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2676                 ipv6_hdr(skb)->payload_len = 0;
2677                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2678                                                        &ipv6_hdr(skb)->daddr,
2679                                                        0, IPPROTO_TCP, 0);
2680         }
2681
2682         i = tx_ring->next_to_use;
2683
2684         buffer_info = &tx_ring->buffer_info[i];
2685         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2686         /* VLAN MACLEN IPLEN */
2687         if (tx_flags & IGB_TX_FLAGS_VLAN)
2688                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2689         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2690         *hdr_len += skb_network_offset(skb);
2691         info |= skb_network_header_len(skb);
2692         *hdr_len += skb_network_header_len(skb);
2693         context_desc->vlan_macip_lens = cpu_to_le32(info);
2694
2695         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2696         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2697
2698         if (skb->protocol == htons(ETH_P_IP))
2699                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2700         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2701
2702         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2703
2704         /* MSS L4LEN IDX */
2705         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2706         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2707
2708         /* Context index must be unique per ring. */
2709         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2710                 mss_l4len_idx |= tx_ring->queue_index << 4;
2711
2712         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2713         context_desc->seqnum_seed = 0;
2714
2715         buffer_info->time_stamp = jiffies;
2716         buffer_info->next_to_watch = i;
2717         buffer_info->dma = 0;
2718         i++;
2719         if (i == tx_ring->count)
2720                 i = 0;
2721
2722         tx_ring->next_to_use = i;
2723
2724         return true;
2725 }
2726
2727 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2728                                         struct igb_ring *tx_ring,
2729                                         struct sk_buff *skb, u32 tx_flags)
2730 {
2731         struct e1000_adv_tx_context_desc *context_desc;
2732         unsigned int i;
2733         struct igb_buffer *buffer_info;
2734         u32 info = 0, tu_cmd = 0;
2735
2736         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2737             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2738                 i = tx_ring->next_to_use;
2739                 buffer_info = &tx_ring->buffer_info[i];
2740                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2741
2742                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2743                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2744                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2745                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2746                         info |= skb_network_header_len(skb);
2747
2748                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2749
2750                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2751
2752                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753                         switch (skb->protocol) {
2754                         case cpu_to_be16(ETH_P_IP):
2755                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2756                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2757                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2758                                 break;
2759                         case cpu_to_be16(ETH_P_IPV6):
2760                                 /* XXX what about other V6 headers?? */
2761                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2762                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2763                                 break;
2764                         default:
2765                                 if (unlikely(net_ratelimit()))
2766                                         dev_warn(&adapter->pdev->dev,
2767                                             "partial checksum but proto=%x!\n",
2768                                             skb->protocol);
2769                                 break;
2770                         }
2771                 }
2772
2773                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2774                 context_desc->seqnum_seed = 0;
2775                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2776                         context_desc->mss_l4len_idx =
2777                                 cpu_to_le32(tx_ring->queue_index << 4);
2778
2779                 buffer_info->time_stamp = jiffies;
2780                 buffer_info->next_to_watch = i;
2781                 buffer_info->dma = 0;
2782
2783                 i++;
2784                 if (i == tx_ring->count)
2785                         i = 0;
2786                 tx_ring->next_to_use = i;
2787
2788                 return true;
2789         }
2790
2791
2792         return false;
2793 }
2794
2795 #define IGB_MAX_TXD_PWR 16
2796 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2797
2798 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2799                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2800                                  unsigned int first)
2801 {
2802         struct igb_buffer *buffer_info;
2803         unsigned int len = skb_headlen(skb);
2804         unsigned int count = 0, i;
2805         unsigned int f;
2806
2807         i = tx_ring->next_to_use;
2808
2809         buffer_info = &tx_ring->buffer_info[i];
2810         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2811         buffer_info->length = len;
2812         /* set time_stamp *before* dma to help avoid a possible race */
2813         buffer_info->time_stamp = jiffies;
2814         buffer_info->next_to_watch = i;
2815         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2816                                           PCI_DMA_TODEVICE);
2817         count++;
2818         i++;
2819         if (i == tx_ring->count)
2820                 i = 0;
2821
2822         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2823                 struct skb_frag_struct *frag;
2824
2825                 frag = &skb_shinfo(skb)->frags[f];
2826                 len = frag->size;
2827
2828                 buffer_info = &tx_ring->buffer_info[i];
2829                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2830                 buffer_info->length = len;
2831                 buffer_info->time_stamp = jiffies;
2832                 buffer_info->next_to_watch = i;
2833                 buffer_info->dma = pci_map_page(adapter->pdev,
2834                                                 frag->page,
2835                                                 frag->page_offset,
2836                                                 len,
2837                                                 PCI_DMA_TODEVICE);
2838
2839                 count++;
2840                 i++;
2841                 if (i == tx_ring->count)
2842                         i = 0;
2843         }
2844
2845         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2846         tx_ring->buffer_info[i].skb = skb;
2847         tx_ring->buffer_info[first].next_to_watch = i;
2848
2849         return count;
2850 }
2851
2852 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2853                                     struct igb_ring *tx_ring,
2854                                     int tx_flags, int count, u32 paylen,
2855                                     u8 hdr_len)
2856 {
2857         union e1000_adv_tx_desc *tx_desc = NULL;
2858         struct igb_buffer *buffer_info;
2859         u32 olinfo_status = 0, cmd_type_len;
2860         unsigned int i;
2861
2862         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2863                         E1000_ADVTXD_DCMD_DEXT);
2864
2865         if (tx_flags & IGB_TX_FLAGS_VLAN)
2866                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2867
2868         if (tx_flags & IGB_TX_FLAGS_TSO) {
2869                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2870
2871                 /* insert tcp checksum */
2872                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2873
2874                 /* insert ip checksum */
2875                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2876                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2877
2878         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2879                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2880         }
2881
2882         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2883             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2884                          IGB_TX_FLAGS_VLAN)))
2885                 olinfo_status |= tx_ring->queue_index << 4;
2886
2887         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2888
2889         i = tx_ring->next_to_use;
2890         while (count--) {
2891                 buffer_info = &tx_ring->buffer_info[i];
2892                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2893                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2894                 tx_desc->read.cmd_type_len =
2895                         cpu_to_le32(cmd_type_len | buffer_info->length);
2896                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2897                 i++;
2898                 if (i == tx_ring->count)
2899                         i = 0;
2900         }
2901
2902         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2903         /* Force memory writes to complete before letting h/w
2904          * know there are new descriptors to fetch.  (Only
2905          * applicable for weak-ordered memory model archs,
2906          * such as IA-64). */
2907         wmb();
2908
2909         tx_ring->next_to_use = i;
2910         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2911         /* we need this if more than one processor can write to our tail
2912          * at a time, it syncronizes IO on IA64/Altix systems */
2913         mmiowb();
2914 }
2915
2916 static int __igb_maybe_stop_tx(struct net_device *netdev,
2917                                struct igb_ring *tx_ring, int size)
2918 {
2919         struct igb_adapter *adapter = netdev_priv(netdev);
2920
2921         netif_stop_subqueue(netdev, tx_ring->queue_index);
2922
2923         /* Herbert's original patch had:
2924          *  smp_mb__after_netif_stop_queue();
2925          * but since that doesn't exist yet, just open code it. */
2926         smp_mb();
2927
2928         /* We need to check again in a case another CPU has just
2929          * made room available. */
2930         if (IGB_DESC_UNUSED(tx_ring) < size)
2931                 return -EBUSY;
2932
2933         /* A reprieve! */
2934         netif_wake_subqueue(netdev, tx_ring->queue_index);
2935         ++adapter->restart_queue;
2936         return 0;
2937 }
2938
2939 static int igb_maybe_stop_tx(struct net_device *netdev,
2940                              struct igb_ring *tx_ring, int size)
2941 {
2942         if (IGB_DESC_UNUSED(tx_ring) >= size)
2943                 return 0;
2944         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2945 }
2946
2947 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2948
2949 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2950                                    struct net_device *netdev,
2951                                    struct igb_ring *tx_ring)
2952 {
2953         struct igb_adapter *adapter = netdev_priv(netdev);
2954         unsigned int first;
2955         unsigned int tx_flags = 0;
2956         unsigned int len;
2957         u8 hdr_len = 0;
2958         int tso = 0;
2959
2960         len = skb_headlen(skb);
2961
2962         if (test_bit(__IGB_DOWN, &adapter->state)) {
2963                 dev_kfree_skb_any(skb);
2964                 return NETDEV_TX_OK;
2965         }
2966
2967         if (skb->len <= 0) {
2968                 dev_kfree_skb_any(skb);
2969                 return NETDEV_TX_OK;
2970         }
2971
2972         /* need: 1 descriptor per page,
2973          *       + 2 desc gap to keep tail from touching head,
2974          *       + 1 desc for skb->data,
2975          *       + 1 desc for context descriptor,
2976          * otherwise try next time */
2977         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2978                 /* this is a hard error */
2979                 return NETDEV_TX_BUSY;
2980         }
2981         skb_orphan(skb);
2982
2983         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2984                 tx_flags |= IGB_TX_FLAGS_VLAN;
2985                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2986         }
2987
2988         if (skb->protocol == htons(ETH_P_IP))
2989                 tx_flags |= IGB_TX_FLAGS_IPV4;
2990
2991         first = tx_ring->next_to_use;
2992
2993         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2994                                               &hdr_len) : 0;
2995
2996         if (tso < 0) {
2997                 dev_kfree_skb_any(skb);
2998                 return NETDEV_TX_OK;
2999         }
3000
3001         if (tso)
3002                 tx_flags |= IGB_TX_FLAGS_TSO;
3003         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3004                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3005                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3006
3007         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3008                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3009                          skb->len, hdr_len);
3010
3011         netdev->trans_start = jiffies;
3012
3013         /* Make sure there is space in the ring for the next send. */
3014         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3015
3016         return NETDEV_TX_OK;
3017 }
3018
3019 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3020 {
3021         struct igb_adapter *adapter = netdev_priv(netdev);
3022         struct igb_ring *tx_ring;
3023
3024         int r_idx = 0;
3025         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3026         tx_ring = adapter->multi_tx_table[r_idx];
3027
3028         /* This goes back to the question of how to logically map a tx queue
3029          * to a flow.  Right now, performance is impacted slightly negatively
3030          * if using multiple tx queues.  If the stack breaks away from a
3031          * single qdisc implementation, we can look at this again. */
3032         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3033 }
3034
3035 /**
3036  * igb_tx_timeout - Respond to a Tx Hang
3037  * @netdev: network interface device structure
3038  **/
3039 static void igb_tx_timeout(struct net_device *netdev)
3040 {
3041         struct igb_adapter *adapter = netdev_priv(netdev);
3042         struct e1000_hw *hw = &adapter->hw;
3043
3044         /* Do the reset outside of interrupt context */
3045         adapter->tx_timeout_count++;
3046         schedule_work(&adapter->reset_task);
3047         wr32(E1000_EICS, adapter->eims_enable_mask &
3048                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3049 }
3050
3051 static void igb_reset_task(struct work_struct *work)
3052 {
3053         struct igb_adapter *adapter;
3054         adapter = container_of(work, struct igb_adapter, reset_task);
3055
3056         igb_reinit_locked(adapter);
3057 }
3058
3059 /**
3060  * igb_get_stats - Get System Network Statistics
3061  * @netdev: network interface device structure
3062  *
3063  * Returns the address of the device statistics structure.
3064  * The statistics are actually updated from the timer callback.
3065  **/
3066 static struct net_device_stats *
3067 igb_get_stats(struct net_device *netdev)
3068 {
3069         struct igb_adapter *adapter = netdev_priv(netdev);
3070
3071         /* only return the current stats */
3072         return &adapter->net_stats;
3073 }
3074
3075 /**
3076  * igb_change_mtu - Change the Maximum Transfer Unit
3077  * @netdev: network interface device structure
3078  * @new_mtu: new value for maximum frame size
3079  *
3080  * Returns 0 on success, negative on failure
3081  **/
3082 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3083 {
3084         struct igb_adapter *adapter = netdev_priv(netdev);
3085         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3086
3087         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3088             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3089                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3090                 return -EINVAL;
3091         }
3092
3093 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3094         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3095                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3096                 return -EINVAL;
3097         }
3098
3099         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3100                 msleep(1);
3101         /* igb_down has a dependency on max_frame_size */
3102         adapter->max_frame_size = max_frame;
3103         if (netif_running(netdev))
3104                 igb_down(adapter);
3105
3106         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3107          * means we reserve 2 more, this pushes us to allocate from the next
3108          * larger slab size.
3109          * i.e. RXBUFFER_2048 --> size-4096 slab
3110          */
3111
3112         if (max_frame <= IGB_RXBUFFER_256)
3113                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3114         else if (max_frame <= IGB_RXBUFFER_512)
3115                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3116         else if (max_frame <= IGB_RXBUFFER_1024)
3117                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3118         else if (max_frame <= IGB_RXBUFFER_2048)
3119                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3120         else
3121 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3122                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3123 #else
3124                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3125 #endif
3126         /* adjust allocation if LPE protects us, and we aren't using SBP */
3127         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3128              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3129                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3130
3131         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3132                  netdev->mtu, new_mtu);
3133         netdev->mtu = new_mtu;
3134
3135         if (netif_running(netdev))
3136                 igb_up(adapter);
3137         else
3138                 igb_reset(adapter);
3139
3140         clear_bit(__IGB_RESETTING, &adapter->state);
3141
3142         return 0;
3143 }
3144
3145 /**
3146  * igb_update_stats - Update the board statistics counters
3147  * @adapter: board private structure
3148  **/
3149
3150 void igb_update_stats(struct igb_adapter *adapter)
3151 {
3152         struct e1000_hw *hw = &adapter->hw;
3153         struct pci_dev *pdev = adapter->pdev;
3154         u16 phy_tmp;
3155
3156 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3157
3158         /*
3159          * Prevent stats update while adapter is being reset, or if the pci
3160          * connection is down.
3161          */
3162         if (adapter->link_speed == 0)
3163                 return;
3164         if (pci_channel_offline(pdev))
3165                 return;
3166
3167         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3168         adapter->stats.gprc += rd32(E1000_GPRC);
3169         adapter->stats.gorc += rd32(E1000_GORCL);
3170         rd32(E1000_GORCH); /* clear GORCL */
3171         adapter->stats.bprc += rd32(E1000_BPRC);
3172         adapter->stats.mprc += rd32(E1000_MPRC);
3173         adapter->stats.roc += rd32(E1000_ROC);
3174
3175         adapter->stats.prc64 += rd32(E1000_PRC64);
3176         adapter->stats.prc127 += rd32(E1000_PRC127);
3177         adapter->stats.prc255 += rd32(E1000_PRC255);
3178         adapter->stats.prc511 += rd32(E1000_PRC511);
3179         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3180         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3181         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3182         adapter->stats.sec += rd32(E1000_SEC);
3183
3184         adapter->stats.mpc += rd32(E1000_MPC);
3185         adapter->stats.scc += rd32(E1000_SCC);
3186         adapter->stats.ecol += rd32(E1000_ECOL);
3187         adapter->stats.mcc += rd32(E1000_MCC);
3188         adapter->stats.latecol += rd32(E1000_LATECOL);
3189         adapter->stats.dc += rd32(E1000_DC);
3190         adapter->stats.rlec += rd32(E1000_RLEC);
3191         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3192         adapter->stats.xontxc += rd32(E1000_XONTXC);
3193         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3194         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3195         adapter->stats.fcruc += rd32(E1000_FCRUC);
3196         adapter->stats.gptc += rd32(E1000_GPTC);
3197         adapter->stats.gotc += rd32(E1000_GOTCL);
3198         rd32(E1000_GOTCH); /* clear GOTCL */
3199         adapter->stats.rnbc += rd32(E1000_RNBC);
3200         adapter->stats.ruc += rd32(E1000_RUC);
3201         adapter->stats.rfc += rd32(E1000_RFC);
3202         adapter->stats.rjc += rd32(E1000_RJC);
3203         adapter->stats.tor += rd32(E1000_TORH);
3204         adapter->stats.tot += rd32(E1000_TOTH);
3205         adapter->stats.tpr += rd32(E1000_TPR);
3206
3207         adapter->stats.ptc64 += rd32(E1000_PTC64);
3208         adapter->stats.ptc127 += rd32(E1000_PTC127);
3209         adapter->stats.ptc255 += rd32(E1000_PTC255);
3210         adapter->stats.ptc511 += rd32(E1000_PTC511);
3211         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3212         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3213
3214         adapter->stats.mptc += rd32(E1000_MPTC);
3215         adapter->stats.bptc += rd32(E1000_BPTC);
3216
3217         /* used for adaptive IFS */
3218
3219         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3220         adapter->stats.tpt += hw->mac.tx_packet_delta;
3221         hw->mac.collision_delta = rd32(E1000_COLC);
3222         adapter->stats.colc += hw->mac.collision_delta;
3223
3224         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3225         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3226         adapter->stats.tncrs += rd32(E1000_TNCRS);
3227         adapter->stats.tsctc += rd32(E1000_TSCTC);
3228         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3229
3230         adapter->stats.iac += rd32(E1000_IAC);
3231         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3232         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3233         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3234         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3235         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3236         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3237         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3238         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3239
3240         /* Fill out the OS statistics structure */
3241         adapter->net_stats.multicast = adapter->stats.mprc;
3242         adapter->net_stats.collisions = adapter->stats.colc;
3243
3244         /* Rx Errors */
3245
3246         /* RLEC on some newer hardware can be incorrect so build
3247         * our own version based on RUC and ROC */
3248         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3249                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3250                 adapter->stats.ruc + adapter->stats.roc +
3251                 adapter->stats.cexterr;
3252         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3253                                               adapter->stats.roc;
3254         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3255         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3256         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3257
3258         /* Tx Errors */
3259         adapter->net_stats.tx_errors = adapter->stats.ecol +
3260                                        adapter->stats.latecol;
3261         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3262         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3263         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3264
3265         /* Tx Dropped needs to be maintained elsewhere */
3266
3267         /* Phy Stats */
3268         if (hw->phy.media_type == e1000_media_type_copper) {
3269                 if ((adapter->link_speed == SPEED_1000) &&
3270                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3271                                               &phy_tmp))) {
3272                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3273                         adapter->phy_stats.idle_errors += phy_tmp;
3274                 }
3275         }
3276
3277         /* Management Stats */
3278         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3279         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3280         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3281 }
3282
3283
3284 static irqreturn_t igb_msix_other(int irq, void *data)
3285 {
3286         struct net_device *netdev = data;
3287         struct igb_adapter *adapter = netdev_priv(netdev);
3288         struct e1000_hw *hw = &adapter->hw;
3289         u32 icr = rd32(E1000_ICR);
3290
3291         /* reading ICR causes bit 31 of EICR to be cleared */
3292         if (!(icr & E1000_ICR_LSC))
3293                 goto no_link_interrupt;
3294         hw->mac.get_link_status = 1;
3295         /* guard against interrupt when we're going down */
3296         if (!test_bit(__IGB_DOWN, &adapter->state))
3297                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3298         
3299 no_link_interrupt:
3300         wr32(E1000_IMS, E1000_IMS_LSC);
3301         wr32(E1000_EIMS, adapter->eims_other);
3302
3303         return IRQ_HANDLED;
3304 }
3305
3306 static irqreturn_t igb_msix_tx(int irq, void *data)
3307 {
3308         struct igb_ring *tx_ring = data;
3309         struct igb_adapter *adapter = tx_ring->adapter;
3310         struct e1000_hw *hw = &adapter->hw;
3311
3312 #ifdef CONFIG_IGB_DCA
3313         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3314                 igb_update_tx_dca(tx_ring);
3315 #endif
3316         tx_ring->total_bytes = 0;
3317         tx_ring->total_packets = 0;
3318
3319         /* auto mask will automatically reenable the interrupt when we write
3320          * EICS */
3321         if (!igb_clean_tx_irq(tx_ring))
3322                 /* Ring was not completely cleaned, so fire another interrupt */
3323                 wr32(E1000_EICS, tx_ring->eims_value);
3324         else
3325                 wr32(E1000_EIMS, tx_ring->eims_value);
3326
3327         return IRQ_HANDLED;
3328 }
3329
3330 static void igb_write_itr(struct igb_ring *ring)
3331 {
3332         struct e1000_hw *hw = &ring->adapter->hw;
3333         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3334                 switch (hw->mac.type) {
3335                 case e1000_82576:
3336                         wr32(ring->itr_register,
3337                              ring->itr_val |
3338                              0x80000000);
3339                         break;
3340                 default:
3341                         wr32(ring->itr_register,
3342                              ring->itr_val |
3343                              (ring->itr_val << 16));
3344                         break;
3345                 }
3346                 ring->set_itr = 0;
3347         }
3348 }
3349
3350 static irqreturn_t igb_msix_rx(int irq, void *data)
3351 {
3352         struct igb_ring *rx_ring = data;
3353
3354         /* Write the ITR value calculated at the end of the
3355          * previous interrupt.
3356          */
3357
3358         igb_write_itr(rx_ring);
3359
3360         if (napi_schedule_prep(&rx_ring->napi))
3361                 __napi_schedule(&rx_ring->napi);
3362
3363 #ifdef CONFIG_IGB_DCA
3364         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3365                 igb_update_rx_dca(rx_ring);
3366 #endif
3367                 return IRQ_HANDLED;
3368 }
3369
3370 #ifdef CONFIG_IGB_DCA
3371 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3372 {
3373         u32 dca_rxctrl;
3374         struct igb_adapter *adapter = rx_ring->adapter;
3375         struct e1000_hw *hw = &adapter->hw;
3376         int cpu = get_cpu();
3377         int q = rx_ring->reg_idx;
3378
3379         if (rx_ring->cpu != cpu) {
3380                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3381                 if (hw->mac.type == e1000_82576) {
3382                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3383                         dca_rxctrl |= dca_get_tag(cpu) <<
3384                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3385                 } else {
3386                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3387                         dca_rxctrl |= dca_get_tag(cpu);
3388                 }
3389                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3390                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3391                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3392                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3393                 rx_ring->cpu = cpu;
3394         }
3395         put_cpu();
3396 }
3397
3398 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3399 {
3400         u32 dca_txctrl;
3401         struct igb_adapter *adapter = tx_ring->adapter;
3402         struct e1000_hw *hw = &adapter->hw;
3403         int cpu = get_cpu();
3404         int q = tx_ring->reg_idx;
3405
3406         if (tx_ring->cpu != cpu) {
3407                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3408                 if (hw->mac.type == e1000_82576) {
3409                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3410                         dca_txctrl |= dca_get_tag(cpu) <<
3411                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3412                 } else {
3413                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3414                         dca_txctrl |= dca_get_tag(cpu);
3415                 }
3416                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3417                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3418                 tx_ring->cpu = cpu;
3419         }
3420         put_cpu();
3421 }
3422
3423 static void igb_setup_dca(struct igb_adapter *adapter)
3424 {
3425         int i;
3426
3427         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3428                 return;
3429
3430         for (i = 0; i < adapter->num_tx_queues; i++) {
3431                 adapter->tx_ring[i].cpu = -1;
3432                 igb_update_tx_dca(&adapter->tx_ring[i]);
3433         }
3434         for (i = 0; i < adapter->num_rx_queues; i++) {
3435                 adapter->rx_ring[i].cpu = -1;
3436                 igb_update_rx_dca(&adapter->rx_ring[i]);
3437         }
3438 }
3439
3440 static int __igb_notify_dca(struct device *dev, void *data)
3441 {
3442         struct net_device *netdev = dev_get_drvdata(dev);
3443         struct igb_adapter *adapter = netdev_priv(netdev);
3444         struct e1000_hw *hw = &adapter->hw;
3445         unsigned long event = *(unsigned long *)data;
3446
3447         switch (event) {
3448         case DCA_PROVIDER_ADD:
3449                 /* if already enabled, don't do it again */
3450                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3451                         break;
3452                 /* Always use CB2 mode, difference is masked
3453                  * in the CB driver. */
3454                 wr32(E1000_DCA_CTRL, 2);
3455                 if (dca_add_requester(dev) == 0) {
3456                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3457                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3458                         igb_setup_dca(adapter);
3459                         break;
3460                 }
3461                 /* Fall Through since DCA is disabled. */
3462         case DCA_PROVIDER_REMOVE:
3463                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3464                         /* without this a class_device is left
3465                          * hanging around in the sysfs model */
3466                         dca_remove_requester(dev);
3467                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3468                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3469                         wr32(E1000_DCA_CTRL, 1);
3470                 }
3471                 break;
3472         }
3473
3474         return 0;
3475 }
3476
3477 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3478                           void *p)
3479 {
3480         int ret_val;
3481
3482         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3483                                          __igb_notify_dca);
3484
3485         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3486 }
3487 #endif /* CONFIG_IGB_DCA */
3488
3489 /**
3490  * igb_intr_msi - Interrupt Handler
3491  * @irq: interrupt number
3492  * @data: pointer to a network interface device structure
3493  **/
3494 static irqreturn_t igb_intr_msi(int irq, void *data)
3495 {
3496         struct net_device *netdev = data;
3497         struct igb_adapter *adapter = netdev_priv(netdev);
3498         struct e1000_hw *hw = &adapter->hw;
3499         /* read ICR disables interrupts using IAM */
3500         u32 icr = rd32(E1000_ICR);
3501
3502         igb_write_itr(adapter->rx_ring);
3503
3504         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3505                 hw->mac.get_link_status = 1;
3506                 if (!test_bit(__IGB_DOWN, &adapter->state))
3507                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3508         }
3509
3510         napi_schedule(&adapter->rx_ring[0].napi);
3511
3512         return IRQ_HANDLED;
3513 }
3514
3515 /**
3516  * igb_intr - Interrupt Handler
3517  * @irq: interrupt number
3518  * @data: pointer to a network interface device structure
3519  **/
3520 static irqreturn_t igb_intr(int irq, void *data)
3521 {
3522         struct net_device *netdev = data;
3523         struct igb_adapter *adapter = netdev_priv(netdev);
3524         struct e1000_hw *hw = &adapter->hw;
3525         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3526          * need for the IMC write */
3527         u32 icr = rd32(E1000_ICR);
3528         u32 eicr = 0;
3529         if (!icr)
3530                 return IRQ_NONE;  /* Not our interrupt */
3531
3532         igb_write_itr(adapter->rx_ring);
3533
3534         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3535          * not set, then the adapter didn't send an interrupt */
3536         if (!(icr & E1000_ICR_INT_ASSERTED))
3537                 return IRQ_NONE;
3538
3539         eicr = rd32(E1000_EICR);
3540
3541         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3542                 hw->mac.get_link_status = 1;
3543                 /* guard against interrupt when we're going down */
3544                 if (!test_bit(__IGB_DOWN, &adapter->state))
3545                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3546         }
3547
3548         napi_schedule(&adapter->rx_ring[0].napi);
3549
3550         return IRQ_HANDLED;
3551 }
3552
3553 /**
3554  * igb_poll - NAPI Rx polling callback
3555  * @napi: napi polling structure
3556  * @budget: count of how many packets we should handle
3557  **/
3558 static int igb_poll(struct napi_struct *napi, int budget)
3559 {
3560         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3561         struct igb_adapter *adapter = rx_ring->adapter;
3562         struct net_device *netdev = adapter->netdev;
3563         int tx_clean_complete, work_done = 0;
3564
3565         /* this poll routine only supports one tx and one rx queue */
3566 #ifdef CONFIG_IGB_DCA
3567         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3568                 igb_update_tx_dca(&adapter->tx_ring[0]);
3569 #endif
3570         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3571
3572 #ifdef CONFIG_IGB_DCA
3573         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3574                 igb_update_rx_dca(&adapter->rx_ring[0]);
3575 #endif
3576         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3577
3578         /* If no Tx and not enough Rx work done, exit the polling mode */
3579         if ((tx_clean_complete && (work_done < budget)) ||
3580             !netif_running(netdev)) {
3581                 if (adapter->itr_setting & 3)
3582                         igb_set_itr(adapter);
3583                 napi_complete(napi);
3584                 if (!test_bit(__IGB_DOWN, &adapter->state))
3585                         igb_irq_enable(adapter);
3586                 return 0;
3587         }
3588
3589         return 1;
3590 }
3591
3592 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3593 {
3594         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3595         struct igb_adapter *adapter = rx_ring->adapter;
3596         struct e1000_hw *hw = &adapter->hw;
3597         struct net_device *netdev = adapter->netdev;
3598         int work_done = 0;
3599
3600 #ifdef CONFIG_IGB_DCA
3601         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3602                 igb_update_rx_dca(rx_ring);
3603 #endif
3604         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3605
3606
3607         /* If not enough Rx work done, exit the polling mode */
3608         if ((work_done == 0) || !netif_running(netdev)) {
3609                 napi_complete(napi);
3610
3611                 if (adapter->itr_setting & 3) {
3612                         if (adapter->num_rx_queues == 1)
3613                                 igb_set_itr(adapter);
3614                         else
3615                                 igb_update_ring_itr(rx_ring);
3616                 }
3617
3618                 if (!test_bit(__IGB_DOWN, &adapter->state))
3619                         wr32(E1000_EIMS, rx_ring->eims_value);
3620
3621                 return 0;
3622         }
3623
3624         return 1;
3625 }
3626
3627 /**
3628  * igb_clean_tx_irq - Reclaim resources after transmit completes
3629  * @adapter: board private structure
3630  * returns true if ring is completely cleaned
3631  **/
3632 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3633 {
3634         struct igb_adapter *adapter = tx_ring->adapter;
3635         struct net_device *netdev = adapter->netdev;
3636         struct e1000_hw *hw = &adapter->hw;
3637         struct igb_buffer *buffer_info;
3638         struct sk_buff *skb;
3639         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3640         unsigned int total_bytes = 0, total_packets = 0;
3641         unsigned int i, eop, count = 0;
3642         bool cleaned = false;
3643
3644         i = tx_ring->next_to_clean;
3645         eop = tx_ring->buffer_info[i].next_to_watch;
3646         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3647
3648         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3649                (count < tx_ring->count)) {
3650                 for (cleaned = false; !cleaned; count++) {
3651                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3652                         buffer_info = &tx_ring->buffer_info[i];
3653                         cleaned = (i == eop);
3654                         skb = buffer_info->skb;
3655
3656                         if (skb) {
3657                                 unsigned int segs, bytecount;
3658                                 /* gso_segs is currently only valid for tcp */
3659                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3660                                 /* multiply data chunks by size of headers */
3661                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3662                                             skb->len;
3663                                 total_packets += segs;
3664                                 total_bytes += bytecount;
3665                         }
3666
3667                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3668                         tx_desc->wb.status = 0;
3669
3670                         i++;
3671                         if (i == tx_ring->count)
3672                                 i = 0;
3673                 }
3674
3675                 eop = tx_ring->buffer_info[i].next_to_watch;
3676                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3677         }
3678
3679         tx_ring->next_to_clean = i;
3680
3681         if (unlikely(count &&
3682                      netif_carrier_ok(netdev) &&
3683                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3684                 /* Make sure that anybody stopping the queue after this
3685                  * sees the new next_to_clean.
3686                  */
3687                 smp_mb();
3688                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3689                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3690                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3691                         ++adapter->restart_queue;
3692                 }
3693         }
3694
3695         if (tx_ring->detect_tx_hung) {
3696                 /* Detect a transmit hang in hardware, this serializes the
3697                  * check with the clearing of time_stamp and movement of i */
3698                 tx_ring->detect_tx_hung = false;
3699                 if (tx_ring->buffer_info[i].time_stamp &&
3700                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3701                                (adapter->tx_timeout_factor * HZ))
3702                     && !(rd32(E1000_STATUS) &
3703                          E1000_STATUS_TXOFF)) {
3704
3705                         /* detected Tx unit hang */
3706                         dev_err(&adapter->pdev->dev,
3707                                 "Detected Tx Unit Hang\n"
3708                                 "  Tx Queue             <%d>\n"
3709                                 "  TDH                  <%x>\n"
3710                                 "  TDT                  <%x>\n"
3711                                 "  next_to_use          <%x>\n"
3712                                 "  next_to_clean        <%x>\n"
3713                                 "buffer_info[next_to_clean]\n"
3714                                 "  time_stamp           <%lx>\n"
3715                                 "  next_to_watch        <%x>\n"
3716                                 "  jiffies              <%lx>\n"
3717                                 "  desc.status          <%x>\n",
3718                                 tx_ring->queue_index,
3719                                 readl(adapter->hw.hw_addr + tx_ring->head),
3720                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3721                                 tx_ring->next_to_use,
3722                                 tx_ring->next_to_clean,
3723                                 tx_ring->buffer_info[i].time_stamp,
3724                                 eop,
3725                                 jiffies,
3726                                 eop_desc->wb.status);
3727                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3728                 }
3729         }
3730         tx_ring->total_bytes += total_bytes;
3731         tx_ring->total_packets += total_packets;
3732         tx_ring->tx_stats.bytes += total_bytes;
3733         tx_ring->tx_stats.packets += total_packets;
3734         adapter->net_stats.tx_bytes += total_bytes;
3735         adapter->net_stats.tx_packets += total_packets;
3736         return (count < tx_ring->count);
3737 }
3738
3739 /**
3740  * igb_receive_skb - helper function to handle rx indications
3741  * @ring: pointer to receive ring receving this packet 
3742  * @status: descriptor status field as written by hardware
3743  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3744  * @skb: pointer to sk_buff to be indicated to stack
3745  **/
3746 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3747                             union e1000_adv_rx_desc * rx_desc,
3748                             struct sk_buff *skb)
3749 {
3750         struct igb_adapter * adapter = ring->adapter;
3751         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3752
3753         skb_record_rx_queue(skb, ring->queue_index);
3754         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3755                 if (vlan_extracted)
3756                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3757                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3758                                          skb);
3759                 else
3760                         napi_gro_receive(&ring->napi, skb);
3761         } else {
3762                 if (vlan_extracted)
3763                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3764                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3765                 else
3766                         netif_receive_skb(skb);
3767         }
3768 }
3769
3770
3771 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3772                                        u32 status_err, struct sk_buff *skb)
3773 {
3774         skb->ip_summed = CHECKSUM_NONE;
3775
3776         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3777         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3778                 return;
3779         /* TCP/UDP checksum error bit is set */
3780         if (status_err &
3781             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3782                 /* let the stack verify checksum errors */
3783                 adapter->hw_csum_err++;
3784                 return;
3785         }
3786         /* It must be a TCP or UDP packet with a valid checksum */
3787         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3788                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3789
3790         adapter->hw_csum_good++;
3791 }
3792
3793 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3794                                  int *work_done, int budget)
3795 {
3796         struct igb_adapter *adapter = rx_ring->adapter;
3797         struct net_device *netdev = adapter->netdev;
3798         struct pci_dev *pdev = adapter->pdev;
3799         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3800         struct igb_buffer *buffer_info , *next_buffer;
3801         struct sk_buff *skb;
3802         unsigned int i;
3803         u32 length, hlen, staterr;
3804         bool cleaned = false;
3805         int cleaned_count = 0;
3806         unsigned int total_bytes = 0, total_packets = 0;
3807
3808         i = rx_ring->next_to_clean;
3809         buffer_info = &rx_ring->buffer_info[i];
3810         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3811         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3812
3813         while (staterr & E1000_RXD_STAT_DD) {
3814                 if (*work_done >= budget)
3815                         break;
3816                 (*work_done)++;
3817
3818                 skb = buffer_info->skb;
3819                 prefetch(skb->data - NET_IP_ALIGN);
3820                 buffer_info->skb = NULL;
3821
3822                 i++;
3823                 if (i == rx_ring->count)
3824                         i = 0;
3825                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3826                 prefetch(next_rxd);
3827                 next_buffer = &rx_ring->buffer_info[i];
3828
3829                 length = le16_to_cpu(rx_desc->wb.upper.length);
3830                 cleaned = true;
3831                 cleaned_count++;
3832
3833                 if (!adapter->rx_ps_hdr_size) {
3834                         pci_unmap_single(pdev, buffer_info->dma,
3835                                          adapter->rx_buffer_len +
3836                                            NET_IP_ALIGN,
3837                                          PCI_DMA_FROMDEVICE);
3838                         skb_put(skb, length);
3839                         goto send_up;
3840                 }
3841
3842                 /* HW will not DMA in data larger than the given buffer, even
3843                  * if it parses the (NFS, of course) header to be larger.  In
3844                  * that case, it fills the header buffer and spills the rest
3845                  * into the page.
3846                  */
3847                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3848                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3849                 if (hlen > adapter->rx_ps_hdr_size)
3850                         hlen = adapter->rx_ps_hdr_size;
3851
3852                 if (!skb_shinfo(skb)->nr_frags) {
3853                         pci_unmap_single(pdev, buffer_info->dma,
3854                                          adapter->rx_ps_hdr_size +
3855                                            NET_IP_ALIGN,
3856                                          PCI_DMA_FROMDEVICE);
3857                         skb_put(skb, hlen);
3858                 }
3859
3860                 if (length) {
3861                         pci_unmap_page(pdev, buffer_info->page_dma,
3862                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3863                         buffer_info->page_dma = 0;
3864
3865                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3866                                                 buffer_info->page,
3867                                                 buffer_info->page_offset,
3868                                                 length);
3869
3870                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3871                             (page_count(buffer_info->page) != 1))
3872                                 buffer_info->page = NULL;
3873                         else
3874                                 get_page(buffer_info->page);
3875
3876                         skb->len += length;
3877                         skb->data_len += length;
3878
3879                         skb->truesize += length;
3880                 }
3881
3882                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3883                         buffer_info->skb = next_buffer->skb;
3884                         buffer_info->dma = next_buffer->dma;
3885                         next_buffer->skb = skb;
3886                         next_buffer->dma = 0;
3887                         goto next_desc;
3888                 }
3889 send_up:
3890                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3891                         dev_kfree_skb_irq(skb);
3892                         goto next_desc;
3893                 }
3894
3895                 total_bytes += skb->len;
3896                 total_packets++;
3897
3898                 igb_rx_checksum_adv(adapter, staterr, skb);
3899
3900                 skb->protocol = eth_type_trans(skb, netdev);
3901
3902                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3903
3904 next_desc:
3905                 rx_desc->wb.upper.status_error = 0;
3906
3907                 /* return some buffers to hardware, one at a time is too slow */
3908                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3909                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3910                         cleaned_count = 0;
3911                 }
3912
3913                 /* use prefetched values */
3914                 rx_desc = next_rxd;
3915                 buffer_info = next_buffer;
3916                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3917         }
3918
3919         rx_ring->next_to_clean = i;
3920         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3921
3922         if (cleaned_count)
3923                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3924
3925         rx_ring->total_packets += total_packets;
3926         rx_ring->total_bytes += total_bytes;
3927         rx_ring->rx_stats.packets += total_packets;
3928         rx_ring->rx_stats.bytes += total_bytes;
3929         adapter->net_stats.rx_bytes += total_bytes;
3930         adapter->net_stats.rx_packets += total_packets;
3931         return cleaned;
3932 }
3933
3934
3935 /**
3936  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3937  * @adapter: address of board private structure
3938  **/
3939 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3940                                      int cleaned_count)
3941 {
3942         struct igb_adapter *adapter = rx_ring->adapter;
3943         struct net_device *netdev = adapter->netdev;
3944         struct pci_dev *pdev = adapter->pdev;
3945         union e1000_adv_rx_desc *rx_desc;
3946         struct igb_buffer *buffer_info;
3947         struct sk_buff *skb;
3948         unsigned int i;
3949         int bufsz;
3950
3951         i = rx_ring->next_to_use;
3952         buffer_info = &rx_ring->buffer_info[i];
3953
3954         if (adapter->rx_ps_hdr_size)
3955                 bufsz = adapter->rx_ps_hdr_size;
3956         else
3957                 bufsz = adapter->rx_buffer_len;
3958         bufsz += NET_IP_ALIGN;
3959
3960         while (cleaned_count--) {
3961                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3962
3963                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
3964                         if (!buffer_info->page) {
3965                                 buffer_info->page = alloc_page(GFP_ATOMIC);
3966                                 if (!buffer_info->page) {
3967                                         adapter->alloc_rx_buff_failed++;
3968                                         goto no_buffers;
3969                                 }
3970                                 buffer_info->page_offset = 0;
3971                         } else {
3972                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
3973                         }
3974                         buffer_info->page_dma =
3975                                 pci_map_page(pdev, buffer_info->page,
3976                                              buffer_info->page_offset,
3977                                              PAGE_SIZE / 2,
3978                                              PCI_DMA_FROMDEVICE);
3979                 }
3980
3981                 if (!buffer_info->skb) {
3982                         skb = netdev_alloc_skb(netdev, bufsz);
3983                         if (!skb) {
3984                                 adapter->alloc_rx_buff_failed++;
3985                                 goto no_buffers;
3986                         }
3987
3988                         /* Make buffer alignment 2 beyond a 16 byte boundary
3989                          * this will result in a 16 byte aligned IP header after
3990                          * the 14 byte MAC header is removed
3991                          */
3992                         skb_reserve(skb, NET_IP_ALIGN);
3993
3994                         buffer_info->skb = skb;
3995                         buffer_info->dma = pci_map_single(pdev, skb->data,
3996                                                           bufsz,
3997                                                           PCI_DMA_FROMDEVICE);
3998                 }
3999                 /* Refresh the desc even if buffer_addrs didn't change because
4000                  * each write-back erases this info. */
4001                 if (adapter->rx_ps_hdr_size) {
4002                         rx_desc->read.pkt_addr =
4003                              cpu_to_le64(buffer_info->page_dma);
4004                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4005                 } else {
4006                         rx_desc->read.pkt_addr =
4007                              cpu_to_le64(buffer_info->dma);
4008                         rx_desc->read.hdr_addr = 0;
4009                 }
4010
4011                 i++;
4012                 if (i == rx_ring->count)
4013                         i = 0;
4014                 buffer_info = &rx_ring->buffer_info[i];
4015         }
4016
4017 no_buffers:
4018         if (rx_ring->next_to_use != i) {
4019                 rx_ring->next_to_use = i;
4020                 if (i == 0)
4021                         i = (rx_ring->count - 1);
4022                 else
4023                         i--;
4024
4025                 /* Force memory writes to complete before letting h/w
4026                  * know there are new descriptors to fetch.  (Only
4027                  * applicable for weak-ordered memory model archs,
4028                  * such as IA-64). */
4029                 wmb();
4030                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4031         }
4032 }
4033
4034 /**
4035  * igb_mii_ioctl -
4036  * @netdev:
4037  * @ifreq:
4038  * @cmd:
4039  **/
4040 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4041 {
4042         struct igb_adapter *adapter = netdev_priv(netdev);
4043         struct mii_ioctl_data *data = if_mii(ifr);
4044
4045         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4046                 return -EOPNOTSUPP;
4047
4048         switch (cmd) {
4049         case SIOCGMIIPHY:
4050                 data->phy_id = adapter->hw.phy.addr;
4051                 break;
4052         case SIOCGMIIREG:
4053                 if (!capable(CAP_NET_ADMIN))
4054                         return -EPERM;
4055                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4056                                      &data->val_out))
4057                         return -EIO;
4058                 break;
4059         case SIOCSMIIREG:
4060         default:
4061                 return -EOPNOTSUPP;
4062         }
4063         return 0;
4064 }
4065
4066 /**
4067  * igb_ioctl -
4068  * @netdev:
4069  * @ifreq:
4070  * @cmd:
4071  **/
4072 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4073 {
4074         switch (cmd) {
4075         case SIOCGMIIPHY:
4076         case SIOCGMIIREG:
4077         case SIOCSMIIREG:
4078                 return igb_mii_ioctl(netdev, ifr, cmd);
4079         default:
4080                 return -EOPNOTSUPP;
4081         }
4082 }
4083
4084 static void igb_vlan_rx_register(struct net_device *netdev,
4085                                  struct vlan_group *grp)
4086 {
4087         struct igb_adapter *adapter = netdev_priv(netdev);
4088         struct e1000_hw *hw = &adapter->hw;
4089         u32 ctrl, rctl;
4090
4091         igb_irq_disable(adapter);
4092         adapter->vlgrp = grp;
4093
4094         if (grp) {
4095                 /* enable VLAN tag insert/strip */
4096                 ctrl = rd32(E1000_CTRL);
4097                 ctrl |= E1000_CTRL_VME;
4098                 wr32(E1000_CTRL, ctrl);
4099
4100                 /* enable VLAN receive filtering */
4101                 rctl = rd32(E1000_RCTL);
4102                 rctl &= ~E1000_RCTL_CFIEN;
4103                 wr32(E1000_RCTL, rctl);
4104                 igb_update_mng_vlan(adapter);
4105                 wr32(E1000_RLPML,
4106                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4107         } else {
4108                 /* disable VLAN tag insert/strip */
4109                 ctrl = rd32(E1000_CTRL);
4110                 ctrl &= ~E1000_CTRL_VME;
4111                 wr32(E1000_CTRL, ctrl);
4112
4113                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4114                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4115                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4116                 }
4117                 wr32(E1000_RLPML,
4118                                 adapter->max_frame_size);
4119         }
4120
4121         if (!test_bit(__IGB_DOWN, &adapter->state))
4122                 igb_irq_enable(adapter);
4123 }
4124
4125 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4126 {
4127         struct igb_adapter *adapter = netdev_priv(netdev);
4128         struct e1000_hw *hw = &adapter->hw;
4129         u32 vfta, index;
4130
4131         if ((adapter->hw.mng_cookie.status &
4132              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4133             (vid == adapter->mng_vlan_id))
4134                 return;
4135         /* add VID to filter table */
4136         index = (vid >> 5) & 0x7F;
4137         vfta = array_rd32(E1000_VFTA, index);
4138         vfta |= (1 << (vid & 0x1F));
4139         igb_write_vfta(&adapter->hw, index, vfta);
4140 }
4141
4142 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4143 {
4144         struct igb_adapter *adapter = netdev_priv(netdev);
4145         struct e1000_hw *hw = &adapter->hw;
4146         u32 vfta, index;
4147
4148         igb_irq_disable(adapter);
4149         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4150
4151         if (!test_bit(__IGB_DOWN, &adapter->state))
4152                 igb_irq_enable(adapter);
4153
4154         if ((adapter->hw.mng_cookie.status &
4155              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4156             (vid == adapter->mng_vlan_id)) {
4157                 /* release control to f/w */
4158                 igb_release_hw_control(adapter);
4159                 return;
4160         }
4161
4162         /* remove VID from filter table */
4163         index = (vid >> 5) & 0x7F;
4164         vfta = array_rd32(E1000_VFTA, index);
4165         vfta &= ~(1 << (vid & 0x1F));
4166         igb_write_vfta(&adapter->hw, index, vfta);
4167 }
4168
4169 static void igb_restore_vlan(struct igb_adapter *adapter)
4170 {
4171         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4172
4173         if (adapter->vlgrp) {
4174                 u16 vid;
4175                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4176                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4177                                 continue;
4178                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4179                 }
4180         }
4181 }
4182
4183 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4184 {
4185         struct e1000_mac_info *mac = &adapter->hw.mac;
4186
4187         mac->autoneg = 0;
4188
4189         /* Fiber NICs only allow 1000 gbps Full duplex */
4190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4192                 dev_err(&adapter->pdev->dev,
4193                         "Unsupported Speed/Duplex configuration\n");
4194                 return -EINVAL;
4195         }
4196
4197         switch (spddplx) {
4198         case SPEED_10 + DUPLEX_HALF:
4199                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4200                 break;
4201         case SPEED_10 + DUPLEX_FULL:
4202                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4203                 break;
4204         case SPEED_100 + DUPLEX_HALF:
4205                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4206                 break;
4207         case SPEED_100 + DUPLEX_FULL:
4208                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4209                 break;
4210         case SPEED_1000 + DUPLEX_FULL:
4211                 mac->autoneg = 1;
4212                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4213                 break;
4214         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4215         default:
4216                 dev_err(&adapter->pdev->dev,
4217                         "Unsupported Speed/Duplex configuration\n");
4218                 return -EINVAL;
4219         }
4220         return 0;
4221 }
4222
4223
4224 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4225 {
4226         struct net_device *netdev = pci_get_drvdata(pdev);
4227         struct igb_adapter *adapter = netdev_priv(netdev);
4228         struct e1000_hw *hw = &adapter->hw;
4229         u32 ctrl, rctl, status;
4230         u32 wufc = adapter->wol;
4231 #ifdef CONFIG_PM
4232         int retval = 0;
4233 #endif
4234
4235         netif_device_detach(netdev);
4236
4237         if (netif_running(netdev))
4238                 igb_close(netdev);
4239
4240         igb_reset_interrupt_capability(adapter);
4241
4242         igb_free_queues(adapter);
4243
4244 #ifdef CONFIG_PM
4245         retval = pci_save_state(pdev);
4246         if (retval)
4247                 return retval;
4248 #endif
4249
4250         status = rd32(E1000_STATUS);
4251         if (status & E1000_STATUS_LU)
4252                 wufc &= ~E1000_WUFC_LNKC;
4253
4254         if (wufc) {
4255                 igb_setup_rctl(adapter);
4256                 igb_set_multi(netdev);
4257
4258                 /* turn on all-multi mode if wake on multicast is enabled */
4259                 if (wufc & E1000_WUFC_MC) {
4260                         rctl = rd32(E1000_RCTL);
4261                         rctl |= E1000_RCTL_MPE;
4262                         wr32(E1000_RCTL, rctl);
4263                 }
4264
4265                 ctrl = rd32(E1000_CTRL);
4266                 /* advertise wake from D3Cold */
4267                 #define E1000_CTRL_ADVD3WUC 0x00100000
4268                 /* phy power management enable */
4269                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4270                 ctrl |= E1000_CTRL_ADVD3WUC;
4271                 wr32(E1000_CTRL, ctrl);
4272
4273                 /* Allow time for pending master requests to run */
4274                 igb_disable_pcie_master(&adapter->hw);
4275
4276                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4277                 wr32(E1000_WUFC, wufc);
4278         } else {
4279                 wr32(E1000_WUC, 0);
4280                 wr32(E1000_WUFC, 0);
4281         }
4282
4283         /* make sure adapter isn't asleep if manageability/wol is enabled */
4284         if (wufc || adapter->en_mng_pt) {
4285                 pci_enable_wake(pdev, PCI_D3hot, 1);
4286                 pci_enable_wake(pdev, PCI_D3cold, 1);
4287         } else {
4288                 igb_shutdown_fiber_serdes_link_82575(hw);
4289                 pci_enable_wake(pdev, PCI_D3hot, 0);
4290                 pci_enable_wake(pdev, PCI_D3cold, 0);
4291         }
4292
4293         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4294          * would have already happened in close and is redundant. */
4295         igb_release_hw_control(adapter);
4296
4297         pci_disable_device(pdev);
4298
4299         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4300
4301         return 0;
4302 }
4303
4304 #ifdef CONFIG_PM
4305 static int igb_resume(struct pci_dev *pdev)
4306 {
4307         struct net_device *netdev = pci_get_drvdata(pdev);
4308         struct igb_adapter *adapter = netdev_priv(netdev);
4309         struct e1000_hw *hw = &adapter->hw;
4310         u32 err;
4311
4312         pci_set_power_state(pdev, PCI_D0);
4313         pci_restore_state(pdev);
4314
4315         err = pci_enable_device_mem(pdev);
4316         if (err) {
4317                 dev_err(&pdev->dev,
4318                         "igb: Cannot enable PCI device from suspend\n");
4319                 return err;
4320         }
4321         pci_set_master(pdev);
4322
4323         pci_enable_wake(pdev, PCI_D3hot, 0);
4324         pci_enable_wake(pdev, PCI_D3cold, 0);
4325
4326         igb_set_interrupt_capability(adapter);
4327
4328         if (igb_alloc_queues(adapter)) {
4329                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4330                 return -ENOMEM;
4331         }
4332
4333         /* e1000_power_up_phy(adapter); */
4334
4335         igb_reset(adapter);
4336         wr32(E1000_WUS, ~0);
4337
4338         if (netif_running(netdev)) {
4339                 err = igb_open(netdev);
4340                 if (err)
4341                         return err;
4342         }
4343
4344         netif_device_attach(netdev);
4345
4346         /* let the f/w know that the h/w is now under the control of the
4347          * driver. */
4348         igb_get_hw_control(adapter);
4349
4350         return 0;
4351 }
4352 #endif
4353
4354 static void igb_shutdown(struct pci_dev *pdev)
4355 {
4356         igb_suspend(pdev, PMSG_SUSPEND);
4357 }
4358
4359 #ifdef CONFIG_NET_POLL_CONTROLLER
4360 /*
4361  * Polling 'interrupt' - used by things like netconsole to send skbs
4362  * without having to re-enable interrupts. It's not called while
4363  * the interrupt routine is executing.
4364  */
4365 static void igb_netpoll(struct net_device *netdev)
4366 {
4367         struct igb_adapter *adapter = netdev_priv(netdev);
4368         int i;
4369         int work_done = 0;
4370
4371         igb_irq_disable(adapter);
4372         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4373
4374         for (i = 0; i < adapter->num_tx_queues; i++)
4375                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4376
4377         for (i = 0; i < adapter->num_rx_queues; i++)
4378                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4379                                      &work_done,
4380                                      adapter->rx_ring[i].napi.weight);
4381
4382         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4383         igb_irq_enable(adapter);
4384 }
4385 #endif /* CONFIG_NET_POLL_CONTROLLER */
4386
4387 /**
4388  * igb_io_error_detected - called when PCI error is detected
4389  * @pdev: Pointer to PCI device
4390  * @state: The current pci connection state
4391  *
4392  * This function is called after a PCI bus error affecting
4393  * this device has been detected.
4394  */
4395 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4396                                               pci_channel_state_t state)
4397 {
4398         struct net_device *netdev = pci_get_drvdata(pdev);
4399         struct igb_adapter *adapter = netdev_priv(netdev);
4400
4401         netif_device_detach(netdev);
4402
4403         if (netif_running(netdev))
4404                 igb_down(adapter);
4405         pci_disable_device(pdev);
4406
4407         /* Request a slot slot reset. */
4408         return PCI_ERS_RESULT_NEED_RESET;
4409 }
4410
4411 /**
4412  * igb_io_slot_reset - called after the pci bus has been reset.
4413  * @pdev: Pointer to PCI device
4414  *
4415  * Restart the card from scratch, as if from a cold-boot. Implementation
4416  * resembles the first-half of the igb_resume routine.
4417  */
4418 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4419 {
4420         struct net_device *netdev = pci_get_drvdata(pdev);
4421         struct igb_adapter *adapter = netdev_priv(netdev);
4422         struct e1000_hw *hw = &adapter->hw;
4423         pci_ers_result_t result;
4424         int err;
4425
4426         if (pci_enable_device_mem(pdev)) {
4427                 dev_err(&pdev->dev,
4428                         "Cannot re-enable PCI device after reset.\n");
4429                 result = PCI_ERS_RESULT_DISCONNECT;
4430         } else {
4431                 pci_set_master(pdev);
4432                 pci_restore_state(pdev);
4433
4434                 pci_enable_wake(pdev, PCI_D3hot, 0);
4435                 pci_enable_wake(pdev, PCI_D3cold, 0);
4436
4437                 igb_reset(adapter);
4438                 wr32(E1000_WUS, ~0);
4439                 result = PCI_ERS_RESULT_RECOVERED;
4440         }
4441
4442         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4443         if (err) {
4444                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4445                         "failed 0x%0x\n", err);
4446                 /* non-fatal, continue */
4447         }
4448
4449         return result;
4450 }
4451
4452 /**
4453  * igb_io_resume - called when traffic can start flowing again.
4454  * @pdev: Pointer to PCI device
4455  *
4456  * This callback is called when the error recovery driver tells us that
4457  * its OK to resume normal operation. Implementation resembles the
4458  * second-half of the igb_resume routine.
4459  */
4460 static void igb_io_resume(struct pci_dev *pdev)
4461 {
4462         struct net_device *netdev = pci_get_drvdata(pdev);
4463         struct igb_adapter *adapter = netdev_priv(netdev);
4464
4465         if (netif_running(netdev)) {
4466                 if (igb_up(adapter)) {
4467                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4468                         return;
4469                 }
4470         }
4471
4472         netif_device_attach(netdev);
4473
4474         /* let the f/w know that the h/w is now under the control of the
4475          * driver. */
4476         igb_get_hw_control(adapter);
4477 }
4478
4479 /* igb_main.c */