4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
56 #include <asm/unistd.h>
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
63 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
72 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
77 * Some helpers for converting nanosecond timing to jiffy resolution
79 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
83 * These are the 'tuning knobs' of the scheduler:
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
89 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90 #define DEF_TIMESLICE (100 * HZ / 1000)
91 #define ON_RUNQUEUE_WEIGHT 30
92 #define CHILD_PENALTY 95
93 #define PARENT_PENALTY 100
95 #define PRIO_BONUS_RATIO 25
96 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97 #define INTERACTIVE_DELTA 2
98 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
100 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
108 * This part scales the interactivity limit depending on niceness.
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
130 #define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
134 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
141 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
145 #define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
152 #define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
155 #define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159 #define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
171 #define SCALE_PRIO(x, prio) \
172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
174 static unsigned int static_prio_timeslice(int static_prio)
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
182 static inline unsigned int task_timeslice(struct task_struct *p)
184 return static_prio_timeslice(p->static_prio);
188 * These are the runqueue data structures:
192 unsigned int nr_active;
193 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
194 struct list_head queue[MAX_PRIO];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running;
212 unsigned long raw_weighted_load;
214 unsigned long cpu_load[3];
216 unsigned long long nr_switches;
219 * This is part of a global counter where only the total sum
220 * over all CPUs matters. A task can increase this counter on
221 * one CPU and if it got migrated afterwards it may decrease
222 * it on another CPU. Always updated under the runqueue lock:
224 unsigned long nr_uninterruptible;
226 unsigned long expired_timestamp;
227 unsigned long long timestamp_last_tick;
228 struct task_struct *curr, *idle;
229 struct mm_struct *prev_mm;
230 struct prio_array *active, *expired, arrays[2];
231 int best_expired_prio;
235 struct sched_domain *sd;
237 /* For active balancing */
241 struct task_struct *migration_thread;
242 struct list_head migration_queue;
245 #ifdef CONFIG_SCHEDSTATS
247 struct sched_info rq_sched_info;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
264 struct lock_class_key rq_lock_key;
267 static DEFINE_PER_CPU(struct rq, runqueues);
270 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
271 * See detach_destroy_domains: synchronize_sched for details.
273 * The domain tree of any CPU may only be accessed from within
274 * preempt-disabled sections.
276 #define for_each_domain(cpu, __sd) \
277 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
279 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
280 #define this_rq() (&__get_cpu_var(runqueues))
281 #define task_rq(p) cpu_rq(task_cpu(p))
282 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
284 #ifndef prepare_arch_switch
285 # define prepare_arch_switch(next) do { } while (0)
287 #ifndef finish_arch_switch
288 # define finish_arch_switch(prev) do { } while (0)
291 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
292 static inline int task_running(struct rq *rq, struct task_struct *p)
294 return rq->curr == p;
297 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
301 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
303 #ifdef CONFIG_DEBUG_SPINLOCK
304 /* this is a valid case when another task releases the spinlock */
305 rq->lock.owner = current;
308 * If we are tracking spinlock dependencies then we have to
309 * fix up the runqueue lock - which gets 'carried over' from
312 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
314 spin_unlock_irq(&rq->lock);
317 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
318 static inline int task_running(struct rq *rq, struct task_struct *p)
323 return rq->curr == p;
327 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
331 * We can optimise this out completely for !SMP, because the
332 * SMP rebalancing from interrupt is the only thing that cares
337 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
338 spin_unlock_irq(&rq->lock);
340 spin_unlock(&rq->lock);
344 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
348 * After ->oncpu is cleared, the task can be moved to a different CPU.
349 * We must ensure this doesn't happen until the switch is completely
355 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
359 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
362 * __task_rq_lock - lock the runqueue a given task resides on.
363 * Must be called interrupts disabled.
365 static inline struct rq *__task_rq_lock(struct task_struct *p)
372 spin_lock(&rq->lock);
373 if (unlikely(rq != task_rq(p))) {
374 spin_unlock(&rq->lock);
375 goto repeat_lock_task;
381 * task_rq_lock - lock the runqueue a given task resides on and disable
382 * interrupts. Note the ordering: we can safely lookup the task_rq without
383 * explicitly disabling preemption.
385 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
391 local_irq_save(*flags);
393 spin_lock(&rq->lock);
394 if (unlikely(rq != task_rq(p))) {
395 spin_unlock_irqrestore(&rq->lock, *flags);
396 goto repeat_lock_task;
401 static inline void __task_rq_unlock(struct rq *rq)
404 spin_unlock(&rq->lock);
407 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
410 spin_unlock_irqrestore(&rq->lock, *flags);
413 #ifdef CONFIG_SCHEDSTATS
415 * bump this up when changing the output format or the meaning of an existing
416 * format, so that tools can adapt (or abort)
418 #define SCHEDSTAT_VERSION 12
420 static int show_schedstat(struct seq_file *seq, void *v)
424 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
425 seq_printf(seq, "timestamp %lu\n", jiffies);
426 for_each_online_cpu(cpu) {
427 struct rq *rq = cpu_rq(cpu);
429 struct sched_domain *sd;
433 /* runqueue-specific stats */
435 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
436 cpu, rq->yld_both_empty,
437 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
438 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
439 rq->ttwu_cnt, rq->ttwu_local,
440 rq->rq_sched_info.cpu_time,
441 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
443 seq_printf(seq, "\n");
446 /* domain-specific stats */
448 for_each_domain(cpu, sd) {
449 enum idle_type itype;
450 char mask_str[NR_CPUS];
452 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
453 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
454 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
456 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
458 sd->lb_balanced[itype],
459 sd->lb_failed[itype],
460 sd->lb_imbalance[itype],
461 sd->lb_gained[itype],
462 sd->lb_hot_gained[itype],
463 sd->lb_nobusyq[itype],
464 sd->lb_nobusyg[itype]);
466 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
467 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
468 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
469 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
470 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
478 static int schedstat_open(struct inode *inode, struct file *file)
480 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
481 char *buf = kmalloc(size, GFP_KERNEL);
487 res = single_open(file, show_schedstat, NULL);
489 m = file->private_data;
497 struct file_operations proc_schedstat_operations = {
498 .open = schedstat_open,
501 .release = single_release,
504 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
505 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
506 #else /* !CONFIG_SCHEDSTATS */
507 # define schedstat_inc(rq, field) do { } while (0)
508 # define schedstat_add(rq, field, amt) do { } while (0)
512 * rq_lock - lock a given runqueue and disable interrupts.
514 static inline struct rq *this_rq_lock(void)
521 spin_lock(&rq->lock);
526 #ifdef CONFIG_SCHEDSTATS
528 * Called when a process is dequeued from the active array and given
529 * the cpu. We should note that with the exception of interactive
530 * tasks, the expired queue will become the active queue after the active
531 * queue is empty, without explicitly dequeuing and requeuing tasks in the
532 * expired queue. (Interactive tasks may be requeued directly to the
533 * active queue, thus delaying tasks in the expired queue from running;
534 * see scheduler_tick()).
536 * This function is only called from sched_info_arrive(), rather than
537 * dequeue_task(). Even though a task may be queued and dequeued multiple
538 * times as it is shuffled about, we're really interested in knowing how
539 * long it was from the *first* time it was queued to the time that it
542 static inline void sched_info_dequeued(struct task_struct *t)
544 t->sched_info.last_queued = 0;
548 * Called when a task finally hits the cpu. We can now calculate how
549 * long it was waiting to run. We also note when it began so that we
550 * can keep stats on how long its timeslice is.
552 static void sched_info_arrive(struct task_struct *t)
554 unsigned long now = jiffies, diff = 0;
555 struct rq *rq = task_rq(t);
557 if (t->sched_info.last_queued)
558 diff = now - t->sched_info.last_queued;
559 sched_info_dequeued(t);
560 t->sched_info.run_delay += diff;
561 t->sched_info.last_arrival = now;
562 t->sched_info.pcnt++;
567 rq->rq_sched_info.run_delay += diff;
568 rq->rq_sched_info.pcnt++;
572 * Called when a process is queued into either the active or expired
573 * array. The time is noted and later used to determine how long we
574 * had to wait for us to reach the cpu. Since the expired queue will
575 * become the active queue after active queue is empty, without dequeuing
576 * and requeuing any tasks, we are interested in queuing to either. It
577 * is unusual but not impossible for tasks to be dequeued and immediately
578 * requeued in the same or another array: this can happen in sched_yield(),
579 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
582 * This function is only called from enqueue_task(), but also only updates
583 * the timestamp if it is already not set. It's assumed that
584 * sched_info_dequeued() will clear that stamp when appropriate.
586 static inline void sched_info_queued(struct task_struct *t)
588 if (!t->sched_info.last_queued)
589 t->sched_info.last_queued = jiffies;
593 * Called when a process ceases being the active-running process, either
594 * voluntarily or involuntarily. Now we can calculate how long we ran.
596 static inline void sched_info_depart(struct task_struct *t)
598 struct rq *rq = task_rq(t);
599 unsigned long diff = jiffies - t->sched_info.last_arrival;
601 t->sched_info.cpu_time += diff;
604 rq->rq_sched_info.cpu_time += diff;
608 * Called when tasks are switched involuntarily due, typically, to expiring
609 * their time slice. (This may also be called when switching to or from
610 * the idle task.) We are only called when prev != next.
613 sched_info_switch(struct task_struct *prev, struct task_struct *next)
615 struct rq *rq = task_rq(prev);
618 * prev now departs the cpu. It's not interesting to record
619 * stats about how efficient we were at scheduling the idle
622 if (prev != rq->idle)
623 sched_info_depart(prev);
625 if (next != rq->idle)
626 sched_info_arrive(next);
629 #define sched_info_queued(t) do { } while (0)
630 #define sched_info_switch(t, next) do { } while (0)
631 #endif /* CONFIG_SCHEDSTATS */
634 * Adding/removing a task to/from a priority array:
636 static void dequeue_task(struct task_struct *p, struct prio_array *array)
639 list_del(&p->run_list);
640 if (list_empty(array->queue + p->prio))
641 __clear_bit(p->prio, array->bitmap);
644 static void enqueue_task(struct task_struct *p, struct prio_array *array)
646 sched_info_queued(p);
647 list_add_tail(&p->run_list, array->queue + p->prio);
648 __set_bit(p->prio, array->bitmap);
654 * Put task to the end of the run list without the overhead of dequeue
655 * followed by enqueue.
657 static void requeue_task(struct task_struct *p, struct prio_array *array)
659 list_move_tail(&p->run_list, array->queue + p->prio);
663 enqueue_task_head(struct task_struct *p, struct prio_array *array)
665 list_add(&p->run_list, array->queue + p->prio);
666 __set_bit(p->prio, array->bitmap);
672 * __normal_prio - return the priority that is based on the static
673 * priority but is modified by bonuses/penalties.
675 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
676 * into the -5 ... 0 ... +5 bonus/penalty range.
678 * We use 25% of the full 0...39 priority range so that:
680 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
681 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
683 * Both properties are important to certain workloads.
686 static inline int __normal_prio(struct task_struct *p)
690 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
692 prio = p->static_prio - bonus;
693 if (prio < MAX_RT_PRIO)
695 if (prio > MAX_PRIO-1)
701 * To aid in avoiding the subversion of "niceness" due to uneven distribution
702 * of tasks with abnormal "nice" values across CPUs the contribution that
703 * each task makes to its run queue's load is weighted according to its
704 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
705 * scaled version of the new time slice allocation that they receive on time
710 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
711 * If static_prio_timeslice() is ever changed to break this assumption then
712 * this code will need modification
714 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
715 #define LOAD_WEIGHT(lp) \
716 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
717 #define PRIO_TO_LOAD_WEIGHT(prio) \
718 LOAD_WEIGHT(static_prio_timeslice(prio))
719 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
720 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
722 static void set_load_weight(struct task_struct *p)
724 if (has_rt_policy(p)) {
726 if (p == task_rq(p)->migration_thread)
728 * The migration thread does the actual balancing.
729 * Giving its load any weight will skew balancing
735 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
737 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
741 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
743 rq->raw_weighted_load += p->load_weight;
747 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
749 rq->raw_weighted_load -= p->load_weight;
752 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
755 inc_raw_weighted_load(rq, p);
758 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
761 dec_raw_weighted_load(rq, p);
765 * Calculate the expected normal priority: i.e. priority
766 * without taking RT-inheritance into account. Might be
767 * boosted by interactivity modifiers. Changes upon fork,
768 * setprio syscalls, and whenever the interactivity
769 * estimator recalculates.
771 static inline int normal_prio(struct task_struct *p)
775 if (has_rt_policy(p))
776 prio = MAX_RT_PRIO-1 - p->rt_priority;
778 prio = __normal_prio(p);
783 * Calculate the current priority, i.e. the priority
784 * taken into account by the scheduler. This value might
785 * be boosted by RT tasks, or might be boosted by
786 * interactivity modifiers. Will be RT if the task got
787 * RT-boosted. If not then it returns p->normal_prio.
789 static int effective_prio(struct task_struct *p)
791 p->normal_prio = normal_prio(p);
793 * If we are RT tasks or we were boosted to RT priority,
794 * keep the priority unchanged. Otherwise, update priority
795 * to the normal priority:
797 if (!rt_prio(p->prio))
798 return p->normal_prio;
803 * __activate_task - move a task to the runqueue.
805 static void __activate_task(struct task_struct *p, struct rq *rq)
807 struct prio_array *target = rq->active;
810 target = rq->expired;
811 enqueue_task(p, target);
812 inc_nr_running(p, rq);
816 * __activate_idle_task - move idle task to the _front_ of runqueue.
818 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
820 enqueue_task_head(p, rq->active);
821 inc_nr_running(p, rq);
825 * Recalculate p->normal_prio and p->prio after having slept,
826 * updating the sleep-average too:
828 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
830 /* Caller must always ensure 'now >= p->timestamp' */
831 unsigned long sleep_time = now - p->timestamp;
836 if (likely(sleep_time > 0)) {
838 * This ceiling is set to the lowest priority that would allow
839 * a task to be reinserted into the active array on timeslice
842 unsigned long ceiling = INTERACTIVE_SLEEP(p);
844 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
846 * Prevents user tasks from achieving best priority
847 * with one single large enough sleep.
849 p->sleep_avg = ceiling;
851 * Using INTERACTIVE_SLEEP() as a ceiling places a
852 * nice(0) task 1ms sleep away from promotion, and
853 * gives it 700ms to round-robin with no chance of
854 * being demoted. This is more than generous, so
855 * mark this sleep as non-interactive to prevent the
856 * on-runqueue bonus logic from intervening should
857 * this task not receive cpu immediately.
859 p->sleep_type = SLEEP_NONINTERACTIVE;
862 * Tasks waking from uninterruptible sleep are
863 * limited in their sleep_avg rise as they
864 * are likely to be waiting on I/O
866 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
867 if (p->sleep_avg >= ceiling)
869 else if (p->sleep_avg + sleep_time >=
871 p->sleep_avg = ceiling;
877 * This code gives a bonus to interactive tasks.
879 * The boost works by updating the 'average sleep time'
880 * value here, based on ->timestamp. The more time a
881 * task spends sleeping, the higher the average gets -
882 * and the higher the priority boost gets as well.
884 p->sleep_avg += sleep_time;
887 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
888 p->sleep_avg = NS_MAX_SLEEP_AVG;
891 return effective_prio(p);
895 * activate_task - move a task to the runqueue and do priority recalculation
897 * Update all the scheduling statistics stuff. (sleep average
898 * calculation, priority modifiers, etc.)
900 static void activate_task(struct task_struct *p, struct rq *rq, int local)
902 unsigned long long now;
907 /* Compensate for drifting sched_clock */
908 struct rq *this_rq = this_rq();
909 now = (now - this_rq->timestamp_last_tick)
910 + rq->timestamp_last_tick;
915 p->prio = recalc_task_prio(p, now);
918 * This checks to make sure it's not an uninterruptible task
919 * that is now waking up.
921 if (p->sleep_type == SLEEP_NORMAL) {
923 * Tasks which were woken up by interrupts (ie. hw events)
924 * are most likely of interactive nature. So we give them
925 * the credit of extending their sleep time to the period
926 * of time they spend on the runqueue, waiting for execution
927 * on a CPU, first time around:
930 p->sleep_type = SLEEP_INTERRUPTED;
933 * Normal first-time wakeups get a credit too for
934 * on-runqueue time, but it will be weighted down:
936 p->sleep_type = SLEEP_INTERACTIVE;
941 __activate_task(p, rq);
945 * deactivate_task - remove a task from the runqueue.
947 static void deactivate_task(struct task_struct *p, struct rq *rq)
949 dec_nr_running(p, rq);
950 dequeue_task(p, p->array);
955 * resched_task - mark a task 'to be rescheduled now'.
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
963 #ifndef tsk_is_polling
964 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
967 static void resched_task(struct task_struct *p)
971 assert_spin_locked(&task_rq(p)->lock);
973 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
976 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
979 if (cpu == smp_processor_id())
982 /* NEED_RESCHED must be visible before we test polling */
984 if (!tsk_is_polling(p))
985 smp_send_reschedule(cpu);
988 static inline void resched_task(struct task_struct *p)
990 assert_spin_locked(&task_rq(p)->lock);
991 set_tsk_need_resched(p);
996 * task_curr - is this task currently executing on a CPU?
997 * @p: the task in question.
999 inline int task_curr(const struct task_struct *p)
1001 return cpu_curr(task_cpu(p)) == p;
1004 /* Used instead of source_load when we know the type == 0 */
1005 unsigned long weighted_cpuload(const int cpu)
1007 return cpu_rq(cpu)->raw_weighted_load;
1011 struct migration_req {
1012 struct list_head list;
1014 struct task_struct *task;
1017 struct completion done;
1021 * The task's runqueue lock must be held.
1022 * Returns true if you have to wait for migration thread.
1025 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1027 struct rq *rq = task_rq(p);
1030 * If the task is not on a runqueue (and not running), then
1031 * it is sufficient to simply update the task's cpu field.
1033 if (!p->array && !task_running(rq, p)) {
1034 set_task_cpu(p, dest_cpu);
1038 init_completion(&req->done);
1040 req->dest_cpu = dest_cpu;
1041 list_add(&req->list, &rq->migration_queue);
1047 * wait_task_inactive - wait for a thread to unschedule.
1049 * The caller must ensure that the task *will* unschedule sometime soon,
1050 * else this function might spin for a *long* time. This function can't
1051 * be called with interrupts off, or it may introduce deadlock with
1052 * smp_call_function() if an IPI is sent by the same process we are
1053 * waiting to become inactive.
1055 void wait_task_inactive(struct task_struct *p)
1057 unsigned long flags;
1062 rq = task_rq_lock(p, &flags);
1063 /* Must be off runqueue entirely, not preempted. */
1064 if (unlikely(p->array || task_running(rq, p))) {
1065 /* If it's preempted, we yield. It could be a while. */
1066 preempted = !task_running(rq, p);
1067 task_rq_unlock(rq, &flags);
1073 task_rq_unlock(rq, &flags);
1077 * kick_process - kick a running thread to enter/exit the kernel
1078 * @p: the to-be-kicked thread
1080 * Cause a process which is running on another CPU to enter
1081 * kernel-mode, without any delay. (to get signals handled.)
1083 * NOTE: this function doesnt have to take the runqueue lock,
1084 * because all it wants to ensure is that the remote task enters
1085 * the kernel. If the IPI races and the task has been migrated
1086 * to another CPU then no harm is done and the purpose has been
1089 void kick_process(struct task_struct *p)
1095 if ((cpu != smp_processor_id()) && task_curr(p))
1096 smp_send_reschedule(cpu);
1101 * Return a low guess at the load of a migration-source cpu weighted
1102 * according to the scheduling class and "nice" value.
1104 * We want to under-estimate the load of migration sources, to
1105 * balance conservatively.
1107 static inline unsigned long source_load(int cpu, int type)
1109 struct rq *rq = cpu_rq(cpu);
1112 return rq->raw_weighted_load;
1114 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1118 * Return a high guess at the load of a migration-target cpu weighted
1119 * according to the scheduling class and "nice" value.
1121 static inline unsigned long target_load(int cpu, int type)
1123 struct rq *rq = cpu_rq(cpu);
1126 return rq->raw_weighted_load;
1128 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1132 * Return the average load per task on the cpu's run queue
1134 static inline unsigned long cpu_avg_load_per_task(int cpu)
1136 struct rq *rq = cpu_rq(cpu);
1137 unsigned long n = rq->nr_running;
1139 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1143 * find_idlest_group finds and returns the least busy CPU group within the
1146 static struct sched_group *
1147 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1149 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1150 unsigned long min_load = ULONG_MAX, this_load = 0;
1151 int load_idx = sd->forkexec_idx;
1152 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1155 unsigned long load, avg_load;
1159 /* Skip over this group if it has no CPUs allowed */
1160 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1163 local_group = cpu_isset(this_cpu, group->cpumask);
1165 /* Tally up the load of all CPUs in the group */
1168 for_each_cpu_mask(i, group->cpumask) {
1169 /* Bias balancing toward cpus of our domain */
1171 load = source_load(i, load_idx);
1173 load = target_load(i, load_idx);
1178 /* Adjust by relative CPU power of the group */
1179 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1182 this_load = avg_load;
1184 } else if (avg_load < min_load) {
1185 min_load = avg_load;
1189 group = group->next;
1190 } while (group != sd->groups);
1192 if (!idlest || 100*this_load < imbalance*min_load)
1198 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1201 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1204 unsigned long load, min_load = ULONG_MAX;
1208 /* Traverse only the allowed CPUs */
1209 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1211 for_each_cpu_mask(i, tmp) {
1212 load = weighted_cpuload(i);
1214 if (load < min_load || (load == min_load && i == this_cpu)) {
1224 * sched_balance_self: balance the current task (running on cpu) in domains
1225 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1228 * Balance, ie. select the least loaded group.
1230 * Returns the target CPU number, or the same CPU if no balancing is needed.
1232 * preempt must be disabled.
1234 static int sched_balance_self(int cpu, int flag)
1236 struct task_struct *t = current;
1237 struct sched_domain *tmp, *sd = NULL;
1239 for_each_domain(cpu, tmp) {
1241 * If power savings logic is enabled for a domain, stop there.
1243 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1245 if (tmp->flags & flag)
1251 struct sched_group *group;
1256 group = find_idlest_group(sd, t, cpu);
1260 new_cpu = find_idlest_cpu(group, t, cpu);
1261 if (new_cpu == -1 || new_cpu == cpu)
1264 /* Now try balancing at a lower domain level */
1268 weight = cpus_weight(span);
1269 for_each_domain(cpu, tmp) {
1270 if (weight <= cpus_weight(tmp->span))
1272 if (tmp->flags & flag)
1275 /* while loop will break here if sd == NULL */
1281 #endif /* CONFIG_SMP */
1284 * wake_idle() will wake a task on an idle cpu if task->cpu is
1285 * not idle and an idle cpu is available. The span of cpus to
1286 * search starts with cpus closest then further out as needed,
1287 * so we always favor a closer, idle cpu.
1289 * Returns the CPU we should wake onto.
1291 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1292 static int wake_idle(int cpu, struct task_struct *p)
1295 struct sched_domain *sd;
1301 for_each_domain(cpu, sd) {
1302 if (sd->flags & SD_WAKE_IDLE) {
1303 cpus_and(tmp, sd->span, p->cpus_allowed);
1304 for_each_cpu_mask(i, tmp) {
1315 static inline int wake_idle(int cpu, struct task_struct *p)
1322 * try_to_wake_up - wake up a thread
1323 * @p: the to-be-woken-up thread
1324 * @state: the mask of task states that can be woken
1325 * @sync: do a synchronous wakeup?
1327 * Put it on the run-queue if it's not already there. The "current"
1328 * thread is always on the run-queue (except when the actual
1329 * re-schedule is in progress), and as such you're allowed to do
1330 * the simpler "current->state = TASK_RUNNING" to mark yourself
1331 * runnable without the overhead of this.
1333 * returns failure only if the task is already active.
1335 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1337 int cpu, this_cpu, success = 0;
1338 unsigned long flags;
1342 struct sched_domain *sd, *this_sd = NULL;
1343 unsigned long load, this_load;
1347 rq = task_rq_lock(p, &flags);
1348 old_state = p->state;
1349 if (!(old_state & state))
1356 this_cpu = smp_processor_id();
1359 if (unlikely(task_running(rq, p)))
1364 schedstat_inc(rq, ttwu_cnt);
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1370 for_each_domain(this_cpu, sd) {
1371 if (cpu_isset(cpu, sd->span)) {
1372 schedstat_inc(sd, ttwu_wake_remote);
1378 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1382 * Check for affine wakeup and passive balancing possibilities.
1385 int idx = this_sd->wake_idx;
1386 unsigned int imbalance;
1388 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1390 load = source_load(cpu, idx);
1391 this_load = target_load(this_cpu, idx);
1393 new_cpu = this_cpu; /* Wake to this CPU if we can */
1395 if (this_sd->flags & SD_WAKE_AFFINE) {
1396 unsigned long tl = this_load;
1397 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1400 * If sync wakeup then subtract the (maximum possible)
1401 * effect of the currently running task from the load
1402 * of the current CPU:
1405 tl -= current->load_weight;
1408 tl + target_load(cpu, idx) <= tl_per_task) ||
1409 100*(tl + p->load_weight) <= imbalance*load) {
1411 * This domain has SD_WAKE_AFFINE and
1412 * p is cache cold in this domain, and
1413 * there is no bad imbalance.
1415 schedstat_inc(this_sd, ttwu_move_affine);
1421 * Start passive balancing when half the imbalance_pct
1424 if (this_sd->flags & SD_WAKE_BALANCE) {
1425 if (imbalance*this_load <= 100*load) {
1426 schedstat_inc(this_sd, ttwu_move_balance);
1432 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1434 new_cpu = wake_idle(new_cpu, p);
1435 if (new_cpu != cpu) {
1436 set_task_cpu(p, new_cpu);
1437 task_rq_unlock(rq, &flags);
1438 /* might preempt at this point */
1439 rq = task_rq_lock(p, &flags);
1440 old_state = p->state;
1441 if (!(old_state & state))
1446 this_cpu = smp_processor_id();
1451 #endif /* CONFIG_SMP */
1452 if (old_state == TASK_UNINTERRUPTIBLE) {
1453 rq->nr_uninterruptible--;
1455 * Tasks on involuntary sleep don't earn
1456 * sleep_avg beyond just interactive state.
1458 p->sleep_type = SLEEP_NONINTERACTIVE;
1462 * Tasks that have marked their sleep as noninteractive get
1463 * woken up with their sleep average not weighted in an
1466 if (old_state & TASK_NONINTERACTIVE)
1467 p->sleep_type = SLEEP_NONINTERACTIVE;
1470 activate_task(p, rq, cpu == this_cpu);
1472 * Sync wakeups (i.e. those types of wakeups where the waker
1473 * has indicated that it will leave the CPU in short order)
1474 * don't trigger a preemption, if the woken up task will run on
1475 * this cpu. (in this case the 'I will reschedule' promise of
1476 * the waker guarantees that the freshly woken up task is going
1477 * to be considered on this CPU.)
1479 if (!sync || cpu != this_cpu) {
1480 if (TASK_PREEMPTS_CURR(p, rq))
1481 resched_task(rq->curr);
1486 p->state = TASK_RUNNING;
1488 task_rq_unlock(rq, &flags);
1493 int fastcall wake_up_process(struct task_struct *p)
1495 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1496 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1498 EXPORT_SYMBOL(wake_up_process);
1500 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1502 return try_to_wake_up(p, state, 0);
1506 * Perform scheduler related setup for a newly forked process p.
1507 * p is forked by current.
1509 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1511 int cpu = get_cpu();
1514 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1516 set_task_cpu(p, cpu);
1519 * We mark the process as running here, but have not actually
1520 * inserted it onto the runqueue yet. This guarantees that
1521 * nobody will actually run it, and a signal or other external
1522 * event cannot wake it up and insert it on the runqueue either.
1524 p->state = TASK_RUNNING;
1527 * Make sure we do not leak PI boosting priority to the child:
1529 p->prio = current->normal_prio;
1531 INIT_LIST_HEAD(&p->run_list);
1533 #ifdef CONFIG_SCHEDSTATS
1534 memset(&p->sched_info, 0, sizeof(p->sched_info));
1536 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1539 #ifdef CONFIG_PREEMPT
1540 /* Want to start with kernel preemption disabled. */
1541 task_thread_info(p)->preempt_count = 1;
1544 * Share the timeslice between parent and child, thus the
1545 * total amount of pending timeslices in the system doesn't change,
1546 * resulting in more scheduling fairness.
1548 local_irq_disable();
1549 p->time_slice = (current->time_slice + 1) >> 1;
1551 * The remainder of the first timeslice might be recovered by
1552 * the parent if the child exits early enough.
1554 p->first_time_slice = 1;
1555 current->time_slice >>= 1;
1556 p->timestamp = sched_clock();
1557 if (unlikely(!current->time_slice)) {
1559 * This case is rare, it happens when the parent has only
1560 * a single jiffy left from its timeslice. Taking the
1561 * runqueue lock is not a problem.
1563 current->time_slice = 1;
1571 * wake_up_new_task - wake up a newly created task for the first time.
1573 * This function will do some initial scheduler statistics housekeeping
1574 * that must be done for every newly created context, then puts the task
1575 * on the runqueue and wakes it.
1577 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1579 struct rq *rq, *this_rq;
1580 unsigned long flags;
1583 rq = task_rq_lock(p, &flags);
1584 BUG_ON(p->state != TASK_RUNNING);
1585 this_cpu = smp_processor_id();
1589 * We decrease the sleep average of forking parents
1590 * and children as well, to keep max-interactive tasks
1591 * from forking tasks that are max-interactive. The parent
1592 * (current) is done further down, under its lock.
1594 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1595 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1597 p->prio = effective_prio(p);
1599 if (likely(cpu == this_cpu)) {
1600 if (!(clone_flags & CLONE_VM)) {
1602 * The VM isn't cloned, so we're in a good position to
1603 * do child-runs-first in anticipation of an exec. This
1604 * usually avoids a lot of COW overhead.
1606 if (unlikely(!current->array))
1607 __activate_task(p, rq);
1609 p->prio = current->prio;
1610 p->normal_prio = current->normal_prio;
1611 list_add_tail(&p->run_list, ¤t->run_list);
1612 p->array = current->array;
1613 p->array->nr_active++;
1614 inc_nr_running(p, rq);
1618 /* Run child last */
1619 __activate_task(p, rq);
1621 * We skip the following code due to cpu == this_cpu
1623 * task_rq_unlock(rq, &flags);
1624 * this_rq = task_rq_lock(current, &flags);
1628 this_rq = cpu_rq(this_cpu);
1631 * Not the local CPU - must adjust timestamp. This should
1632 * get optimised away in the !CONFIG_SMP case.
1634 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1635 + rq->timestamp_last_tick;
1636 __activate_task(p, rq);
1637 if (TASK_PREEMPTS_CURR(p, rq))
1638 resched_task(rq->curr);
1641 * Parent and child are on different CPUs, now get the
1642 * parent runqueue to update the parent's ->sleep_avg:
1644 task_rq_unlock(rq, &flags);
1645 this_rq = task_rq_lock(current, &flags);
1647 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1648 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1649 task_rq_unlock(this_rq, &flags);
1653 * Potentially available exiting-child timeslices are
1654 * retrieved here - this way the parent does not get
1655 * penalized for creating too many threads.
1657 * (this cannot be used to 'generate' timeslices
1658 * artificially, because any timeslice recovered here
1659 * was given away by the parent in the first place.)
1661 void fastcall sched_exit(struct task_struct *p)
1663 unsigned long flags;
1667 * If the child was a (relative-) CPU hog then decrease
1668 * the sleep_avg of the parent as well.
1670 rq = task_rq_lock(p->parent, &flags);
1671 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1672 p->parent->time_slice += p->time_slice;
1673 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1674 p->parent->time_slice = task_timeslice(p);
1676 if (p->sleep_avg < p->parent->sleep_avg)
1677 p->parent->sleep_avg = p->parent->sleep_avg /
1678 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1680 task_rq_unlock(rq, &flags);
1684 * prepare_task_switch - prepare to switch tasks
1685 * @rq: the runqueue preparing to switch
1686 * @next: the task we are going to switch to.
1688 * This is called with the rq lock held and interrupts off. It must
1689 * be paired with a subsequent finish_task_switch after the context
1692 * prepare_task_switch sets up locking and calls architecture specific
1695 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1697 prepare_lock_switch(rq, next);
1698 prepare_arch_switch(next);
1702 * finish_task_switch - clean up after a task-switch
1703 * @rq: runqueue associated with task-switch
1704 * @prev: the thread we just switched away from.
1706 * finish_task_switch must be called after the context switch, paired
1707 * with a prepare_task_switch call before the context switch.
1708 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1709 * and do any other architecture-specific cleanup actions.
1711 * Note that we may have delayed dropping an mm in context_switch(). If
1712 * so, we finish that here outside of the runqueue lock. (Doing it
1713 * with the lock held can cause deadlocks; see schedule() for
1716 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1717 __releases(rq->lock)
1719 struct mm_struct *mm = rq->prev_mm;
1720 unsigned long prev_task_flags;
1725 * A task struct has one reference for the use as "current".
1726 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1727 * calls schedule one last time. The schedule call will never return,
1728 * and the scheduled task must drop that reference.
1729 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1730 * still held, otherwise prev could be scheduled on another cpu, die
1731 * there before we look at prev->state, and then the reference would
1733 * Manfred Spraul <manfred@colorfullife.com>
1735 prev_task_flags = prev->flags;
1736 finish_arch_switch(prev);
1737 finish_lock_switch(rq, prev);
1740 if (unlikely(prev_task_flags & PF_DEAD)) {
1742 * Remove function-return probe instances associated with this
1743 * task and put them back on the free list.
1745 kprobe_flush_task(prev);
1746 put_task_struct(prev);
1751 * schedule_tail - first thing a freshly forked thread must call.
1752 * @prev: the thread we just switched away from.
1754 asmlinkage void schedule_tail(struct task_struct *prev)
1755 __releases(rq->lock)
1757 struct rq *rq = this_rq();
1759 finish_task_switch(rq, prev);
1760 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1761 /* In this case, finish_task_switch does not reenable preemption */
1764 if (current->set_child_tid)
1765 put_user(current->pid, current->set_child_tid);
1769 * context_switch - switch to the new MM and the new
1770 * thread's register state.
1772 static inline struct task_struct *
1773 context_switch(struct rq *rq, struct task_struct *prev,
1774 struct task_struct *next)
1776 struct mm_struct *mm = next->mm;
1777 struct mm_struct *oldmm = prev->active_mm;
1779 if (unlikely(!mm)) {
1780 next->active_mm = oldmm;
1781 atomic_inc(&oldmm->mm_count);
1782 enter_lazy_tlb(oldmm, next);
1784 switch_mm(oldmm, mm, next);
1786 if (unlikely(!prev->mm)) {
1787 prev->active_mm = NULL;
1788 WARN_ON(rq->prev_mm);
1789 rq->prev_mm = oldmm;
1791 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1793 /* Here we just switch the register state and the stack. */
1794 switch_to(prev, next, prev);
1800 * nr_running, nr_uninterruptible and nr_context_switches:
1802 * externally visible scheduler statistics: current number of runnable
1803 * threads, current number of uninterruptible-sleeping threads, total
1804 * number of context switches performed since bootup.
1806 unsigned long nr_running(void)
1808 unsigned long i, sum = 0;
1810 for_each_online_cpu(i)
1811 sum += cpu_rq(i)->nr_running;
1816 unsigned long nr_uninterruptible(void)
1818 unsigned long i, sum = 0;
1820 for_each_possible_cpu(i)
1821 sum += cpu_rq(i)->nr_uninterruptible;
1824 * Since we read the counters lockless, it might be slightly
1825 * inaccurate. Do not allow it to go below zero though:
1827 if (unlikely((long)sum < 0))
1833 unsigned long long nr_context_switches(void)
1836 unsigned long long sum = 0;
1838 for_each_possible_cpu(i)
1839 sum += cpu_rq(i)->nr_switches;
1844 unsigned long nr_iowait(void)
1846 unsigned long i, sum = 0;
1848 for_each_possible_cpu(i)
1849 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1854 unsigned long nr_active(void)
1856 unsigned long i, running = 0, uninterruptible = 0;
1858 for_each_online_cpu(i) {
1859 running += cpu_rq(i)->nr_running;
1860 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1863 if (unlikely((long)uninterruptible < 0))
1864 uninterruptible = 0;
1866 return running + uninterruptible;
1872 * Is this task likely cache-hot:
1875 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1877 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1881 * double_rq_lock - safely lock two runqueues
1883 * Note this does not disable interrupts like task_rq_lock,
1884 * you need to do so manually before calling.
1886 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1887 __acquires(rq1->lock)
1888 __acquires(rq2->lock)
1891 spin_lock(&rq1->lock);
1892 __acquire(rq2->lock); /* Fake it out ;) */
1895 spin_lock(&rq1->lock);
1896 spin_lock(&rq2->lock);
1898 spin_lock(&rq2->lock);
1899 spin_lock(&rq1->lock);
1905 * double_rq_unlock - safely unlock two runqueues
1907 * Note this does not restore interrupts like task_rq_unlock,
1908 * you need to do so manually after calling.
1910 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1911 __releases(rq1->lock)
1912 __releases(rq2->lock)
1914 spin_unlock(&rq1->lock);
1916 spin_unlock(&rq2->lock);
1918 __release(rq2->lock);
1922 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1924 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1925 __releases(this_rq->lock)
1926 __acquires(busiest->lock)
1927 __acquires(this_rq->lock)
1929 if (unlikely(!spin_trylock(&busiest->lock))) {
1930 if (busiest < this_rq) {
1931 spin_unlock(&this_rq->lock);
1932 spin_lock(&busiest->lock);
1933 spin_lock(&this_rq->lock);
1935 spin_lock(&busiest->lock);
1940 * If dest_cpu is allowed for this process, migrate the task to it.
1941 * This is accomplished by forcing the cpu_allowed mask to only
1942 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1943 * the cpu_allowed mask is restored.
1945 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1947 struct migration_req req;
1948 unsigned long flags;
1951 rq = task_rq_lock(p, &flags);
1952 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1953 || unlikely(cpu_is_offline(dest_cpu)))
1956 /* force the process onto the specified CPU */
1957 if (migrate_task(p, dest_cpu, &req)) {
1958 /* Need to wait for migration thread (might exit: take ref). */
1959 struct task_struct *mt = rq->migration_thread;
1961 get_task_struct(mt);
1962 task_rq_unlock(rq, &flags);
1963 wake_up_process(mt);
1964 put_task_struct(mt);
1965 wait_for_completion(&req.done);
1970 task_rq_unlock(rq, &flags);
1974 * sched_exec - execve() is a valuable balancing opportunity, because at
1975 * this point the task has the smallest effective memory and cache footprint.
1977 void sched_exec(void)
1979 int new_cpu, this_cpu = get_cpu();
1980 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1982 if (new_cpu != this_cpu)
1983 sched_migrate_task(current, new_cpu);
1987 * pull_task - move a task from a remote runqueue to the local runqueue.
1988 * Both runqueues must be locked.
1990 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
1991 struct task_struct *p, struct rq *this_rq,
1992 struct prio_array *this_array, int this_cpu)
1994 dequeue_task(p, src_array);
1995 dec_nr_running(p, src_rq);
1996 set_task_cpu(p, this_cpu);
1997 inc_nr_running(p, this_rq);
1998 enqueue_task(p, this_array);
1999 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2000 + this_rq->timestamp_last_tick;
2002 * Note that idle threads have a prio of MAX_PRIO, for this test
2003 * to be always true for them.
2005 if (TASK_PREEMPTS_CURR(p, this_rq))
2006 resched_task(this_rq->curr);
2010 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2013 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2014 struct sched_domain *sd, enum idle_type idle,
2018 * We do not migrate tasks that are:
2019 * 1) running (obviously), or
2020 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2021 * 3) are cache-hot on their current CPU.
2023 if (!cpu_isset(this_cpu, p->cpus_allowed))
2027 if (task_running(rq, p))
2031 * Aggressive migration if:
2032 * 1) task is cache cold, or
2033 * 2) too many balance attempts have failed.
2036 if (sd->nr_balance_failed > sd->cache_nice_tries)
2039 if (task_hot(p, rq->timestamp_last_tick, sd))
2044 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2047 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2048 * load from busiest to this_rq, as part of a balancing operation within
2049 * "domain". Returns the number of tasks moved.
2051 * Called with both runqueues locked.
2053 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2054 unsigned long max_nr_move, unsigned long max_load_move,
2055 struct sched_domain *sd, enum idle_type idle,
2058 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2059 best_prio_seen, skip_for_load;
2060 struct prio_array *array, *dst_array;
2061 struct list_head *head, *curr;
2062 struct task_struct *tmp;
2065 if (max_nr_move == 0 || max_load_move == 0)
2068 rem_load_move = max_load_move;
2070 this_best_prio = rq_best_prio(this_rq);
2071 best_prio = rq_best_prio(busiest);
2073 * Enable handling of the case where there is more than one task
2074 * with the best priority. If the current running task is one
2075 * of those with prio==best_prio we know it won't be moved
2076 * and therefore it's safe to override the skip (based on load) of
2077 * any task we find with that prio.
2079 best_prio_seen = best_prio == busiest->curr->prio;
2082 * We first consider expired tasks. Those will likely not be
2083 * executed in the near future, and they are most likely to
2084 * be cache-cold, thus switching CPUs has the least effect
2087 if (busiest->expired->nr_active) {
2088 array = busiest->expired;
2089 dst_array = this_rq->expired;
2091 array = busiest->active;
2092 dst_array = this_rq->active;
2096 /* Start searching at priority 0: */
2100 idx = sched_find_first_bit(array->bitmap);
2102 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2103 if (idx >= MAX_PRIO) {
2104 if (array == busiest->expired && busiest->active->nr_active) {
2105 array = busiest->active;
2106 dst_array = this_rq->active;
2112 head = array->queue + idx;
2115 tmp = list_entry(curr, struct task_struct, run_list);
2120 * To help distribute high priority tasks accross CPUs we don't
2121 * skip a task if it will be the highest priority task (i.e. smallest
2122 * prio value) on its new queue regardless of its load weight
2124 skip_for_load = tmp->load_weight > rem_load_move;
2125 if (skip_for_load && idx < this_best_prio)
2126 skip_for_load = !best_prio_seen && idx == best_prio;
2127 if (skip_for_load ||
2128 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2130 best_prio_seen |= idx == best_prio;
2137 #ifdef CONFIG_SCHEDSTATS
2138 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2139 schedstat_inc(sd, lb_hot_gained[idle]);
2142 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2144 rem_load_move -= tmp->load_weight;
2147 * We only want to steal up to the prescribed number of tasks
2148 * and the prescribed amount of weighted load.
2150 if (pulled < max_nr_move && rem_load_move > 0) {
2151 if (idx < this_best_prio)
2152 this_best_prio = idx;
2160 * Right now, this is the only place pull_task() is called,
2161 * so we can safely collect pull_task() stats here rather than
2162 * inside pull_task().
2164 schedstat_add(sd, lb_gained[idle], pulled);
2167 *all_pinned = pinned;
2172 * find_busiest_group finds and returns the busiest CPU group within the
2173 * domain. It calculates and returns the amount of weighted load which
2174 * should be moved to restore balance via the imbalance parameter.
2176 static struct sched_group *
2177 find_busiest_group(struct sched_domain *sd, int this_cpu,
2178 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2180 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2181 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2182 unsigned long max_pull;
2183 unsigned long busiest_load_per_task, busiest_nr_running;
2184 unsigned long this_load_per_task, this_nr_running;
2186 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2187 int power_savings_balance = 1;
2188 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2189 unsigned long min_nr_running = ULONG_MAX;
2190 struct sched_group *group_min = NULL, *group_leader = NULL;
2193 max_load = this_load = total_load = total_pwr = 0;
2194 busiest_load_per_task = busiest_nr_running = 0;
2195 this_load_per_task = this_nr_running = 0;
2196 if (idle == NOT_IDLE)
2197 load_idx = sd->busy_idx;
2198 else if (idle == NEWLY_IDLE)
2199 load_idx = sd->newidle_idx;
2201 load_idx = sd->idle_idx;
2204 unsigned long load, group_capacity;
2207 unsigned long sum_nr_running, sum_weighted_load;
2209 local_group = cpu_isset(this_cpu, group->cpumask);
2211 /* Tally up the load of all CPUs in the group */
2212 sum_weighted_load = sum_nr_running = avg_load = 0;
2214 for_each_cpu_mask(i, group->cpumask) {
2215 struct rq *rq = cpu_rq(i);
2217 if (*sd_idle && !idle_cpu(i))
2220 /* Bias balancing toward cpus of our domain */
2222 load = target_load(i, load_idx);
2224 load = source_load(i, load_idx);
2227 sum_nr_running += rq->nr_running;
2228 sum_weighted_load += rq->raw_weighted_load;
2231 total_load += avg_load;
2232 total_pwr += group->cpu_power;
2234 /* Adjust by relative CPU power of the group */
2235 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2237 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2240 this_load = avg_load;
2242 this_nr_running = sum_nr_running;
2243 this_load_per_task = sum_weighted_load;
2244 } else if (avg_load > max_load &&
2245 sum_nr_running > group_capacity) {
2246 max_load = avg_load;
2248 busiest_nr_running = sum_nr_running;
2249 busiest_load_per_task = sum_weighted_load;
2252 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2254 * Busy processors will not participate in power savings
2257 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2261 * If the local group is idle or completely loaded
2262 * no need to do power savings balance at this domain
2264 if (local_group && (this_nr_running >= group_capacity ||
2266 power_savings_balance = 0;
2269 * If a group is already running at full capacity or idle,
2270 * don't include that group in power savings calculations
2272 if (!power_savings_balance || sum_nr_running >= group_capacity
2277 * Calculate the group which has the least non-idle load.
2278 * This is the group from where we need to pick up the load
2281 if ((sum_nr_running < min_nr_running) ||
2282 (sum_nr_running == min_nr_running &&
2283 first_cpu(group->cpumask) <
2284 first_cpu(group_min->cpumask))) {
2286 min_nr_running = sum_nr_running;
2287 min_load_per_task = sum_weighted_load /
2292 * Calculate the group which is almost near its
2293 * capacity but still has some space to pick up some load
2294 * from other group and save more power
2296 if (sum_nr_running <= group_capacity - 1) {
2297 if (sum_nr_running > leader_nr_running ||
2298 (sum_nr_running == leader_nr_running &&
2299 first_cpu(group->cpumask) >
2300 first_cpu(group_leader->cpumask))) {
2301 group_leader = group;
2302 leader_nr_running = sum_nr_running;
2307 group = group->next;
2308 } while (group != sd->groups);
2310 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2313 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2315 if (this_load >= avg_load ||
2316 100*max_load <= sd->imbalance_pct*this_load)
2319 busiest_load_per_task /= busiest_nr_running;
2321 * We're trying to get all the cpus to the average_load, so we don't
2322 * want to push ourselves above the average load, nor do we wish to
2323 * reduce the max loaded cpu below the average load, as either of these
2324 * actions would just result in more rebalancing later, and ping-pong
2325 * tasks around. Thus we look for the minimum possible imbalance.
2326 * Negative imbalances (*we* are more loaded than anyone else) will
2327 * be counted as no imbalance for these purposes -- we can't fix that
2328 * by pulling tasks to us. Be careful of negative numbers as they'll
2329 * appear as very large values with unsigned longs.
2331 if (max_load <= busiest_load_per_task)
2335 * In the presence of smp nice balancing, certain scenarios can have
2336 * max load less than avg load(as we skip the groups at or below
2337 * its cpu_power, while calculating max_load..)
2339 if (max_load < avg_load) {
2341 goto small_imbalance;
2344 /* Don't want to pull so many tasks that a group would go idle */
2345 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2347 /* How much load to actually move to equalise the imbalance */
2348 *imbalance = min(max_pull * busiest->cpu_power,
2349 (avg_load - this_load) * this->cpu_power)
2353 * if *imbalance is less than the average load per runnable task
2354 * there is no gaurantee that any tasks will be moved so we'll have
2355 * a think about bumping its value to force at least one task to be
2358 if (*imbalance < busiest_load_per_task) {
2359 unsigned long tmp, pwr_now, pwr_move;
2363 pwr_move = pwr_now = 0;
2365 if (this_nr_running) {
2366 this_load_per_task /= this_nr_running;
2367 if (busiest_load_per_task > this_load_per_task)
2370 this_load_per_task = SCHED_LOAD_SCALE;
2372 if (max_load - this_load >= busiest_load_per_task * imbn) {
2373 *imbalance = busiest_load_per_task;
2378 * OK, we don't have enough imbalance to justify moving tasks,
2379 * however we may be able to increase total CPU power used by
2383 pwr_now += busiest->cpu_power *
2384 min(busiest_load_per_task, max_load);
2385 pwr_now += this->cpu_power *
2386 min(this_load_per_task, this_load);
2387 pwr_now /= SCHED_LOAD_SCALE;
2389 /* Amount of load we'd subtract */
2390 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2392 pwr_move += busiest->cpu_power *
2393 min(busiest_load_per_task, max_load - tmp);
2395 /* Amount of load we'd add */
2396 if (max_load*busiest->cpu_power <
2397 busiest_load_per_task*SCHED_LOAD_SCALE)
2398 tmp = max_load*busiest->cpu_power/this->cpu_power;
2400 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2401 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2402 pwr_move /= SCHED_LOAD_SCALE;
2404 /* Move if we gain throughput */
2405 if (pwr_move <= pwr_now)
2408 *imbalance = busiest_load_per_task;
2414 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2415 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2418 if (this == group_leader && group_leader != group_min) {
2419 *imbalance = min_load_per_task;
2429 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2432 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2433 unsigned long imbalance)
2435 struct rq *busiest = NULL, *rq;
2436 unsigned long max_load = 0;
2439 for_each_cpu_mask(i, group->cpumask) {
2442 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2445 if (rq->raw_weighted_load > max_load) {
2446 max_load = rq->raw_weighted_load;
2455 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2456 * so long as it is large enough.
2458 #define MAX_PINNED_INTERVAL 512
2460 static inline unsigned long minus_1_or_zero(unsigned long n)
2462 return n > 0 ? n - 1 : 0;
2466 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2467 * tasks if there is an imbalance.
2469 * Called with this_rq unlocked.
2471 static int load_balance(int this_cpu, struct rq *this_rq,
2472 struct sched_domain *sd, enum idle_type idle)
2474 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2475 struct sched_group *group;
2476 unsigned long imbalance;
2479 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2480 !sched_smt_power_savings)
2483 schedstat_inc(sd, lb_cnt[idle]);
2485 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2487 schedstat_inc(sd, lb_nobusyg[idle]);
2491 busiest = find_busiest_queue(group, idle, imbalance);
2493 schedstat_inc(sd, lb_nobusyq[idle]);
2497 BUG_ON(busiest == this_rq);
2499 schedstat_add(sd, lb_imbalance[idle], imbalance);
2502 if (busiest->nr_running > 1) {
2504 * Attempt to move tasks. If find_busiest_group has found
2505 * an imbalance but busiest->nr_running <= 1, the group is
2506 * still unbalanced. nr_moved simply stays zero, so it is
2507 * correctly treated as an imbalance.
2509 double_rq_lock(this_rq, busiest);
2510 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2511 minus_1_or_zero(busiest->nr_running),
2512 imbalance, sd, idle, &all_pinned);
2513 double_rq_unlock(this_rq, busiest);
2515 /* All tasks on this runqueue were pinned by CPU affinity */
2516 if (unlikely(all_pinned))
2521 schedstat_inc(sd, lb_failed[idle]);
2522 sd->nr_balance_failed++;
2524 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2526 spin_lock(&busiest->lock);
2528 /* don't kick the migration_thread, if the curr
2529 * task on busiest cpu can't be moved to this_cpu
2531 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2532 spin_unlock(&busiest->lock);
2534 goto out_one_pinned;
2537 if (!busiest->active_balance) {
2538 busiest->active_balance = 1;
2539 busiest->push_cpu = this_cpu;
2542 spin_unlock(&busiest->lock);
2544 wake_up_process(busiest->migration_thread);
2547 * We've kicked active balancing, reset the failure
2550 sd->nr_balance_failed = sd->cache_nice_tries+1;
2553 sd->nr_balance_failed = 0;
2555 if (likely(!active_balance)) {
2556 /* We were unbalanced, so reset the balancing interval */
2557 sd->balance_interval = sd->min_interval;
2560 * If we've begun active balancing, start to back off. This
2561 * case may not be covered by the all_pinned logic if there
2562 * is only 1 task on the busy runqueue (because we don't call
2565 if (sd->balance_interval < sd->max_interval)
2566 sd->balance_interval *= 2;
2569 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2570 !sched_smt_power_savings)
2575 schedstat_inc(sd, lb_balanced[idle]);
2577 sd->nr_balance_failed = 0;
2580 /* tune up the balancing interval */
2581 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2582 (sd->balance_interval < sd->max_interval))
2583 sd->balance_interval *= 2;
2585 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2586 !sched_smt_power_savings)
2592 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2593 * tasks if there is an imbalance.
2595 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2596 * this_rq is locked.
2599 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2601 struct sched_group *group;
2602 struct rq *busiest = NULL;
2603 unsigned long imbalance;
2607 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2610 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2611 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2613 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2617 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2619 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2623 BUG_ON(busiest == this_rq);
2625 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2628 if (busiest->nr_running > 1) {
2629 /* Attempt to move tasks */
2630 double_lock_balance(this_rq, busiest);
2631 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2632 minus_1_or_zero(busiest->nr_running),
2633 imbalance, sd, NEWLY_IDLE, NULL);
2634 spin_unlock(&busiest->lock);
2638 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2639 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2642 sd->nr_balance_failed = 0;
2647 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2648 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2649 !sched_smt_power_savings)
2651 sd->nr_balance_failed = 0;
2657 * idle_balance is called by schedule() if this_cpu is about to become
2658 * idle. Attempts to pull tasks from other CPUs.
2660 static void idle_balance(int this_cpu, struct rq *this_rq)
2662 struct sched_domain *sd;
2664 for_each_domain(this_cpu, sd) {
2665 if (sd->flags & SD_BALANCE_NEWIDLE) {
2666 /* If we've pulled tasks over stop searching: */
2667 if (load_balance_newidle(this_cpu, this_rq, sd))
2674 * active_load_balance is run by migration threads. It pushes running tasks
2675 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2676 * running on each physical CPU where possible, and avoids physical /
2677 * logical imbalances.
2679 * Called with busiest_rq locked.
2681 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2683 int target_cpu = busiest_rq->push_cpu;
2684 struct sched_domain *sd;
2685 struct rq *target_rq;
2687 /* Is there any task to move? */
2688 if (busiest_rq->nr_running <= 1)
2691 target_rq = cpu_rq(target_cpu);
2694 * This condition is "impossible", if it occurs
2695 * we need to fix it. Originally reported by
2696 * Bjorn Helgaas on a 128-cpu setup.
2698 BUG_ON(busiest_rq == target_rq);
2700 /* move a task from busiest_rq to target_rq */
2701 double_lock_balance(busiest_rq, target_rq);
2703 /* Search for an sd spanning us and the target CPU. */
2704 for_each_domain(target_cpu, sd) {
2705 if ((sd->flags & SD_LOAD_BALANCE) &&
2706 cpu_isset(busiest_cpu, sd->span))
2711 schedstat_inc(sd, alb_cnt);
2713 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2714 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2716 schedstat_inc(sd, alb_pushed);
2718 schedstat_inc(sd, alb_failed);
2720 spin_unlock(&target_rq->lock);
2724 * rebalance_tick will get called every timer tick, on every CPU.
2726 * It checks each scheduling domain to see if it is due to be balanced,
2727 * and initiates a balancing operation if so.
2729 * Balancing parameters are set up in arch_init_sched_domains.
2732 /* Don't have all balancing operations going off at once: */
2733 static inline unsigned long cpu_offset(int cpu)
2735 return jiffies + cpu * HZ / NR_CPUS;
2739 rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
2741 unsigned long this_load, interval, j = cpu_offset(this_cpu);
2742 struct sched_domain *sd;
2745 this_load = this_rq->raw_weighted_load;
2747 /* Update our load: */
2748 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2749 unsigned long old_load, new_load;
2751 old_load = this_rq->cpu_load[i];
2752 new_load = this_load;
2754 * Round up the averaging division if load is increasing. This
2755 * prevents us from getting stuck on 9 if the load is 10, for
2758 if (new_load > old_load)
2759 new_load += scale-1;
2760 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2763 for_each_domain(this_cpu, sd) {
2764 if (!(sd->flags & SD_LOAD_BALANCE))
2767 interval = sd->balance_interval;
2768 if (idle != SCHED_IDLE)
2769 interval *= sd->busy_factor;
2771 /* scale ms to jiffies */
2772 interval = msecs_to_jiffies(interval);
2773 if (unlikely(!interval))
2776 if (j - sd->last_balance >= interval) {
2777 if (load_balance(this_cpu, this_rq, sd, idle)) {
2779 * We've pulled tasks over so either we're no
2780 * longer idle, or one of our SMT siblings is
2785 sd->last_balance += interval;
2791 * on UP we do not need to balance between CPUs:
2793 static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
2796 static inline void idle_balance(int cpu, struct rq *rq)
2801 static inline int wake_priority_sleeper(struct rq *rq)
2805 #ifdef CONFIG_SCHED_SMT
2806 spin_lock(&rq->lock);
2808 * If an SMT sibling task has been put to sleep for priority
2809 * reasons reschedule the idle task to see if it can now run.
2811 if (rq->nr_running) {
2812 resched_task(rq->idle);
2815 spin_unlock(&rq->lock);
2820 DEFINE_PER_CPU(struct kernel_stat, kstat);
2822 EXPORT_PER_CPU_SYMBOL(kstat);
2825 * This is called on clock ticks and on context switches.
2826 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2829 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
2831 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
2835 * Return current->sched_time plus any more ns on the sched_clock
2836 * that have not yet been banked.
2838 unsigned long long current_sched_time(const struct task_struct *p)
2840 unsigned long long ns;
2841 unsigned long flags;
2843 local_irq_save(flags);
2844 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2845 ns = p->sched_time + sched_clock() - ns;
2846 local_irq_restore(flags);
2852 * We place interactive tasks back into the active array, if possible.
2854 * To guarantee that this does not starve expired tasks we ignore the
2855 * interactivity of a task if the first expired task had to wait more
2856 * than a 'reasonable' amount of time. This deadline timeout is
2857 * load-dependent, as the frequency of array switched decreases with
2858 * increasing number of running tasks. We also ignore the interactivity
2859 * if a better static_prio task has expired:
2861 static inline int expired_starving(struct rq *rq)
2863 if (rq->curr->static_prio > rq->best_expired_prio)
2865 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2867 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2873 * Account user cpu time to a process.
2874 * @p: the process that the cpu time gets accounted to
2875 * @hardirq_offset: the offset to subtract from hardirq_count()
2876 * @cputime: the cpu time spent in user space since the last update
2878 void account_user_time(struct task_struct *p, cputime_t cputime)
2880 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2883 p->utime = cputime_add(p->utime, cputime);
2885 /* Add user time to cpustat. */
2886 tmp = cputime_to_cputime64(cputime);
2887 if (TASK_NICE(p) > 0)
2888 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2890 cpustat->user = cputime64_add(cpustat->user, tmp);
2894 * Account system cpu time to a process.
2895 * @p: the process that the cpu time gets accounted to
2896 * @hardirq_offset: the offset to subtract from hardirq_count()
2897 * @cputime: the cpu time spent in kernel space since the last update
2899 void account_system_time(struct task_struct *p, int hardirq_offset,
2902 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2903 struct rq *rq = this_rq();
2906 p->stime = cputime_add(p->stime, cputime);
2908 /* Add system time to cpustat. */
2909 tmp = cputime_to_cputime64(cputime);
2910 if (hardirq_count() - hardirq_offset)
2911 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2912 else if (softirq_count())
2913 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2914 else if (p != rq->idle)
2915 cpustat->system = cputime64_add(cpustat->system, tmp);
2916 else if (atomic_read(&rq->nr_iowait) > 0)
2917 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2919 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2920 /* Account for system time used */
2921 acct_update_integrals(p);
2925 * Account for involuntary wait time.
2926 * @p: the process from which the cpu time has been stolen
2927 * @steal: the cpu time spent in involuntary wait
2929 void account_steal_time(struct task_struct *p, cputime_t steal)
2931 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2932 cputime64_t tmp = cputime_to_cputime64(steal);
2933 struct rq *rq = this_rq();
2935 if (p == rq->idle) {
2936 p->stime = cputime_add(p->stime, steal);
2937 if (atomic_read(&rq->nr_iowait) > 0)
2938 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2940 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2942 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2946 * This function gets called by the timer code, with HZ frequency.
2947 * We call it with interrupts disabled.
2949 * It also gets called by the fork code, when changing the parent's
2952 void scheduler_tick(void)
2954 unsigned long long now = sched_clock();
2955 struct task_struct *p = current;
2956 int cpu = smp_processor_id();
2957 struct rq *rq = cpu_rq(cpu);
2959 update_cpu_clock(p, rq, now);
2961 rq->timestamp_last_tick = now;
2963 if (p == rq->idle) {
2964 if (wake_priority_sleeper(rq))
2966 rebalance_tick(cpu, rq, SCHED_IDLE);
2970 /* Task might have expired already, but not scheduled off yet */
2971 if (p->array != rq->active) {
2972 set_tsk_need_resched(p);
2975 spin_lock(&rq->lock);
2977 * The task was running during this tick - update the
2978 * time slice counter. Note: we do not update a thread's
2979 * priority until it either goes to sleep or uses up its
2980 * timeslice. This makes it possible for interactive tasks
2981 * to use up their timeslices at their highest priority levels.
2985 * RR tasks need a special form of timeslice management.
2986 * FIFO tasks have no timeslices.
2988 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2989 p->time_slice = task_timeslice(p);
2990 p->first_time_slice = 0;
2991 set_tsk_need_resched(p);
2993 /* put it at the end of the queue: */
2994 requeue_task(p, rq->active);
2998 if (!--p->time_slice) {
2999 dequeue_task(p, rq->active);
3000 set_tsk_need_resched(p);
3001 p->prio = effective_prio(p);
3002 p->time_slice = task_timeslice(p);
3003 p->first_time_slice = 0;
3005 if (!rq->expired_timestamp)
3006 rq->expired_timestamp = jiffies;
3007 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3008 enqueue_task(p, rq->expired);
3009 if (p->static_prio < rq->best_expired_prio)
3010 rq->best_expired_prio = p->static_prio;
3012 enqueue_task(p, rq->active);
3015 * Prevent a too long timeslice allowing a task to monopolize
3016 * the CPU. We do this by splitting up the timeslice into
3019 * Note: this does not mean the task's timeslices expire or
3020 * get lost in any way, they just might be preempted by
3021 * another task of equal priority. (one with higher
3022 * priority would have preempted this task already.) We
3023 * requeue this task to the end of the list on this priority
3024 * level, which is in essence a round-robin of tasks with
3027 * This only applies to tasks in the interactive
3028 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3030 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3031 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3032 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3033 (p->array == rq->active)) {
3035 requeue_task(p, rq->active);
3036 set_tsk_need_resched(p);
3040 spin_unlock(&rq->lock);
3042 rebalance_tick(cpu, rq, NOT_IDLE);
3045 #ifdef CONFIG_SCHED_SMT
3046 static inline void wakeup_busy_runqueue(struct rq *rq)
3048 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3049 if (rq->curr == rq->idle && rq->nr_running)
3050 resched_task(rq->idle);
3054 * Called with interrupt disabled and this_rq's runqueue locked.
3056 static void wake_sleeping_dependent(int this_cpu)
3058 struct sched_domain *tmp, *sd = NULL;
3061 for_each_domain(this_cpu, tmp) {
3062 if (tmp->flags & SD_SHARE_CPUPOWER) {
3071 for_each_cpu_mask(i, sd->span) {
3072 struct rq *smt_rq = cpu_rq(i);
3076 if (unlikely(!spin_trylock(&smt_rq->lock)))
3079 wakeup_busy_runqueue(smt_rq);
3080 spin_unlock(&smt_rq->lock);
3085 * number of 'lost' timeslices this task wont be able to fully
3086 * utilize, if another task runs on a sibling. This models the
3087 * slowdown effect of other tasks running on siblings:
3089 static inline unsigned long
3090 smt_slice(struct task_struct *p, struct sched_domain *sd)
3092 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3096 * To minimise lock contention and not have to drop this_rq's runlock we only
3097 * trylock the sibling runqueues and bypass those runqueues if we fail to
3098 * acquire their lock. As we only trylock the normal locking order does not
3099 * need to be obeyed.
3102 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3104 struct sched_domain *tmp, *sd = NULL;
3107 /* kernel/rt threads do not participate in dependent sleeping */
3108 if (!p->mm || rt_task(p))
3111 for_each_domain(this_cpu, tmp) {
3112 if (tmp->flags & SD_SHARE_CPUPOWER) {
3121 for_each_cpu_mask(i, sd->span) {
3122 struct task_struct *smt_curr;
3129 if (unlikely(!spin_trylock(&smt_rq->lock)))
3132 smt_curr = smt_rq->curr;
3138 * If a user task with lower static priority than the
3139 * running task on the SMT sibling is trying to schedule,
3140 * delay it till there is proportionately less timeslice
3141 * left of the sibling task to prevent a lower priority
3142 * task from using an unfair proportion of the
3143 * physical cpu's resources. -ck
3145 if (rt_task(smt_curr)) {
3147 * With real time tasks we run non-rt tasks only
3148 * per_cpu_gain% of the time.
3150 if ((jiffies % DEF_TIMESLICE) >
3151 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3154 if (smt_curr->static_prio < p->static_prio &&
3155 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3156 smt_slice(smt_curr, sd) > task_timeslice(p))
3160 spin_unlock(&smt_rq->lock);
3165 static inline void wake_sleeping_dependent(int this_cpu)
3169 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3175 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3177 void fastcall add_preempt_count(int val)
3182 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3184 preempt_count() += val;
3186 * Spinlock count overflowing soon?
3188 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3190 EXPORT_SYMBOL(add_preempt_count);
3192 void fastcall sub_preempt_count(int val)
3197 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3200 * Is the spinlock portion underflowing?
3202 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3203 !(preempt_count() & PREEMPT_MASK)))
3206 preempt_count() -= val;
3208 EXPORT_SYMBOL(sub_preempt_count);
3212 static inline int interactive_sleep(enum sleep_type sleep_type)
3214 return (sleep_type == SLEEP_INTERACTIVE ||
3215 sleep_type == SLEEP_INTERRUPTED);
3219 * schedule() is the main scheduler function.
3221 asmlinkage void __sched schedule(void)
3223 struct task_struct *prev, *next;
3224 struct prio_array *array;
3225 struct list_head *queue;
3226 unsigned long long now;
3227 unsigned long run_time;
3228 int cpu, idx, new_prio;
3233 * Test if we are atomic. Since do_exit() needs to call into
3234 * schedule() atomically, we ignore that path for now.
3235 * Otherwise, whine if we are scheduling when we should not be.
3237 if (unlikely(in_atomic() && !current->exit_state)) {
3238 printk(KERN_ERR "BUG: scheduling while atomic: "
3240 current->comm, preempt_count(), current->pid);
3243 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3248 release_kernel_lock(prev);
3249 need_resched_nonpreemptible:
3253 * The idle thread is not allowed to schedule!
3254 * Remove this check after it has been exercised a bit.
3256 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3257 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3261 schedstat_inc(rq, sched_cnt);
3262 now = sched_clock();
3263 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3264 run_time = now - prev->timestamp;
3265 if (unlikely((long long)(now - prev->timestamp) < 0))
3268 run_time = NS_MAX_SLEEP_AVG;
3271 * Tasks charged proportionately less run_time at high sleep_avg to
3272 * delay them losing their interactive status
3274 run_time /= (CURRENT_BONUS(prev) ? : 1);
3276 spin_lock_irq(&rq->lock);
3278 if (unlikely(prev->flags & PF_DEAD))
3279 prev->state = EXIT_DEAD;
3281 switch_count = &prev->nivcsw;
3282 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3283 switch_count = &prev->nvcsw;
3284 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3285 unlikely(signal_pending(prev))))
3286 prev->state = TASK_RUNNING;
3288 if (prev->state == TASK_UNINTERRUPTIBLE)
3289 rq->nr_uninterruptible++;
3290 deactivate_task(prev, rq);
3294 cpu = smp_processor_id();
3295 if (unlikely(!rq->nr_running)) {
3296 idle_balance(cpu, rq);
3297 if (!rq->nr_running) {
3299 rq->expired_timestamp = 0;
3300 wake_sleeping_dependent(cpu);
3306 if (unlikely(!array->nr_active)) {
3308 * Switch the active and expired arrays.
3310 schedstat_inc(rq, sched_switch);
3311 rq->active = rq->expired;
3312 rq->expired = array;
3314 rq->expired_timestamp = 0;
3315 rq->best_expired_prio = MAX_PRIO;
3318 idx = sched_find_first_bit(array->bitmap);
3319 queue = array->queue + idx;
3320 next = list_entry(queue->next, struct task_struct, run_list);
3322 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3323 unsigned long long delta = now - next->timestamp;
3324 if (unlikely((long long)(now - next->timestamp) < 0))
3327 if (next->sleep_type == SLEEP_INTERACTIVE)
3328 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3330 array = next->array;
3331 new_prio = recalc_task_prio(next, next->timestamp + delta);
3333 if (unlikely(next->prio != new_prio)) {
3334 dequeue_task(next, array);
3335 next->prio = new_prio;
3336 enqueue_task(next, array);
3339 next->sleep_type = SLEEP_NORMAL;
3340 if (dependent_sleeper(cpu, rq, next))
3343 if (next == rq->idle)
3344 schedstat_inc(rq, sched_goidle);
3346 prefetch_stack(next);
3347 clear_tsk_need_resched(prev);
3348 rcu_qsctr_inc(task_cpu(prev));
3350 update_cpu_clock(prev, rq, now);
3352 prev->sleep_avg -= run_time;
3353 if ((long)prev->sleep_avg <= 0)
3354 prev->sleep_avg = 0;
3355 prev->timestamp = prev->last_ran = now;
3357 sched_info_switch(prev, next);
3358 if (likely(prev != next)) {
3359 next->timestamp = now;
3364 prepare_task_switch(rq, next);
3365 prev = context_switch(rq, prev, next);
3368 * this_rq must be evaluated again because prev may have moved
3369 * CPUs since it called schedule(), thus the 'rq' on its stack
3370 * frame will be invalid.
3372 finish_task_switch(this_rq(), prev);
3374 spin_unlock_irq(&rq->lock);
3377 if (unlikely(reacquire_kernel_lock(prev) < 0))
3378 goto need_resched_nonpreemptible;
3379 preempt_enable_no_resched();
3380 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3383 EXPORT_SYMBOL(schedule);
3385 #ifdef CONFIG_PREEMPT
3387 * this is is the entry point to schedule() from in-kernel preemption
3388 * off of preempt_enable. Kernel preemptions off return from interrupt
3389 * occur there and call schedule directly.
3391 asmlinkage void __sched preempt_schedule(void)
3393 struct thread_info *ti = current_thread_info();
3394 #ifdef CONFIG_PREEMPT_BKL
3395 struct task_struct *task = current;
3396 int saved_lock_depth;
3399 * If there is a non-zero preempt_count or interrupts are disabled,
3400 * we do not want to preempt the current task. Just return..
3402 if (unlikely(ti->preempt_count || irqs_disabled()))
3406 add_preempt_count(PREEMPT_ACTIVE);
3408 * We keep the big kernel semaphore locked, but we
3409 * clear ->lock_depth so that schedule() doesnt
3410 * auto-release the semaphore:
3412 #ifdef CONFIG_PREEMPT_BKL
3413 saved_lock_depth = task->lock_depth;
3414 task->lock_depth = -1;
3417 #ifdef CONFIG_PREEMPT_BKL
3418 task->lock_depth = saved_lock_depth;
3420 sub_preempt_count(PREEMPT_ACTIVE);
3422 /* we could miss a preemption opportunity between schedule and now */
3424 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3427 EXPORT_SYMBOL(preempt_schedule);
3430 * this is is the entry point to schedule() from kernel preemption
3431 * off of irq context.
3432 * Note, that this is called and return with irqs disabled. This will
3433 * protect us against recursive calling from irq.
3435 asmlinkage void __sched preempt_schedule_irq(void)
3437 struct thread_info *ti = current_thread_info();
3438 #ifdef CONFIG_PREEMPT_BKL
3439 struct task_struct *task = current;
3440 int saved_lock_depth;
3442 /* Catch callers which need to be fixed*/
3443 BUG_ON(ti->preempt_count || !irqs_disabled());
3446 add_preempt_count(PREEMPT_ACTIVE);
3448 * We keep the big kernel semaphore locked, but we
3449 * clear ->lock_depth so that schedule() doesnt
3450 * auto-release the semaphore:
3452 #ifdef CONFIG_PREEMPT_BKL
3453 saved_lock_depth = task->lock_depth;
3454 task->lock_depth = -1;
3458 local_irq_disable();
3459 #ifdef CONFIG_PREEMPT_BKL
3460 task->lock_depth = saved_lock_depth;
3462 sub_preempt_count(PREEMPT_ACTIVE);
3464 /* we could miss a preemption opportunity between schedule and now */
3466 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3470 #endif /* CONFIG_PREEMPT */
3472 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3475 return try_to_wake_up(curr->private, mode, sync);
3477 EXPORT_SYMBOL(default_wake_function);
3480 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3481 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3482 * number) then we wake all the non-exclusive tasks and one exclusive task.
3484 * There are circumstances in which we can try to wake a task which has already
3485 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3486 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3488 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3489 int nr_exclusive, int sync, void *key)
3491 struct list_head *tmp, *next;
3493 list_for_each_safe(tmp, next, &q->task_list) {
3494 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3495 unsigned flags = curr->flags;
3497 if (curr->func(curr, mode, sync, key) &&
3498 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3504 * __wake_up - wake up threads blocked on a waitqueue.
3506 * @mode: which threads
3507 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3508 * @key: is directly passed to the wakeup function
3510 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3511 int nr_exclusive, void *key)
3513 unsigned long flags;
3515 spin_lock_irqsave(&q->lock, flags);
3516 __wake_up_common(q, mode, nr_exclusive, 0, key);
3517 spin_unlock_irqrestore(&q->lock, flags);
3519 EXPORT_SYMBOL(__wake_up);
3522 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3524 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3526 __wake_up_common(q, mode, 1, 0, NULL);
3530 * __wake_up_sync - wake up threads blocked on a waitqueue.
3532 * @mode: which threads
3533 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3535 * The sync wakeup differs that the waker knows that it will schedule
3536 * away soon, so while the target thread will be woken up, it will not
3537 * be migrated to another CPU - ie. the two threads are 'synchronized'
3538 * with each other. This can prevent needless bouncing between CPUs.
3540 * On UP it can prevent extra preemption.
3543 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3545 unsigned long flags;
3551 if (unlikely(!nr_exclusive))
3554 spin_lock_irqsave(&q->lock, flags);
3555 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3556 spin_unlock_irqrestore(&q->lock, flags);
3558 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3560 void fastcall complete(struct completion *x)
3562 unsigned long flags;
3564 spin_lock_irqsave(&x->wait.lock, flags);
3566 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3568 spin_unlock_irqrestore(&x->wait.lock, flags);
3570 EXPORT_SYMBOL(complete);
3572 void fastcall complete_all(struct completion *x)
3574 unsigned long flags;
3576 spin_lock_irqsave(&x->wait.lock, flags);
3577 x->done += UINT_MAX/2;
3578 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3580 spin_unlock_irqrestore(&x->wait.lock, flags);
3582 EXPORT_SYMBOL(complete_all);
3584 void fastcall __sched wait_for_completion(struct completion *x)
3588 spin_lock_irq(&x->wait.lock);
3590 DECLARE_WAITQUEUE(wait, current);
3592 wait.flags |= WQ_FLAG_EXCLUSIVE;
3593 __add_wait_queue_tail(&x->wait, &wait);
3595 __set_current_state(TASK_UNINTERRUPTIBLE);
3596 spin_unlock_irq(&x->wait.lock);
3598 spin_lock_irq(&x->wait.lock);
3600 __remove_wait_queue(&x->wait, &wait);
3603 spin_unlock_irq(&x->wait.lock);
3605 EXPORT_SYMBOL(wait_for_completion);
3607 unsigned long fastcall __sched
3608 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3612 spin_lock_irq(&x->wait.lock);
3614 DECLARE_WAITQUEUE(wait, current);
3616 wait.flags |= WQ_FLAG_EXCLUSIVE;
3617 __add_wait_queue_tail(&x->wait, &wait);
3619 __set_current_state(TASK_UNINTERRUPTIBLE);
3620 spin_unlock_irq(&x->wait.lock);
3621 timeout = schedule_timeout(timeout);
3622 spin_lock_irq(&x->wait.lock);
3624 __remove_wait_queue(&x->wait, &wait);
3628 __remove_wait_queue(&x->wait, &wait);
3632 spin_unlock_irq(&x->wait.lock);
3635 EXPORT_SYMBOL(wait_for_completion_timeout);
3637 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3643 spin_lock_irq(&x->wait.lock);
3645 DECLARE_WAITQUEUE(wait, current);
3647 wait.flags |= WQ_FLAG_EXCLUSIVE;
3648 __add_wait_queue_tail(&x->wait, &wait);
3650 if (signal_pending(current)) {
3652 __remove_wait_queue(&x->wait, &wait);
3655 __set_current_state(TASK_INTERRUPTIBLE);
3656 spin_unlock_irq(&x->wait.lock);
3658 spin_lock_irq(&x->wait.lock);
3660 __remove_wait_queue(&x->wait, &wait);
3664 spin_unlock_irq(&x->wait.lock);
3668 EXPORT_SYMBOL(wait_for_completion_interruptible);
3670 unsigned long fastcall __sched
3671 wait_for_completion_interruptible_timeout(struct completion *x,
3672 unsigned long timeout)
3676 spin_lock_irq(&x->wait.lock);
3678 DECLARE_WAITQUEUE(wait, current);
3680 wait.flags |= WQ_FLAG_EXCLUSIVE;
3681 __add_wait_queue_tail(&x->wait, &wait);
3683 if (signal_pending(current)) {
3684 timeout = -ERESTARTSYS;
3685 __remove_wait_queue(&x->wait, &wait);
3688 __set_current_state(TASK_INTERRUPTIBLE);
3689 spin_unlock_irq(&x->wait.lock);
3690 timeout = schedule_timeout(timeout);
3691 spin_lock_irq(&x->wait.lock);
3693 __remove_wait_queue(&x->wait, &wait);
3697 __remove_wait_queue(&x->wait, &wait);
3701 spin_unlock_irq(&x->wait.lock);
3704 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3707 #define SLEEP_ON_VAR \
3708 unsigned long flags; \
3709 wait_queue_t wait; \
3710 init_waitqueue_entry(&wait, current);
3712 #define SLEEP_ON_HEAD \
3713 spin_lock_irqsave(&q->lock,flags); \
3714 __add_wait_queue(q, &wait); \
3715 spin_unlock(&q->lock);
3717 #define SLEEP_ON_TAIL \
3718 spin_lock_irq(&q->lock); \
3719 __remove_wait_queue(q, &wait); \
3720 spin_unlock_irqrestore(&q->lock, flags);
3722 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3726 current->state = TASK_INTERRUPTIBLE;
3732 EXPORT_SYMBOL(interruptible_sleep_on);
3734 long fastcall __sched
3735 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3739 current->state = TASK_INTERRUPTIBLE;
3742 timeout = schedule_timeout(timeout);
3747 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3749 void fastcall __sched sleep_on(wait_queue_head_t *q)
3753 current->state = TASK_UNINTERRUPTIBLE;
3759 EXPORT_SYMBOL(sleep_on);
3761 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3765 current->state = TASK_UNINTERRUPTIBLE;
3768 timeout = schedule_timeout(timeout);
3774 EXPORT_SYMBOL(sleep_on_timeout);
3776 #ifdef CONFIG_RT_MUTEXES
3779 * rt_mutex_setprio - set the current priority of a task
3781 * @prio: prio value (kernel-internal form)
3783 * This function changes the 'effective' priority of a task. It does
3784 * not touch ->normal_prio like __setscheduler().
3786 * Used by the rt_mutex code to implement priority inheritance logic.
3788 void rt_mutex_setprio(struct task_struct *p, int prio)
3790 struct prio_array *array;
3791 unsigned long flags;
3795 BUG_ON(prio < 0 || prio > MAX_PRIO);
3797 rq = task_rq_lock(p, &flags);
3802 dequeue_task(p, array);
3807 * If changing to an RT priority then queue it
3808 * in the active array!
3812 enqueue_task(p, array);
3814 * Reschedule if we are currently running on this runqueue and
3815 * our priority decreased, or if we are not currently running on
3816 * this runqueue and our priority is higher than the current's
3818 if (task_running(rq, p)) {
3819 if (p->prio > oldprio)
3820 resched_task(rq->curr);
3821 } else if (TASK_PREEMPTS_CURR(p, rq))
3822 resched_task(rq->curr);
3824 task_rq_unlock(rq, &flags);
3829 void set_user_nice(struct task_struct *p, long nice)
3831 struct prio_array *array;
3832 int old_prio, delta;
3833 unsigned long flags;
3836 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3839 * We have to be careful, if called from sys_setpriority(),
3840 * the task might be in the middle of scheduling on another CPU.
3842 rq = task_rq_lock(p, &flags);
3844 * The RT priorities are set via sched_setscheduler(), but we still
3845 * allow the 'normal' nice value to be set - but as expected
3846 * it wont have any effect on scheduling until the task is
3847 * not SCHED_NORMAL/SCHED_BATCH:
3849 if (has_rt_policy(p)) {
3850 p->static_prio = NICE_TO_PRIO(nice);
3855 dequeue_task(p, array);
3856 dec_raw_weighted_load(rq, p);
3859 p->static_prio = NICE_TO_PRIO(nice);
3862 p->prio = effective_prio(p);
3863 delta = p->prio - old_prio;
3866 enqueue_task(p, array);
3867 inc_raw_weighted_load(rq, p);
3869 * If the task increased its priority or is running and
3870 * lowered its priority, then reschedule its CPU:
3872 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3873 resched_task(rq->curr);
3876 task_rq_unlock(rq, &flags);
3878 EXPORT_SYMBOL(set_user_nice);
3881 * can_nice - check if a task can reduce its nice value
3885 int can_nice(const struct task_struct *p, const int nice)
3887 /* convert nice value [19,-20] to rlimit style value [1,40] */
3888 int nice_rlim = 20 - nice;
3890 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3891 capable(CAP_SYS_NICE));
3894 #ifdef __ARCH_WANT_SYS_NICE
3897 * sys_nice - change the priority of the current process.
3898 * @increment: priority increment
3900 * sys_setpriority is a more generic, but much slower function that
3901 * does similar things.
3903 asmlinkage long sys_nice(int increment)
3908 * Setpriority might change our priority at the same moment.
3909 * We don't have to worry. Conceptually one call occurs first
3910 * and we have a single winner.
3912 if (increment < -40)
3917 nice = PRIO_TO_NICE(current->static_prio) + increment;
3923 if (increment < 0 && !can_nice(current, nice))
3926 retval = security_task_setnice(current, nice);
3930 set_user_nice(current, nice);
3937 * task_prio - return the priority value of a given task.
3938 * @p: the task in question.
3940 * This is the priority value as seen by users in /proc.
3941 * RT tasks are offset by -200. Normal tasks are centered
3942 * around 0, value goes from -16 to +15.
3944 int task_prio(const struct task_struct *p)
3946 return p->prio - MAX_RT_PRIO;
3950 * task_nice - return the nice value of a given task.
3951 * @p: the task in question.
3953 int task_nice(const struct task_struct *p)
3955 return TASK_NICE(p);
3957 EXPORT_SYMBOL_GPL(task_nice);
3960 * idle_cpu - is a given cpu idle currently?
3961 * @cpu: the processor in question.
3963 int idle_cpu(int cpu)
3965 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3969 * idle_task - return the idle task for a given cpu.
3970 * @cpu: the processor in question.
3972 struct task_struct *idle_task(int cpu)
3974 return cpu_rq(cpu)->idle;
3978 * find_process_by_pid - find a process with a matching PID value.
3979 * @pid: the pid in question.
3981 static inline struct task_struct *find_process_by_pid(pid_t pid)
3983 return pid ? find_task_by_pid(pid) : current;
3986 /* Actually do priority change: must hold rq lock. */
3987 static void __setscheduler(struct task_struct *p, int policy, int prio)
3992 p->rt_priority = prio;
3993 p->normal_prio = normal_prio(p);
3994 /* we are holding p->pi_lock already */
3995 p->prio = rt_mutex_getprio(p);
3997 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3999 if (policy == SCHED_BATCH)
4005 * sched_setscheduler - change the scheduling policy and/or RT priority of
4007 * @p: the task in question.
4008 * @policy: new policy.
4009 * @param: structure containing the new RT priority.
4011 int sched_setscheduler(struct task_struct *p, int policy,
4012 struct sched_param *param)
4014 int retval, oldprio, oldpolicy = -1;
4015 struct prio_array *array;
4016 unsigned long flags;
4019 /* may grab non-irq protected spin_locks */
4020 BUG_ON(in_interrupt());
4022 /* double check policy once rq lock held */
4024 policy = oldpolicy = p->policy;
4025 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4026 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4029 * Valid priorities for SCHED_FIFO and SCHED_RR are
4030 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4033 if (param->sched_priority < 0 ||
4034 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4035 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4037 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4038 != (param->sched_priority == 0))
4042 * Allow unprivileged RT tasks to decrease priority:
4044 if (!capable(CAP_SYS_NICE)) {
4046 * can't change policy, except between SCHED_NORMAL
4049 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4050 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4051 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4053 /* can't increase priority */
4054 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4055 param->sched_priority > p->rt_priority &&
4056 param->sched_priority >
4057 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4059 /* can't change other user's priorities */
4060 if ((current->euid != p->euid) &&
4061 (current->euid != p->uid))
4065 retval = security_task_setscheduler(p, policy, param);
4069 * make sure no PI-waiters arrive (or leave) while we are
4070 * changing the priority of the task:
4072 spin_lock_irqsave(&p->pi_lock, flags);
4074 * To be able to change p->policy safely, the apropriate
4075 * runqueue lock must be held.
4077 rq = __task_rq_lock(p);
4078 /* recheck policy now with rq lock held */
4079 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4080 policy = oldpolicy = -1;
4081 __task_rq_unlock(rq);
4082 spin_unlock_irqrestore(&p->pi_lock, flags);
4087 deactivate_task(p, rq);
4089 __setscheduler(p, policy, param->sched_priority);
4091 __activate_task(p, rq);
4093 * Reschedule if we are currently running on this runqueue and
4094 * our priority decreased, or if we are not currently running on
4095 * this runqueue and our priority is higher than the current's
4097 if (task_running(rq, p)) {
4098 if (p->prio > oldprio)
4099 resched_task(rq->curr);
4100 } else if (TASK_PREEMPTS_CURR(p, rq))
4101 resched_task(rq->curr);
4103 __task_rq_unlock(rq);
4104 spin_unlock_irqrestore(&p->pi_lock, flags);
4106 rt_mutex_adjust_pi(p);
4110 EXPORT_SYMBOL_GPL(sched_setscheduler);
4113 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4115 struct sched_param lparam;
4116 struct task_struct *p;
4119 if (!param || pid < 0)
4121 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4123 read_lock_irq(&tasklist_lock);
4124 p = find_process_by_pid(pid);
4126 read_unlock_irq(&tasklist_lock);
4130 read_unlock_irq(&tasklist_lock);
4131 retval = sched_setscheduler(p, policy, &lparam);
4138 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4139 * @pid: the pid in question.
4140 * @policy: new policy.
4141 * @param: structure containing the new RT priority.
4143 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4144 struct sched_param __user *param)
4146 /* negative values for policy are not valid */
4150 return do_sched_setscheduler(pid, policy, param);
4154 * sys_sched_setparam - set/change the RT priority of a thread
4155 * @pid: the pid in question.
4156 * @param: structure containing the new RT priority.
4158 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4160 return do_sched_setscheduler(pid, -1, param);
4164 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4165 * @pid: the pid in question.
4167 asmlinkage long sys_sched_getscheduler(pid_t pid)
4169 struct task_struct *p;
4170 int retval = -EINVAL;
4176 read_lock(&tasklist_lock);
4177 p = find_process_by_pid(pid);
4179 retval = security_task_getscheduler(p);
4183 read_unlock(&tasklist_lock);
4190 * sys_sched_getscheduler - get the RT priority of a thread
4191 * @pid: the pid in question.
4192 * @param: structure containing the RT priority.
4194 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4196 struct sched_param lp;
4197 struct task_struct *p;
4198 int retval = -EINVAL;
4200 if (!param || pid < 0)
4203 read_lock(&tasklist_lock);
4204 p = find_process_by_pid(pid);
4209 retval = security_task_getscheduler(p);
4213 lp.sched_priority = p->rt_priority;
4214 read_unlock(&tasklist_lock);
4217 * This one might sleep, we cannot do it with a spinlock held ...
4219 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4225 read_unlock(&tasklist_lock);
4229 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4231 cpumask_t cpus_allowed;
4232 struct task_struct *p;
4236 read_lock(&tasklist_lock);
4238 p = find_process_by_pid(pid);
4240 read_unlock(&tasklist_lock);
4241 unlock_cpu_hotplug();
4246 * It is not safe to call set_cpus_allowed with the
4247 * tasklist_lock held. We will bump the task_struct's
4248 * usage count and then drop tasklist_lock.
4251 read_unlock(&tasklist_lock);
4254 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4255 !capable(CAP_SYS_NICE))
4258 retval = security_task_setscheduler(p, 0, NULL);
4262 cpus_allowed = cpuset_cpus_allowed(p);
4263 cpus_and(new_mask, new_mask, cpus_allowed);
4264 retval = set_cpus_allowed(p, new_mask);
4268 unlock_cpu_hotplug();
4272 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4273 cpumask_t *new_mask)
4275 if (len < sizeof(cpumask_t)) {
4276 memset(new_mask, 0, sizeof(cpumask_t));
4277 } else if (len > sizeof(cpumask_t)) {
4278 len = sizeof(cpumask_t);
4280 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4284 * sys_sched_setaffinity - set the cpu affinity of a process
4285 * @pid: pid of the process
4286 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4287 * @user_mask_ptr: user-space pointer to the new cpu mask
4289 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4290 unsigned long __user *user_mask_ptr)
4295 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4299 return sched_setaffinity(pid, new_mask);
4303 * Represents all cpu's present in the system
4304 * In systems capable of hotplug, this map could dynamically grow
4305 * as new cpu's are detected in the system via any platform specific
4306 * method, such as ACPI for e.g.
4309 cpumask_t cpu_present_map __read_mostly;
4310 EXPORT_SYMBOL(cpu_present_map);
4313 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4314 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4317 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4319 struct task_struct *p;
4323 read_lock(&tasklist_lock);
4326 p = find_process_by_pid(pid);
4330 retval = security_task_getscheduler(p);
4334 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4337 read_unlock(&tasklist_lock);
4338 unlock_cpu_hotplug();
4346 * sys_sched_getaffinity - get the cpu affinity of a process
4347 * @pid: pid of the process
4348 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4349 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4351 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4352 unsigned long __user *user_mask_ptr)
4357 if (len < sizeof(cpumask_t))
4360 ret = sched_getaffinity(pid, &mask);
4364 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4367 return sizeof(cpumask_t);
4371 * sys_sched_yield - yield the current processor to other threads.
4373 * this function yields the current CPU by moving the calling thread
4374 * to the expired array. If there are no other threads running on this
4375 * CPU then this function will return.
4377 asmlinkage long sys_sched_yield(void)
4379 struct rq *rq = this_rq_lock();
4380 struct prio_array *array = current->array, *target = rq->expired;
4382 schedstat_inc(rq, yld_cnt);
4384 * We implement yielding by moving the task into the expired
4387 * (special rule: RT tasks will just roundrobin in the active
4390 if (rt_task(current))
4391 target = rq->active;
4393 if (array->nr_active == 1) {
4394 schedstat_inc(rq, yld_act_empty);
4395 if (!rq->expired->nr_active)
4396 schedstat_inc(rq, yld_both_empty);
4397 } else if (!rq->expired->nr_active)
4398 schedstat_inc(rq, yld_exp_empty);
4400 if (array != target) {
4401 dequeue_task(current, array);
4402 enqueue_task(current, target);
4405 * requeue_task is cheaper so perform that if possible.
4407 requeue_task(current, array);
4410 * Since we are going to call schedule() anyway, there's
4411 * no need to preempt or enable interrupts:
4413 __release(rq->lock);
4414 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4415 _raw_spin_unlock(&rq->lock);
4416 preempt_enable_no_resched();
4423 static inline int __resched_legal(void)
4425 if (unlikely(preempt_count()))
4427 if (unlikely(system_state != SYSTEM_RUNNING))
4432 static void __cond_resched(void)
4434 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4435 __might_sleep(__FILE__, __LINE__);
4438 * The BKS might be reacquired before we have dropped
4439 * PREEMPT_ACTIVE, which could trigger a second
4440 * cond_resched() call.
4443 add_preempt_count(PREEMPT_ACTIVE);
4445 sub_preempt_count(PREEMPT_ACTIVE);
4446 } while (need_resched());
4449 int __sched cond_resched(void)
4451 if (need_resched() && __resched_legal()) {
4457 EXPORT_SYMBOL(cond_resched);
4460 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4461 * call schedule, and on return reacquire the lock.
4463 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4464 * operations here to prevent schedule() from being called twice (once via
4465 * spin_unlock(), once by hand).
4467 int cond_resched_lock(spinlock_t *lock)
4471 if (need_lockbreak(lock)) {
4477 if (need_resched() && __resched_legal()) {
4478 spin_release(&lock->dep_map, 1, _THIS_IP_);
4479 _raw_spin_unlock(lock);
4480 preempt_enable_no_resched();
4487 EXPORT_SYMBOL(cond_resched_lock);
4489 int __sched cond_resched_softirq(void)
4491 BUG_ON(!in_softirq());
4493 if (need_resched() && __resched_legal()) {
4494 raw_local_irq_disable();
4496 raw_local_irq_enable();
4503 EXPORT_SYMBOL(cond_resched_softirq);
4506 * yield - yield the current processor to other threads.
4508 * this is a shortcut for kernel-space yielding - it marks the
4509 * thread runnable and calls sys_sched_yield().
4511 void __sched yield(void)
4513 set_current_state(TASK_RUNNING);
4516 EXPORT_SYMBOL(yield);
4519 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4520 * that process accounting knows that this is a task in IO wait state.
4522 * But don't do that if it is a deliberate, throttling IO wait (this task
4523 * has set its backing_dev_info: the queue against which it should throttle)
4525 void __sched io_schedule(void)
4527 struct rq *rq = &__raw_get_cpu_var(runqueues);
4529 atomic_inc(&rq->nr_iowait);
4531 atomic_dec(&rq->nr_iowait);
4533 EXPORT_SYMBOL(io_schedule);
4535 long __sched io_schedule_timeout(long timeout)
4537 struct rq *rq = &__raw_get_cpu_var(runqueues);
4540 atomic_inc(&rq->nr_iowait);
4541 ret = schedule_timeout(timeout);
4542 atomic_dec(&rq->nr_iowait);
4547 * sys_sched_get_priority_max - return maximum RT priority.
4548 * @policy: scheduling class.
4550 * this syscall returns the maximum rt_priority that can be used
4551 * by a given scheduling class.
4553 asmlinkage long sys_sched_get_priority_max(int policy)
4560 ret = MAX_USER_RT_PRIO-1;
4571 * sys_sched_get_priority_min - return minimum RT priority.
4572 * @policy: scheduling class.
4574 * this syscall returns the minimum rt_priority that can be used
4575 * by a given scheduling class.
4577 asmlinkage long sys_sched_get_priority_min(int policy)
4594 * sys_sched_rr_get_interval - return the default timeslice of a process.
4595 * @pid: pid of the process.
4596 * @interval: userspace pointer to the timeslice value.
4598 * this syscall writes the default timeslice value of a given process
4599 * into the user-space timespec buffer. A value of '0' means infinity.
4602 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4604 struct task_struct *p;
4605 int retval = -EINVAL;
4612 read_lock(&tasklist_lock);
4613 p = find_process_by_pid(pid);
4617 retval = security_task_getscheduler(p);
4621 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4622 0 : task_timeslice(p), &t);
4623 read_unlock(&tasklist_lock);
4624 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4628 read_unlock(&tasklist_lock);
4632 static inline struct task_struct *eldest_child(struct task_struct *p)
4634 if (list_empty(&p->children))
4636 return list_entry(p->children.next,struct task_struct,sibling);
4639 static inline struct task_struct *older_sibling(struct task_struct *p)
4641 if (p->sibling.prev==&p->parent->children)
4643 return list_entry(p->sibling.prev,struct task_struct,sibling);
4646 static inline struct task_struct *younger_sibling(struct task_struct *p)
4648 if (p->sibling.next==&p->parent->children)
4650 return list_entry(p->sibling.next,struct task_struct,sibling);
4653 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4655 static void show_task(struct task_struct *p)
4657 struct task_struct *relative;
4658 unsigned long free = 0;
4661 printk("%-13.13s ", p->comm);
4662 state = p->state ? __ffs(p->state) + 1 : 0;
4663 if (state < ARRAY_SIZE(stat_nam))
4664 printk(stat_nam[state]);
4667 #if (BITS_PER_LONG == 32)
4668 if (state == TASK_RUNNING)
4669 printk(" running ");
4671 printk(" %08lX ", thread_saved_pc(p));
4673 if (state == TASK_RUNNING)
4674 printk(" running task ");
4676 printk(" %016lx ", thread_saved_pc(p));
4678 #ifdef CONFIG_DEBUG_STACK_USAGE
4680 unsigned long *n = end_of_stack(p);
4683 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4686 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4687 if ((relative = eldest_child(p)))
4688 printk("%5d ", relative->pid);
4691 if ((relative = younger_sibling(p)))
4692 printk("%7d", relative->pid);
4695 if ((relative = older_sibling(p)))
4696 printk(" %5d", relative->pid);
4700 printk(" (L-TLB)\n");
4702 printk(" (NOTLB)\n");
4704 if (state != TASK_RUNNING)
4705 show_stack(p, NULL);
4708 void show_state(void)
4710 struct task_struct *g, *p;
4712 #if (BITS_PER_LONG == 32)
4715 printk(" task PC pid father child younger older\n");
4719 printk(" task PC pid father child younger older\n");
4721 read_lock(&tasklist_lock);
4722 do_each_thread(g, p) {
4724 * reset the NMI-timeout, listing all files on a slow
4725 * console might take alot of time:
4727 touch_nmi_watchdog();
4729 } while_each_thread(g, p);
4731 read_unlock(&tasklist_lock);
4732 debug_show_all_locks();
4736 * init_idle - set up an idle thread for a given CPU
4737 * @idle: task in question
4738 * @cpu: cpu the idle task belongs to
4740 * NOTE: this function does not set the idle thread's NEED_RESCHED
4741 * flag, to make booting more robust.
4743 void __devinit init_idle(struct task_struct *idle, int cpu)
4745 struct rq *rq = cpu_rq(cpu);
4746 unsigned long flags;
4748 idle->timestamp = sched_clock();
4749 idle->sleep_avg = 0;
4751 idle->prio = idle->normal_prio = MAX_PRIO;
4752 idle->state = TASK_RUNNING;
4753 idle->cpus_allowed = cpumask_of_cpu(cpu);
4754 set_task_cpu(idle, cpu);
4756 spin_lock_irqsave(&rq->lock, flags);
4757 rq->curr = rq->idle = idle;
4758 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4761 spin_unlock_irqrestore(&rq->lock, flags);
4763 /* Set the preempt count _outside_ the spinlocks! */
4764 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4765 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4767 task_thread_info(idle)->preempt_count = 0;
4772 * In a system that switches off the HZ timer nohz_cpu_mask
4773 * indicates which cpus entered this state. This is used
4774 * in the rcu update to wait only for active cpus. For system
4775 * which do not switch off the HZ timer nohz_cpu_mask should
4776 * always be CPU_MASK_NONE.
4778 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4782 * This is how migration works:
4784 * 1) we queue a struct migration_req structure in the source CPU's
4785 * runqueue and wake up that CPU's migration thread.
4786 * 2) we down() the locked semaphore => thread blocks.
4787 * 3) migration thread wakes up (implicitly it forces the migrated
4788 * thread off the CPU)
4789 * 4) it gets the migration request and checks whether the migrated
4790 * task is still in the wrong runqueue.
4791 * 5) if it's in the wrong runqueue then the migration thread removes
4792 * it and puts it into the right queue.
4793 * 6) migration thread up()s the semaphore.
4794 * 7) we wake up and the migration is done.
4798 * Change a given task's CPU affinity. Migrate the thread to a
4799 * proper CPU and schedule it away if the CPU it's executing on
4800 * is removed from the allowed bitmask.
4802 * NOTE: the caller must have a valid reference to the task, the
4803 * task must not exit() & deallocate itself prematurely. The
4804 * call is not atomic; no spinlocks may be held.
4806 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4808 struct migration_req req;
4809 unsigned long flags;
4813 rq = task_rq_lock(p, &flags);
4814 if (!cpus_intersects(new_mask, cpu_online_map)) {
4819 p->cpus_allowed = new_mask;
4820 /* Can the task run on the task's current CPU? If so, we're done */
4821 if (cpu_isset(task_cpu(p), new_mask))
4824 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4825 /* Need help from migration thread: drop lock and wait. */
4826 task_rq_unlock(rq, &flags);
4827 wake_up_process(rq->migration_thread);
4828 wait_for_completion(&req.done);
4829 tlb_migrate_finish(p->mm);
4833 task_rq_unlock(rq, &flags);
4837 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4840 * Move (not current) task off this cpu, onto dest cpu. We're doing
4841 * this because either it can't run here any more (set_cpus_allowed()
4842 * away from this CPU, or CPU going down), or because we're
4843 * attempting to rebalance this task on exec (sched_exec).
4845 * So we race with normal scheduler movements, but that's OK, as long
4846 * as the task is no longer on this CPU.
4848 * Returns non-zero if task was successfully migrated.
4850 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4852 struct rq *rq_dest, *rq_src;
4855 if (unlikely(cpu_is_offline(dest_cpu)))
4858 rq_src = cpu_rq(src_cpu);
4859 rq_dest = cpu_rq(dest_cpu);
4861 double_rq_lock(rq_src, rq_dest);
4862 /* Already moved. */
4863 if (task_cpu(p) != src_cpu)
4865 /* Affinity changed (again). */
4866 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4869 set_task_cpu(p, dest_cpu);
4872 * Sync timestamp with rq_dest's before activating.
4873 * The same thing could be achieved by doing this step
4874 * afterwards, and pretending it was a local activate.
4875 * This way is cleaner and logically correct.
4877 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4878 + rq_dest->timestamp_last_tick;
4879 deactivate_task(p, rq_src);
4880 activate_task(p, rq_dest, 0);
4881 if (TASK_PREEMPTS_CURR(p, rq_dest))
4882 resched_task(rq_dest->curr);
4886 double_rq_unlock(rq_src, rq_dest);
4891 * migration_thread - this is a highprio system thread that performs
4892 * thread migration by bumping thread off CPU then 'pushing' onto
4895 static int migration_thread(void *data)
4897 int cpu = (long)data;
4901 BUG_ON(rq->migration_thread != current);
4903 set_current_state(TASK_INTERRUPTIBLE);
4904 while (!kthread_should_stop()) {
4905 struct migration_req *req;
4906 struct list_head *head;
4910 spin_lock_irq(&rq->lock);
4912 if (cpu_is_offline(cpu)) {
4913 spin_unlock_irq(&rq->lock);
4917 if (rq->active_balance) {
4918 active_load_balance(rq, cpu);
4919 rq->active_balance = 0;
4922 head = &rq->migration_queue;
4924 if (list_empty(head)) {
4925 spin_unlock_irq(&rq->lock);
4927 set_current_state(TASK_INTERRUPTIBLE);
4930 req = list_entry(head->next, struct migration_req, list);
4931 list_del_init(head->next);
4933 spin_unlock(&rq->lock);
4934 __migrate_task(req->task, cpu, req->dest_cpu);
4937 complete(&req->done);
4939 __set_current_state(TASK_RUNNING);
4943 /* Wait for kthread_stop */
4944 set_current_state(TASK_INTERRUPTIBLE);
4945 while (!kthread_should_stop()) {
4947 set_current_state(TASK_INTERRUPTIBLE);
4949 __set_current_state(TASK_RUNNING);
4953 #ifdef CONFIG_HOTPLUG_CPU
4954 /* Figure out where task on dead CPU should go, use force if neccessary. */
4955 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4957 unsigned long flags;
4964 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4965 cpus_and(mask, mask, p->cpus_allowed);
4966 dest_cpu = any_online_cpu(mask);
4968 /* On any allowed CPU? */
4969 if (dest_cpu == NR_CPUS)
4970 dest_cpu = any_online_cpu(p->cpus_allowed);
4972 /* No more Mr. Nice Guy. */
4973 if (dest_cpu == NR_CPUS) {
4974 rq = task_rq_lock(p, &flags);
4975 cpus_setall(p->cpus_allowed);
4976 dest_cpu = any_online_cpu(p->cpus_allowed);
4977 task_rq_unlock(rq, &flags);
4980 * Don't tell them about moving exiting tasks or
4981 * kernel threads (both mm NULL), since they never
4984 if (p->mm && printk_ratelimit())
4985 printk(KERN_INFO "process %d (%s) no "
4986 "longer affine to cpu%d\n",
4987 p->pid, p->comm, dead_cpu);
4989 if (!__migrate_task(p, dead_cpu, dest_cpu))
4994 * While a dead CPU has no uninterruptible tasks queued at this point,
4995 * it might still have a nonzero ->nr_uninterruptible counter, because
4996 * for performance reasons the counter is not stricly tracking tasks to
4997 * their home CPUs. So we just add the counter to another CPU's counter,
4998 * to keep the global sum constant after CPU-down:
5000 static void migrate_nr_uninterruptible(struct rq *rq_src)
5002 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5003 unsigned long flags;
5005 local_irq_save(flags);
5006 double_rq_lock(rq_src, rq_dest);
5007 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5008 rq_src->nr_uninterruptible = 0;
5009 double_rq_unlock(rq_src, rq_dest);
5010 local_irq_restore(flags);
5013 /* Run through task list and migrate tasks from the dead cpu. */
5014 static void migrate_live_tasks(int src_cpu)
5016 struct task_struct *p, *t;
5018 write_lock_irq(&tasklist_lock);
5020 do_each_thread(t, p) {
5024 if (task_cpu(p) == src_cpu)
5025 move_task_off_dead_cpu(src_cpu, p);
5026 } while_each_thread(t, p);
5028 write_unlock_irq(&tasklist_lock);
5031 /* Schedules idle task to be the next runnable task on current CPU.
5032 * It does so by boosting its priority to highest possible and adding it to
5033 * the _front_ of the runqueue. Used by CPU offline code.
5035 void sched_idle_next(void)
5037 int this_cpu = smp_processor_id();
5038 struct rq *rq = cpu_rq(this_cpu);
5039 struct task_struct *p = rq->idle;
5040 unsigned long flags;
5042 /* cpu has to be offline */
5043 BUG_ON(cpu_online(this_cpu));
5046 * Strictly not necessary since rest of the CPUs are stopped by now
5047 * and interrupts disabled on the current cpu.
5049 spin_lock_irqsave(&rq->lock, flags);
5051 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5053 /* Add idle task to the _front_ of its priority queue: */
5054 __activate_idle_task(p, rq);
5056 spin_unlock_irqrestore(&rq->lock, flags);
5060 * Ensures that the idle task is using init_mm right before its cpu goes
5063 void idle_task_exit(void)
5065 struct mm_struct *mm = current->active_mm;
5067 BUG_ON(cpu_online(smp_processor_id()));
5070 switch_mm(mm, &init_mm, current);
5074 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5076 struct rq *rq = cpu_rq(dead_cpu);
5078 /* Must be exiting, otherwise would be on tasklist. */
5079 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5081 /* Cannot have done final schedule yet: would have vanished. */
5082 BUG_ON(p->flags & PF_DEAD);
5087 * Drop lock around migration; if someone else moves it,
5088 * that's OK. No task can be added to this CPU, so iteration is
5091 spin_unlock_irq(&rq->lock);
5092 move_task_off_dead_cpu(dead_cpu, p);
5093 spin_lock_irq(&rq->lock);
5098 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5099 static void migrate_dead_tasks(unsigned int dead_cpu)
5101 struct rq *rq = cpu_rq(dead_cpu);
5102 unsigned int arr, i;
5104 for (arr = 0; arr < 2; arr++) {
5105 for (i = 0; i < MAX_PRIO; i++) {
5106 struct list_head *list = &rq->arrays[arr].queue[i];
5108 while (!list_empty(list))
5109 migrate_dead(dead_cpu, list_entry(list->next,
5110 struct task_struct, run_list));
5114 #endif /* CONFIG_HOTPLUG_CPU */
5117 * migration_call - callback that gets triggered when a CPU is added.
5118 * Here we can start up the necessary migration thread for the new CPU.
5120 static int __cpuinit
5121 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5123 struct task_struct *p;
5124 int cpu = (long)hcpu;
5125 unsigned long flags;
5129 case CPU_UP_PREPARE:
5130 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5133 p->flags |= PF_NOFREEZE;
5134 kthread_bind(p, cpu);
5135 /* Must be high prio: stop_machine expects to yield to it. */
5136 rq = task_rq_lock(p, &flags);
5137 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5138 task_rq_unlock(rq, &flags);
5139 cpu_rq(cpu)->migration_thread = p;
5143 /* Strictly unneccessary, as first user will wake it. */
5144 wake_up_process(cpu_rq(cpu)->migration_thread);
5147 #ifdef CONFIG_HOTPLUG_CPU
5148 case CPU_UP_CANCELED:
5149 if (!cpu_rq(cpu)->migration_thread)
5151 /* Unbind it from offline cpu so it can run. Fall thru. */
5152 kthread_bind(cpu_rq(cpu)->migration_thread,
5153 any_online_cpu(cpu_online_map));
5154 kthread_stop(cpu_rq(cpu)->migration_thread);
5155 cpu_rq(cpu)->migration_thread = NULL;
5159 migrate_live_tasks(cpu);
5161 kthread_stop(rq->migration_thread);
5162 rq->migration_thread = NULL;
5163 /* Idle task back to normal (off runqueue, low prio) */
5164 rq = task_rq_lock(rq->idle, &flags);
5165 deactivate_task(rq->idle, rq);
5166 rq->idle->static_prio = MAX_PRIO;
5167 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5168 migrate_dead_tasks(cpu);
5169 task_rq_unlock(rq, &flags);
5170 migrate_nr_uninterruptible(rq);
5171 BUG_ON(rq->nr_running != 0);
5173 /* No need to migrate the tasks: it was best-effort if
5174 * they didn't do lock_cpu_hotplug(). Just wake up
5175 * the requestors. */
5176 spin_lock_irq(&rq->lock);
5177 while (!list_empty(&rq->migration_queue)) {
5178 struct migration_req *req;
5180 req = list_entry(rq->migration_queue.next,
5181 struct migration_req, list);
5182 list_del_init(&req->list);
5183 complete(&req->done);
5185 spin_unlock_irq(&rq->lock);
5192 /* Register at highest priority so that task migration (migrate_all_tasks)
5193 * happens before everything else.
5195 static struct notifier_block __cpuinitdata migration_notifier = {
5196 .notifier_call = migration_call,
5200 int __init migration_init(void)
5202 void *cpu = (void *)(long)smp_processor_id();
5204 /* Start one for the boot CPU: */
5205 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5206 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5207 register_cpu_notifier(&migration_notifier);
5214 #undef SCHED_DOMAIN_DEBUG
5215 #ifdef SCHED_DOMAIN_DEBUG
5216 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5221 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5225 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5230 struct sched_group *group = sd->groups;
5231 cpumask_t groupmask;
5233 cpumask_scnprintf(str, NR_CPUS, sd->span);
5234 cpus_clear(groupmask);
5237 for (i = 0; i < level + 1; i++)
5239 printk("domain %d: ", level);
5241 if (!(sd->flags & SD_LOAD_BALANCE)) {
5242 printk("does not load-balance\n");
5244 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5248 printk("span %s\n", str);
5250 if (!cpu_isset(cpu, sd->span))
5251 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5252 if (!cpu_isset(cpu, group->cpumask))
5253 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5256 for (i = 0; i < level + 2; i++)
5262 printk(KERN_ERR "ERROR: group is NULL\n");
5266 if (!group->cpu_power) {
5268 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5271 if (!cpus_weight(group->cpumask)) {
5273 printk(KERN_ERR "ERROR: empty group\n");
5276 if (cpus_intersects(groupmask, group->cpumask)) {
5278 printk(KERN_ERR "ERROR: repeated CPUs\n");
5281 cpus_or(groupmask, groupmask, group->cpumask);
5283 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5286 group = group->next;
5287 } while (group != sd->groups);
5290 if (!cpus_equal(sd->span, groupmask))
5291 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5297 if (!cpus_subset(groupmask, sd->span))
5298 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5304 # define sched_domain_debug(sd, cpu) do { } while (0)
5307 static int sd_degenerate(struct sched_domain *sd)
5309 if (cpus_weight(sd->span) == 1)
5312 /* Following flags need at least 2 groups */
5313 if (sd->flags & (SD_LOAD_BALANCE |
5314 SD_BALANCE_NEWIDLE |
5317 if (sd->groups != sd->groups->next)
5321 /* Following flags don't use groups */
5322 if (sd->flags & (SD_WAKE_IDLE |
5331 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5333 unsigned long cflags = sd->flags, pflags = parent->flags;
5335 if (sd_degenerate(parent))
5338 if (!cpus_equal(sd->span, parent->span))
5341 /* Does parent contain flags not in child? */
5342 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5343 if (cflags & SD_WAKE_AFFINE)
5344 pflags &= ~SD_WAKE_BALANCE;
5345 /* Flags needing groups don't count if only 1 group in parent */
5346 if (parent->groups == parent->groups->next) {
5347 pflags &= ~(SD_LOAD_BALANCE |
5348 SD_BALANCE_NEWIDLE |
5352 if (~cflags & pflags)
5359 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5360 * hold the hotplug lock.
5362 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5364 struct rq *rq = cpu_rq(cpu);
5365 struct sched_domain *tmp;
5367 /* Remove the sched domains which do not contribute to scheduling. */
5368 for (tmp = sd; tmp; tmp = tmp->parent) {
5369 struct sched_domain *parent = tmp->parent;
5372 if (sd_parent_degenerate(tmp, parent))
5373 tmp->parent = parent->parent;
5376 if (sd && sd_degenerate(sd))
5379 sched_domain_debug(sd, cpu);
5381 rcu_assign_pointer(rq->sd, sd);
5384 /* cpus with isolated domains */
5385 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5387 /* Setup the mask of cpus configured for isolated domains */
5388 static int __init isolated_cpu_setup(char *str)
5390 int ints[NR_CPUS], i;
5392 str = get_options(str, ARRAY_SIZE(ints), ints);
5393 cpus_clear(cpu_isolated_map);
5394 for (i = 1; i <= ints[0]; i++)
5395 if (ints[i] < NR_CPUS)
5396 cpu_set(ints[i], cpu_isolated_map);
5400 __setup ("isolcpus=", isolated_cpu_setup);
5403 * init_sched_build_groups takes an array of groups, the cpumask we wish
5404 * to span, and a pointer to a function which identifies what group a CPU
5405 * belongs to. The return value of group_fn must be a valid index into the
5406 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5407 * keep track of groups covered with a cpumask_t).
5409 * init_sched_build_groups will build a circular linked list of the groups
5410 * covered by the given span, and will set each group's ->cpumask correctly,
5411 * and ->cpu_power to 0.
5413 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5414 int (*group_fn)(int cpu))
5416 struct sched_group *first = NULL, *last = NULL;
5417 cpumask_t covered = CPU_MASK_NONE;
5420 for_each_cpu_mask(i, span) {
5421 int group = group_fn(i);
5422 struct sched_group *sg = &groups[group];
5425 if (cpu_isset(i, covered))
5428 sg->cpumask = CPU_MASK_NONE;
5431 for_each_cpu_mask(j, span) {
5432 if (group_fn(j) != group)
5435 cpu_set(j, covered);
5436 cpu_set(j, sg->cpumask);
5447 #define SD_NODES_PER_DOMAIN 16
5450 * Self-tuning task migration cost measurement between source and target CPUs.
5452 * This is done by measuring the cost of manipulating buffers of varying
5453 * sizes. For a given buffer-size here are the steps that are taken:
5455 * 1) the source CPU reads+dirties a shared buffer
5456 * 2) the target CPU reads+dirties the same shared buffer
5458 * We measure how long they take, in the following 4 scenarios:
5460 * - source: CPU1, target: CPU2 | cost1
5461 * - source: CPU2, target: CPU1 | cost2
5462 * - source: CPU1, target: CPU1 | cost3
5463 * - source: CPU2, target: CPU2 | cost4
5465 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5466 * the cost of migration.
5468 * We then start off from a small buffer-size and iterate up to larger
5469 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5470 * doing a maximum search for the cost. (The maximum cost for a migration
5471 * normally occurs when the working set size is around the effective cache
5474 #define SEARCH_SCOPE 2
5475 #define MIN_CACHE_SIZE (64*1024U)
5476 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5477 #define ITERATIONS 1
5478 #define SIZE_THRESH 130
5479 #define COST_THRESH 130
5482 * The migration cost is a function of 'domain distance'. Domain
5483 * distance is the number of steps a CPU has to iterate down its
5484 * domain tree to share a domain with the other CPU. The farther
5485 * two CPUs are from each other, the larger the distance gets.
5487 * Note that we use the distance only to cache measurement results,
5488 * the distance value is not used numerically otherwise. When two
5489 * CPUs have the same distance it is assumed that the migration
5490 * cost is the same. (this is a simplification but quite practical)
5492 #define MAX_DOMAIN_DISTANCE 32
5494 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5495 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5497 * Architectures may override the migration cost and thus avoid
5498 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5499 * virtualized hardware:
5501 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5502 CONFIG_DEFAULT_MIGRATION_COST
5509 * Allow override of migration cost - in units of microseconds.
5510 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5511 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5513 static int __init migration_cost_setup(char *str)
5515 int ints[MAX_DOMAIN_DISTANCE+1], i;
5517 str = get_options(str, ARRAY_SIZE(ints), ints);
5519 printk("#ints: %d\n", ints[0]);
5520 for (i = 1; i <= ints[0]; i++) {
5521 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5522 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5527 __setup ("migration_cost=", migration_cost_setup);
5530 * Global multiplier (divisor) for migration-cutoff values,
5531 * in percentiles. E.g. use a value of 150 to get 1.5 times
5532 * longer cache-hot cutoff times.
5534 * (We scale it from 100 to 128 to long long handling easier.)
5537 #define MIGRATION_FACTOR_SCALE 128
5539 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5541 static int __init setup_migration_factor(char *str)
5543 get_option(&str, &migration_factor);
5544 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5548 __setup("migration_factor=", setup_migration_factor);
5551 * Estimated distance of two CPUs, measured via the number of domains
5552 * we have to pass for the two CPUs to be in the same span:
5554 static unsigned long domain_distance(int cpu1, int cpu2)
5556 unsigned long distance = 0;
5557 struct sched_domain *sd;
5559 for_each_domain(cpu1, sd) {
5560 WARN_ON(!cpu_isset(cpu1, sd->span));
5561 if (cpu_isset(cpu2, sd->span))
5565 if (distance >= MAX_DOMAIN_DISTANCE) {
5567 distance = MAX_DOMAIN_DISTANCE-1;
5573 static unsigned int migration_debug;
5575 static int __init setup_migration_debug(char *str)
5577 get_option(&str, &migration_debug);
5581 __setup("migration_debug=", setup_migration_debug);
5584 * Maximum cache-size that the scheduler should try to measure.
5585 * Architectures with larger caches should tune this up during
5586 * bootup. Gets used in the domain-setup code (i.e. during SMP
5589 unsigned int max_cache_size;
5591 static int __init setup_max_cache_size(char *str)
5593 get_option(&str, &max_cache_size);
5597 __setup("max_cache_size=", setup_max_cache_size);
5600 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5601 * is the operation that is timed, so we try to generate unpredictable
5602 * cachemisses that still end up filling the L2 cache:
5604 static void touch_cache(void *__cache, unsigned long __size)
5606 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5608 unsigned long *cache = __cache;
5611 for (i = 0; i < size/6; i += 8) {
5614 case 1: cache[size-1-i]++;
5615 case 2: cache[chunk1-i]++;
5616 case 3: cache[chunk1+i]++;
5617 case 4: cache[chunk2-i]++;
5618 case 5: cache[chunk2+i]++;
5624 * Measure the cache-cost of one task migration. Returns in units of nsec.
5626 static unsigned long long
5627 measure_one(void *cache, unsigned long size, int source, int target)
5629 cpumask_t mask, saved_mask;
5630 unsigned long long t0, t1, t2, t3, cost;
5632 saved_mask = current->cpus_allowed;
5635 * Flush source caches to RAM and invalidate them:
5640 * Migrate to the source CPU:
5642 mask = cpumask_of_cpu(source);
5643 set_cpus_allowed(current, mask);
5644 WARN_ON(smp_processor_id() != source);
5647 * Dirty the working set:
5650 touch_cache(cache, size);
5654 * Migrate to the target CPU, dirty the L2 cache and access
5655 * the shared buffer. (which represents the working set
5656 * of a migrated task.)
5658 mask = cpumask_of_cpu(target);
5659 set_cpus_allowed(current, mask);
5660 WARN_ON(smp_processor_id() != target);
5663 touch_cache(cache, size);
5666 cost = t1-t0 + t3-t2;
5668 if (migration_debug >= 2)
5669 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5670 source, target, t1-t0, t1-t0, t3-t2, cost);
5672 * Flush target caches to RAM and invalidate them:
5676 set_cpus_allowed(current, saved_mask);
5682 * Measure a series of task migrations and return the average
5683 * result. Since this code runs early during bootup the system
5684 * is 'undisturbed' and the average latency makes sense.
5686 * The algorithm in essence auto-detects the relevant cache-size,
5687 * so it will properly detect different cachesizes for different
5688 * cache-hierarchies, depending on how the CPUs are connected.
5690 * Architectures can prime the upper limit of the search range via
5691 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5693 static unsigned long long
5694 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5696 unsigned long long cost1, cost2;
5700 * Measure the migration cost of 'size' bytes, over an
5701 * average of 10 runs:
5703 * (We perturb the cache size by a small (0..4k)
5704 * value to compensate size/alignment related artifacts.
5705 * We also subtract the cost of the operation done on
5711 * dry run, to make sure we start off cache-cold on cpu1,
5712 * and to get any vmalloc pagefaults in advance:
5714 measure_one(cache, size, cpu1, cpu2);
5715 for (i = 0; i < ITERATIONS; i++)
5716 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5718 measure_one(cache, size, cpu2, cpu1);
5719 for (i = 0; i < ITERATIONS; i++)
5720 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5723 * (We measure the non-migrating [cached] cost on both
5724 * cpu1 and cpu2, to handle CPUs with different speeds)
5728 measure_one(cache, size, cpu1, cpu1);
5729 for (i = 0; i < ITERATIONS; i++)
5730 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5732 measure_one(cache, size, cpu2, cpu2);
5733 for (i = 0; i < ITERATIONS; i++)
5734 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5737 * Get the per-iteration migration cost:
5739 do_div(cost1, 2*ITERATIONS);
5740 do_div(cost2, 2*ITERATIONS);
5742 return cost1 - cost2;
5745 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5747 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5748 unsigned int max_size, size, size_found = 0;
5749 long long cost = 0, prev_cost;
5753 * Search from max_cache_size*5 down to 64K - the real relevant
5754 * cachesize has to lie somewhere inbetween.
5756 if (max_cache_size) {
5757 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5758 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5761 * Since we have no estimation about the relevant
5764 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5765 size = MIN_CACHE_SIZE;
5768 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5769 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5774 * Allocate the working set:
5776 cache = vmalloc(max_size);
5778 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5779 return 1000000; // return 1 msec on very small boxen
5782 while (size <= max_size) {
5784 cost = measure_cost(cpu1, cpu2, cache, size);
5790 if (max_cost < cost) {
5796 * Calculate average fluctuation, we use this to prevent
5797 * noise from triggering an early break out of the loop:
5799 fluct = abs(cost - prev_cost);
5800 avg_fluct = (avg_fluct + fluct)/2;
5802 if (migration_debug)
5803 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5805 (long)cost / 1000000,
5806 ((long)cost / 100000) % 10,
5807 (long)max_cost / 1000000,
5808 ((long)max_cost / 100000) % 10,
5809 domain_distance(cpu1, cpu2),
5813 * If we iterated at least 20% past the previous maximum,
5814 * and the cost has dropped by more than 20% already,
5815 * (taking fluctuations into account) then we assume to
5816 * have found the maximum and break out of the loop early:
5818 if (size_found && (size*100 > size_found*SIZE_THRESH))
5819 if (cost+avg_fluct <= 0 ||
5820 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5822 if (migration_debug)
5823 printk("-> found max.\n");
5827 * Increase the cachesize in 10% steps:
5829 size = size * 10 / 9;
5832 if (migration_debug)
5833 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5834 cpu1, cpu2, size_found, max_cost);
5839 * A task is considered 'cache cold' if at least 2 times
5840 * the worst-case cost of migration has passed.
5842 * (this limit is only listened to if the load-balancing
5843 * situation is 'nice' - if there is a large imbalance we
5844 * ignore it for the sake of CPU utilization and
5845 * processing fairness.)
5847 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5850 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5852 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5853 unsigned long j0, j1, distance, max_distance = 0;
5854 struct sched_domain *sd;
5859 * First pass - calculate the cacheflush times:
5861 for_each_cpu_mask(cpu1, *cpu_map) {
5862 for_each_cpu_mask(cpu2, *cpu_map) {
5865 distance = domain_distance(cpu1, cpu2);
5866 max_distance = max(max_distance, distance);
5868 * No result cached yet?
5870 if (migration_cost[distance] == -1LL)
5871 migration_cost[distance] =
5872 measure_migration_cost(cpu1, cpu2);
5876 * Second pass - update the sched domain hierarchy with
5877 * the new cache-hot-time estimations:
5879 for_each_cpu_mask(cpu, *cpu_map) {
5881 for_each_domain(cpu, sd) {
5882 sd->cache_hot_time = migration_cost[distance];
5889 if (migration_debug)
5890 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5898 if (system_state == SYSTEM_BOOTING) {
5899 printk("migration_cost=");
5900 for (distance = 0; distance <= max_distance; distance++) {
5903 printk("%ld", (long)migration_cost[distance] / 1000);
5908 if (migration_debug)
5909 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5912 * Move back to the original CPU. NUMA-Q gets confused
5913 * if we migrate to another quad during bootup.
5915 if (raw_smp_processor_id() != orig_cpu) {
5916 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5917 saved_mask = current->cpus_allowed;
5919 set_cpus_allowed(current, mask);
5920 set_cpus_allowed(current, saved_mask);
5927 * find_next_best_node - find the next node to include in a sched_domain
5928 * @node: node whose sched_domain we're building
5929 * @used_nodes: nodes already in the sched_domain
5931 * Find the next node to include in a given scheduling domain. Simply
5932 * finds the closest node not already in the @used_nodes map.
5934 * Should use nodemask_t.
5936 static int find_next_best_node(int node, unsigned long *used_nodes)
5938 int i, n, val, min_val, best_node = 0;
5942 for (i = 0; i < MAX_NUMNODES; i++) {
5943 /* Start at @node */
5944 n = (node + i) % MAX_NUMNODES;
5946 if (!nr_cpus_node(n))
5949 /* Skip already used nodes */
5950 if (test_bit(n, used_nodes))
5953 /* Simple min distance search */
5954 val = node_distance(node, n);
5956 if (val < min_val) {
5962 set_bit(best_node, used_nodes);
5967 * sched_domain_node_span - get a cpumask for a node's sched_domain
5968 * @node: node whose cpumask we're constructing
5969 * @size: number of nodes to include in this span
5971 * Given a node, construct a good cpumask for its sched_domain to span. It
5972 * should be one that prevents unnecessary balancing, but also spreads tasks
5975 static cpumask_t sched_domain_node_span(int node)
5977 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5978 cpumask_t span, nodemask;
5982 bitmap_zero(used_nodes, MAX_NUMNODES);
5984 nodemask = node_to_cpumask(node);
5985 cpus_or(span, span, nodemask);
5986 set_bit(node, used_nodes);
5988 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5989 int next_node = find_next_best_node(node, used_nodes);
5991 nodemask = node_to_cpumask(next_node);
5992 cpus_or(span, span, nodemask);
5999 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6002 * SMT sched-domains:
6004 #ifdef CONFIG_SCHED_SMT
6005 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6006 static struct sched_group sched_group_cpus[NR_CPUS];
6008 static int cpu_to_cpu_group(int cpu)
6015 * multi-core sched-domains:
6017 #ifdef CONFIG_SCHED_MC
6018 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6019 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
6022 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6023 static int cpu_to_core_group(int cpu)
6025 return first_cpu(cpu_sibling_map[cpu]);
6027 #elif defined(CONFIG_SCHED_MC)
6028 static int cpu_to_core_group(int cpu)
6034 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6035 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
6037 static int cpu_to_phys_group(int cpu)
6039 #ifdef CONFIG_SCHED_MC
6040 cpumask_t mask = cpu_coregroup_map(cpu);
6041 return first_cpu(mask);
6042 #elif defined(CONFIG_SCHED_SMT)
6043 return first_cpu(cpu_sibling_map[cpu]);
6051 * The init_sched_build_groups can't handle what we want to do with node
6052 * groups, so roll our own. Now each node has its own list of groups which
6053 * gets dynamically allocated.
6055 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6056 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6058 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6059 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6061 static int cpu_to_allnodes_group(int cpu)
6063 return cpu_to_node(cpu);
6065 static void init_numa_sched_groups_power(struct sched_group *group_head)
6067 struct sched_group *sg = group_head;
6073 for_each_cpu_mask(j, sg->cpumask) {
6074 struct sched_domain *sd;
6076 sd = &per_cpu(phys_domains, j);
6077 if (j != first_cpu(sd->groups->cpumask)) {
6079 * Only add "power" once for each
6085 sg->cpu_power += sd->groups->cpu_power;
6088 if (sg != group_head)
6093 /* Free memory allocated for various sched_group structures */
6094 static void free_sched_groups(const cpumask_t *cpu_map)
6100 for_each_cpu_mask(cpu, *cpu_map) {
6101 struct sched_group *sched_group_allnodes
6102 = sched_group_allnodes_bycpu[cpu];
6103 struct sched_group **sched_group_nodes
6104 = sched_group_nodes_bycpu[cpu];
6106 if (sched_group_allnodes) {
6107 kfree(sched_group_allnodes);
6108 sched_group_allnodes_bycpu[cpu] = NULL;
6111 if (!sched_group_nodes)
6114 for (i = 0; i < MAX_NUMNODES; i++) {
6115 cpumask_t nodemask = node_to_cpumask(i);
6116 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6118 cpus_and(nodemask, nodemask, *cpu_map);
6119 if (cpus_empty(nodemask))
6129 if (oldsg != sched_group_nodes[i])
6132 kfree(sched_group_nodes);
6133 sched_group_nodes_bycpu[cpu] = NULL;
6136 for_each_cpu_mask(cpu, *cpu_map) {
6137 if (sched_group_phys_bycpu[cpu]) {
6138 kfree(sched_group_phys_bycpu[cpu]);
6139 sched_group_phys_bycpu[cpu] = NULL;
6141 #ifdef CONFIG_SCHED_MC
6142 if (sched_group_core_bycpu[cpu]) {
6143 kfree(sched_group_core_bycpu[cpu]);
6144 sched_group_core_bycpu[cpu] = NULL;
6151 * Build sched domains for a given set of cpus and attach the sched domains
6152 * to the individual cpus
6154 static int build_sched_domains(const cpumask_t *cpu_map)
6157 struct sched_group *sched_group_phys = NULL;
6158 #ifdef CONFIG_SCHED_MC
6159 struct sched_group *sched_group_core = NULL;
6162 struct sched_group **sched_group_nodes = NULL;
6163 struct sched_group *sched_group_allnodes = NULL;
6166 * Allocate the per-node list of sched groups
6168 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6170 if (!sched_group_nodes) {
6171 printk(KERN_WARNING "Can not alloc sched group node list\n");
6174 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6178 * Set up domains for cpus specified by the cpu_map.
6180 for_each_cpu_mask(i, *cpu_map) {
6182 struct sched_domain *sd = NULL, *p;
6183 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6185 cpus_and(nodemask, nodemask, *cpu_map);
6188 if (cpus_weight(*cpu_map)
6189 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6190 if (!sched_group_allnodes) {
6191 sched_group_allnodes
6192 = kmalloc(sizeof(struct sched_group)
6195 if (!sched_group_allnodes) {
6197 "Can not alloc allnodes sched group\n");
6200 sched_group_allnodes_bycpu[i]
6201 = sched_group_allnodes;
6203 sd = &per_cpu(allnodes_domains, i);
6204 *sd = SD_ALLNODES_INIT;
6205 sd->span = *cpu_map;
6206 group = cpu_to_allnodes_group(i);
6207 sd->groups = &sched_group_allnodes[group];
6212 sd = &per_cpu(node_domains, i);
6214 sd->span = sched_domain_node_span(cpu_to_node(i));
6216 cpus_and(sd->span, sd->span, *cpu_map);
6219 if (!sched_group_phys) {
6221 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6223 if (!sched_group_phys) {
6224 printk (KERN_WARNING "Can not alloc phys sched"
6228 sched_group_phys_bycpu[i] = sched_group_phys;
6232 sd = &per_cpu(phys_domains, i);
6233 group = cpu_to_phys_group(i);
6235 sd->span = nodemask;
6237 sd->groups = &sched_group_phys[group];
6239 #ifdef CONFIG_SCHED_MC
6240 if (!sched_group_core) {
6242 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6244 if (!sched_group_core) {
6245 printk (KERN_WARNING "Can not alloc core sched"
6249 sched_group_core_bycpu[i] = sched_group_core;
6253 sd = &per_cpu(core_domains, i);
6254 group = cpu_to_core_group(i);
6256 sd->span = cpu_coregroup_map(i);
6257 cpus_and(sd->span, sd->span, *cpu_map);
6259 sd->groups = &sched_group_core[group];
6262 #ifdef CONFIG_SCHED_SMT
6264 sd = &per_cpu(cpu_domains, i);
6265 group = cpu_to_cpu_group(i);
6266 *sd = SD_SIBLING_INIT;
6267 sd->span = cpu_sibling_map[i];
6268 cpus_and(sd->span, sd->span, *cpu_map);
6270 sd->groups = &sched_group_cpus[group];
6274 #ifdef CONFIG_SCHED_SMT
6275 /* Set up CPU (sibling) groups */
6276 for_each_cpu_mask(i, *cpu_map) {
6277 cpumask_t this_sibling_map = cpu_sibling_map[i];
6278 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6279 if (i != first_cpu(this_sibling_map))
6282 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6287 #ifdef CONFIG_SCHED_MC
6288 /* Set up multi-core groups */
6289 for_each_cpu_mask(i, *cpu_map) {
6290 cpumask_t this_core_map = cpu_coregroup_map(i);
6291 cpus_and(this_core_map, this_core_map, *cpu_map);
6292 if (i != first_cpu(this_core_map))
6294 init_sched_build_groups(sched_group_core, this_core_map,
6295 &cpu_to_core_group);
6300 /* Set up physical groups */
6301 for (i = 0; i < MAX_NUMNODES; i++) {
6302 cpumask_t nodemask = node_to_cpumask(i);
6304 cpus_and(nodemask, nodemask, *cpu_map);
6305 if (cpus_empty(nodemask))
6308 init_sched_build_groups(sched_group_phys, nodemask,
6309 &cpu_to_phys_group);
6313 /* Set up node groups */
6314 if (sched_group_allnodes)
6315 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6316 &cpu_to_allnodes_group);
6318 for (i = 0; i < MAX_NUMNODES; i++) {
6319 /* Set up node groups */
6320 struct sched_group *sg, *prev;
6321 cpumask_t nodemask = node_to_cpumask(i);
6322 cpumask_t domainspan;
6323 cpumask_t covered = CPU_MASK_NONE;
6326 cpus_and(nodemask, nodemask, *cpu_map);
6327 if (cpus_empty(nodemask)) {
6328 sched_group_nodes[i] = NULL;
6332 domainspan = sched_domain_node_span(i);
6333 cpus_and(domainspan, domainspan, *cpu_map);
6335 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6337 printk(KERN_WARNING "Can not alloc domain group for "
6341 sched_group_nodes[i] = sg;
6342 for_each_cpu_mask(j, nodemask) {
6343 struct sched_domain *sd;
6344 sd = &per_cpu(node_domains, j);
6348 sg->cpumask = nodemask;
6350 cpus_or(covered, covered, nodemask);
6353 for (j = 0; j < MAX_NUMNODES; j++) {
6354 cpumask_t tmp, notcovered;
6355 int n = (i + j) % MAX_NUMNODES;
6357 cpus_complement(notcovered, covered);
6358 cpus_and(tmp, notcovered, *cpu_map);
6359 cpus_and(tmp, tmp, domainspan);
6360 if (cpus_empty(tmp))
6363 nodemask = node_to_cpumask(n);
6364 cpus_and(tmp, tmp, nodemask);
6365 if (cpus_empty(tmp))
6368 sg = kmalloc_node(sizeof(struct sched_group),
6372 "Can not alloc domain group for node %d\n", j);
6377 sg->next = prev->next;
6378 cpus_or(covered, covered, tmp);
6385 /* Calculate CPU power for physical packages and nodes */
6386 #ifdef CONFIG_SCHED_SMT
6387 for_each_cpu_mask(i, *cpu_map) {
6388 struct sched_domain *sd;
6389 sd = &per_cpu(cpu_domains, i);
6390 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6393 #ifdef CONFIG_SCHED_MC
6394 for_each_cpu_mask(i, *cpu_map) {
6396 struct sched_domain *sd;
6397 sd = &per_cpu(core_domains, i);
6398 if (sched_smt_power_savings)
6399 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6401 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6402 * SCHED_LOAD_SCALE / 10;
6403 sd->groups->cpu_power = power;
6407 for_each_cpu_mask(i, *cpu_map) {
6408 struct sched_domain *sd;
6409 #ifdef CONFIG_SCHED_MC
6410 sd = &per_cpu(phys_domains, i);
6411 if (i != first_cpu(sd->groups->cpumask))
6414 sd->groups->cpu_power = 0;
6415 if (sched_mc_power_savings || sched_smt_power_savings) {
6418 for_each_cpu_mask(j, sd->groups->cpumask) {
6419 struct sched_domain *sd1;
6420 sd1 = &per_cpu(core_domains, j);
6422 * for each core we will add once
6423 * to the group in physical domain
6425 if (j != first_cpu(sd1->groups->cpumask))
6428 if (sched_smt_power_savings)
6429 sd->groups->cpu_power += sd1->groups->cpu_power;
6431 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6435 * This has to be < 2 * SCHED_LOAD_SCALE
6436 * Lets keep it SCHED_LOAD_SCALE, so that
6437 * while calculating NUMA group's cpu_power
6439 * numa_group->cpu_power += phys_group->cpu_power;
6441 * See "only add power once for each physical pkg"
6444 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6447 sd = &per_cpu(phys_domains, i);
6448 if (sched_smt_power_savings)
6449 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6451 power = SCHED_LOAD_SCALE;
6452 sd->groups->cpu_power = power;
6457 for (i = 0; i < MAX_NUMNODES; i++)
6458 init_numa_sched_groups_power(sched_group_nodes[i]);
6460 init_numa_sched_groups_power(sched_group_allnodes);
6463 /* Attach the domains */
6464 for_each_cpu_mask(i, *cpu_map) {
6465 struct sched_domain *sd;
6466 #ifdef CONFIG_SCHED_SMT
6467 sd = &per_cpu(cpu_domains, i);
6468 #elif defined(CONFIG_SCHED_MC)
6469 sd = &per_cpu(core_domains, i);
6471 sd = &per_cpu(phys_domains, i);
6473 cpu_attach_domain(sd, i);
6476 * Tune cache-hot values:
6478 calibrate_migration_costs(cpu_map);
6483 free_sched_groups(cpu_map);
6487 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6489 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6491 cpumask_t cpu_default_map;
6495 * Setup mask for cpus without special case scheduling requirements.
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
6499 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6501 err = build_sched_domains(&cpu_default_map);
6506 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6508 free_sched_groups(cpu_map);
6512 * Detach sched domains from a group of cpus specified in cpu_map
6513 * These cpus will now be attached to the NULL domain
6515 static void detach_destroy_domains(const cpumask_t *cpu_map)
6519 for_each_cpu_mask(i, *cpu_map)
6520 cpu_attach_domain(NULL, i);
6521 synchronize_sched();
6522 arch_destroy_sched_domains(cpu_map);
6526 * Partition sched domains as specified by the cpumasks below.
6527 * This attaches all cpus from the cpumasks to the NULL domain,
6528 * waits for a RCU quiescent period, recalculates sched
6529 * domain information and then attaches them back to the
6530 * correct sched domains
6531 * Call with hotplug lock held
6533 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6535 cpumask_t change_map;
6538 cpus_and(*partition1, *partition1, cpu_online_map);
6539 cpus_and(*partition2, *partition2, cpu_online_map);
6540 cpus_or(change_map, *partition1, *partition2);
6542 /* Detach sched domains from all of the affected cpus */
6543 detach_destroy_domains(&change_map);
6544 if (!cpus_empty(*partition1))
6545 err = build_sched_domains(partition1);
6546 if (!err && !cpus_empty(*partition2))
6547 err = build_sched_domains(partition2);
6552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6553 int arch_reinit_sched_domains(void)
6558 detach_destroy_domains(&cpu_online_map);
6559 err = arch_init_sched_domains(&cpu_online_map);
6560 unlock_cpu_hotplug();
6565 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6569 if (buf[0] != '0' && buf[0] != '1')
6573 sched_smt_power_savings = (buf[0] == '1');
6575 sched_mc_power_savings = (buf[0] == '1');
6577 ret = arch_reinit_sched_domains();
6579 return ret ? ret : count;
6582 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6586 #ifdef CONFIG_SCHED_SMT
6588 err = sysfs_create_file(&cls->kset.kobj,
6589 &attr_sched_smt_power_savings.attr);
6591 #ifdef CONFIG_SCHED_MC
6592 if (!err && mc_capable())
6593 err = sysfs_create_file(&cls->kset.kobj,
6594 &attr_sched_mc_power_savings.attr);
6600 #ifdef CONFIG_SCHED_MC
6601 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6603 return sprintf(page, "%u\n", sched_mc_power_savings);
6605 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6606 const char *buf, size_t count)
6608 return sched_power_savings_store(buf, count, 0);
6610 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6611 sched_mc_power_savings_store);
6614 #ifdef CONFIG_SCHED_SMT
6615 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6617 return sprintf(page, "%u\n", sched_smt_power_savings);
6619 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6620 const char *buf, size_t count)
6622 return sched_power_savings_store(buf, count, 1);
6624 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6625 sched_smt_power_savings_store);
6629 #ifdef CONFIG_HOTPLUG_CPU
6631 * Force a reinitialization of the sched domains hierarchy. The domains
6632 * and groups cannot be updated in place without racing with the balancing
6633 * code, so we temporarily attach all running cpus to the NULL domain
6634 * which will prevent rebalancing while the sched domains are recalculated.
6636 static int update_sched_domains(struct notifier_block *nfb,
6637 unsigned long action, void *hcpu)
6640 case CPU_UP_PREPARE:
6641 case CPU_DOWN_PREPARE:
6642 detach_destroy_domains(&cpu_online_map);
6645 case CPU_UP_CANCELED:
6646 case CPU_DOWN_FAILED:
6650 * Fall through and re-initialise the domains.
6657 /* The hotplug lock is already held by cpu_up/cpu_down */
6658 arch_init_sched_domains(&cpu_online_map);
6664 void __init sched_init_smp(void)
6667 arch_init_sched_domains(&cpu_online_map);
6668 unlock_cpu_hotplug();
6669 /* XXX: Theoretical race here - CPU may be hotplugged now */
6670 hotcpu_notifier(update_sched_domains, 0);
6673 void __init sched_init_smp(void)
6676 #endif /* CONFIG_SMP */
6678 int in_sched_functions(unsigned long addr)
6680 /* Linker adds these: start and end of __sched functions */
6681 extern char __sched_text_start[], __sched_text_end[];
6683 return in_lock_functions(addr) ||
6684 (addr >= (unsigned long)__sched_text_start
6685 && addr < (unsigned long)__sched_text_end);
6688 void __init sched_init(void)
6692 for_each_possible_cpu(i) {
6693 struct prio_array *array;
6697 spin_lock_init(&rq->lock);
6698 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6700 rq->active = rq->arrays;
6701 rq->expired = rq->arrays + 1;
6702 rq->best_expired_prio = MAX_PRIO;
6706 for (j = 1; j < 3; j++)
6707 rq->cpu_load[j] = 0;
6708 rq->active_balance = 0;
6710 rq->migration_thread = NULL;
6711 INIT_LIST_HEAD(&rq->migration_queue);
6713 atomic_set(&rq->nr_iowait, 0);
6715 for (j = 0; j < 2; j++) {
6716 array = rq->arrays + j;
6717 for (k = 0; k < MAX_PRIO; k++) {
6718 INIT_LIST_HEAD(array->queue + k);
6719 __clear_bit(k, array->bitmap);
6721 // delimiter for bitsearch
6722 __set_bit(MAX_PRIO, array->bitmap);
6726 set_load_weight(&init_task);
6728 * The boot idle thread does lazy MMU switching as well:
6730 atomic_inc(&init_mm.mm_count);
6731 enter_lazy_tlb(&init_mm, current);
6734 * Make us the idle thread. Technically, schedule() should not be
6735 * called from this thread, however somewhere below it might be,
6736 * but because we are the idle thread, we just pick up running again
6737 * when this runqueue becomes "idle".
6739 init_idle(current, smp_processor_id());
6742 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6743 void __might_sleep(char *file, int line)
6746 static unsigned long prev_jiffy; /* ratelimiting */
6748 if ((in_atomic() || irqs_disabled()) &&
6749 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6750 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6752 prev_jiffy = jiffies;
6753 printk(KERN_ERR "BUG: sleeping function called from invalid"
6754 " context at %s:%d\n", file, line);
6755 printk("in_atomic():%d, irqs_disabled():%d\n",
6756 in_atomic(), irqs_disabled());
6761 EXPORT_SYMBOL(__might_sleep);
6764 #ifdef CONFIG_MAGIC_SYSRQ
6765 void normalize_rt_tasks(void)
6767 struct prio_array *array;
6768 struct task_struct *p;
6769 unsigned long flags;
6772 read_lock_irq(&tasklist_lock);
6773 for_each_process(p) {
6777 spin_lock_irqsave(&p->pi_lock, flags);
6778 rq = __task_rq_lock(p);
6782 deactivate_task(p, task_rq(p));
6783 __setscheduler(p, SCHED_NORMAL, 0);
6785 __activate_task(p, task_rq(p));
6786 resched_task(rq->curr);
6789 __task_rq_unlock(rq);
6790 spin_unlock_irqrestore(&p->pi_lock, flags);
6792 read_unlock_irq(&tasklist_lock);
6795 #endif /* CONFIG_MAGIC_SYSRQ */
6799 * These functions are only useful for the IA64 MCA handling.
6801 * They can only be called when the whole system has been
6802 * stopped - every CPU needs to be quiescent, and no scheduling
6803 * activity can take place. Using them for anything else would
6804 * be a serious bug, and as a result, they aren't even visible
6805 * under any other configuration.
6809 * curr_task - return the current task for a given cpu.
6810 * @cpu: the processor in question.
6812 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6814 struct task_struct *curr_task(int cpu)
6816 return cpu_curr(cpu);
6820 * set_curr_task - set the current task for a given cpu.
6821 * @cpu: the processor in question.
6822 * @p: the task pointer to set.
6824 * Description: This function must only be used when non-maskable interrupts
6825 * are serviced on a separate stack. It allows the architecture to switch the
6826 * notion of the current task on a cpu in a non-blocking manner. This function
6827 * must be called with all CPU's synchronized, and interrupts disabled, the
6828 * and caller must save the original value of the current task (see
6829 * curr_task() above) and restore that value before reenabling interrupts and
6830 * re-starting the system.
6832 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6834 void set_curr_task(int cpu, struct task_struct *p)