Merge git://git.infradead.org/mtd-2.6
[linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #ifdef CONFIG_IGB_DCA
46 #include <linux/dca.h>
47 #endif
48 #include "igb.h"
49
50 #define DRV_VERSION "1.2.45-k2"
51 char igb_driver_name[] = "igb";
52 char igb_driver_version[] = DRV_VERSION;
53 static const char igb_driver_string[] =
54                                 "Intel(R) Gigabit Ethernet Network Driver";
55 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
129
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_IGB_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138         .notifier_call  = igb_notify_dca,
139         .next           = NULL,
140         .priority       = 0
141 };
142 #endif
143
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
148
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150                      pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
153
154 static struct pci_error_handlers igb_err_handler = {
155         .error_detected = igb_io_error_detected,
156         .slot_reset = igb_io_slot_reset,
157         .resume = igb_io_resume,
158 };
159
160
161 static struct pci_driver igb_driver = {
162         .name     = igb_driver_name,
163         .id_table = igb_pci_tbl,
164         .probe    = igb_probe,
165         .remove   = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167         /* Power Managment Hooks */
168         .suspend  = igb_suspend,
169         .resume   = igb_resume,
170 #endif
171         .shutdown = igb_shutdown,
172         .err_handler = &igb_err_handler
173 };
174
175 static int global_quad_port_a; /* global quad port a indication */
176
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
181
182 #ifdef DEBUG
183 /**
184  * igb_get_hw_dev_name - return device name string
185  * used by hardware layer to print debugging information
186  **/
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
188 {
189         struct igb_adapter *adapter = hw->back;
190         return adapter->netdev->name;
191 }
192 #endif
193
194 /**
195  * igb_init_module - Driver Registration Routine
196  *
197  * igb_init_module is the first routine called when the driver is
198  * loaded. All it does is register with the PCI subsystem.
199  **/
200 static int __init igb_init_module(void)
201 {
202         int ret;
203         printk(KERN_INFO "%s - version %s\n",
204                igb_driver_string, igb_driver_version);
205
206         printk(KERN_INFO "%s\n", igb_copyright);
207
208         global_quad_port_a = 0;
209
210         ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_IGB_DCA
212         dca_register_notify(&dca_notifier);
213 #endif
214         return ret;
215 }
216
217 module_init(igb_init_module);
218
219 /**
220  * igb_exit_module - Driver Exit Cleanup Routine
221  *
222  * igb_exit_module is called just before the driver is removed
223  * from memory.
224  **/
225 static void __exit igb_exit_module(void)
226 {
227 #ifdef CONFIG_IGB_DCA
228         dca_unregister_notify(&dca_notifier);
229 #endif
230         pci_unregister_driver(&igb_driver);
231 }
232
233 module_exit(igb_exit_module);
234
235 /**
236  * igb_alloc_queues - Allocate memory for all rings
237  * @adapter: board private structure to initialize
238  *
239  * We allocate one ring per queue at run-time since we don't know the
240  * number of queues at compile-time.
241  **/
242 static int igb_alloc_queues(struct igb_adapter *adapter)
243 {
244         int i;
245
246         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247                                    sizeof(struct igb_ring), GFP_KERNEL);
248         if (!adapter->tx_ring)
249                 return -ENOMEM;
250
251         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252                                    sizeof(struct igb_ring), GFP_KERNEL);
253         if (!adapter->rx_ring) {
254                 kfree(adapter->tx_ring);
255                 return -ENOMEM;
256         }
257
258         adapter->rx_ring->buddy = adapter->tx_ring;
259
260         for (i = 0; i < adapter->num_tx_queues; i++) {
261                 struct igb_ring *ring = &(adapter->tx_ring[i]);
262                 ring->adapter = adapter;
263                 ring->queue_index = i;
264         }
265         for (i = 0; i < adapter->num_rx_queues; i++) {
266                 struct igb_ring *ring = &(adapter->rx_ring[i]);
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* The 82576 uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = NULL;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 goto out;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534 out:
535         /* Notify the stack of the (possibly) reduced Tx Queue count. */
536         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537         return;
538 }
539
540 /**
541  * igb_request_irq - initialize interrupts
542  *
543  * Attempts to configure interrupts using the best available
544  * capabilities of the hardware and kernel.
545  **/
546 static int igb_request_irq(struct igb_adapter *adapter)
547 {
548         struct net_device *netdev = adapter->netdev;
549         struct e1000_hw *hw = &adapter->hw;
550         int err = 0;
551
552         if (adapter->msix_entries) {
553                 err = igb_request_msix(adapter);
554                 if (!err)
555                         goto request_done;
556                 /* fall back to MSI */
557                 igb_reset_interrupt_capability(adapter);
558                 if (!pci_enable_msi(adapter->pdev))
559                         adapter->flags |= IGB_FLAG_HAS_MSI;
560                 igb_free_all_tx_resources(adapter);
561                 igb_free_all_rx_resources(adapter);
562                 adapter->num_rx_queues = 1;
563                 igb_alloc_queues(adapter);
564         } else {
565                 switch (hw->mac.type) {
566                 case e1000_82575:
567                         wr32(E1000_MSIXBM(0),
568                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569                         break;
570                 case e1000_82576:
571                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
572                         break;
573                 default:
574                         break;
575                 }
576         }
577
578         if (adapter->flags & IGB_FLAG_HAS_MSI) {
579                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580                                   netdev->name, netdev);
581                 if (!err)
582                         goto request_done;
583                 /* fall back to legacy interrupts */
584                 igb_reset_interrupt_capability(adapter);
585                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
586         }
587
588         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589                           netdev->name, netdev);
590
591         if (err)
592                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593                         err);
594
595 request_done:
596         return err;
597 }
598
599 static void igb_free_irq(struct igb_adapter *adapter)
600 {
601         struct net_device *netdev = adapter->netdev;
602
603         if (adapter->msix_entries) {
604                 int vector = 0, i;
605
606                 for (i = 0; i < adapter->num_tx_queues; i++)
607                         free_irq(adapter->msix_entries[vector++].vector,
608                                 &(adapter->tx_ring[i]));
609                 for (i = 0; i < adapter->num_rx_queues; i++)
610                         free_irq(adapter->msix_entries[vector++].vector,
611                                 &(adapter->rx_ring[i]));
612
613                 free_irq(adapter->msix_entries[vector++].vector, netdev);
614                 return;
615         }
616
617         free_irq(adapter->pdev->irq, netdev);
618 }
619
620 /**
621  * igb_irq_disable - Mask off interrupt generation on the NIC
622  * @adapter: board private structure
623  **/
624 static void igb_irq_disable(struct igb_adapter *adapter)
625 {
626         struct e1000_hw *hw = &adapter->hw;
627
628         if (adapter->msix_entries) {
629                 wr32(E1000_EIAM, 0);
630                 wr32(E1000_EIMC, ~0);
631                 wr32(E1000_EIAC, 0);
632         }
633
634         wr32(E1000_IAM, 0);
635         wr32(E1000_IMC, ~0);
636         wrfl();
637         synchronize_irq(adapter->pdev->irq);
638 }
639
640 /**
641  * igb_irq_enable - Enable default interrupt generation settings
642  * @adapter: board private structure
643  **/
644 static void igb_irq_enable(struct igb_adapter *adapter)
645 {
646         struct e1000_hw *hw = &adapter->hw;
647
648         if (adapter->msix_entries) {
649                 wr32(E1000_EIAC, adapter->eims_enable_mask);
650                 wr32(E1000_EIAM, adapter->eims_enable_mask);
651                 wr32(E1000_EIMS, adapter->eims_enable_mask);
652                 wr32(E1000_IMS, E1000_IMS_LSC);
653         } else {
654                 wr32(E1000_IMS, IMS_ENABLE_MASK);
655                 wr32(E1000_IAM, IMS_ENABLE_MASK);
656         }
657 }
658
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         u16 vid = adapter->hw.mng_cookie.vlan_id;
663         u16 old_vid = adapter->mng_vlan_id;
664         if (adapter->vlgrp) {
665                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666                         if (adapter->hw.mng_cookie.status &
667                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668                                 igb_vlan_rx_add_vid(netdev, vid);
669                                 adapter->mng_vlan_id = vid;
670                         } else
671                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672
673                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674                                         (vid != old_vid) &&
675                             !vlan_group_get_device(adapter->vlgrp, old_vid))
676                                 igb_vlan_rx_kill_vid(netdev, old_vid);
677                 } else
678                         adapter->mng_vlan_id = vid;
679         }
680 }
681
682 /**
683  * igb_release_hw_control - release control of the h/w to f/w
684  * @adapter: address of board private structure
685  *
686  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687  * For ASF and Pass Through versions of f/w this means that the
688  * driver is no longer loaded.
689  *
690  **/
691 static void igb_release_hw_control(struct igb_adapter *adapter)
692 {
693         struct e1000_hw *hw = &adapter->hw;
694         u32 ctrl_ext;
695
696         /* Let firmware take over control of h/w */
697         ctrl_ext = rd32(E1000_CTRL_EXT);
698         wr32(E1000_CTRL_EXT,
699                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
700 }
701
702
703 /**
704  * igb_get_hw_control - get control of the h/w from f/w
705  * @adapter: address of board private structure
706  *
707  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708  * For ASF and Pass Through versions of f/w this means that
709  * the driver is loaded.
710  *
711  **/
712 static void igb_get_hw_control(struct igb_adapter *adapter)
713 {
714         struct e1000_hw *hw = &adapter->hw;
715         u32 ctrl_ext;
716
717         /* Let firmware know the driver has taken over */
718         ctrl_ext = rd32(E1000_CTRL_EXT);
719         wr32(E1000_CTRL_EXT,
720                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
721 }
722
723 /**
724  * igb_configure - configure the hardware for RX and TX
725  * @adapter: private board structure
726  **/
727 static void igb_configure(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730         int i;
731
732         igb_get_hw_control(adapter);
733         igb_set_multi(netdev);
734
735         igb_restore_vlan(adapter);
736
737         igb_configure_tx(adapter);
738         igb_setup_rctl(adapter);
739         igb_configure_rx(adapter);
740
741         igb_rx_fifo_flush_82575(&adapter->hw);
742
743         /* call IGB_DESC_UNUSED which always leaves
744          * at least 1 descriptor unused to make sure
745          * next_to_use != next_to_clean */
746         for (i = 0; i < adapter->num_rx_queues; i++) {
747                 struct igb_ring *ring = &adapter->rx_ring[i];
748                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
749         }
750
751
752         adapter->tx_queue_len = netdev->tx_queue_len;
753 }
754
755
756 /**
757  * igb_up - Open the interface and prepare it to handle traffic
758  * @adapter: board private structure
759  **/
760
761 int igb_up(struct igb_adapter *adapter)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         int i;
765
766         /* hardware has been reset, we need to reload some things */
767         igb_configure(adapter);
768
769         clear_bit(__IGB_DOWN, &adapter->state);
770
771         for (i = 0; i < adapter->num_rx_queues; i++)
772                 napi_enable(&adapter->rx_ring[i].napi);
773         if (adapter->msix_entries)
774                 igb_configure_msix(adapter);
775
776         /* Clear any pending interrupts. */
777         rd32(E1000_ICR);
778         igb_irq_enable(adapter);
779
780         /* Fire a link change interrupt to start the watchdog. */
781         wr32(E1000_ICS, E1000_ICS_LSC);
782         return 0;
783 }
784
785 void igb_down(struct igb_adapter *adapter)
786 {
787         struct e1000_hw *hw = &adapter->hw;
788         struct net_device *netdev = adapter->netdev;
789         u32 tctl, rctl;
790         int i;
791
792         /* signal that we're down so the interrupt handler does not
793          * reschedule our watchdog timer */
794         set_bit(__IGB_DOWN, &adapter->state);
795
796         /* disable receives in the hardware */
797         rctl = rd32(E1000_RCTL);
798         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
799         /* flush and sleep below */
800
801         netif_tx_stop_all_queues(netdev);
802
803         /* disable transmits in the hardware */
804         tctl = rd32(E1000_TCTL);
805         tctl &= ~E1000_TCTL_EN;
806         wr32(E1000_TCTL, tctl);
807         /* flush both disables and wait for them to finish */
808         wrfl();
809         msleep(10);
810
811         for (i = 0; i < adapter->num_rx_queues; i++)
812                 napi_disable(&adapter->rx_ring[i].napi);
813
814         igb_irq_disable(adapter);
815
816         del_timer_sync(&adapter->watchdog_timer);
817         del_timer_sync(&adapter->phy_info_timer);
818
819         netdev->tx_queue_len = adapter->tx_queue_len;
820         netif_carrier_off(netdev);
821         adapter->link_speed = 0;
822         adapter->link_duplex = 0;
823
824         if (!pci_channel_offline(adapter->pdev))
825                 igb_reset(adapter);
826         igb_clean_all_tx_rings(adapter);
827         igb_clean_all_rx_rings(adapter);
828 }
829
830 void igb_reinit_locked(struct igb_adapter *adapter)
831 {
832         WARN_ON(in_interrupt());
833         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
834                 msleep(1);
835         igb_down(adapter);
836         igb_up(adapter);
837         clear_bit(__IGB_RESETTING, &adapter->state);
838 }
839
840 void igb_reset(struct igb_adapter *adapter)
841 {
842         struct e1000_hw *hw = &adapter->hw;
843         struct e1000_mac_info *mac = &hw->mac;
844         struct e1000_fc_info *fc = &hw->fc;
845         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
846         u16 hwm;
847
848         /* Repartition Pba for greater than 9k mtu
849          * To take effect CTRL.RST is required.
850          */
851         if (mac->type != e1000_82576) {
852         pba = E1000_PBA_34K;
853         }
854         else {
855                 pba = E1000_PBA_64K;
856         }
857
858         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
859             (mac->type < e1000_82576)) {
860                 /* adjust PBA for jumbo frames */
861                 wr32(E1000_PBA, pba);
862
863                 /* To maintain wire speed transmits, the Tx FIFO should be
864                  * large enough to accommodate two full transmit packets,
865                  * rounded up to the next 1KB and expressed in KB.  Likewise,
866                  * the Rx FIFO should be large enough to accommodate at least
867                  * one full receive packet and is similarly rounded up and
868                  * expressed in KB. */
869                 pba = rd32(E1000_PBA);
870                 /* upper 16 bits has Tx packet buffer allocation size in KB */
871                 tx_space = pba >> 16;
872                 /* lower 16 bits has Rx packet buffer allocation size in KB */
873                 pba &= 0xffff;
874                 /* the tx fifo also stores 16 bytes of information about the tx
875                  * but don't include ethernet FCS because hardware appends it */
876                 min_tx_space = (adapter->max_frame_size +
877                                 sizeof(struct e1000_tx_desc) -
878                                 ETH_FCS_LEN) * 2;
879                 min_tx_space = ALIGN(min_tx_space, 1024);
880                 min_tx_space >>= 10;
881                 /* software strips receive CRC, so leave room for it */
882                 min_rx_space = adapter->max_frame_size;
883                 min_rx_space = ALIGN(min_rx_space, 1024);
884                 min_rx_space >>= 10;
885
886                 /* If current Tx allocation is less than the min Tx FIFO size,
887                  * and the min Tx FIFO size is less than the current Rx FIFO
888                  * allocation, take space away from current Rx allocation */
889                 if (tx_space < min_tx_space &&
890                     ((min_tx_space - tx_space) < pba)) {
891                         pba = pba - (min_tx_space - tx_space);
892
893                         /* if short on rx space, rx wins and must trump tx
894                          * adjustment */
895                         if (pba < min_rx_space)
896                                 pba = min_rx_space;
897                 }
898                 wr32(E1000_PBA, pba);
899         }
900
901         /* flow control settings */
902         /* The high water mark must be low enough to fit one full frame
903          * (or the size used for early receive) above it in the Rx FIFO.
904          * Set it to the lower of:
905          * - 90% of the Rx FIFO size, or
906          * - the full Rx FIFO size minus one full frame */
907         hwm = min(((pba << 10) * 9 / 10),
908                         ((pba << 10) - 2 * adapter->max_frame_size));
909
910         if (mac->type < e1000_82576) {
911                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
912                 fc->low_water = fc->high_water - 8;
913         } else {
914                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
915                 fc->low_water = fc->high_water - 16;
916         }
917         fc->pause_time = 0xFFFF;
918         fc->send_xon = 1;
919         fc->type = fc->original_type;
920
921         /* Allow time for pending master requests to run */
922         adapter->hw.mac.ops.reset_hw(&adapter->hw);
923         wr32(E1000_WUC, 0);
924
925         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
926                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
927
928         igb_update_mng_vlan(adapter);
929
930         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
931         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
932
933         igb_reset_adaptive(&adapter->hw);
934         if (adapter->hw.phy.ops.get_phy_info)
935                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
936 }
937
938 /**
939  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940  * @pdev: PCI device information struct
941  *
942  * Returns true if an adapter needs ioport resources
943  **/
944 static int igb_is_need_ioport(struct pci_dev *pdev)
945 {
946         switch (pdev->device) {
947         /* Currently there are no adapters that need ioport resources */
948         default:
949                 return false;
950         }
951 }
952
953 /**
954  * igb_probe - Device Initialization Routine
955  * @pdev: PCI device information struct
956  * @ent: entry in igb_pci_tbl
957  *
958  * Returns 0 on success, negative on failure
959  *
960  * igb_probe initializes an adapter identified by a pci_dev structure.
961  * The OS initialization, configuring of the adapter private structure,
962  * and a hardware reset occur.
963  **/
964 static int __devinit igb_probe(struct pci_dev *pdev,
965                                const struct pci_device_id *ent)
966 {
967         struct net_device *netdev;
968         struct igb_adapter *adapter;
969         struct e1000_hw *hw;
970         struct pci_dev *us_dev;
971         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
972         unsigned long mmio_start, mmio_len;
973         int i, err, pci_using_dac, pos;
974         u16 eeprom_data = 0, state = 0;
975         u16 eeprom_apme_mask = IGB_EEPROM_APME;
976         u32 part_num;
977         int bars, need_ioport;
978
979         /* do not allocate ioport bars when not needed */
980         need_ioport = igb_is_need_ioport(pdev);
981         if (need_ioport) {
982                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
983                 err = pci_enable_device(pdev);
984         } else {
985                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
986                 err = pci_enable_device_mem(pdev);
987         }
988         if (err)
989                 return err;
990
991         pci_using_dac = 0;
992         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
993         if (!err) {
994                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
995                 if (!err)
996                         pci_using_dac = 1;
997         } else {
998                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
999                 if (err) {
1000                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1001                         if (err) {
1002                                 dev_err(&pdev->dev, "No usable DMA "
1003                                         "configuration, aborting\n");
1004                                 goto err_dma;
1005                         }
1006                 }
1007         }
1008
1009         /* 82575 requires that the pci-e link partner disable the L0s state */
1010         switch (pdev->device) {
1011         case E1000_DEV_ID_82575EB_COPPER:
1012         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1013         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1014                 us_dev = pdev->bus->self;
1015                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1016                 if (pos) {
1017                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1018                                              &state);
1019                         state &= ~PCIE_LINK_STATE_L0S;
1020                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1021                                               state);
1022                         dev_info(&pdev->dev,
1023                                  "Disabling ASPM L0s upstream switch port %s\n",
1024                                  pci_name(us_dev));
1025                 }
1026         default:
1027                 break;
1028         }
1029
1030         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1031         if (err)
1032                 goto err_pci_reg;
1033
1034         pci_set_master(pdev);
1035         pci_save_state(pdev);
1036
1037         err = -ENOMEM;
1038         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1039         if (!netdev)
1040                 goto err_alloc_etherdev;
1041
1042         SET_NETDEV_DEV(netdev, &pdev->dev);
1043
1044         pci_set_drvdata(pdev, netdev);
1045         adapter = netdev_priv(netdev);
1046         adapter->netdev = netdev;
1047         adapter->pdev = pdev;
1048         hw = &adapter->hw;
1049         hw->back = adapter;
1050         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1051         adapter->bars = bars;
1052         adapter->need_ioport = need_ioport;
1053
1054         mmio_start = pci_resource_start(pdev, 0);
1055         mmio_len = pci_resource_len(pdev, 0);
1056
1057         err = -EIO;
1058         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1059         if (!adapter->hw.hw_addr)
1060                 goto err_ioremap;
1061
1062         netdev->open = &igb_open;
1063         netdev->stop = &igb_close;
1064         netdev->get_stats = &igb_get_stats;
1065         netdev->set_multicast_list = &igb_set_multi;
1066         netdev->set_mac_address = &igb_set_mac;
1067         netdev->change_mtu = &igb_change_mtu;
1068         netdev->do_ioctl = &igb_ioctl;
1069         igb_set_ethtool_ops(netdev);
1070         netdev->tx_timeout = &igb_tx_timeout;
1071         netdev->watchdog_timeo = 5 * HZ;
1072         netdev->vlan_rx_register = igb_vlan_rx_register;
1073         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1074         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1075 #ifdef CONFIG_NET_POLL_CONTROLLER
1076         netdev->poll_controller = igb_netpoll;
1077 #endif
1078         netdev->hard_start_xmit = &igb_xmit_frame_adv;
1079
1080         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1081
1082         netdev->mem_start = mmio_start;
1083         netdev->mem_end = mmio_start + mmio_len;
1084
1085         /* PCI config space info */
1086         hw->vendor_id = pdev->vendor;
1087         hw->device_id = pdev->device;
1088         hw->revision_id = pdev->revision;
1089         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1090         hw->subsystem_device_id = pdev->subsystem_device;
1091
1092         /* setup the private structure */
1093         hw->back = adapter;
1094         /* Copy the default MAC, PHY and NVM function pointers */
1095         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1096         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1097         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1098         /* Initialize skew-specific constants */
1099         err = ei->get_invariants(hw);
1100         if (err)
1101                 goto err_hw_init;
1102
1103         err = igb_sw_init(adapter);
1104         if (err)
1105                 goto err_sw_init;
1106
1107         igb_get_bus_info_pcie(hw);
1108
1109         /* set flags */
1110         switch (hw->mac.type) {
1111         case e1000_82576:
1112         case e1000_82575:
1113                 adapter->flags |= IGB_FLAG_HAS_DCA;
1114                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1115                 break;
1116         default:
1117                 break;
1118         }
1119
1120         hw->phy.autoneg_wait_to_complete = false;
1121         hw->mac.adaptive_ifs = true;
1122
1123         /* Copper options */
1124         if (hw->phy.media_type == e1000_media_type_copper) {
1125                 hw->phy.mdix = AUTO_ALL_MODES;
1126                 hw->phy.disable_polarity_correction = false;
1127                 hw->phy.ms_type = e1000_ms_hw_default;
1128         }
1129
1130         if (igb_check_reset_block(hw))
1131                 dev_info(&pdev->dev,
1132                         "PHY reset is blocked due to SOL/IDER session.\n");
1133
1134         netdev->features = NETIF_F_SG |
1135                            NETIF_F_HW_CSUM |
1136                            NETIF_F_HW_VLAN_TX |
1137                            NETIF_F_HW_VLAN_RX |
1138                            NETIF_F_HW_VLAN_FILTER;
1139
1140         netdev->features |= NETIF_F_TSO;
1141         netdev->features |= NETIF_F_TSO6;
1142
1143 #ifdef CONFIG_IGB_LRO
1144         netdev->features |= NETIF_F_LRO;
1145 #endif
1146
1147         netdev->vlan_features |= NETIF_F_TSO;
1148         netdev->vlan_features |= NETIF_F_TSO6;
1149         netdev->vlan_features |= NETIF_F_HW_CSUM;
1150         netdev->vlan_features |= NETIF_F_SG;
1151
1152         if (pci_using_dac)
1153                 netdev->features |= NETIF_F_HIGHDMA;
1154
1155         netdev->features |= NETIF_F_LLTX;
1156         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1157
1158         /* before reading the NVM, reset the controller to put the device in a
1159          * known good starting state */
1160         hw->mac.ops.reset_hw(hw);
1161
1162         /* make sure the NVM is good */
1163         if (igb_validate_nvm_checksum(hw) < 0) {
1164                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1165                 err = -EIO;
1166                 goto err_eeprom;
1167         }
1168
1169         /* copy the MAC address out of the NVM */
1170         if (hw->mac.ops.read_mac_addr(hw))
1171                 dev_err(&pdev->dev, "NVM Read Error\n");
1172
1173         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1174         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1175
1176         if (!is_valid_ether_addr(netdev->perm_addr)) {
1177                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1178                 err = -EIO;
1179                 goto err_eeprom;
1180         }
1181
1182         init_timer(&adapter->watchdog_timer);
1183         adapter->watchdog_timer.function = &igb_watchdog;
1184         adapter->watchdog_timer.data = (unsigned long) adapter;
1185
1186         init_timer(&adapter->phy_info_timer);
1187         adapter->phy_info_timer.function = &igb_update_phy_info;
1188         adapter->phy_info_timer.data = (unsigned long) adapter;
1189
1190         INIT_WORK(&adapter->reset_task, igb_reset_task);
1191         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1192
1193         /* Initialize link & ring properties that are user-changeable */
1194         adapter->tx_ring->count = 256;
1195         for (i = 0; i < adapter->num_tx_queues; i++)
1196                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1197         adapter->rx_ring->count = 256;
1198         for (i = 0; i < adapter->num_rx_queues; i++)
1199                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1200
1201         adapter->fc_autoneg = true;
1202         hw->mac.autoneg = true;
1203         hw->phy.autoneg_advertised = 0x2f;
1204
1205         hw->fc.original_type = e1000_fc_default;
1206         hw->fc.type = e1000_fc_default;
1207
1208         adapter->itr_setting = 3;
1209         adapter->itr = IGB_START_ITR;
1210
1211         igb_validate_mdi_setting(hw);
1212
1213         adapter->rx_csum = 1;
1214
1215         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1216          * enable the ACPI Magic Packet filter
1217          */
1218
1219         if (hw->bus.func == 0 ||
1220             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1221                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1222                                      &eeprom_data);
1223
1224         if (eeprom_data & eeprom_apme_mask)
1225                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1226
1227         /* now that we have the eeprom settings, apply the special cases where
1228          * the eeprom may be wrong or the board simply won't support wake on
1229          * lan on a particular port */
1230         switch (pdev->device) {
1231         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1232                 adapter->eeprom_wol = 0;
1233                 break;
1234         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1235         case E1000_DEV_ID_82576_FIBER:
1236         case E1000_DEV_ID_82576_SERDES:
1237                 /* Wake events only supported on port A for dual fiber
1238                  * regardless of eeprom setting */
1239                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1240                         adapter->eeprom_wol = 0;
1241                 break;
1242         }
1243
1244         /* initialize the wol settings based on the eeprom settings */
1245         adapter->wol = adapter->eeprom_wol;
1246         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1247
1248         /* reset the hardware with the new settings */
1249         igb_reset(adapter);
1250
1251         /* let the f/w know that the h/w is now under the control of the
1252          * driver. */
1253         igb_get_hw_control(adapter);
1254
1255         /* tell the stack to leave us alone until igb_open() is called */
1256         netif_carrier_off(netdev);
1257         netif_tx_stop_all_queues(netdev);
1258
1259         strcpy(netdev->name, "eth%d");
1260         err = register_netdev(netdev);
1261         if (err)
1262                 goto err_register;
1263
1264 #ifdef CONFIG_IGB_DCA
1265         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1266             (dca_add_requester(&pdev->dev) == 0)) {
1267                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1268                 dev_info(&pdev->dev, "DCA enabled\n");
1269                 /* Always use CB2 mode, difference is masked
1270                  * in the CB driver. */
1271                 wr32(E1000_DCA_CTRL, 2);
1272                 igb_setup_dca(adapter);
1273         }
1274 #endif
1275
1276         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1277         /* print bus type/speed/width info */
1278         dev_info(&pdev->dev,
1279                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1280                  netdev->name,
1281                  ((hw->bus.speed == e1000_bus_speed_2500)
1282                   ? "2.5Gb/s" : "unknown"),
1283                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1284                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1285                   ? "Width x1" : "unknown"),
1286                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1287                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1288
1289         igb_read_part_num(hw, &part_num);
1290         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1291                 (part_num >> 8), (part_num & 0xff));
1292
1293         dev_info(&pdev->dev,
1294                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1295                 adapter->msix_entries ? "MSI-X" :
1296                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1297                 adapter->num_rx_queues, adapter->num_tx_queues);
1298
1299         return 0;
1300
1301 err_register:
1302         igb_release_hw_control(adapter);
1303 err_eeprom:
1304         if (!igb_check_reset_block(hw))
1305                 hw->phy.ops.reset_phy(hw);
1306
1307         if (hw->flash_address)
1308                 iounmap(hw->flash_address);
1309
1310         igb_remove_device(hw);
1311         igb_free_queues(adapter);
1312 err_sw_init:
1313 err_hw_init:
1314         iounmap(hw->hw_addr);
1315 err_ioremap:
1316         free_netdev(netdev);
1317 err_alloc_etherdev:
1318         pci_release_selected_regions(pdev, bars);
1319 err_pci_reg:
1320 err_dma:
1321         pci_disable_device(pdev);
1322         return err;
1323 }
1324
1325 /**
1326  * igb_remove - Device Removal Routine
1327  * @pdev: PCI device information struct
1328  *
1329  * igb_remove is called by the PCI subsystem to alert the driver
1330  * that it should release a PCI device.  The could be caused by a
1331  * Hot-Plug event, or because the driver is going to be removed from
1332  * memory.
1333  **/
1334 static void __devexit igb_remove(struct pci_dev *pdev)
1335 {
1336         struct net_device *netdev = pci_get_drvdata(pdev);
1337         struct igb_adapter *adapter = netdev_priv(netdev);
1338 #ifdef CONFIG_IGB_DCA
1339         struct e1000_hw *hw = &adapter->hw;
1340 #endif
1341
1342         /* flush_scheduled work may reschedule our watchdog task, so
1343          * explicitly disable watchdog tasks from being rescheduled  */
1344         set_bit(__IGB_DOWN, &adapter->state);
1345         del_timer_sync(&adapter->watchdog_timer);
1346         del_timer_sync(&adapter->phy_info_timer);
1347
1348         flush_scheduled_work();
1349
1350 #ifdef CONFIG_IGB_DCA
1351         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1352                 dev_info(&pdev->dev, "DCA disabled\n");
1353                 dca_remove_requester(&pdev->dev);
1354                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1355                 wr32(E1000_DCA_CTRL, 1);
1356         }
1357 #endif
1358
1359         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1360          * would have already happened in close and is redundant. */
1361         igb_release_hw_control(adapter);
1362
1363         unregister_netdev(netdev);
1364
1365         if (adapter->hw.phy.ops.reset_phy &&
1366             !igb_check_reset_block(&adapter->hw))
1367                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1368
1369         igb_remove_device(&adapter->hw);
1370         igb_reset_interrupt_capability(adapter);
1371
1372         igb_free_queues(adapter);
1373
1374         iounmap(adapter->hw.hw_addr);
1375         if (adapter->hw.flash_address)
1376                 iounmap(adapter->hw.flash_address);
1377         pci_release_selected_regions(pdev, adapter->bars);
1378
1379         free_netdev(netdev);
1380
1381         pci_disable_device(pdev);
1382 }
1383
1384 /**
1385  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1386  * @adapter: board private structure to initialize
1387  *
1388  * igb_sw_init initializes the Adapter private data structure.
1389  * Fields are initialized based on PCI device information and
1390  * OS network device settings (MTU size).
1391  **/
1392 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395         struct net_device *netdev = adapter->netdev;
1396         struct pci_dev *pdev = adapter->pdev;
1397
1398         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1399
1400         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1401         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1402         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1403         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1404
1405         /* Number of supported queues. */
1406         /* Having more queues than CPUs doesn't make sense. */
1407         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1408         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1409
1410         /* This call may decrease the number of queues depending on
1411          * interrupt mode. */
1412         igb_set_interrupt_capability(adapter);
1413
1414         if (igb_alloc_queues(adapter)) {
1415                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1416                 return -ENOMEM;
1417         }
1418
1419         /* Explicitly disable IRQ since the NIC can be in any state. */
1420         igb_irq_disable(adapter);
1421
1422         set_bit(__IGB_DOWN, &adapter->state);
1423         return 0;
1424 }
1425
1426 /**
1427  * igb_open - Called when a network interface is made active
1428  * @netdev: network interface device structure
1429  *
1430  * Returns 0 on success, negative value on failure
1431  *
1432  * The open entry point is called when a network interface is made
1433  * active by the system (IFF_UP).  At this point all resources needed
1434  * for transmit and receive operations are allocated, the interrupt
1435  * handler is registered with the OS, the watchdog timer is started,
1436  * and the stack is notified that the interface is ready.
1437  **/
1438 static int igb_open(struct net_device *netdev)
1439 {
1440         struct igb_adapter *adapter = netdev_priv(netdev);
1441         struct e1000_hw *hw = &adapter->hw;
1442         int err;
1443         int i;
1444
1445         /* disallow open during test */
1446         if (test_bit(__IGB_TESTING, &adapter->state))
1447                 return -EBUSY;
1448
1449         /* allocate transmit descriptors */
1450         err = igb_setup_all_tx_resources(adapter);
1451         if (err)
1452                 goto err_setup_tx;
1453
1454         /* allocate receive descriptors */
1455         err = igb_setup_all_rx_resources(adapter);
1456         if (err)
1457                 goto err_setup_rx;
1458
1459         /* e1000_power_up_phy(adapter); */
1460
1461         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1462         if ((adapter->hw.mng_cookie.status &
1463              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1464                 igb_update_mng_vlan(adapter);
1465
1466         /* before we allocate an interrupt, we must be ready to handle it.
1467          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1468          * as soon as we call pci_request_irq, so we have to setup our
1469          * clean_rx handler before we do so.  */
1470         igb_configure(adapter);
1471
1472         err = igb_request_irq(adapter);
1473         if (err)
1474                 goto err_req_irq;
1475
1476         /* From here on the code is the same as igb_up() */
1477         clear_bit(__IGB_DOWN, &adapter->state);
1478
1479         for (i = 0; i < adapter->num_rx_queues; i++)
1480                 napi_enable(&adapter->rx_ring[i].napi);
1481
1482         /* Clear any pending interrupts. */
1483         rd32(E1000_ICR);
1484
1485         igb_irq_enable(adapter);
1486
1487         netif_tx_start_all_queues(netdev);
1488
1489         /* Fire a link status change interrupt to start the watchdog. */
1490         wr32(E1000_ICS, E1000_ICS_LSC);
1491
1492         return 0;
1493
1494 err_req_irq:
1495         igb_release_hw_control(adapter);
1496         /* e1000_power_down_phy(adapter); */
1497         igb_free_all_rx_resources(adapter);
1498 err_setup_rx:
1499         igb_free_all_tx_resources(adapter);
1500 err_setup_tx:
1501         igb_reset(adapter);
1502
1503         return err;
1504 }
1505
1506 /**
1507  * igb_close - Disables a network interface
1508  * @netdev: network interface device structure
1509  *
1510  * Returns 0, this is not allowed to fail
1511  *
1512  * The close entry point is called when an interface is de-activated
1513  * by the OS.  The hardware is still under the driver's control, but
1514  * needs to be disabled.  A global MAC reset is issued to stop the
1515  * hardware, and all transmit and receive resources are freed.
1516  **/
1517 static int igb_close(struct net_device *netdev)
1518 {
1519         struct igb_adapter *adapter = netdev_priv(netdev);
1520
1521         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1522         igb_down(adapter);
1523
1524         igb_free_irq(adapter);
1525
1526         igb_free_all_tx_resources(adapter);
1527         igb_free_all_rx_resources(adapter);
1528
1529         /* kill manageability vlan ID if supported, but not if a vlan with
1530          * the same ID is registered on the host OS (let 8021q kill it) */
1531         if ((adapter->hw.mng_cookie.status &
1532                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1533              !(adapter->vlgrp &&
1534                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1535                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1536
1537         return 0;
1538 }
1539
1540 /**
1541  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1542  * @adapter: board private structure
1543  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1544  *
1545  * Return 0 on success, negative on failure
1546  **/
1547
1548 int igb_setup_tx_resources(struct igb_adapter *adapter,
1549                            struct igb_ring *tx_ring)
1550 {
1551         struct pci_dev *pdev = adapter->pdev;
1552         int size;
1553
1554         size = sizeof(struct igb_buffer) * tx_ring->count;
1555         tx_ring->buffer_info = vmalloc(size);
1556         if (!tx_ring->buffer_info)
1557                 goto err;
1558         memset(tx_ring->buffer_info, 0, size);
1559
1560         /* round up to nearest 4K */
1561         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1562                         + sizeof(u32);
1563         tx_ring->size = ALIGN(tx_ring->size, 4096);
1564
1565         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1566                                              &tx_ring->dma);
1567
1568         if (!tx_ring->desc)
1569                 goto err;
1570
1571         tx_ring->adapter = adapter;
1572         tx_ring->next_to_use = 0;
1573         tx_ring->next_to_clean = 0;
1574         return 0;
1575
1576 err:
1577         vfree(tx_ring->buffer_info);
1578         dev_err(&adapter->pdev->dev,
1579                 "Unable to allocate memory for the transmit descriptor ring\n");
1580         return -ENOMEM;
1581 }
1582
1583 /**
1584  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1585  *                                (Descriptors) for all queues
1586  * @adapter: board private structure
1587  *
1588  * Return 0 on success, negative on failure
1589  **/
1590 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1591 {
1592         int i, err = 0;
1593         int r_idx;
1594
1595         for (i = 0; i < adapter->num_tx_queues; i++) {
1596                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1597                 if (err) {
1598                         dev_err(&adapter->pdev->dev,
1599                                 "Allocation for Tx Queue %u failed\n", i);
1600                         for (i--; i >= 0; i--)
1601                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1602                         break;
1603                 }
1604         }
1605
1606         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1607                 r_idx = i % adapter->num_tx_queues;
1608                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1609         }       
1610         return err;
1611 }
1612
1613 /**
1614  * igb_configure_tx - Configure transmit Unit after Reset
1615  * @adapter: board private structure
1616  *
1617  * Configure the Tx unit of the MAC after a reset.
1618  **/
1619 static void igb_configure_tx(struct igb_adapter *adapter)
1620 {
1621         u64 tdba, tdwba;
1622         struct e1000_hw *hw = &adapter->hw;
1623         u32 tctl;
1624         u32 txdctl, txctrl;
1625         int i;
1626
1627         for (i = 0; i < adapter->num_tx_queues; i++) {
1628                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1629
1630                 wr32(E1000_TDLEN(i),
1631                                 ring->count * sizeof(struct e1000_tx_desc));
1632                 tdba = ring->dma;
1633                 wr32(E1000_TDBAL(i),
1634                                 tdba & 0x00000000ffffffffULL);
1635                 wr32(E1000_TDBAH(i), tdba >> 32);
1636
1637                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1638                 tdwba |= 1; /* enable head wb */
1639                 wr32(E1000_TDWBAL(i),
1640                                 tdwba & 0x00000000ffffffffULL);
1641                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1642
1643                 ring->head = E1000_TDH(i);
1644                 ring->tail = E1000_TDT(i);
1645                 writel(0, hw->hw_addr + ring->tail);
1646                 writel(0, hw->hw_addr + ring->head);
1647                 txdctl = rd32(E1000_TXDCTL(i));
1648                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1649                 wr32(E1000_TXDCTL(i), txdctl);
1650
1651                 /* Turn off Relaxed Ordering on head write-backs.  The
1652                  * writebacks MUST be delivered in order or it will
1653                  * completely screw up our bookeeping.
1654                  */
1655                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1656                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1657                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1658         }
1659
1660
1661
1662         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1663
1664         /* Program the Transmit Control Register */
1665
1666         tctl = rd32(E1000_TCTL);
1667         tctl &= ~E1000_TCTL_CT;
1668         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671         igb_config_collision_dist(hw);
1672
1673         /* Setup Transmit Descriptor Settings for eop descriptor */
1674         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1675
1676         /* Enable transmits */
1677         tctl |= E1000_TCTL_EN;
1678
1679         wr32(E1000_TCTL, tctl);
1680 }
1681
1682 /**
1683  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1684  * @adapter: board private structure
1685  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1686  *
1687  * Returns 0 on success, negative on failure
1688  **/
1689
1690 int igb_setup_rx_resources(struct igb_adapter *adapter,
1691                            struct igb_ring *rx_ring)
1692 {
1693         struct pci_dev *pdev = adapter->pdev;
1694         int size, desc_len;
1695
1696 #ifdef CONFIG_IGB_LRO
1697         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1698         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1699         if (!rx_ring->lro_mgr.lro_arr)
1700                 goto err;
1701         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1702 #endif
1703
1704         size = sizeof(struct igb_buffer) * rx_ring->count;
1705         rx_ring->buffer_info = vmalloc(size);
1706         if (!rx_ring->buffer_info)
1707                 goto err;
1708         memset(rx_ring->buffer_info, 0, size);
1709
1710         desc_len = sizeof(union e1000_adv_rx_desc);
1711
1712         /* Round up to nearest 4K */
1713         rx_ring->size = rx_ring->count * desc_len;
1714         rx_ring->size = ALIGN(rx_ring->size, 4096);
1715
1716         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1717                                              &rx_ring->dma);
1718
1719         if (!rx_ring->desc)
1720                 goto err;
1721
1722         rx_ring->next_to_clean = 0;
1723         rx_ring->next_to_use = 0;
1724
1725         rx_ring->adapter = adapter;
1726
1727         return 0;
1728
1729 err:
1730 #ifdef CONFIG_IGB_LRO
1731         vfree(rx_ring->lro_mgr.lro_arr);
1732         rx_ring->lro_mgr.lro_arr = NULL;
1733 #endif
1734         vfree(rx_ring->buffer_info);
1735         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1736                 "the receive descriptor ring\n");
1737         return -ENOMEM;
1738 }
1739
1740 /**
1741  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1742  *                                (Descriptors) for all queues
1743  * @adapter: board private structure
1744  *
1745  * Return 0 on success, negative on failure
1746  **/
1747 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1748 {
1749         int i, err = 0;
1750
1751         for (i = 0; i < adapter->num_rx_queues; i++) {
1752                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1753                 if (err) {
1754                         dev_err(&adapter->pdev->dev,
1755                                 "Allocation for Rx Queue %u failed\n", i);
1756                         for (i--; i >= 0; i--)
1757                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1758                         break;
1759                 }
1760         }
1761
1762         return err;
1763 }
1764
1765 /**
1766  * igb_setup_rctl - configure the receive control registers
1767  * @adapter: Board private structure
1768  **/
1769 static void igb_setup_rctl(struct igb_adapter *adapter)
1770 {
1771         struct e1000_hw *hw = &adapter->hw;
1772         u32 rctl;
1773         u32 srrctl = 0;
1774         int i;
1775
1776         rctl = rd32(E1000_RCTL);
1777
1778         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1779
1780         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1781                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1782                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1783
1784         /*
1785          * enable stripping of CRC. It's unlikely this will break BMC
1786          * redirection as it did with e1000. Newer features require
1787          * that the HW strips the CRC.
1788         */
1789         rctl |= E1000_RCTL_SECRC;
1790
1791         rctl &= ~E1000_RCTL_SBP;
1792
1793         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1794                 rctl &= ~E1000_RCTL_LPE;
1795         else
1796                 rctl |= E1000_RCTL_LPE;
1797         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1798                 /* Setup buffer sizes */
1799                 rctl &= ~E1000_RCTL_SZ_4096;
1800                 rctl |= E1000_RCTL_BSEX;
1801                 switch (adapter->rx_buffer_len) {
1802                 case IGB_RXBUFFER_256:
1803                         rctl |= E1000_RCTL_SZ_256;
1804                         rctl &= ~E1000_RCTL_BSEX;
1805                         break;
1806                 case IGB_RXBUFFER_512:
1807                         rctl |= E1000_RCTL_SZ_512;
1808                         rctl &= ~E1000_RCTL_BSEX;
1809                         break;
1810                 case IGB_RXBUFFER_1024:
1811                         rctl |= E1000_RCTL_SZ_1024;
1812                         rctl &= ~E1000_RCTL_BSEX;
1813                         break;
1814                 case IGB_RXBUFFER_2048:
1815                 default:
1816                         rctl |= E1000_RCTL_SZ_2048;
1817                         rctl &= ~E1000_RCTL_BSEX;
1818                         break;
1819                 }
1820         } else {
1821                 rctl &= ~E1000_RCTL_BSEX;
1822                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1823         }
1824
1825         /* 82575 and greater support packet-split where the protocol
1826          * header is placed in skb->data and the packet data is
1827          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1828          * In the case of a non-split, skb->data is linearly filled,
1829          * followed by the page buffers.  Therefore, skb->data is
1830          * sized to hold the largest protocol header.
1831          */
1832         /* allocations using alloc_page take too long for regular MTU
1833          * so only enable packet split for jumbo frames */
1834         if (rctl & E1000_RCTL_LPE) {
1835                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1836                 srrctl |= adapter->rx_ps_hdr_size <<
1837                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1838                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1839         } else {
1840                 adapter->rx_ps_hdr_size = 0;
1841                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1842         }
1843
1844         for (i = 0; i < adapter->num_rx_queues; i++)
1845                 wr32(E1000_SRRCTL(i), srrctl);
1846
1847         wr32(E1000_RCTL, rctl);
1848 }
1849
1850 /**
1851  * igb_configure_rx - Configure receive Unit after Reset
1852  * @adapter: board private structure
1853  *
1854  * Configure the Rx unit of the MAC after a reset.
1855  **/
1856 static void igb_configure_rx(struct igb_adapter *adapter)
1857 {
1858         u64 rdba;
1859         struct e1000_hw *hw = &adapter->hw;
1860         u32 rctl, rxcsum;
1861         u32 rxdctl;
1862         int i;
1863
1864         /* disable receives while setting up the descriptors */
1865         rctl = rd32(E1000_RCTL);
1866         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1867         wrfl();
1868         mdelay(10);
1869
1870         if (adapter->itr_setting > 3)
1871                 wr32(E1000_ITR, adapter->itr);
1872
1873         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1874          * the Base and Length of the Rx Descriptor Ring */
1875         for (i = 0; i < adapter->num_rx_queues; i++) {
1876                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1877                 rdba = ring->dma;
1878                 wr32(E1000_RDBAL(i),
1879                                 rdba & 0x00000000ffffffffULL);
1880                 wr32(E1000_RDBAH(i), rdba >> 32);
1881                 wr32(E1000_RDLEN(i),
1882                                ring->count * sizeof(union e1000_adv_rx_desc));
1883
1884                 ring->head = E1000_RDH(i);
1885                 ring->tail = E1000_RDT(i);
1886                 writel(0, hw->hw_addr + ring->tail);
1887                 writel(0, hw->hw_addr + ring->head);
1888
1889                 rxdctl = rd32(E1000_RXDCTL(i));
1890                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1891                 rxdctl &= 0xFFF00000;
1892                 rxdctl |= IGB_RX_PTHRESH;
1893                 rxdctl |= IGB_RX_HTHRESH << 8;
1894                 rxdctl |= IGB_RX_WTHRESH << 16;
1895                 wr32(E1000_RXDCTL(i), rxdctl);
1896 #ifdef CONFIG_IGB_LRO
1897                 /* Intitial LRO Settings */
1898                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1899                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1900                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1901                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1902                 ring->lro_mgr.dev = adapter->netdev;
1903                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1904                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1905 #endif
1906         }
1907
1908         if (adapter->num_rx_queues > 1) {
1909                 u32 random[10];
1910                 u32 mrqc;
1911                 u32 j, shift;
1912                 union e1000_reta {
1913                         u32 dword;
1914                         u8  bytes[4];
1915                 } reta;
1916
1917                 get_random_bytes(&random[0], 40);
1918
1919                 if (hw->mac.type >= e1000_82576)
1920                         shift = 0;
1921                 else
1922                         shift = 6;
1923                 for (j = 0; j < (32 * 4); j++) {
1924                         reta.bytes[j & 3] =
1925                                 (j % adapter->num_rx_queues) << shift;
1926                         if ((j & 3) == 3)
1927                                 writel(reta.dword,
1928                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1929                 }
1930                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1931
1932                 /* Fill out hash function seeds */
1933                 for (j = 0; j < 10; j++)
1934                         array_wr32(E1000_RSSRK(0), j, random[j]);
1935
1936                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1937                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1938                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1939                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1940                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1941                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1942                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1943                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1944
1945
1946                 wr32(E1000_MRQC, mrqc);
1947
1948                 /* Multiqueue and raw packet checksumming are mutually
1949                  * exclusive.  Note that this not the same as TCP/IP
1950                  * checksumming, which works fine. */
1951                 rxcsum = rd32(E1000_RXCSUM);
1952                 rxcsum |= E1000_RXCSUM_PCSD;
1953                 wr32(E1000_RXCSUM, rxcsum);
1954         } else {
1955                 /* Enable Receive Checksum Offload for TCP and UDP */
1956                 rxcsum = rd32(E1000_RXCSUM);
1957                 if (adapter->rx_csum) {
1958                         rxcsum |= E1000_RXCSUM_TUOFL;
1959
1960                         /* Enable IPv4 payload checksum for UDP fragments
1961                          * Must be used in conjunction with packet-split. */
1962                         if (adapter->rx_ps_hdr_size)
1963                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1964                 } else {
1965                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1966                         /* don't need to clear IPPCSE as it defaults to 0 */
1967                 }
1968                 wr32(E1000_RXCSUM, rxcsum);
1969         }
1970
1971         if (adapter->vlgrp)
1972                 wr32(E1000_RLPML,
1973                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1974         else
1975                 wr32(E1000_RLPML, adapter->max_frame_size);
1976
1977         /* Enable Receives */
1978         wr32(E1000_RCTL, rctl);
1979 }
1980
1981 /**
1982  * igb_free_tx_resources - Free Tx Resources per Queue
1983  * @tx_ring: Tx descriptor ring for a specific queue
1984  *
1985  * Free all transmit software resources
1986  **/
1987 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1988 {
1989         struct pci_dev *pdev = tx_ring->adapter->pdev;
1990
1991         igb_clean_tx_ring(tx_ring);
1992
1993         vfree(tx_ring->buffer_info);
1994         tx_ring->buffer_info = NULL;
1995
1996         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1997
1998         tx_ring->desc = NULL;
1999 }
2000
2001 /**
2002  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2003  * @adapter: board private structure
2004  *
2005  * Free all transmit software resources
2006  **/
2007 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2008 {
2009         int i;
2010
2011         for (i = 0; i < adapter->num_tx_queues; i++)
2012                 igb_free_tx_resources(&adapter->tx_ring[i]);
2013 }
2014
2015 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2016                                            struct igb_buffer *buffer_info)
2017 {
2018         if (buffer_info->dma) {
2019                 pci_unmap_page(adapter->pdev,
2020                                 buffer_info->dma,
2021                                 buffer_info->length,
2022                                 PCI_DMA_TODEVICE);
2023                 buffer_info->dma = 0;
2024         }
2025         if (buffer_info->skb) {
2026                 dev_kfree_skb_any(buffer_info->skb);
2027                 buffer_info->skb = NULL;
2028         }
2029         buffer_info->time_stamp = 0;
2030         /* buffer_info must be completely set up in the transmit path */
2031 }
2032
2033 /**
2034  * igb_clean_tx_ring - Free Tx Buffers
2035  * @tx_ring: ring to be cleaned
2036  **/
2037 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2038 {
2039         struct igb_adapter *adapter = tx_ring->adapter;
2040         struct igb_buffer *buffer_info;
2041         unsigned long size;
2042         unsigned int i;
2043
2044         if (!tx_ring->buffer_info)
2045                 return;
2046         /* Free all the Tx ring sk_buffs */
2047
2048         for (i = 0; i < tx_ring->count; i++) {
2049                 buffer_info = &tx_ring->buffer_info[i];
2050                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2051         }
2052
2053         size = sizeof(struct igb_buffer) * tx_ring->count;
2054         memset(tx_ring->buffer_info, 0, size);
2055
2056         /* Zero out the descriptor ring */
2057
2058         memset(tx_ring->desc, 0, tx_ring->size);
2059
2060         tx_ring->next_to_use = 0;
2061         tx_ring->next_to_clean = 0;
2062
2063         writel(0, adapter->hw.hw_addr + tx_ring->head);
2064         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2065 }
2066
2067 /**
2068  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2069  * @adapter: board private structure
2070  **/
2071 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2072 {
2073         int i;
2074
2075         for (i = 0; i < adapter->num_tx_queues; i++)
2076                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2077 }
2078
2079 /**
2080  * igb_free_rx_resources - Free Rx Resources
2081  * @rx_ring: ring to clean the resources from
2082  *
2083  * Free all receive software resources
2084  **/
2085 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2086 {
2087         struct pci_dev *pdev = rx_ring->adapter->pdev;
2088
2089         igb_clean_rx_ring(rx_ring);
2090
2091         vfree(rx_ring->buffer_info);
2092         rx_ring->buffer_info = NULL;
2093
2094 #ifdef CONFIG_IGB_LRO
2095         vfree(rx_ring->lro_mgr.lro_arr);
2096         rx_ring->lro_mgr.lro_arr = NULL;
2097 #endif 
2098
2099         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2100
2101         rx_ring->desc = NULL;
2102 }
2103
2104 /**
2105  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2106  * @adapter: board private structure
2107  *
2108  * Free all receive software resources
2109  **/
2110 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2111 {
2112         int i;
2113
2114         for (i = 0; i < adapter->num_rx_queues; i++)
2115                 igb_free_rx_resources(&adapter->rx_ring[i]);
2116 }
2117
2118 /**
2119  * igb_clean_rx_ring - Free Rx Buffers per Queue
2120  * @rx_ring: ring to free buffers from
2121  **/
2122 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2123 {
2124         struct igb_adapter *adapter = rx_ring->adapter;
2125         struct igb_buffer *buffer_info;
2126         struct pci_dev *pdev = adapter->pdev;
2127         unsigned long size;
2128         unsigned int i;
2129
2130         if (!rx_ring->buffer_info)
2131                 return;
2132         /* Free all the Rx ring sk_buffs */
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 if (buffer_info->dma) {
2136                         if (adapter->rx_ps_hdr_size)
2137                                 pci_unmap_single(pdev, buffer_info->dma,
2138                                                  adapter->rx_ps_hdr_size,
2139                                                  PCI_DMA_FROMDEVICE);
2140                         else
2141                                 pci_unmap_single(pdev, buffer_info->dma,
2142                                                  adapter->rx_buffer_len,
2143                                                  PCI_DMA_FROMDEVICE);
2144                         buffer_info->dma = 0;
2145                 }
2146
2147                 if (buffer_info->skb) {
2148                         dev_kfree_skb(buffer_info->skb);
2149                         buffer_info->skb = NULL;
2150                 }
2151                 if (buffer_info->page) {
2152                         if (buffer_info->page_dma)
2153                                 pci_unmap_page(pdev, buffer_info->page_dma,
2154                                                PAGE_SIZE / 2,
2155                                                PCI_DMA_FROMDEVICE);
2156                         put_page(buffer_info->page);
2157                         buffer_info->page = NULL;
2158                         buffer_info->page_dma = 0;
2159                         buffer_info->page_offset = 0;
2160                 }
2161         }
2162
2163         size = sizeof(struct igb_buffer) * rx_ring->count;
2164         memset(rx_ring->buffer_info, 0, size);
2165
2166         /* Zero out the descriptor ring */
2167         memset(rx_ring->desc, 0, rx_ring->size);
2168
2169         rx_ring->next_to_clean = 0;
2170         rx_ring->next_to_use = 0;
2171
2172         writel(0, adapter->hw.hw_addr + rx_ring->head);
2173         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2174 }
2175
2176 /**
2177  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2178  * @adapter: board private structure
2179  **/
2180 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2181 {
2182         int i;
2183
2184         for (i = 0; i < adapter->num_rx_queues; i++)
2185                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2186 }
2187
2188 /**
2189  * igb_set_mac - Change the Ethernet Address of the NIC
2190  * @netdev: network interface device structure
2191  * @p: pointer to an address structure
2192  *
2193  * Returns 0 on success, negative on failure
2194  **/
2195 static int igb_set_mac(struct net_device *netdev, void *p)
2196 {
2197         struct igb_adapter *adapter = netdev_priv(netdev);
2198         struct sockaddr *addr = p;
2199
2200         if (!is_valid_ether_addr(addr->sa_data))
2201                 return -EADDRNOTAVAIL;
2202
2203         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2204         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2205
2206         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2207
2208         return 0;
2209 }
2210
2211 /**
2212  * igb_set_multi - Multicast and Promiscuous mode set
2213  * @netdev: network interface device structure
2214  *
2215  * The set_multi entry point is called whenever the multicast address
2216  * list or the network interface flags are updated.  This routine is
2217  * responsible for configuring the hardware for proper multicast,
2218  * promiscuous mode, and all-multi behavior.
2219  **/
2220 static void igb_set_multi(struct net_device *netdev)
2221 {
2222         struct igb_adapter *adapter = netdev_priv(netdev);
2223         struct e1000_hw *hw = &adapter->hw;
2224         struct e1000_mac_info *mac = &hw->mac;
2225         struct dev_mc_list *mc_ptr;
2226         u8  *mta_list;
2227         u32 rctl;
2228         int i;
2229
2230         /* Check for Promiscuous and All Multicast modes */
2231
2232         rctl = rd32(E1000_RCTL);
2233
2234         if (netdev->flags & IFF_PROMISC) {
2235                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2236                 rctl &= ~E1000_RCTL_VFE;
2237         } else {
2238                 if (netdev->flags & IFF_ALLMULTI) {
2239                         rctl |= E1000_RCTL_MPE;
2240                         rctl &= ~E1000_RCTL_UPE;
2241                 } else
2242                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2243                 rctl |= E1000_RCTL_VFE;
2244         }
2245         wr32(E1000_RCTL, rctl);
2246
2247         if (!netdev->mc_count) {
2248                 /* nothing to program, so clear mc list */
2249                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2250                                           mac->rar_entry_count);
2251                 return;
2252         }
2253
2254         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2255         if (!mta_list)
2256                 return;
2257
2258         /* The shared function expects a packed array of only addresses. */
2259         mc_ptr = netdev->mc_list;
2260
2261         for (i = 0; i < netdev->mc_count; i++) {
2262                 if (!mc_ptr)
2263                         break;
2264                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2265                 mc_ptr = mc_ptr->next;
2266         }
2267         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2268                                       mac->rar_entry_count);
2269         kfree(mta_list);
2270 }
2271
2272 /* Need to wait a few seconds after link up to get diagnostic information from
2273  * the phy */
2274 static void igb_update_phy_info(unsigned long data)
2275 {
2276         struct igb_adapter *adapter = (struct igb_adapter *) data;
2277         if (adapter->hw.phy.ops.get_phy_info)
2278                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2279 }
2280
2281 /**
2282  * igb_watchdog - Timer Call-back
2283  * @data: pointer to adapter cast into an unsigned long
2284  **/
2285 static void igb_watchdog(unsigned long data)
2286 {
2287         struct igb_adapter *adapter = (struct igb_adapter *)data;
2288         /* Do the rest outside of interrupt context */
2289         schedule_work(&adapter->watchdog_task);
2290 }
2291
2292 static void igb_watchdog_task(struct work_struct *work)
2293 {
2294         struct igb_adapter *adapter = container_of(work,
2295                                         struct igb_adapter, watchdog_task);
2296         struct e1000_hw *hw = &adapter->hw;
2297
2298         struct net_device *netdev = adapter->netdev;
2299         struct igb_ring *tx_ring = adapter->tx_ring;
2300         struct e1000_mac_info *mac = &adapter->hw.mac;
2301         u32 link;
2302         u32 eics = 0;
2303         s32 ret_val;
2304         int i;
2305
2306         if ((netif_carrier_ok(netdev)) &&
2307             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2308                 goto link_up;
2309
2310         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2311         if ((ret_val == E1000_ERR_PHY) &&
2312             (hw->phy.type == e1000_phy_igp_3) &&
2313             (rd32(E1000_CTRL) &
2314              E1000_PHY_CTRL_GBE_DISABLE))
2315                 dev_info(&adapter->pdev->dev,
2316                          "Gigabit has been disabled, downgrading speed\n");
2317
2318         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2319             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2320                 link = mac->serdes_has_link;
2321         else
2322                 link = rd32(E1000_STATUS) &
2323                                       E1000_STATUS_LU;
2324
2325         if (link) {
2326                 if (!netif_carrier_ok(netdev)) {
2327                         u32 ctrl;
2328                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2329                                                    &adapter->link_speed,
2330                                                    &adapter->link_duplex);
2331
2332                         ctrl = rd32(E1000_CTRL);
2333                         dev_info(&adapter->pdev->dev,
2334                                  "NIC Link is Up %d Mbps %s, "
2335                                  "Flow Control: %s\n",
2336                                  adapter->link_speed,
2337                                  adapter->link_duplex == FULL_DUPLEX ?
2338                                  "Full Duplex" : "Half Duplex",
2339                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2340                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2341                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2342                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2343
2344                         /* tweak tx_queue_len according to speed/duplex and
2345                          * adjust the timeout factor */
2346                         netdev->tx_queue_len = adapter->tx_queue_len;
2347                         adapter->tx_timeout_factor = 1;
2348                         switch (adapter->link_speed) {
2349                         case SPEED_10:
2350                                 netdev->tx_queue_len = 10;
2351                                 adapter->tx_timeout_factor = 14;
2352                                 break;
2353                         case SPEED_100:
2354                                 netdev->tx_queue_len = 100;
2355                                 /* maybe add some timeout factor ? */
2356                                 break;
2357                         }
2358
2359                         netif_carrier_on(netdev);
2360                         netif_tx_wake_all_queues(netdev);
2361
2362                         if (!test_bit(__IGB_DOWN, &adapter->state))
2363                                 mod_timer(&adapter->phy_info_timer,
2364                                           round_jiffies(jiffies + 2 * HZ));
2365                 }
2366         } else {
2367                 if (netif_carrier_ok(netdev)) {
2368                         adapter->link_speed = 0;
2369                         adapter->link_duplex = 0;
2370                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2371                         netif_carrier_off(netdev);
2372                         netif_tx_stop_all_queues(netdev);
2373                         if (!test_bit(__IGB_DOWN, &adapter->state))
2374                                 mod_timer(&adapter->phy_info_timer,
2375                                           round_jiffies(jiffies + 2 * HZ));
2376                 }
2377         }
2378
2379 link_up:
2380         igb_update_stats(adapter);
2381
2382         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2383         adapter->tpt_old = adapter->stats.tpt;
2384         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2385         adapter->colc_old = adapter->stats.colc;
2386
2387         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2388         adapter->gorc_old = adapter->stats.gorc;
2389         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2390         adapter->gotc_old = adapter->stats.gotc;
2391
2392         igb_update_adaptive(&adapter->hw);
2393
2394         if (!netif_carrier_ok(netdev)) {
2395                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2396                         /* We've lost link, so the controller stops DMA,
2397                          * but we've got queued Tx work that's never going
2398                          * to get done, so reset controller to flush Tx.
2399                          * (Do the reset outside of interrupt context). */
2400                         adapter->tx_timeout_count++;
2401                         schedule_work(&adapter->reset_task);
2402                 }
2403         }
2404
2405         /* Cause software interrupt to ensure rx ring is cleaned */
2406         if (adapter->msix_entries) {
2407                 for (i = 0; i < adapter->num_rx_queues; i++)
2408                         eics |= adapter->rx_ring[i].eims_value;
2409                 wr32(E1000_EICS, eics);
2410         } else {
2411                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2412         }
2413
2414         /* Force detection of hung controller every watchdog period */
2415         tx_ring->detect_tx_hung = true;
2416
2417         /* Reset the timer */
2418         if (!test_bit(__IGB_DOWN, &adapter->state))
2419                 mod_timer(&adapter->watchdog_timer,
2420                           round_jiffies(jiffies + 2 * HZ));
2421 }
2422
2423 enum latency_range {
2424         lowest_latency = 0,
2425         low_latency = 1,
2426         bulk_latency = 2,
2427         latency_invalid = 255
2428 };
2429
2430
2431 /**
2432  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2433  *
2434  *      Stores a new ITR value based on strictly on packet size.  This
2435  *      algorithm is less sophisticated than that used in igb_update_itr,
2436  *      due to the difficulty of synchronizing statistics across multiple
2437  *      receive rings.  The divisors and thresholds used by this fuction
2438  *      were determined based on theoretical maximum wire speed and testing
2439  *      data, in order to minimize response time while increasing bulk
2440  *      throughput.
2441  *      This functionality is controlled by the InterruptThrottleRate module
2442  *      parameter (see igb_param.c)
2443  *      NOTE:  This function is called only when operating in a multiqueue
2444  *             receive environment.
2445  * @rx_ring: pointer to ring
2446  **/
2447 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2448 {
2449         int new_val = rx_ring->itr_val;
2450         int avg_wire_size = 0;
2451         struct igb_adapter *adapter = rx_ring->adapter;
2452
2453         if (!rx_ring->total_packets)
2454                 goto clear_counts; /* no packets, so don't do anything */
2455
2456         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2457          * ints/sec - ITR timer value of 120 ticks.
2458          */
2459         if (adapter->link_speed != SPEED_1000) {
2460                 new_val = 120;
2461                 goto set_itr_val;
2462         }
2463         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2464
2465         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2466         avg_wire_size += 24;
2467
2468         /* Don't starve jumbo frames */
2469         avg_wire_size = min(avg_wire_size, 3000);
2470
2471         /* Give a little boost to mid-size frames */
2472         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2473                 new_val = avg_wire_size / 3;
2474         else
2475                 new_val = avg_wire_size / 2;
2476
2477 set_itr_val:
2478         if (new_val != rx_ring->itr_val) {
2479                 rx_ring->itr_val = new_val;
2480                 rx_ring->set_itr = 1;
2481         }
2482 clear_counts:
2483         rx_ring->total_bytes = 0;
2484         rx_ring->total_packets = 0;
2485 }
2486
2487 /**
2488  * igb_update_itr - update the dynamic ITR value based on statistics
2489  *      Stores a new ITR value based on packets and byte
2490  *      counts during the last interrupt.  The advantage of per interrupt
2491  *      computation is faster updates and more accurate ITR for the current
2492  *      traffic pattern.  Constants in this function were computed
2493  *      based on theoretical maximum wire speed and thresholds were set based
2494  *      on testing data as well as attempting to minimize response time
2495  *      while increasing bulk throughput.
2496  *      this functionality is controlled by the InterruptThrottleRate module
2497  *      parameter (see igb_param.c)
2498  *      NOTE:  These calculations are only valid when operating in a single-
2499  *             queue environment.
2500  * @adapter: pointer to adapter
2501  * @itr_setting: current adapter->itr
2502  * @packets: the number of packets during this measurement interval
2503  * @bytes: the number of bytes during this measurement interval
2504  **/
2505 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2506                                    int packets, int bytes)
2507 {
2508         unsigned int retval = itr_setting;
2509
2510         if (packets == 0)
2511                 goto update_itr_done;
2512
2513         switch (itr_setting) {
2514         case lowest_latency:
2515                 /* handle TSO and jumbo frames */
2516                 if (bytes/packets > 8000)
2517                         retval = bulk_latency;
2518                 else if ((packets < 5) && (bytes > 512))
2519                         retval = low_latency;
2520                 break;
2521         case low_latency:  /* 50 usec aka 20000 ints/s */
2522                 if (bytes > 10000) {
2523                         /* this if handles the TSO accounting */
2524                         if (bytes/packets > 8000) {
2525                                 retval = bulk_latency;
2526                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2527                                 retval = bulk_latency;
2528                         } else if ((packets > 35)) {
2529                                 retval = lowest_latency;
2530                         }
2531                 } else if (bytes/packets > 2000) {
2532                         retval = bulk_latency;
2533                 } else if (packets <= 2 && bytes < 512) {
2534                         retval = lowest_latency;
2535                 }
2536                 break;
2537         case bulk_latency: /* 250 usec aka 4000 ints/s */
2538                 if (bytes > 25000) {
2539                         if (packets > 35)
2540                                 retval = low_latency;
2541                 } else if (bytes < 6000) {
2542                         retval = low_latency;
2543                 }
2544                 break;
2545         }
2546
2547 update_itr_done:
2548         return retval;
2549 }
2550
2551 static void igb_set_itr(struct igb_adapter *adapter)
2552 {
2553         u16 current_itr;
2554         u32 new_itr = adapter->itr;
2555
2556         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2557         if (adapter->link_speed != SPEED_1000) {
2558                 current_itr = 0;
2559                 new_itr = 4000;
2560                 goto set_itr_now;
2561         }
2562
2563         adapter->rx_itr = igb_update_itr(adapter,
2564                                     adapter->rx_itr,
2565                                     adapter->rx_ring->total_packets,
2566                                     adapter->rx_ring->total_bytes);
2567
2568         if (adapter->rx_ring->buddy) {
2569                 adapter->tx_itr = igb_update_itr(adapter,
2570                                             adapter->tx_itr,
2571                                             adapter->tx_ring->total_packets,
2572                                             adapter->tx_ring->total_bytes);
2573
2574                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2575         } else {
2576                 current_itr = adapter->rx_itr;
2577         }
2578
2579         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2580         if (adapter->itr_setting == 3 &&
2581             current_itr == lowest_latency)
2582                 current_itr = low_latency;
2583
2584         switch (current_itr) {
2585         /* counts and packets in update_itr are dependent on these numbers */
2586         case lowest_latency:
2587                 new_itr = 70000;
2588                 break;
2589         case low_latency:
2590                 new_itr = 20000; /* aka hwitr = ~200 */
2591                 break;
2592         case bulk_latency:
2593                 new_itr = 4000;
2594                 break;
2595         default:
2596                 break;
2597         }
2598
2599 set_itr_now:
2600         adapter->rx_ring->total_bytes = 0;
2601         adapter->rx_ring->total_packets = 0;
2602         if (adapter->rx_ring->buddy) {
2603                 adapter->rx_ring->buddy->total_bytes = 0;
2604                 adapter->rx_ring->buddy->total_packets = 0;
2605         }
2606
2607         if (new_itr != adapter->itr) {
2608                 /* this attempts to bias the interrupt rate towards Bulk
2609                  * by adding intermediate steps when interrupt rate is
2610                  * increasing */
2611                 new_itr = new_itr > adapter->itr ?
2612                              min(adapter->itr + (new_itr >> 2), new_itr) :
2613                              new_itr;
2614                 /* Don't write the value here; it resets the adapter's
2615                  * internal timer, and causes us to delay far longer than
2616                  * we should between interrupts.  Instead, we write the ITR
2617                  * value at the beginning of the next interrupt so the timing
2618                  * ends up being correct.
2619                  */
2620                 adapter->itr = new_itr;
2621                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2622                 adapter->rx_ring->set_itr = 1;
2623         }
2624
2625         return;
2626 }
2627
2628
2629 #define IGB_TX_FLAGS_CSUM               0x00000001
2630 #define IGB_TX_FLAGS_VLAN               0x00000002
2631 #define IGB_TX_FLAGS_TSO                0x00000004
2632 #define IGB_TX_FLAGS_IPV4               0x00000008
2633 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2634 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2635
2636 static inline int igb_tso_adv(struct igb_adapter *adapter,
2637                               struct igb_ring *tx_ring,
2638                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2639 {
2640         struct e1000_adv_tx_context_desc *context_desc;
2641         unsigned int i;
2642         int err;
2643         struct igb_buffer *buffer_info;
2644         u32 info = 0, tu_cmd = 0;
2645         u32 mss_l4len_idx, l4len;
2646         *hdr_len = 0;
2647
2648         if (skb_header_cloned(skb)) {
2649                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2650                 if (err)
2651                         return err;
2652         }
2653
2654         l4len = tcp_hdrlen(skb);
2655         *hdr_len += l4len;
2656
2657         if (skb->protocol == htons(ETH_P_IP)) {
2658                 struct iphdr *iph = ip_hdr(skb);
2659                 iph->tot_len = 0;
2660                 iph->check = 0;
2661                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2662                                                          iph->daddr, 0,
2663                                                          IPPROTO_TCP,
2664                                                          0);
2665         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2666                 ipv6_hdr(skb)->payload_len = 0;
2667                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2668                                                        &ipv6_hdr(skb)->daddr,
2669                                                        0, IPPROTO_TCP, 0);
2670         }
2671
2672         i = tx_ring->next_to_use;
2673
2674         buffer_info = &tx_ring->buffer_info[i];
2675         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2676         /* VLAN MACLEN IPLEN */
2677         if (tx_flags & IGB_TX_FLAGS_VLAN)
2678                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2679         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2680         *hdr_len += skb_network_offset(skb);
2681         info |= skb_network_header_len(skb);
2682         *hdr_len += skb_network_header_len(skb);
2683         context_desc->vlan_macip_lens = cpu_to_le32(info);
2684
2685         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2686         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2687
2688         if (skb->protocol == htons(ETH_P_IP))
2689                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2690         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2691
2692         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2693
2694         /* MSS L4LEN IDX */
2695         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2696         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2697
2698         /* Context index must be unique per ring. */
2699         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2700                 mss_l4len_idx |= tx_ring->queue_index << 4;
2701
2702         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2703         context_desc->seqnum_seed = 0;
2704
2705         buffer_info->time_stamp = jiffies;
2706         buffer_info->dma = 0;
2707         i++;
2708         if (i == tx_ring->count)
2709                 i = 0;
2710
2711         tx_ring->next_to_use = i;
2712
2713         return true;
2714 }
2715
2716 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2717                                         struct igb_ring *tx_ring,
2718                                         struct sk_buff *skb, u32 tx_flags)
2719 {
2720         struct e1000_adv_tx_context_desc *context_desc;
2721         unsigned int i;
2722         struct igb_buffer *buffer_info;
2723         u32 info = 0, tu_cmd = 0;
2724
2725         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2726             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2727                 i = tx_ring->next_to_use;
2728                 buffer_info = &tx_ring->buffer_info[i];
2729                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2730
2731                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2732                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2733                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2734                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2735                         info |= skb_network_header_len(skb);
2736
2737                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2738
2739                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2740
2741                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2742                         switch (skb->protocol) {
2743                         case __constant_htons(ETH_P_IP):
2744                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2745                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2746                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2747                                 break;
2748                         case __constant_htons(ETH_P_IPV6):
2749                                 /* XXX what about other V6 headers?? */
2750                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2751                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2752                                 break;
2753                         default:
2754                                 if (unlikely(net_ratelimit()))
2755                                         dev_warn(&adapter->pdev->dev,
2756                                             "partial checksum but proto=%x!\n",
2757                                             skb->protocol);
2758                                 break;
2759                         }
2760                 }
2761
2762                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2763                 context_desc->seqnum_seed = 0;
2764                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2765                         context_desc->mss_l4len_idx =
2766                                 cpu_to_le32(tx_ring->queue_index << 4);
2767
2768                 buffer_info->time_stamp = jiffies;
2769                 buffer_info->dma = 0;
2770
2771                 i++;
2772                 if (i == tx_ring->count)
2773                         i = 0;
2774                 tx_ring->next_to_use = i;
2775
2776                 return true;
2777         }
2778
2779
2780         return false;
2781 }
2782
2783 #define IGB_MAX_TXD_PWR 16
2784 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2785
2786 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2787                                  struct igb_ring *tx_ring,
2788                                  struct sk_buff *skb)
2789 {
2790         struct igb_buffer *buffer_info;
2791         unsigned int len = skb_headlen(skb);
2792         unsigned int count = 0, i;
2793         unsigned int f;
2794
2795         i = tx_ring->next_to_use;
2796
2797         buffer_info = &tx_ring->buffer_info[i];
2798         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2799         buffer_info->length = len;
2800         /* set time_stamp *before* dma to help avoid a possible race */
2801         buffer_info->time_stamp = jiffies;
2802         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2803                                           PCI_DMA_TODEVICE);
2804         count++;
2805         i++;
2806         if (i == tx_ring->count)
2807                 i = 0;
2808
2809         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2810                 struct skb_frag_struct *frag;
2811
2812                 frag = &skb_shinfo(skb)->frags[f];
2813                 len = frag->size;
2814
2815                 buffer_info = &tx_ring->buffer_info[i];
2816                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2817                 buffer_info->length = len;
2818                 buffer_info->time_stamp = jiffies;
2819                 buffer_info->dma = pci_map_page(adapter->pdev,
2820                                                 frag->page,
2821                                                 frag->page_offset,
2822                                                 len,
2823                                                 PCI_DMA_TODEVICE);
2824
2825                 count++;
2826                 i++;
2827                 if (i == tx_ring->count)
2828                         i = 0;
2829         }
2830
2831         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2832         tx_ring->buffer_info[i].skb = skb;
2833
2834         return count;
2835 }
2836
2837 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2838                                     struct igb_ring *tx_ring,
2839                                     int tx_flags, int count, u32 paylen,
2840                                     u8 hdr_len)
2841 {
2842         union e1000_adv_tx_desc *tx_desc = NULL;
2843         struct igb_buffer *buffer_info;
2844         u32 olinfo_status = 0, cmd_type_len;
2845         unsigned int i;
2846
2847         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2848                         E1000_ADVTXD_DCMD_DEXT);
2849
2850         if (tx_flags & IGB_TX_FLAGS_VLAN)
2851                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2852
2853         if (tx_flags & IGB_TX_FLAGS_TSO) {
2854                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2855
2856                 /* insert tcp checksum */
2857                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2858
2859                 /* insert ip checksum */
2860                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2861                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2862
2863         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2864                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2865         }
2866
2867         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2868             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2869                          IGB_TX_FLAGS_VLAN)))
2870                 olinfo_status |= tx_ring->queue_index << 4;
2871
2872         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2873
2874         i = tx_ring->next_to_use;
2875         while (count--) {
2876                 buffer_info = &tx_ring->buffer_info[i];
2877                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2878                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2879                 tx_desc->read.cmd_type_len =
2880                         cpu_to_le32(cmd_type_len | buffer_info->length);
2881                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2882                 i++;
2883                 if (i == tx_ring->count)
2884                         i = 0;
2885         }
2886
2887         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2888         /* Force memory writes to complete before letting h/w
2889          * know there are new descriptors to fetch.  (Only
2890          * applicable for weak-ordered memory model archs,
2891          * such as IA-64). */
2892         wmb();
2893
2894         tx_ring->next_to_use = i;
2895         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2896         /* we need this if more than one processor can write to our tail
2897          * at a time, it syncronizes IO on IA64/Altix systems */
2898         mmiowb();
2899 }
2900
2901 static int __igb_maybe_stop_tx(struct net_device *netdev,
2902                                struct igb_ring *tx_ring, int size)
2903 {
2904         struct igb_adapter *adapter = netdev_priv(netdev);
2905
2906         netif_stop_subqueue(netdev, tx_ring->queue_index);
2907
2908         /* Herbert's original patch had:
2909          *  smp_mb__after_netif_stop_queue();
2910          * but since that doesn't exist yet, just open code it. */
2911         smp_mb();
2912
2913         /* We need to check again in a case another CPU has just
2914          * made room available. */
2915         if (IGB_DESC_UNUSED(tx_ring) < size)
2916                 return -EBUSY;
2917
2918         /* A reprieve! */
2919         netif_wake_subqueue(netdev, tx_ring->queue_index);
2920         ++adapter->restart_queue;
2921         return 0;
2922 }
2923
2924 static int igb_maybe_stop_tx(struct net_device *netdev,
2925                              struct igb_ring *tx_ring, int size)
2926 {
2927         if (IGB_DESC_UNUSED(tx_ring) >= size)
2928                 return 0;
2929         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2930 }
2931
2932 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2933
2934 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2935                                    struct net_device *netdev,
2936                                    struct igb_ring *tx_ring)
2937 {
2938         struct igb_adapter *adapter = netdev_priv(netdev);
2939         unsigned int tx_flags = 0;
2940         unsigned int len;
2941         u8 hdr_len = 0;
2942         int tso = 0;
2943
2944         len = skb_headlen(skb);
2945
2946         if (test_bit(__IGB_DOWN, &adapter->state)) {
2947                 dev_kfree_skb_any(skb);
2948                 return NETDEV_TX_OK;
2949         }
2950
2951         if (skb->len <= 0) {
2952                 dev_kfree_skb_any(skb);
2953                 return NETDEV_TX_OK;
2954         }
2955
2956         /* need: 1 descriptor per page,
2957          *       + 2 desc gap to keep tail from touching head,
2958          *       + 1 desc for skb->data,
2959          *       + 1 desc for context descriptor,
2960          * otherwise try next time */
2961         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2962                 /* this is a hard error */
2963                 return NETDEV_TX_BUSY;
2964         }
2965         skb_orphan(skb);
2966
2967         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2968                 tx_flags |= IGB_TX_FLAGS_VLAN;
2969                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2970         }
2971
2972         if (skb->protocol == htons(ETH_P_IP))
2973                 tx_flags |= IGB_TX_FLAGS_IPV4;
2974
2975         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2976                                               &hdr_len) : 0;
2977
2978         if (tso < 0) {
2979                 dev_kfree_skb_any(skb);
2980                 return NETDEV_TX_OK;
2981         }
2982
2983         if (tso)
2984                 tx_flags |= IGB_TX_FLAGS_TSO;
2985         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2986                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2987                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2988
2989         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2990                          igb_tx_map_adv(adapter, tx_ring, skb),
2991                          skb->len, hdr_len);
2992
2993         netdev->trans_start = jiffies;
2994
2995         /* Make sure there is space in the ring for the next send. */
2996         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2997
2998         return NETDEV_TX_OK;
2999 }
3000
3001 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3002 {
3003         struct igb_adapter *adapter = netdev_priv(netdev);
3004         struct igb_ring *tx_ring;
3005
3006         int r_idx = 0;
3007         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3008         tx_ring = adapter->multi_tx_table[r_idx];
3009
3010         /* This goes back to the question of how to logically map a tx queue
3011          * to a flow.  Right now, performance is impacted slightly negatively
3012          * if using multiple tx queues.  If the stack breaks away from a
3013          * single qdisc implementation, we can look at this again. */
3014         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3015 }
3016
3017 /**
3018  * igb_tx_timeout - Respond to a Tx Hang
3019  * @netdev: network interface device structure
3020  **/
3021 static void igb_tx_timeout(struct net_device *netdev)
3022 {
3023         struct igb_adapter *adapter = netdev_priv(netdev);
3024         struct e1000_hw *hw = &adapter->hw;
3025
3026         /* Do the reset outside of interrupt context */
3027         adapter->tx_timeout_count++;
3028         schedule_work(&adapter->reset_task);
3029         wr32(E1000_EICS, adapter->eims_enable_mask &
3030                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3031 }
3032
3033 static void igb_reset_task(struct work_struct *work)
3034 {
3035         struct igb_adapter *adapter;
3036         adapter = container_of(work, struct igb_adapter, reset_task);
3037
3038         igb_reinit_locked(adapter);
3039 }
3040
3041 /**
3042  * igb_get_stats - Get System Network Statistics
3043  * @netdev: network interface device structure
3044  *
3045  * Returns the address of the device statistics structure.
3046  * The statistics are actually updated from the timer callback.
3047  **/
3048 static struct net_device_stats *
3049 igb_get_stats(struct net_device *netdev)
3050 {
3051         struct igb_adapter *adapter = netdev_priv(netdev);
3052
3053         /* only return the current stats */
3054         return &adapter->net_stats;
3055 }
3056
3057 /**
3058  * igb_change_mtu - Change the Maximum Transfer Unit
3059  * @netdev: network interface device structure
3060  * @new_mtu: new value for maximum frame size
3061  *
3062  * Returns 0 on success, negative on failure
3063  **/
3064 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3065 {
3066         struct igb_adapter *adapter = netdev_priv(netdev);
3067         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3068
3069         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3070             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3071                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3072                 return -EINVAL;
3073         }
3074
3075 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3076         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3077                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3078                 return -EINVAL;
3079         }
3080
3081         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3082                 msleep(1);
3083         /* igb_down has a dependency on max_frame_size */
3084         adapter->max_frame_size = max_frame;
3085         if (netif_running(netdev))
3086                 igb_down(adapter);
3087
3088         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3089          * means we reserve 2 more, this pushes us to allocate from the next
3090          * larger slab size.
3091          * i.e. RXBUFFER_2048 --> size-4096 slab
3092          */
3093
3094         if (max_frame <= IGB_RXBUFFER_256)
3095                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3096         else if (max_frame <= IGB_RXBUFFER_512)
3097                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3098         else if (max_frame <= IGB_RXBUFFER_1024)
3099                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3100         else if (max_frame <= IGB_RXBUFFER_2048)
3101                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3102         else
3103 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3104                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3105 #else
3106                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3107 #endif
3108         /* adjust allocation if LPE protects us, and we aren't using SBP */
3109         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3110              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3111                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3112
3113         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3114                  netdev->mtu, new_mtu);
3115         netdev->mtu = new_mtu;
3116
3117         if (netif_running(netdev))
3118                 igb_up(adapter);
3119         else
3120                 igb_reset(adapter);
3121
3122         clear_bit(__IGB_RESETTING, &adapter->state);
3123
3124         return 0;
3125 }
3126
3127 /**
3128  * igb_update_stats - Update the board statistics counters
3129  * @adapter: board private structure
3130  **/
3131
3132 void igb_update_stats(struct igb_adapter *adapter)
3133 {
3134         struct e1000_hw *hw = &adapter->hw;
3135         struct pci_dev *pdev = adapter->pdev;
3136         u16 phy_tmp;
3137
3138 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3139
3140         /*
3141          * Prevent stats update while adapter is being reset, or if the pci
3142          * connection is down.
3143          */
3144         if (adapter->link_speed == 0)
3145                 return;
3146         if (pci_channel_offline(pdev))
3147                 return;
3148
3149         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3150         adapter->stats.gprc += rd32(E1000_GPRC);
3151         adapter->stats.gorc += rd32(E1000_GORCL);
3152         rd32(E1000_GORCH); /* clear GORCL */
3153         adapter->stats.bprc += rd32(E1000_BPRC);
3154         adapter->stats.mprc += rd32(E1000_MPRC);
3155         adapter->stats.roc += rd32(E1000_ROC);
3156
3157         adapter->stats.prc64 += rd32(E1000_PRC64);
3158         adapter->stats.prc127 += rd32(E1000_PRC127);
3159         adapter->stats.prc255 += rd32(E1000_PRC255);
3160         adapter->stats.prc511 += rd32(E1000_PRC511);
3161         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3162         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3163         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3164         adapter->stats.sec += rd32(E1000_SEC);
3165
3166         adapter->stats.mpc += rd32(E1000_MPC);
3167         adapter->stats.scc += rd32(E1000_SCC);
3168         adapter->stats.ecol += rd32(E1000_ECOL);
3169         adapter->stats.mcc += rd32(E1000_MCC);
3170         adapter->stats.latecol += rd32(E1000_LATECOL);
3171         adapter->stats.dc += rd32(E1000_DC);
3172         adapter->stats.rlec += rd32(E1000_RLEC);
3173         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3174         adapter->stats.xontxc += rd32(E1000_XONTXC);
3175         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3176         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3177         adapter->stats.fcruc += rd32(E1000_FCRUC);
3178         adapter->stats.gptc += rd32(E1000_GPTC);
3179         adapter->stats.gotc += rd32(E1000_GOTCL);
3180         rd32(E1000_GOTCH); /* clear GOTCL */
3181         adapter->stats.rnbc += rd32(E1000_RNBC);
3182         adapter->stats.ruc += rd32(E1000_RUC);
3183         adapter->stats.rfc += rd32(E1000_RFC);
3184         adapter->stats.rjc += rd32(E1000_RJC);
3185         adapter->stats.tor += rd32(E1000_TORH);
3186         adapter->stats.tot += rd32(E1000_TOTH);
3187         adapter->stats.tpr += rd32(E1000_TPR);
3188
3189         adapter->stats.ptc64 += rd32(E1000_PTC64);
3190         adapter->stats.ptc127 += rd32(E1000_PTC127);
3191         adapter->stats.ptc255 += rd32(E1000_PTC255);
3192         adapter->stats.ptc511 += rd32(E1000_PTC511);
3193         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3194         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3195
3196         adapter->stats.mptc += rd32(E1000_MPTC);
3197         adapter->stats.bptc += rd32(E1000_BPTC);
3198
3199         /* used for adaptive IFS */
3200
3201         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3202         adapter->stats.tpt += hw->mac.tx_packet_delta;
3203         hw->mac.collision_delta = rd32(E1000_COLC);
3204         adapter->stats.colc += hw->mac.collision_delta;
3205
3206         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3207         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3208         adapter->stats.tncrs += rd32(E1000_TNCRS);
3209         adapter->stats.tsctc += rd32(E1000_TSCTC);
3210         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3211
3212         adapter->stats.iac += rd32(E1000_IAC);
3213         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3214         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3215         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3216         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3217         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3218         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3219         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3220         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3221
3222         /* Fill out the OS statistics structure */
3223         adapter->net_stats.multicast = adapter->stats.mprc;
3224         adapter->net_stats.collisions = adapter->stats.colc;
3225
3226         /* Rx Errors */
3227
3228         /* RLEC on some newer hardware can be incorrect so build
3229         * our own version based on RUC and ROC */
3230         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3231                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3232                 adapter->stats.ruc + adapter->stats.roc +
3233                 adapter->stats.cexterr;
3234         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3235                                               adapter->stats.roc;
3236         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3237         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3238         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3239
3240         /* Tx Errors */
3241         adapter->net_stats.tx_errors = adapter->stats.ecol +
3242                                        adapter->stats.latecol;
3243         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3244         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3245         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3246
3247         /* Tx Dropped needs to be maintained elsewhere */
3248
3249         /* Phy Stats */
3250         if (hw->phy.media_type == e1000_media_type_copper) {
3251                 if ((adapter->link_speed == SPEED_1000) &&
3252                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3253                                               &phy_tmp))) {
3254                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3255                         adapter->phy_stats.idle_errors += phy_tmp;
3256                 }
3257         }
3258
3259         /* Management Stats */
3260         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3261         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3262         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3263 }
3264
3265
3266 static irqreturn_t igb_msix_other(int irq, void *data)
3267 {
3268         struct net_device *netdev = data;
3269         struct igb_adapter *adapter = netdev_priv(netdev);
3270         struct e1000_hw *hw = &adapter->hw;
3271         u32 icr = rd32(E1000_ICR);
3272
3273         /* reading ICR causes bit 31 of EICR to be cleared */
3274         if (!(icr & E1000_ICR_LSC))
3275                 goto no_link_interrupt;
3276         hw->mac.get_link_status = 1;
3277         /* guard against interrupt when we're going down */
3278         if (!test_bit(__IGB_DOWN, &adapter->state))
3279                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3280         
3281 no_link_interrupt:
3282         wr32(E1000_IMS, E1000_IMS_LSC);
3283         wr32(E1000_EIMS, adapter->eims_other);
3284
3285         return IRQ_HANDLED;
3286 }
3287
3288 static irqreturn_t igb_msix_tx(int irq, void *data)
3289 {
3290         struct igb_ring *tx_ring = data;
3291         struct igb_adapter *adapter = tx_ring->adapter;
3292         struct e1000_hw *hw = &adapter->hw;
3293
3294 #ifdef CONFIG_IGB_DCA
3295         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3296                 igb_update_tx_dca(tx_ring);
3297 #endif
3298         tx_ring->total_bytes = 0;
3299         tx_ring->total_packets = 0;
3300
3301         /* auto mask will automatically reenable the interrupt when we write
3302          * EICS */
3303         if (!igb_clean_tx_irq(tx_ring))
3304                 /* Ring was not completely cleaned, so fire another interrupt */
3305                 wr32(E1000_EICS, tx_ring->eims_value);
3306         else
3307                 wr32(E1000_EIMS, tx_ring->eims_value);
3308
3309         return IRQ_HANDLED;
3310 }
3311
3312 static void igb_write_itr(struct igb_ring *ring)
3313 {
3314         struct e1000_hw *hw = &ring->adapter->hw;
3315         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3316                 switch (hw->mac.type) {
3317                 case e1000_82576:
3318                         wr32(ring->itr_register,
3319                              ring->itr_val |
3320                              0x80000000);
3321                         break;
3322                 default:
3323                         wr32(ring->itr_register,
3324                              ring->itr_val |
3325                              (ring->itr_val << 16));
3326                         break;
3327                 }
3328                 ring->set_itr = 0;
3329         }
3330 }
3331
3332 static irqreturn_t igb_msix_rx(int irq, void *data)
3333 {
3334         struct igb_ring *rx_ring = data;
3335         struct igb_adapter *adapter = rx_ring->adapter;
3336
3337         /* Write the ITR value calculated at the end of the
3338          * previous interrupt.
3339          */
3340
3341         igb_write_itr(rx_ring);
3342
3343         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3344                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3345
3346 #ifdef CONFIG_IGB_DCA
3347         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3348                 igb_update_rx_dca(rx_ring);
3349 #endif
3350                 return IRQ_HANDLED;
3351 }
3352
3353 #ifdef CONFIG_IGB_DCA
3354 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3355 {
3356         u32 dca_rxctrl;
3357         struct igb_adapter *adapter = rx_ring->adapter;
3358         struct e1000_hw *hw = &adapter->hw;
3359         int cpu = get_cpu();
3360         int q = rx_ring - adapter->rx_ring;
3361
3362         if (rx_ring->cpu != cpu) {
3363                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3364                 if (hw->mac.type == e1000_82576) {
3365                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3366                         dca_rxctrl |= dca_get_tag(cpu) <<
3367                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3368                 } else {
3369                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3370                         dca_rxctrl |= dca_get_tag(cpu);
3371                 }
3372                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3373                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3374                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3375                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3376                 rx_ring->cpu = cpu;
3377         }
3378         put_cpu();
3379 }
3380
3381 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3382 {
3383         u32 dca_txctrl;
3384         struct igb_adapter *adapter = tx_ring->adapter;
3385         struct e1000_hw *hw = &adapter->hw;
3386         int cpu = get_cpu();
3387         int q = tx_ring - adapter->tx_ring;
3388
3389         if (tx_ring->cpu != cpu) {
3390                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3391                 if (hw->mac.type == e1000_82576) {
3392                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3393                         dca_txctrl |= dca_get_tag(cpu) <<
3394                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3395                 } else {
3396                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3397                         dca_txctrl |= dca_get_tag(cpu);
3398                 }
3399                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3400                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3401                 tx_ring->cpu = cpu;
3402         }
3403         put_cpu();
3404 }
3405
3406 static void igb_setup_dca(struct igb_adapter *adapter)
3407 {
3408         int i;
3409
3410         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3411                 return;
3412
3413         for (i = 0; i < adapter->num_tx_queues; i++) {
3414                 adapter->tx_ring[i].cpu = -1;
3415                 igb_update_tx_dca(&adapter->tx_ring[i]);
3416         }
3417         for (i = 0; i < adapter->num_rx_queues; i++) {
3418                 adapter->rx_ring[i].cpu = -1;
3419                 igb_update_rx_dca(&adapter->rx_ring[i]);
3420         }
3421 }
3422
3423 static int __igb_notify_dca(struct device *dev, void *data)
3424 {
3425         struct net_device *netdev = dev_get_drvdata(dev);
3426         struct igb_adapter *adapter = netdev_priv(netdev);
3427         struct e1000_hw *hw = &adapter->hw;
3428         unsigned long event = *(unsigned long *)data;
3429
3430         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3431                 goto out;
3432
3433         switch (event) {
3434         case DCA_PROVIDER_ADD:
3435                 /* if already enabled, don't do it again */
3436                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3437                         break;
3438                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3439                 /* Always use CB2 mode, difference is masked
3440                  * in the CB driver. */
3441                 wr32(E1000_DCA_CTRL, 2);
3442                 if (dca_add_requester(dev) == 0) {
3443                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3444                         igb_setup_dca(adapter);
3445                         break;
3446                 }
3447                 /* Fall Through since DCA is disabled. */
3448         case DCA_PROVIDER_REMOVE:
3449                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3450                         /* without this a class_device is left
3451                          * hanging around in the sysfs model */
3452                         dca_remove_requester(dev);
3453                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3454                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3455                         wr32(E1000_DCA_CTRL, 1);
3456                 }
3457                 break;
3458         }
3459 out:
3460         return 0;
3461 }
3462
3463 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3464                           void *p)
3465 {
3466         int ret_val;
3467
3468         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3469                                          __igb_notify_dca);
3470
3471         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3472 }
3473 #endif /* CONFIG_IGB_DCA */
3474
3475 /**
3476  * igb_intr_msi - Interrupt Handler
3477  * @irq: interrupt number
3478  * @data: pointer to a network interface device structure
3479  **/
3480 static irqreturn_t igb_intr_msi(int irq, void *data)
3481 {
3482         struct net_device *netdev = data;
3483         struct igb_adapter *adapter = netdev_priv(netdev);
3484         struct e1000_hw *hw = &adapter->hw;
3485         /* read ICR disables interrupts using IAM */
3486         u32 icr = rd32(E1000_ICR);
3487
3488         igb_write_itr(adapter->rx_ring);
3489
3490         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3491                 hw->mac.get_link_status = 1;
3492                 if (!test_bit(__IGB_DOWN, &adapter->state))
3493                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3494         }
3495
3496         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3497
3498         return IRQ_HANDLED;
3499 }
3500
3501 /**
3502  * igb_intr - Interrupt Handler
3503  * @irq: interrupt number
3504  * @data: pointer to a network interface device structure
3505  **/
3506 static irqreturn_t igb_intr(int irq, void *data)
3507 {
3508         struct net_device *netdev = data;
3509         struct igb_adapter *adapter = netdev_priv(netdev);
3510         struct e1000_hw *hw = &adapter->hw;
3511         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3512          * need for the IMC write */
3513         u32 icr = rd32(E1000_ICR);
3514         u32 eicr = 0;
3515         if (!icr)
3516                 return IRQ_NONE;  /* Not our interrupt */
3517
3518         igb_write_itr(adapter->rx_ring);
3519
3520         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3521          * not set, then the adapter didn't send an interrupt */
3522         if (!(icr & E1000_ICR_INT_ASSERTED))
3523                 return IRQ_NONE;
3524
3525         eicr = rd32(E1000_EICR);
3526
3527         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3528                 hw->mac.get_link_status = 1;
3529                 /* guard against interrupt when we're going down */
3530                 if (!test_bit(__IGB_DOWN, &adapter->state))
3531                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3532         }
3533
3534         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3535
3536         return IRQ_HANDLED;
3537 }
3538
3539 /**
3540  * igb_poll - NAPI Rx polling callback
3541  * @napi: napi polling structure
3542  * @budget: count of how many packets we should handle
3543  **/
3544 static int igb_poll(struct napi_struct *napi, int budget)
3545 {
3546         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3547         struct igb_adapter *adapter = rx_ring->adapter;
3548         struct net_device *netdev = adapter->netdev;
3549         int tx_clean_complete, work_done = 0;
3550
3551         /* this poll routine only supports one tx and one rx queue */
3552 #ifdef CONFIG_IGB_DCA
3553         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3554                 igb_update_tx_dca(&adapter->tx_ring[0]);
3555 #endif
3556         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3557
3558 #ifdef CONFIG_IGB_DCA
3559         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3560                 igb_update_rx_dca(&adapter->rx_ring[0]);
3561 #endif
3562         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3563
3564         /* If no Tx and not enough Rx work done, exit the polling mode */
3565         if ((tx_clean_complete && (work_done < budget)) ||
3566             !netif_running(netdev)) {
3567                 if (adapter->itr_setting & 3)
3568                         igb_set_itr(adapter);
3569                 netif_rx_complete(netdev, napi);
3570                 if (!test_bit(__IGB_DOWN, &adapter->state))
3571                         igb_irq_enable(adapter);
3572                 return 0;
3573         }
3574
3575         return 1;
3576 }
3577
3578 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3579 {
3580         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3581         struct igb_adapter *adapter = rx_ring->adapter;
3582         struct e1000_hw *hw = &adapter->hw;
3583         struct net_device *netdev = adapter->netdev;
3584         int work_done = 0;
3585
3586 #ifdef CONFIG_IGB_DCA
3587         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3588                 igb_update_rx_dca(rx_ring);
3589 #endif
3590         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3591
3592
3593         /* If not enough Rx work done, exit the polling mode */
3594         if ((work_done == 0) || !netif_running(netdev)) {
3595                 netif_rx_complete(netdev, napi);
3596
3597                 if (adapter->itr_setting & 3) {
3598                         if (adapter->num_rx_queues == 1)
3599                                 igb_set_itr(adapter);
3600                         else
3601                                 igb_update_ring_itr(rx_ring);
3602                 }
3603
3604                 if (!test_bit(__IGB_DOWN, &adapter->state))
3605                         wr32(E1000_EIMS, rx_ring->eims_value);
3606
3607                 return 0;
3608         }
3609
3610         return 1;
3611 }
3612
3613 static inline u32 get_head(struct igb_ring *tx_ring)
3614 {
3615         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3616         return le32_to_cpu(*(volatile __le32 *)end);
3617 }
3618
3619 /**
3620  * igb_clean_tx_irq - Reclaim resources after transmit completes
3621  * @adapter: board private structure
3622  * returns true if ring is completely cleaned
3623  **/
3624 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3625 {
3626         struct igb_adapter *adapter = tx_ring->adapter;
3627         struct e1000_hw *hw = &adapter->hw;
3628         struct net_device *netdev = adapter->netdev;
3629         struct e1000_tx_desc *tx_desc;
3630         struct igb_buffer *buffer_info;
3631         struct sk_buff *skb;
3632         unsigned int i;
3633         u32 head, oldhead;
3634         unsigned int count = 0;
3635         unsigned int total_bytes = 0, total_packets = 0;
3636         bool retval = true;
3637
3638         rmb();
3639         head = get_head(tx_ring);
3640         i = tx_ring->next_to_clean;
3641         while (1) {
3642                 while (i != head) {
3643                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3644                         buffer_info = &tx_ring->buffer_info[i];
3645                         skb = buffer_info->skb;
3646
3647                         if (skb) {
3648                                 unsigned int segs, bytecount;
3649                                 /* gso_segs is currently only valid for tcp */
3650                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3651                                 /* multiply data chunks by size of headers */
3652                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3653                                             skb->len;
3654                                 total_packets += segs;
3655                                 total_bytes += bytecount;
3656                         }
3657
3658                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3659
3660                         i++;
3661                         if (i == tx_ring->count)
3662                                 i = 0;
3663
3664                         count++;
3665                         if (count == IGB_MAX_TX_CLEAN) {
3666                                 retval = false;
3667                                 goto done_cleaning;
3668                         }
3669                 }
3670                 oldhead = head;
3671                 rmb();
3672                 head = get_head(tx_ring);
3673                 if (head == oldhead)
3674                         goto done_cleaning;
3675         }  /* while (1) */
3676
3677 done_cleaning:
3678         tx_ring->next_to_clean = i;
3679
3680         if (unlikely(count &&
3681                      netif_carrier_ok(netdev) &&
3682                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3683                 /* Make sure that anybody stopping the queue after this
3684                  * sees the new next_to_clean.
3685                  */
3686                 smp_mb();
3687                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3688                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3689                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3690                         ++adapter->restart_queue;
3691                 }
3692         }
3693
3694         if (tx_ring->detect_tx_hung) {
3695                 /* Detect a transmit hang in hardware, this serializes the
3696                  * check with the clearing of time_stamp and movement of i */
3697                 tx_ring->detect_tx_hung = false;
3698                 if (tx_ring->buffer_info[i].time_stamp &&
3699                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3700                                (adapter->tx_timeout_factor * HZ))
3701                     && !(rd32(E1000_STATUS) &
3702                          E1000_STATUS_TXOFF)) {
3703
3704                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3705                         /* detected Tx unit hang */
3706                         dev_err(&adapter->pdev->dev,
3707                                 "Detected Tx Unit Hang\n"
3708                                 "  Tx Queue             <%d>\n"
3709                                 "  TDH                  <%x>\n"
3710                                 "  TDT                  <%x>\n"
3711                                 "  next_to_use          <%x>\n"
3712                                 "  next_to_clean        <%x>\n"
3713                                 "  head (WB)            <%x>\n"
3714                                 "buffer_info[next_to_clean]\n"
3715                                 "  time_stamp           <%lx>\n"
3716                                 "  jiffies              <%lx>\n"
3717                                 "  desc.status          <%x>\n",
3718                                 tx_ring->queue_index,
3719                                 readl(adapter->hw.hw_addr + tx_ring->head),
3720                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3721                                 tx_ring->next_to_use,
3722                                 tx_ring->next_to_clean,
3723                                 head,
3724                                 tx_ring->buffer_info[i].time_stamp,
3725                                 jiffies,
3726                                 tx_desc->upper.fields.status);
3727                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3728                 }
3729         }
3730         tx_ring->total_bytes += total_bytes;
3731         tx_ring->total_packets += total_packets;
3732         tx_ring->tx_stats.bytes += total_bytes;
3733         tx_ring->tx_stats.packets += total_packets;
3734         adapter->net_stats.tx_bytes += total_bytes;
3735         adapter->net_stats.tx_packets += total_packets;
3736         return retval;
3737 }
3738
3739 #ifdef CONFIG_IGB_LRO
3740  /**
3741  * igb_get_skb_hdr - helper function for LRO header processing
3742  * @skb: pointer to sk_buff to be added to LRO packet
3743  * @iphdr: pointer to ip header structure
3744  * @tcph: pointer to tcp header structure
3745  * @hdr_flags: pointer to header flags
3746  * @priv: pointer to the receive descriptor for the current sk_buff
3747  **/
3748 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3749                            u64 *hdr_flags, void *priv)
3750 {
3751         union e1000_adv_rx_desc *rx_desc = priv;
3752         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3753                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3754
3755         /* Verify that this is a valid IPv4 TCP packet */
3756         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3757                           E1000_RXDADV_PKTTYPE_TCP))
3758                 return -1;
3759
3760         /* Set network headers */
3761         skb_reset_network_header(skb);
3762         skb_set_transport_header(skb, ip_hdrlen(skb));
3763         *iphdr = ip_hdr(skb);
3764         *tcph = tcp_hdr(skb);
3765         *hdr_flags = LRO_IPV4 | LRO_TCP;
3766
3767         return 0;
3768
3769 }
3770 #endif /* CONFIG_IGB_LRO */
3771
3772 /**
3773  * igb_receive_skb - helper function to handle rx indications
3774  * @ring: pointer to receive ring receving this packet 
3775  * @status: descriptor status field as written by hardware
3776  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3777  * @skb: pointer to sk_buff to be indicated to stack
3778  **/
3779 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3780                             union e1000_adv_rx_desc * rx_desc,
3781                             struct sk_buff *skb)
3782 {
3783         struct igb_adapter * adapter = ring->adapter;
3784         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3785
3786 #ifdef CONFIG_IGB_LRO
3787         if (adapter->netdev->features & NETIF_F_LRO &&
3788             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3789                 if (vlan_extracted)
3790                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3791                                            adapter->vlgrp,
3792                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3793                                            rx_desc);
3794                 else
3795                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3796                 ring->lro_used = 1;
3797         } else {
3798 #endif
3799                 if (vlan_extracted)
3800                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3801                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3802                 else
3803
3804                         netif_receive_skb(skb);
3805 #ifdef CONFIG_IGB_LRO
3806         }
3807 #endif
3808 }
3809
3810
3811 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3812                                        u32 status_err, struct sk_buff *skb)
3813 {
3814         skb->ip_summed = CHECKSUM_NONE;
3815
3816         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3817         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3818                 return;
3819         /* TCP/UDP checksum error bit is set */
3820         if (status_err &
3821             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3822                 /* let the stack verify checksum errors */
3823                 adapter->hw_csum_err++;
3824                 return;
3825         }
3826         /* It must be a TCP or UDP packet with a valid checksum */
3827         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3828                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3829
3830         adapter->hw_csum_good++;
3831 }
3832
3833 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3834                                  int *work_done, int budget)
3835 {
3836         struct igb_adapter *adapter = rx_ring->adapter;
3837         struct net_device *netdev = adapter->netdev;
3838         struct pci_dev *pdev = adapter->pdev;
3839         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3840         struct igb_buffer *buffer_info , *next_buffer;
3841         struct sk_buff *skb;
3842         unsigned int i;
3843         u32 length, hlen, staterr;
3844         bool cleaned = false;
3845         int cleaned_count = 0;
3846         unsigned int total_bytes = 0, total_packets = 0;
3847
3848         i = rx_ring->next_to_clean;
3849         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3850         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3851
3852         while (staterr & E1000_RXD_STAT_DD) {
3853                 if (*work_done >= budget)
3854                         break;
3855                 (*work_done)++;
3856                 buffer_info = &rx_ring->buffer_info[i];
3857
3858                 /* HW will not DMA in data larger than the given buffer, even
3859                  * if it parses the (NFS, of course) header to be larger.  In
3860                  * that case, it fills the header buffer and spills the rest
3861                  * into the page.
3862                  */
3863                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3864                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3865                 if (hlen > adapter->rx_ps_hdr_size)
3866                         hlen = adapter->rx_ps_hdr_size;
3867
3868                 length = le16_to_cpu(rx_desc->wb.upper.length);
3869                 cleaned = true;
3870                 cleaned_count++;
3871
3872                 skb = buffer_info->skb;
3873                 prefetch(skb->data - NET_IP_ALIGN);
3874                 buffer_info->skb = NULL;
3875                 if (!adapter->rx_ps_hdr_size) {
3876                         pci_unmap_single(pdev, buffer_info->dma,
3877                                          adapter->rx_buffer_len +
3878                                            NET_IP_ALIGN,
3879                                          PCI_DMA_FROMDEVICE);
3880                         skb_put(skb, length);
3881                         goto send_up;
3882                 }
3883
3884                 if (!skb_shinfo(skb)->nr_frags) {
3885                         pci_unmap_single(pdev, buffer_info->dma,
3886                                          adapter->rx_ps_hdr_size +
3887                                            NET_IP_ALIGN,
3888                                          PCI_DMA_FROMDEVICE);
3889                         skb_put(skb, hlen);
3890                 }
3891
3892                 if (length) {
3893                         pci_unmap_page(pdev, buffer_info->page_dma,
3894                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3895                         buffer_info->page_dma = 0;
3896
3897                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3898                                                 buffer_info->page,
3899                                                 buffer_info->page_offset,
3900                                                 length);
3901
3902                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3903                             (page_count(buffer_info->page) != 1))
3904                                 buffer_info->page = NULL;
3905                         else
3906                                 get_page(buffer_info->page);
3907
3908                         skb->len += length;
3909                         skb->data_len += length;
3910
3911                         skb->truesize += length;
3912                 }
3913 send_up:
3914                 i++;
3915                 if (i == rx_ring->count)
3916                         i = 0;
3917                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3918                 prefetch(next_rxd);
3919                 next_buffer = &rx_ring->buffer_info[i];
3920
3921                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3922                         buffer_info->skb = xchg(&next_buffer->skb, skb);
3923                         buffer_info->dma = xchg(&next_buffer->dma, 0);
3924                         goto next_desc;
3925                 }
3926
3927                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3928                         dev_kfree_skb_irq(skb);
3929                         goto next_desc;
3930                 }
3931
3932                 total_bytes += skb->len;
3933                 total_packets++;
3934
3935                 igb_rx_checksum_adv(adapter, staterr, skb);
3936
3937                 skb->protocol = eth_type_trans(skb, netdev);
3938
3939                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3940
3941                 netdev->last_rx = jiffies;
3942
3943 next_desc:
3944                 rx_desc->wb.upper.status_error = 0;
3945
3946                 /* return some buffers to hardware, one at a time is too slow */
3947                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3948                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3949                         cleaned_count = 0;
3950                 }
3951
3952                 /* use prefetched values */
3953                 rx_desc = next_rxd;
3954                 buffer_info = next_buffer;
3955
3956                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3957         }
3958
3959         rx_ring->next_to_clean = i;
3960         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3961
3962 #ifdef CONFIG_IGB_LRO
3963         if (rx_ring->lro_used) {
3964                 lro_flush_all(&rx_ring->lro_mgr);
3965                 rx_ring->lro_used = 0;
3966         }
3967 #endif
3968
3969         if (cleaned_count)
3970                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3971
3972         rx_ring->total_packets += total_packets;
3973         rx_ring->total_bytes += total_bytes;
3974         rx_ring->rx_stats.packets += total_packets;
3975         rx_ring->rx_stats.bytes += total_bytes;
3976         adapter->net_stats.rx_bytes += total_bytes;
3977         adapter->net_stats.rx_packets += total_packets;
3978         return cleaned;
3979 }
3980
3981
3982 /**
3983  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3984  * @adapter: address of board private structure
3985  **/
3986 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3987                                      int cleaned_count)
3988 {
3989         struct igb_adapter *adapter = rx_ring->adapter;
3990         struct net_device *netdev = adapter->netdev;
3991         struct pci_dev *pdev = adapter->pdev;
3992         union e1000_adv_rx_desc *rx_desc;
3993         struct igb_buffer *buffer_info;
3994         struct sk_buff *skb;
3995         unsigned int i;
3996
3997         i = rx_ring->next_to_use;
3998         buffer_info = &rx_ring->buffer_info[i];
3999
4000         while (cleaned_count--) {
4001                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4002
4003                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4004                         if (!buffer_info->page) {
4005                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4006                                 if (!buffer_info->page) {
4007                                         adapter->alloc_rx_buff_failed++;
4008                                         goto no_buffers;
4009                                 }
4010                                 buffer_info->page_offset = 0;
4011                         } else {
4012                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4013                         }
4014                         buffer_info->page_dma =
4015                                 pci_map_page(pdev,
4016                                              buffer_info->page,
4017                                              buffer_info->page_offset,
4018                                              PAGE_SIZE / 2,
4019                                              PCI_DMA_FROMDEVICE);
4020                 }
4021
4022                 if (!buffer_info->skb) {
4023                         int bufsz;
4024
4025                         if (adapter->rx_ps_hdr_size)
4026                                 bufsz = adapter->rx_ps_hdr_size;
4027                         else
4028                                 bufsz = adapter->rx_buffer_len;
4029                         bufsz += NET_IP_ALIGN;
4030                         skb = netdev_alloc_skb(netdev, bufsz);
4031
4032                         if (!skb) {
4033                                 adapter->alloc_rx_buff_failed++;
4034                                 goto no_buffers;
4035                         }
4036
4037                         /* Make buffer alignment 2 beyond a 16 byte boundary
4038                          * this will result in a 16 byte aligned IP header after
4039                          * the 14 byte MAC header is removed
4040                          */
4041                         skb_reserve(skb, NET_IP_ALIGN);
4042
4043                         buffer_info->skb = skb;
4044                         buffer_info->dma = pci_map_single(pdev, skb->data,
4045                                                           bufsz,
4046                                                           PCI_DMA_FROMDEVICE);
4047
4048                 }
4049                 /* Refresh the desc even if buffer_addrs didn't change because
4050                  * each write-back erases this info. */
4051                 if (adapter->rx_ps_hdr_size) {
4052                         rx_desc->read.pkt_addr =
4053                              cpu_to_le64(buffer_info->page_dma);
4054                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4055                 } else {
4056                         rx_desc->read.pkt_addr =
4057                              cpu_to_le64(buffer_info->dma);
4058                         rx_desc->read.hdr_addr = 0;
4059                 }
4060
4061                 i++;
4062                 if (i == rx_ring->count)
4063                         i = 0;
4064                 buffer_info = &rx_ring->buffer_info[i];
4065         }
4066
4067 no_buffers:
4068         if (rx_ring->next_to_use != i) {
4069                 rx_ring->next_to_use = i;
4070                 if (i == 0)
4071                         i = (rx_ring->count - 1);
4072                 else
4073                         i--;
4074
4075                 /* Force memory writes to complete before letting h/w
4076                  * know there are new descriptors to fetch.  (Only
4077                  * applicable for weak-ordered memory model archs,
4078                  * such as IA-64). */
4079                 wmb();
4080                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4081         }
4082 }
4083
4084 /**
4085  * igb_mii_ioctl -
4086  * @netdev:
4087  * @ifreq:
4088  * @cmd:
4089  **/
4090 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4091 {
4092         struct igb_adapter *adapter = netdev_priv(netdev);
4093         struct mii_ioctl_data *data = if_mii(ifr);
4094
4095         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4096                 return -EOPNOTSUPP;
4097
4098         switch (cmd) {
4099         case SIOCGMIIPHY:
4100                 data->phy_id = adapter->hw.phy.addr;
4101                 break;
4102         case SIOCGMIIREG:
4103                 if (!capable(CAP_NET_ADMIN))
4104                         return -EPERM;
4105                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4106                                                      data->reg_num
4107                                                      & 0x1F, &data->val_out))
4108                         return -EIO;
4109                 break;
4110         case SIOCSMIIREG:
4111         default:
4112                 return -EOPNOTSUPP;
4113         }
4114         return 0;
4115 }
4116
4117 /**
4118  * igb_ioctl -
4119  * @netdev:
4120  * @ifreq:
4121  * @cmd:
4122  **/
4123 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4124 {
4125         switch (cmd) {
4126         case SIOCGMIIPHY:
4127         case SIOCGMIIREG:
4128         case SIOCSMIIREG:
4129                 return igb_mii_ioctl(netdev, ifr, cmd);
4130         default:
4131                 return -EOPNOTSUPP;
4132         }
4133 }
4134
4135 static void igb_vlan_rx_register(struct net_device *netdev,
4136                                  struct vlan_group *grp)
4137 {
4138         struct igb_adapter *adapter = netdev_priv(netdev);
4139         struct e1000_hw *hw = &adapter->hw;
4140         u32 ctrl, rctl;
4141
4142         igb_irq_disable(adapter);
4143         adapter->vlgrp = grp;
4144
4145         if (grp) {
4146                 /* enable VLAN tag insert/strip */
4147                 ctrl = rd32(E1000_CTRL);
4148                 ctrl |= E1000_CTRL_VME;
4149                 wr32(E1000_CTRL, ctrl);
4150
4151                 /* enable VLAN receive filtering */
4152                 rctl = rd32(E1000_RCTL);
4153                 rctl &= ~E1000_RCTL_CFIEN;
4154                 wr32(E1000_RCTL, rctl);
4155                 igb_update_mng_vlan(adapter);
4156                 wr32(E1000_RLPML,
4157                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4158         } else {
4159                 /* disable VLAN tag insert/strip */
4160                 ctrl = rd32(E1000_CTRL);
4161                 ctrl &= ~E1000_CTRL_VME;
4162                 wr32(E1000_CTRL, ctrl);
4163
4164                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4165                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4166                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4167                 }
4168                 wr32(E1000_RLPML,
4169                                 adapter->max_frame_size);
4170         }
4171
4172         if (!test_bit(__IGB_DOWN, &adapter->state))
4173                 igb_irq_enable(adapter);
4174 }
4175
4176 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4177 {
4178         struct igb_adapter *adapter = netdev_priv(netdev);
4179         struct e1000_hw *hw = &adapter->hw;
4180         u32 vfta, index;
4181
4182         if ((adapter->hw.mng_cookie.status &
4183              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4184             (vid == adapter->mng_vlan_id))
4185                 return;
4186         /* add VID to filter table */
4187         index = (vid >> 5) & 0x7F;
4188         vfta = array_rd32(E1000_VFTA, index);
4189         vfta |= (1 << (vid & 0x1F));
4190         igb_write_vfta(&adapter->hw, index, vfta);
4191 }
4192
4193 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4194 {
4195         struct igb_adapter *adapter = netdev_priv(netdev);
4196         struct e1000_hw *hw = &adapter->hw;
4197         u32 vfta, index;
4198
4199         igb_irq_disable(adapter);
4200         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4201
4202         if (!test_bit(__IGB_DOWN, &adapter->state))
4203                 igb_irq_enable(adapter);
4204
4205         if ((adapter->hw.mng_cookie.status &
4206              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4207             (vid == adapter->mng_vlan_id)) {
4208                 /* release control to f/w */
4209                 igb_release_hw_control(adapter);
4210                 return;
4211         }
4212
4213         /* remove VID from filter table */
4214         index = (vid >> 5) & 0x7F;
4215         vfta = array_rd32(E1000_VFTA, index);
4216         vfta &= ~(1 << (vid & 0x1F));
4217         igb_write_vfta(&adapter->hw, index, vfta);
4218 }
4219
4220 static void igb_restore_vlan(struct igb_adapter *adapter)
4221 {
4222         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4223
4224         if (adapter->vlgrp) {
4225                 u16 vid;
4226                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4227                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4228                                 continue;
4229                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4230                 }
4231         }
4232 }
4233
4234 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4235 {
4236         struct e1000_mac_info *mac = &adapter->hw.mac;
4237
4238         mac->autoneg = 0;
4239
4240         /* Fiber NICs only allow 1000 gbps Full duplex */
4241         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4242                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4243                 dev_err(&adapter->pdev->dev,
4244                         "Unsupported Speed/Duplex configuration\n");
4245                 return -EINVAL;
4246         }
4247
4248         switch (spddplx) {
4249         case SPEED_10 + DUPLEX_HALF:
4250                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4251                 break;
4252         case SPEED_10 + DUPLEX_FULL:
4253                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4254                 break;
4255         case SPEED_100 + DUPLEX_HALF:
4256                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4257                 break;
4258         case SPEED_100 + DUPLEX_FULL:
4259                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4260                 break;
4261         case SPEED_1000 + DUPLEX_FULL:
4262                 mac->autoneg = 1;
4263                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4264                 break;
4265         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4266         default:
4267                 dev_err(&adapter->pdev->dev,
4268                         "Unsupported Speed/Duplex configuration\n");
4269                 return -EINVAL;
4270         }
4271         return 0;
4272 }
4273
4274
4275 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4276 {
4277         struct net_device *netdev = pci_get_drvdata(pdev);
4278         struct igb_adapter *adapter = netdev_priv(netdev);
4279         struct e1000_hw *hw = &adapter->hw;
4280         u32 ctrl, rctl, status;
4281         u32 wufc = adapter->wol;
4282 #ifdef CONFIG_PM
4283         int retval = 0;
4284 #endif
4285
4286         netif_device_detach(netdev);
4287
4288         if (netif_running(netdev))
4289                 igb_close(netdev);
4290
4291         igb_reset_interrupt_capability(adapter);
4292
4293         igb_free_queues(adapter);
4294
4295 #ifdef CONFIG_PM
4296         retval = pci_save_state(pdev);
4297         if (retval)
4298                 return retval;
4299 #endif
4300
4301         status = rd32(E1000_STATUS);
4302         if (status & E1000_STATUS_LU)
4303                 wufc &= ~E1000_WUFC_LNKC;
4304
4305         if (wufc) {
4306                 igb_setup_rctl(adapter);
4307                 igb_set_multi(netdev);
4308
4309                 /* turn on all-multi mode if wake on multicast is enabled */
4310                 if (wufc & E1000_WUFC_MC) {
4311                         rctl = rd32(E1000_RCTL);
4312                         rctl |= E1000_RCTL_MPE;
4313                         wr32(E1000_RCTL, rctl);
4314                 }
4315
4316                 ctrl = rd32(E1000_CTRL);
4317                 /* advertise wake from D3Cold */
4318                 #define E1000_CTRL_ADVD3WUC 0x00100000
4319                 /* phy power management enable */
4320                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4321                 ctrl |= E1000_CTRL_ADVD3WUC;
4322                 wr32(E1000_CTRL, ctrl);
4323
4324                 /* Allow time for pending master requests to run */
4325                 igb_disable_pcie_master(&adapter->hw);
4326
4327                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4328                 wr32(E1000_WUFC, wufc);
4329         } else {
4330                 wr32(E1000_WUC, 0);
4331                 wr32(E1000_WUFC, 0);
4332         }
4333
4334         /* make sure adapter isn't asleep if manageability/wol is enabled */
4335         if (wufc || adapter->en_mng_pt) {
4336                 pci_enable_wake(pdev, PCI_D3hot, 1);
4337                 pci_enable_wake(pdev, PCI_D3cold, 1);
4338         } else {
4339                 igb_shutdown_fiber_serdes_link_82575(hw);
4340                 pci_enable_wake(pdev, PCI_D3hot, 0);
4341                 pci_enable_wake(pdev, PCI_D3cold, 0);
4342         }
4343
4344         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4345          * would have already happened in close and is redundant. */
4346         igb_release_hw_control(adapter);
4347
4348         pci_disable_device(pdev);
4349
4350         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4351
4352         return 0;
4353 }
4354
4355 #ifdef CONFIG_PM
4356 static int igb_resume(struct pci_dev *pdev)
4357 {
4358         struct net_device *netdev = pci_get_drvdata(pdev);
4359         struct igb_adapter *adapter = netdev_priv(netdev);
4360         struct e1000_hw *hw = &adapter->hw;
4361         u32 err;
4362
4363         pci_set_power_state(pdev, PCI_D0);
4364         pci_restore_state(pdev);
4365
4366         if (adapter->need_ioport)
4367                 err = pci_enable_device(pdev);
4368         else
4369                 err = pci_enable_device_mem(pdev);
4370         if (err) {
4371                 dev_err(&pdev->dev,
4372                         "igb: Cannot enable PCI device from suspend\n");
4373                 return err;
4374         }
4375         pci_set_master(pdev);
4376
4377         pci_enable_wake(pdev, PCI_D3hot, 0);
4378         pci_enable_wake(pdev, PCI_D3cold, 0);
4379
4380         igb_set_interrupt_capability(adapter);
4381
4382         if (igb_alloc_queues(adapter)) {
4383                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4384                 return -ENOMEM;
4385         }
4386
4387         /* e1000_power_up_phy(adapter); */
4388
4389         igb_reset(adapter);
4390         wr32(E1000_WUS, ~0);
4391
4392         if (netif_running(netdev)) {
4393                 err = igb_open(netdev);
4394                 if (err)
4395                         return err;
4396         }
4397
4398         netif_device_attach(netdev);
4399
4400         /* let the f/w know that the h/w is now under the control of the
4401          * driver. */
4402         igb_get_hw_control(adapter);
4403
4404         return 0;
4405 }
4406 #endif
4407
4408 static void igb_shutdown(struct pci_dev *pdev)
4409 {
4410         igb_suspend(pdev, PMSG_SUSPEND);
4411 }
4412
4413 #ifdef CONFIG_NET_POLL_CONTROLLER
4414 /*
4415  * Polling 'interrupt' - used by things like netconsole to send skbs
4416  * without having to re-enable interrupts. It's not called while
4417  * the interrupt routine is executing.
4418  */
4419 static void igb_netpoll(struct net_device *netdev)
4420 {
4421         struct igb_adapter *adapter = netdev_priv(netdev);
4422         int i;
4423         int work_done = 0;
4424
4425         igb_irq_disable(adapter);
4426         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4427
4428         for (i = 0; i < adapter->num_tx_queues; i++)
4429                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4430
4431         for (i = 0; i < adapter->num_rx_queues; i++)
4432                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4433                                      &work_done,
4434                                      adapter->rx_ring[i].napi.weight);
4435
4436         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4437         igb_irq_enable(adapter);
4438 }
4439 #endif /* CONFIG_NET_POLL_CONTROLLER */
4440
4441 /**
4442  * igb_io_error_detected - called when PCI error is detected
4443  * @pdev: Pointer to PCI device
4444  * @state: The current pci connection state
4445  *
4446  * This function is called after a PCI bus error affecting
4447  * this device has been detected.
4448  */
4449 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4450                                               pci_channel_state_t state)
4451 {
4452         struct net_device *netdev = pci_get_drvdata(pdev);
4453         struct igb_adapter *adapter = netdev_priv(netdev);
4454
4455         netif_device_detach(netdev);
4456
4457         if (netif_running(netdev))
4458                 igb_down(adapter);
4459         pci_disable_device(pdev);
4460
4461         /* Request a slot slot reset. */
4462         return PCI_ERS_RESULT_NEED_RESET;
4463 }
4464
4465 /**
4466  * igb_io_slot_reset - called after the pci bus has been reset.
4467  * @pdev: Pointer to PCI device
4468  *
4469  * Restart the card from scratch, as if from a cold-boot. Implementation
4470  * resembles the first-half of the igb_resume routine.
4471  */
4472 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4473 {
4474         struct net_device *netdev = pci_get_drvdata(pdev);
4475         struct igb_adapter *adapter = netdev_priv(netdev);
4476         struct e1000_hw *hw = &adapter->hw;
4477         int err;
4478
4479         if (adapter->need_ioport)
4480                 err = pci_enable_device(pdev);
4481         else
4482                 err = pci_enable_device_mem(pdev);
4483         if (err) {
4484                 dev_err(&pdev->dev,
4485                         "Cannot re-enable PCI device after reset.\n");
4486                 return PCI_ERS_RESULT_DISCONNECT;
4487         }
4488         pci_set_master(pdev);
4489         pci_restore_state(pdev);
4490
4491         pci_enable_wake(pdev, PCI_D3hot, 0);
4492         pci_enable_wake(pdev, PCI_D3cold, 0);
4493
4494         igb_reset(adapter);
4495         wr32(E1000_WUS, ~0);
4496
4497         return PCI_ERS_RESULT_RECOVERED;
4498 }
4499
4500 /**
4501  * igb_io_resume - called when traffic can start flowing again.
4502  * @pdev: Pointer to PCI device
4503  *
4504  * This callback is called when the error recovery driver tells us that
4505  * its OK to resume normal operation. Implementation resembles the
4506  * second-half of the igb_resume routine.
4507  */
4508 static void igb_io_resume(struct pci_dev *pdev)
4509 {
4510         struct net_device *netdev = pci_get_drvdata(pdev);
4511         struct igb_adapter *adapter = netdev_priv(netdev);
4512
4513         if (netif_running(netdev)) {
4514                 if (igb_up(adapter)) {
4515                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4516                         return;
4517                 }
4518         }
4519
4520         netif_device_attach(netdev);
4521
4522         /* let the f/w know that the h/w is now under the control of the
4523          * driver. */
4524         igb_get_hw_control(adapter);
4525
4526 }
4527
4528 /* igb_main.c */