[GFS2] Fix a coupls of warnings in dir.c
[linux-2.6] / kernel / wait.c
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 William Irwin, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12
13 struct lock_class_key waitqueue_lock_key;
14
15 EXPORT_SYMBOL(waitqueue_lock_key);
16
17 void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
18 {
19         unsigned long flags;
20
21         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
22         spin_lock_irqsave(&q->lock, flags);
23         __add_wait_queue(q, wait);
24         spin_unlock_irqrestore(&q->lock, flags);
25 }
26 EXPORT_SYMBOL(add_wait_queue);
27
28 void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
29 {
30         unsigned long flags;
31
32         wait->flags |= WQ_FLAG_EXCLUSIVE;
33         spin_lock_irqsave(&q->lock, flags);
34         __add_wait_queue_tail(q, wait);
35         spin_unlock_irqrestore(&q->lock, flags);
36 }
37 EXPORT_SYMBOL(add_wait_queue_exclusive);
38
39 void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
40 {
41         unsigned long flags;
42
43         spin_lock_irqsave(&q->lock, flags);
44         __remove_wait_queue(q, wait);
45         spin_unlock_irqrestore(&q->lock, flags);
46 }
47 EXPORT_SYMBOL(remove_wait_queue);
48
49
50 /*
51  * Note: we use "set_current_state()" _after_ the wait-queue add,
52  * because we need a memory barrier there on SMP, so that any
53  * wake-function that tests for the wait-queue being active
54  * will be guaranteed to see waitqueue addition _or_ subsequent
55  * tests in this thread will see the wakeup having taken place.
56  *
57  * The spin_unlock() itself is semi-permeable and only protects
58  * one way (it only protects stuff inside the critical region and
59  * stops them from bleeding out - it would still allow subsequent
60  * loads to move into the the critical region).
61  */
62 void fastcall
63 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
64 {
65         unsigned long flags;
66
67         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
68         spin_lock_irqsave(&q->lock, flags);
69         if (list_empty(&wait->task_list))
70                 __add_wait_queue(q, wait);
71         /*
72          * don't alter the task state if this is just going to
73          * queue an async wait queue callback
74          */
75         if (is_sync_wait(wait))
76                 set_current_state(state);
77         spin_unlock_irqrestore(&q->lock, flags);
78 }
79 EXPORT_SYMBOL(prepare_to_wait);
80
81 void fastcall
82 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
83 {
84         unsigned long flags;
85
86         wait->flags |= WQ_FLAG_EXCLUSIVE;
87         spin_lock_irqsave(&q->lock, flags);
88         if (list_empty(&wait->task_list))
89                 __add_wait_queue_tail(q, wait);
90         /*
91          * don't alter the task state if this is just going to
92          * queue an async wait queue callback
93          */
94         if (is_sync_wait(wait))
95                 set_current_state(state);
96         spin_unlock_irqrestore(&q->lock, flags);
97 }
98 EXPORT_SYMBOL(prepare_to_wait_exclusive);
99
100 void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
101 {
102         unsigned long flags;
103
104         __set_current_state(TASK_RUNNING);
105         /*
106          * We can check for list emptiness outside the lock
107          * IFF:
108          *  - we use the "careful" check that verifies both
109          *    the next and prev pointers, so that there cannot
110          *    be any half-pending updates in progress on other
111          *    CPU's that we haven't seen yet (and that might
112          *    still change the stack area.
113          * and
114          *  - all other users take the lock (ie we can only
115          *    have _one_ other CPU that looks at or modifies
116          *    the list).
117          */
118         if (!list_empty_careful(&wait->task_list)) {
119                 spin_lock_irqsave(&q->lock, flags);
120                 list_del_init(&wait->task_list);
121                 spin_unlock_irqrestore(&q->lock, flags);
122         }
123 }
124 EXPORT_SYMBOL(finish_wait);
125
126 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
127 {
128         int ret = default_wake_function(wait, mode, sync, key);
129
130         if (ret)
131                 list_del_init(&wait->task_list);
132         return ret;
133 }
134 EXPORT_SYMBOL(autoremove_wake_function);
135
136 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
137 {
138         struct wait_bit_key *key = arg;
139         struct wait_bit_queue *wait_bit
140                 = container_of(wait, struct wait_bit_queue, wait);
141
142         if (wait_bit->key.flags != key->flags ||
143                         wait_bit->key.bit_nr != key->bit_nr ||
144                         test_bit(key->bit_nr, key->flags))
145                 return 0;
146         else
147                 return autoremove_wake_function(wait, mode, sync, key);
148 }
149 EXPORT_SYMBOL(wake_bit_function);
150
151 /*
152  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
153  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
154  * permitted return codes. Nonzero return codes halt waiting and return.
155  */
156 int __sched fastcall
157 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
158                         int (*action)(void *), unsigned mode)
159 {
160         int ret = 0;
161
162         do {
163                 prepare_to_wait(wq, &q->wait, mode);
164                 if (test_bit(q->key.bit_nr, q->key.flags))
165                         ret = (*action)(q->key.flags);
166         } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
167         finish_wait(wq, &q->wait);
168         return ret;
169 }
170 EXPORT_SYMBOL(__wait_on_bit);
171
172 int __sched fastcall out_of_line_wait_on_bit(void *word, int bit,
173                                         int (*action)(void *), unsigned mode)
174 {
175         wait_queue_head_t *wq = bit_waitqueue(word, bit);
176         DEFINE_WAIT_BIT(wait, word, bit);
177
178         return __wait_on_bit(wq, &wait, action, mode);
179 }
180 EXPORT_SYMBOL(out_of_line_wait_on_bit);
181
182 int __sched fastcall
183 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
184                         int (*action)(void *), unsigned mode)
185 {
186         int ret = 0;
187
188         do {
189                 prepare_to_wait_exclusive(wq, &q->wait, mode);
190                 if (test_bit(q->key.bit_nr, q->key.flags)) {
191                         if ((ret = (*action)(q->key.flags)))
192                                 break;
193                 }
194         } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
195         finish_wait(wq, &q->wait);
196         return ret;
197 }
198 EXPORT_SYMBOL(__wait_on_bit_lock);
199
200 int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit,
201                                         int (*action)(void *), unsigned mode)
202 {
203         wait_queue_head_t *wq = bit_waitqueue(word, bit);
204         DEFINE_WAIT_BIT(wait, word, bit);
205
206         return __wait_on_bit_lock(wq, &wait, action, mode);
207 }
208 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
209
210 void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
211 {
212         struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
213         if (waitqueue_active(wq))
214                 __wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key);
215 }
216 EXPORT_SYMBOL(__wake_up_bit);
217
218 /**
219  * wake_up_bit - wake up a waiter on a bit
220  * @word: the word being waited on, a kernel virtual address
221  * @bit: the bit of the word being waited on
222  *
223  * There is a standard hashed waitqueue table for generic use. This
224  * is the part of the hashtable's accessor API that wakes up waiters
225  * on a bit. For instance, if one were to have waiters on a bitflag,
226  * one would call wake_up_bit() after clearing the bit.
227  *
228  * In order for this to function properly, as it uses waitqueue_active()
229  * internally, some kind of memory barrier must be done prior to calling
230  * this. Typically, this will be smp_mb__after_clear_bit(), but in some
231  * cases where bitflags are manipulated non-atomically under a lock, one
232  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
233  * because spin_unlock() does not guarantee a memory barrier.
234  */
235 void fastcall wake_up_bit(void *word, int bit)
236 {
237         __wake_up_bit(bit_waitqueue(word, bit), word, bit);
238 }
239 EXPORT_SYMBOL(wake_up_bit);
240
241 fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit)
242 {
243         const int shift = BITS_PER_LONG == 32 ? 5 : 6;
244         const struct zone *zone = page_zone(virt_to_page(word));
245         unsigned long val = (unsigned long)word << shift | bit;
246
247         return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
248 }
249 EXPORT_SYMBOL(bit_waitqueue);