2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/bootmem.h>
48 #include <linux/thread_info.h>
49 #include <linux/module.h>
51 #include <linux/delay.h>
52 #include <linux/mc146818rtc.h>
54 #include <asm/pgalloc.h>
56 #include <asm/kdebug.h>
57 #include <asm/tlbflush.h>
58 #include <asm/proto.h>
61 #include <asm/hw_irq.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 /* Package ID of each logical CPU */
66 u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
67 u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
68 EXPORT_SYMBOL(phys_proc_id);
69 EXPORT_SYMBOL(cpu_core_id);
71 /* Bitmask of currently online CPUs */
72 cpumask_t cpu_online_map __read_mostly;
74 EXPORT_SYMBOL(cpu_online_map);
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
80 cpumask_t cpu_callin_map;
81 cpumask_t cpu_callout_map;
83 cpumask_t cpu_possible_map;
84 EXPORT_SYMBOL(cpu_possible_map);
86 /* Per CPU bogomips and other parameters */
87 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
89 /* Set when the idlers are all forked */
90 int smp_threads_ready;
92 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
93 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
94 EXPORT_SYMBOL(cpu_core_map);
97 * Trampoline 80x86 program as an array.
100 extern unsigned char trampoline_data[];
101 extern unsigned char trampoline_end[];
103 /* State of each CPU */
104 DEFINE_PER_CPU(int, cpu_state) = { 0 };
107 * Store all idle threads, this can be reused instead of creating
108 * a new thread. Also avoids complicated thread destroy functionality
111 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
113 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
114 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
117 * Currently trivial. Write the real->protected mode
118 * bootstrap into the page concerned. The caller
119 * has made sure it's suitably aligned.
122 static unsigned long __cpuinit setup_trampoline(void)
124 void *tramp = __va(SMP_TRAMPOLINE_BASE);
125 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
126 return virt_to_phys(tramp);
130 * The bootstrap kernel entry code has set these up. Save them for
134 static void __cpuinit smp_store_cpu_info(int id)
136 struct cpuinfo_x86 *c = cpu_data + id;
144 * New Funky TSC sync algorithm borrowed from IA64.
145 * Main advantage is that it doesn't reset the TSCs fully and
146 * in general looks more robust and it works better than my earlier
147 * attempts. I believe it was written by David Mosberger. Some minor
148 * adjustments for x86-64 by me -AK
150 * Original comment reproduced below.
152 * Synchronize TSC of the current (slave) CPU with the TSC of the
153 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
154 * eliminate the possibility of unaccounted-for errors (such as
155 * getting a machine check in the middle of a calibration step). The
156 * basic idea is for the slave to ask the master what itc value it has
157 * and to read its own itc before and after the master responds. Each
158 * iteration gives us three timestamps:
171 * The goal is to adjust the slave's TSC such that tm falls exactly
172 * half-way between t0 and t1. If we achieve this, the clocks are
173 * synchronized provided the interconnect between the slave and the
174 * master is symmetric. Even if the interconnect were asymmetric, we
175 * would still know that the synchronization error is smaller than the
176 * roundtrip latency (t0 - t1).
178 * When the interconnect is quiet and symmetric, this lets us
179 * synchronize the TSC to within one or two cycles. However, we can
180 * only *guarantee* that the synchronization is accurate to within a
181 * round-trip time, which is typically in the range of several hundred
182 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
183 * are usually almost perfectly synchronized, but we shouldn't assume
184 * that the accuracy is much better than half a micro second or so.
186 * [there are other errors like the latency of RDTSC and of the
187 * WRMSR. These can also account to hundreds of cycles. So it's
188 * probably worse. It claims 153 cycles error on a dual Opteron,
189 * but I suspect the numbers are actually somewhat worse -AK]
193 #define SLAVE (SMP_CACHE_BYTES/8)
195 /* Intentionally don't use cpu_relax() while TSC synchronization
196 because we don't want to go into funky power save modi or cause
197 hypervisors to schedule us away. Going to sleep would likely affect
198 latency and low latency is the primary objective here. -AK */
199 #define no_cpu_relax() barrier()
201 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
202 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
203 static int notscsync __cpuinitdata;
205 #undef DEBUG_TSC_SYNC
207 #define NUM_ROUNDS 64 /* magic value */
208 #define NUM_ITERS 5 /* likewise */
210 /* Callback on boot CPU */
211 static __cpuinit void sync_master(void *arg)
213 unsigned long flags, i;
217 local_irq_save(flags);
219 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 local_irq_restore(flags);
230 * Return the number of cycles by which our tsc differs from the tsc
231 * on the master (time-keeper) CPU. A positive number indicates our
232 * tsc is ahead of the master, negative that it is behind.
235 get_delta(long *rt, long *master)
237 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
238 unsigned long tcenter, t0, t1, tm;
241 for (i = 0; i < NUM_ITERS; ++i) {
244 while (!(tm = go[SLAVE]))
249 if (t1 - t0 < best_t1 - best_t0)
250 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 *rt = best_t1 - best_t0;
254 *master = best_tm - best_t0;
256 /* average best_t0 and best_t1 without overflow: */
257 tcenter = (best_t0/2 + best_t1/2);
258 if (best_t0 % 2 + best_t1 % 2 == 2)
260 return tcenter - best_tm;
263 static __cpuinit void sync_tsc(unsigned int master)
266 long delta, adj, adjust_latency = 0;
267 unsigned long flags, rt, master_time_stamp, bound;
268 #ifdef DEBUG_TSC_SYNC
269 static struct syncdebug {
270 long rt; /* roundtrip time */
271 long master; /* master's timestamp */
272 long diff; /* difference between midpoint and master's timestamp */
273 long lat; /* estimate of tsc adjustment latency */
274 } t[NUM_ROUNDS] __cpuinitdata;
277 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
278 smp_processor_id(), master);
282 /* It is dangerous to broadcast IPI as cpus are coming up,
283 * as they may not be ready to accept them. So since
284 * we only need to send the ipi to the boot cpu direct
285 * the message, and avoid the race.
287 smp_call_function_single(master, sync_master, NULL, 1, 0);
289 while (go[MASTER]) /* wait for master to be ready */
292 spin_lock_irqsave(&tsc_sync_lock, flags);
294 for (i = 0; i < NUM_ROUNDS; ++i) {
295 delta = get_delta(&rt, &master_time_stamp);
297 done = 1; /* let's lock on to this... */
304 adjust_latency += -delta;
305 adj = -delta + adjust_latency/4;
310 wrmsrl(MSR_IA32_TSC, t + adj);
312 #ifdef DEBUG_TSC_SYNC
314 t[i].master = master_time_stamp;
316 t[i].lat = adjust_latency/4;
320 spin_unlock_irqrestore(&tsc_sync_lock, flags);
322 #ifdef DEBUG_TSC_SYNC
323 for (i = 0; i < NUM_ROUNDS; ++i)
324 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
325 t[i].rt, t[i].master, t[i].diff, t[i].lat);
329 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
330 "maxerr %lu cycles)\n",
331 smp_processor_id(), master, delta, rt);
334 static void __cpuinit tsc_sync_wait(void)
336 if (notscsync || !cpu_has_tsc)
341 static __init int notscsync_setup(char *s)
346 __setup("notscsync", notscsync_setup);
348 static atomic_t init_deasserted __cpuinitdata;
351 * Report back to the Boot Processor.
354 void __cpuinit smp_callin(void)
357 unsigned long timeout;
360 * If waken up by an INIT in an 82489DX configuration
361 * we may get here before an INIT-deassert IPI reaches
362 * our local APIC. We have to wait for the IPI or we'll
363 * lock up on an APIC access.
365 while (!atomic_read(&init_deasserted))
369 * (This works even if the APIC is not enabled.)
371 phys_id = GET_APIC_ID(apic_read(APIC_ID));
372 cpuid = smp_processor_id();
373 if (cpu_isset(cpuid, cpu_callin_map)) {
374 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
377 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
380 * STARTUP IPIs are fragile beasts as they might sometimes
381 * trigger some glue motherboard logic. Complete APIC bus
382 * silence for 1 second, this overestimates the time the
383 * boot CPU is spending to send the up to 2 STARTUP IPIs
384 * by a factor of two. This should be enough.
388 * Waiting 2s total for startup (udelay is not yet working)
390 timeout = jiffies + 2*HZ;
391 while (time_before(jiffies, timeout)) {
393 * Has the boot CPU finished it's STARTUP sequence?
395 if (cpu_isset(cpuid, cpu_callout_map))
400 if (!time_before(jiffies, timeout)) {
401 panic("smp_callin: CPU%d started up but did not get a callout!\n",
406 * the boot CPU has finished the init stage and is spinning
407 * on callin_map until we finish. We are free to set up this
408 * CPU, first the APIC. (this is probably redundant on most
412 Dprintk("CALLIN, before setup_local_APIC().\n");
418 * Need to enable IRQs because it can take longer and then
419 * the NMI watchdog might kill us.
424 Dprintk("Stack at about %p\n",&cpuid);
426 disable_APIC_timer();
429 * Save our processor parameters
431 smp_store_cpu_info(cpuid);
434 * Allow the master to continue.
436 cpu_set(cpuid, cpu_callin_map);
439 static inline void set_cpu_sibling_map(int cpu)
443 if (smp_num_siblings > 1) {
445 if (cpu_core_id[cpu] == cpu_core_id[i]) {
446 cpu_set(i, cpu_sibling_map[cpu]);
447 cpu_set(cpu, cpu_sibling_map[i]);
451 cpu_set(cpu, cpu_sibling_map[cpu]);
454 if (current_cpu_data.x86_num_cores > 1) {
456 if (phys_proc_id[cpu] == phys_proc_id[i]) {
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
462 cpu_core_map[cpu] = cpu_sibling_map[cpu];
467 * Setup code on secondary processor (after comming out of the trampoline)
469 void __cpuinit start_secondary(void)
472 * Dont put anything before smp_callin(), SMP
473 * booting is too fragile that we want to limit the
474 * things done here to the most necessary things.
479 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
482 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
483 setup_secondary_APIC_clock();
485 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
487 if (nmi_watchdog == NMI_IO_APIC) {
488 disable_8259A_irq(0);
489 enable_NMI_through_LVT0(NULL);
496 * The sibling maps must be set before turing the online map on for
499 set_cpu_sibling_map(smp_processor_id());
502 * Wait for TSC sync to not schedule things before.
503 * We still process interrupts, which could see an inconsistent
504 * time in that window unfortunately.
505 * Do this here because TSC sync has global unprotected state.
510 * We need to hold call_lock, so there is no inconsistency
511 * between the time smp_call_function() determines number of
512 * IPI receipients, and the time when the determination is made
513 * for which cpus receive the IPI in genapic_flat.c. Holding this
514 * lock helps us to not include this cpu in a currently in progress
515 * smp_call_function().
517 lock_ipi_call_lock();
520 * Allow the master to continue.
522 cpu_set(smp_processor_id(), cpu_online_map);
523 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
524 unlock_ipi_call_lock();
529 extern volatile unsigned long init_rsp;
530 extern void (*initial_code)(void);
533 static void inquire_remote_apic(int apicid)
535 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
536 char *names[] = { "ID", "VERSION", "SPIV" };
539 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
541 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
542 printk("... APIC #%d %s: ", apicid, names[i]);
547 apic_wait_icr_idle();
549 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
550 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
555 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
556 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
559 case APIC_ICR_RR_VALID:
560 status = apic_read(APIC_RRR);
561 printk("%08x\n", status);
571 * Kick the secondary to wake up.
573 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
575 unsigned long send_status = 0, accept_status = 0;
576 int maxlvt, timeout, num_starts, j;
578 Dprintk("Asserting INIT.\n");
581 * Turn INIT on target chip
583 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
588 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
591 Dprintk("Waiting for send to finish...\n");
596 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
597 } while (send_status && (timeout++ < 1000));
601 Dprintk("Deasserting INIT.\n");
604 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
607 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
609 Dprintk("Waiting for send to finish...\n");
614 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
615 } while (send_status && (timeout++ < 1000));
617 atomic_set(&init_deasserted, 1);
622 * Run STARTUP IPI loop.
624 Dprintk("#startup loops: %d.\n", num_starts);
626 maxlvt = get_maxlvt();
628 for (j = 1; j <= num_starts; j++) {
629 Dprintk("Sending STARTUP #%d.\n",j);
630 apic_read_around(APIC_SPIV);
631 apic_write(APIC_ESR, 0);
633 Dprintk("After apic_write.\n");
640 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
642 /* Boot on the stack */
643 /* Kick the second */
644 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
647 * Give the other CPU some time to accept the IPI.
651 Dprintk("Startup point 1.\n");
653 Dprintk("Waiting for send to finish...\n");
658 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
659 } while (send_status && (timeout++ < 1000));
662 * Give the other CPU some time to accept the IPI.
666 * Due to the Pentium erratum 3AP.
669 apic_read_around(APIC_SPIV);
670 apic_write(APIC_ESR, 0);
672 accept_status = (apic_read(APIC_ESR) & 0xEF);
673 if (send_status || accept_status)
676 Dprintk("After Startup.\n");
679 printk(KERN_ERR "APIC never delivered???\n");
681 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
683 return (send_status | accept_status);
687 struct task_struct *idle;
688 struct completion done;
692 void do_fork_idle(void *_c_idle)
694 struct create_idle *c_idle = _c_idle;
696 c_idle->idle = fork_idle(c_idle->cpu);
697 complete(&c_idle->done);
703 static int __cpuinit do_boot_cpu(int cpu, int apicid)
705 unsigned long boot_error;
707 unsigned long start_rip;
708 struct create_idle c_idle = {
710 .done = COMPLETION_INITIALIZER(c_idle.done),
712 DECLARE_WORK(work, do_fork_idle, &c_idle);
714 c_idle.idle = get_idle_for_cpu(cpu);
717 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
718 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
719 init_idle(c_idle.idle, cpu);
724 * During cold boot process, keventd thread is not spun up yet.
725 * When we do cpu hot-add, we create idle threads on the fly, we should
726 * not acquire any attributes from the calling context. Hence the clean
727 * way to create kernel_threads() is to do that from keventd().
728 * We do the current_is_keventd() due to the fact that ACPI notifier
729 * was also queuing to keventd() and when the caller is already running
730 * in context of keventd(), we would end up with locking up the keventd
733 if (!keventd_up() || current_is_keventd())
734 work.func(work.data);
736 schedule_work(&work);
737 wait_for_completion(&c_idle.done);
740 if (IS_ERR(c_idle.idle)) {
741 printk("failed fork for CPU %d\n", cpu);
742 return PTR_ERR(c_idle.idle);
745 set_idle_for_cpu(cpu, c_idle.idle);
749 cpu_pda[cpu].pcurrent = c_idle.idle;
751 start_rip = setup_trampoline();
753 init_rsp = c_idle.idle->thread.rsp;
754 per_cpu(init_tss,cpu).rsp0 = init_rsp;
755 initial_code = start_secondary;
756 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
758 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
759 cpus_weight(cpu_present_map),
763 * This grunge runs the startup process for
764 * the targeted processor.
767 atomic_set(&init_deasserted, 0);
769 Dprintk("Setting warm reset code and vector.\n");
771 CMOS_WRITE(0xa, 0xf);
774 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
776 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
780 * Be paranoid about clearing APIC errors.
782 if (APIC_INTEGRATED(apic_version[apicid])) {
783 apic_read_around(APIC_SPIV);
784 apic_write(APIC_ESR, 0);
789 * Status is now clean
794 * Starting actual IPI sequence...
796 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
800 * allow APs to start initializing.
802 Dprintk("Before Callout %d.\n", cpu);
803 cpu_set(cpu, cpu_callout_map);
804 Dprintk("After Callout %d.\n", cpu);
807 * Wait 5s total for a response
809 for (timeout = 0; timeout < 50000; timeout++) {
810 if (cpu_isset(cpu, cpu_callin_map))
811 break; /* It has booted */
815 if (cpu_isset(cpu, cpu_callin_map)) {
816 /* number CPUs logically, starting from 1 (BSP is 0) */
817 Dprintk("CPU has booted.\n");
820 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
822 /* trampoline started but...? */
823 printk("Stuck ??\n");
825 /* trampoline code not run */
826 printk("Not responding.\n");
828 inquire_remote_apic(apicid);
833 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
834 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
835 cpu_clear(cpu, cpu_present_map);
836 cpu_clear(cpu, cpu_possible_map);
837 x86_cpu_to_apicid[cpu] = BAD_APICID;
838 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
845 cycles_t cacheflush_time;
846 unsigned long cache_decay_ticks;
849 * Cleanup possible dangling ends...
851 static __cpuinit void smp_cleanup_boot(void)
854 * Paranoid: Set warm reset code and vector here back
860 * Reset trampoline flag
862 *((volatile int *) phys_to_virt(0x467)) = 0;
866 * Fall back to non SMP mode after errors.
868 * RED-PEN audit/test this more. I bet there is more state messed up here.
870 static __init void disable_smp(void)
872 cpu_present_map = cpumask_of_cpu(0);
873 cpu_possible_map = cpumask_of_cpu(0);
874 if (smp_found_config)
875 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
877 phys_cpu_present_map = physid_mask_of_physid(0);
878 cpu_set(0, cpu_sibling_map[0]);
879 cpu_set(0, cpu_core_map[0]);
882 #ifdef CONFIG_HOTPLUG_CPU
884 * cpu_possible_map should be static, it cannot change as cpu's
885 * are onlined, or offlined. The reason is per-cpu data-structures
886 * are allocated by some modules at init time, and dont expect to
887 * do this dynamically on cpu arrival/departure.
888 * cpu_present_map on the other hand can change dynamically.
889 * In case when cpu_hotplug is not compiled, then we resort to current
890 * behaviour, which is cpu_possible == cpu_present.
891 * If cpu-hotplug is supported, then we need to preallocate for all
892 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
895 static void prefill_possible_map(void)
898 for (i = 0; i < NR_CPUS; i++)
899 cpu_set(i, cpu_possible_map);
904 * Various sanity checks.
906 static int __init smp_sanity_check(unsigned max_cpus)
908 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
909 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
910 hard_smp_processor_id());
911 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
915 * If we couldn't find an SMP configuration at boot time,
916 * get out of here now!
918 if (!smp_found_config) {
919 printk(KERN_NOTICE "SMP motherboard not detected.\n");
921 if (APIC_init_uniprocessor())
922 printk(KERN_NOTICE "Local APIC not detected."
923 " Using dummy APIC emulation.\n");
928 * Should not be necessary because the MP table should list the boot
929 * CPU too, but we do it for the sake of robustness anyway.
931 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
932 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
934 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
938 * If we couldn't find a local APIC, then get out of here now!
940 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
941 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
943 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
949 * If SMP should be disabled, then really disable it!
952 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
961 * Prepare for SMP bootup. The MP table or ACPI has been read
962 * earlier. Just do some sanity checking here and enable APIC mode.
964 void __init smp_prepare_cpus(unsigned int max_cpus)
966 nmi_watchdog_default();
967 current_cpu_data = boot_cpu_data;
968 current_thread_info()->cpu = 0; /* needed? */
970 #ifdef CONFIG_HOTPLUG_CPU
971 prefill_possible_map();
974 if (smp_sanity_check(max_cpus) < 0) {
975 printk(KERN_INFO "SMP disabled\n");
982 * Switch from PIC to APIC mode.
987 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
988 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
989 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
990 /* Or can we switch back to PIC here? */
994 * Now start the IO-APICs
996 if (!skip_ioapic_setup && nr_ioapics)
1002 * Set up local APIC timer on boot CPU.
1005 setup_boot_APIC_clock();
1009 * Early setup to make printk work.
1011 void __init smp_prepare_boot_cpu(void)
1013 int me = smp_processor_id();
1014 cpu_set(me, cpu_online_map);
1015 cpu_set(me, cpu_callout_map);
1016 cpu_set(0, cpu_sibling_map[0]);
1017 cpu_set(0, cpu_core_map[0]);
1018 per_cpu(cpu_state, me) = CPU_ONLINE;
1022 * Entry point to boot a CPU.
1024 int __cpuinit __cpu_up(unsigned int cpu)
1027 int apicid = cpu_present_to_apicid(cpu);
1029 WARN_ON(irqs_disabled());
1031 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1033 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1034 !physid_isset(apicid, phys_cpu_present_map)) {
1035 printk("__cpu_up: bad cpu %d\n", cpu);
1040 * Already booted CPU?
1042 if (cpu_isset(cpu, cpu_callin_map)) {
1043 Dprintk("do_boot_cpu %d Already started\n", cpu);
1047 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1049 err = do_boot_cpu(cpu, apicid);
1051 Dprintk("do_boot_cpu failed %d\n", err);
1055 /* Unleash the CPU! */
1056 Dprintk("waiting for cpu %d\n", cpu);
1058 while (!cpu_isset(cpu, cpu_online_map))
1066 * Finish the SMP boot.
1068 void __init smp_cpus_done(unsigned int max_cpus)
1070 #ifndef CONFIG_HOTPLUG_CPU
1075 #ifdef CONFIG_X86_IO_APIC
1076 setup_ioapic_dest();
1081 check_nmi_watchdog();
1084 #ifdef CONFIG_HOTPLUG_CPU
1086 static void remove_siblinginfo(int cpu)
1090 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1091 cpu_clear(cpu, cpu_sibling_map[sibling]);
1092 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1093 cpu_clear(cpu, cpu_core_map[sibling]);
1094 cpus_clear(cpu_sibling_map[cpu]);
1095 cpus_clear(cpu_core_map[cpu]);
1096 phys_proc_id[cpu] = BAD_APICID;
1097 cpu_core_id[cpu] = BAD_APICID;
1100 void remove_cpu_from_maps(void)
1102 int cpu = smp_processor_id();
1104 cpu_clear(cpu, cpu_callout_map);
1105 cpu_clear(cpu, cpu_callin_map);
1106 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1109 int __cpu_disable(void)
1111 int cpu = smp_processor_id();
1114 * Perhaps use cpufreq to drop frequency, but that could go
1115 * into generic code.
1117 * We won't take down the boot processor on i386 due to some
1118 * interrupts only being able to be serviced by the BSP.
1119 * Especially so if we're not using an IOAPIC -zwane
1124 disable_APIC_timer();
1128 * Allow any queued timer interrupts to get serviced
1129 * This is only a temporary solution until we cleanup
1130 * fixup_irqs as we do for IA64.
1135 local_irq_disable();
1136 remove_siblinginfo(cpu);
1138 /* It's now safe to remove this processor from the online map */
1139 cpu_clear(cpu, cpu_online_map);
1140 remove_cpu_from_maps();
1141 fixup_irqs(cpu_online_map);
1145 void __cpu_die(unsigned int cpu)
1147 /* We don't do anything here: idle task is faking death itself. */
1150 for (i = 0; i < 10; i++) {
1151 /* They ack this in play_dead by setting CPU_DEAD */
1152 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1153 printk ("CPU %d is now offline\n", cpu);
1158 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1161 #else /* ... !CONFIG_HOTPLUG_CPU */
1163 int __cpu_disable(void)
1168 void __cpu_die(unsigned int cpu)
1170 /* We said "no" in __cpu_disable */
1173 #endif /* CONFIG_HOTPLUG_CPU */