1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <asm/signal.h>
11 #include <asm/cacheflush.h>
12 #include <asm/uaccess.h>
14 /* We do not have hardware single-stepping on sparc64.
15 * So we implement software single-stepping with breakpoint
16 * traps. The top-level scheme is similar to that used
17 * in the x86 kprobes implementation.
19 * In the kprobe->ainsn.insn[] array we store the original
20 * instruction at index zero and a break instruction at
23 * When we hit a kprobe we:
24 * - Run the pre-handler
25 * - Remember "regs->tnpc" and interrupt level stored in
26 * "regs->tstate" so we can restore them later
27 * - Disable PIL interrupts
28 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
29 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
30 * - Mark that we are actively in a kprobe
32 * At this point we wait for the second breakpoint at
33 * kprobe->ainsn.insn[1] to hit. When it does we:
34 * - Run the post-handler
35 * - Set regs->tpc to "remembered" regs->tnpc stored above,
36 * restore the PIL interrupt level in "regs->tstate" as well
37 * - Make any adjustments necessary to regs->tnpc in order
38 * to handle relative branches correctly. See below.
39 * - Mark that we are no longer actively in a kprobe.
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
47 p->ainsn.insn[0] = *p->addr;
48 flushi(&p->ainsn.insn[0]);
50 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
51 flushi(&p->ainsn.insn[1]);
57 void __kprobes arch_arm_kprobe(struct kprobe *p)
59 *p->addr = BREAKPOINT_INSTRUCTION;
63 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
71 kcb->prev_kprobe.kp = kprobe_running();
72 kcb->prev_kprobe.status = kcb->kprobe_status;
73 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
74 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
77 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
79 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
80 kcb->kprobe_status = kcb->prev_kprobe.status;
81 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
82 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
85 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
86 struct kprobe_ctlblk *kcb)
88 __get_cpu_var(current_kprobe) = p;
89 kcb->kprobe_orig_tnpc = regs->tnpc;
90 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
93 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
94 struct kprobe_ctlblk *kcb)
96 regs->tstate |= TSTATE_PIL;
98 /*single step inline, if it a breakpoint instruction*/
99 if (p->opcode == BREAKPOINT_INSTRUCTION) {
100 regs->tpc = (unsigned long) p->addr;
101 regs->tnpc = kcb->kprobe_orig_tnpc;
103 regs->tpc = (unsigned long) &p->ainsn.insn[0];
104 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
108 static int __kprobes kprobe_handler(struct pt_regs *regs)
111 void *addr = (void *) regs->tpc;
113 struct kprobe_ctlblk *kcb;
116 * We don't want to be preempted for the entire
117 * duration of kprobe processing
120 kcb = get_kprobe_ctlblk();
122 if (kprobe_running()) {
123 p = get_kprobe(addr);
125 if (kcb->kprobe_status == KPROBE_HIT_SS) {
126 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
127 kcb->kprobe_orig_tstate_pil);
130 /* We have reentered the kprobe_handler(), since
131 * another probe was hit while within the handler.
132 * We here save the original kprobes variables and
133 * just single step on the instruction of the new probe
134 * without calling any user handlers.
136 save_previous_kprobe(kcb);
137 set_current_kprobe(p, regs, kcb);
138 kprobes_inc_nmissed_count(p);
139 kcb->kprobe_status = KPROBE_REENTER;
140 prepare_singlestep(p, regs, kcb);
143 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
144 /* The breakpoint instruction was removed by
145 * another cpu right after we hit, no further
146 * handling of this interrupt is appropriate
151 p = __get_cpu_var(current_kprobe);
152 if (p->break_handler && p->break_handler(p, regs))
158 p = get_kprobe(addr);
160 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
162 * The breakpoint instruction was removed right
163 * after we hit it. Another cpu has removed
164 * either a probepoint or a debugger breakpoint
165 * at this address. In either case, no further
166 * handling of this interrupt is appropriate.
170 /* Not one of ours: let kernel handle it */
174 set_current_kprobe(p, regs, kcb);
175 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
176 if (p->pre_handler && p->pre_handler(p, regs))
180 prepare_singlestep(p, regs, kcb);
181 kcb->kprobe_status = KPROBE_HIT_SS;
185 preempt_enable_no_resched();
189 /* If INSN is a relative control transfer instruction,
190 * return the corrected branch destination value.
192 * regs->tpc and regs->tnpc still hold the values of the
193 * program counters at the time of trap due to the execution
194 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
197 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
198 struct pt_regs *regs)
200 unsigned long real_pc = (unsigned long) p->addr;
202 /* Branch not taken, no mods necessary. */
203 if (regs->tnpc == regs->tpc + 0x4UL)
204 return real_pc + 0x8UL;
206 /* The three cases are call, branch w/prediction,
207 * and traditional branch.
209 if ((insn & 0xc0000000) == 0x40000000 ||
210 (insn & 0xc1c00000) == 0x00400000 ||
211 (insn & 0xc1c00000) == 0x00800000) {
212 unsigned long ainsn_addr;
214 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
216 /* The instruction did all the work for us
217 * already, just apply the offset to the correct
218 * instruction location.
220 return (real_pc + (regs->tnpc - ainsn_addr));
223 /* It is jmpl or some other absolute PC modification instruction,
229 /* If INSN is an instruction which writes it's PC location
230 * into a destination register, fix that up.
232 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
233 unsigned long real_pc)
235 unsigned long *slot = NULL;
237 /* Simplest case is 'call', which always uses %o7 */
238 if ((insn & 0xc0000000) == 0x40000000) {
239 slot = ®s->u_regs[UREG_I7];
242 /* 'jmpl' encodes the register inside of the opcode */
243 if ((insn & 0xc1f80000) == 0x81c00000) {
244 unsigned long rd = ((insn >> 25) & 0x1f);
247 slot = ®s->u_regs[rd];
249 /* Hard case, it goes onto the stack. */
253 slot = (unsigned long *)
254 (regs->u_regs[UREG_FP] + STACK_BIAS);
263 * Called after single-stepping. p->addr is the address of the
264 * instruction which has been replaced by the breakpoint
265 * instruction. To avoid the SMP problems that can occur when we
266 * temporarily put back the original opcode to single-step, we
267 * single-stepped a copy of the instruction. The address of this
268 * copy is &p->ainsn.insn[0].
270 * This function prepares to return from the post-single-step
273 static void __kprobes resume_execution(struct kprobe *p,
274 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
276 u32 insn = p->ainsn.insn[0];
278 regs->tnpc = relbranch_fixup(insn, p, regs);
280 /* This assignment must occur after relbranch_fixup() */
281 regs->tpc = kcb->kprobe_orig_tnpc;
283 retpc_fixup(regs, insn, (unsigned long) p->addr);
285 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
286 kcb->kprobe_orig_tstate_pil);
289 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
291 struct kprobe *cur = kprobe_running();
292 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
298 kcb->kprobe_status = KPROBE_HIT_SSDONE;
299 cur->post_handler(cur, regs, 0);
302 resume_execution(cur, regs, kcb);
304 /*Restore back the original saved kprobes variables and continue. */
305 if (kcb->kprobe_status == KPROBE_REENTER) {
306 restore_previous_kprobe(kcb);
309 reset_current_kprobe();
311 preempt_enable_no_resched();
316 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
318 struct kprobe *cur = kprobe_running();
319 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320 const struct exception_table_entry *entry;
322 switch(kcb->kprobe_status) {
326 * We are here because the instruction being single
327 * stepped caused a page fault. We reset the current
328 * kprobe and the tpc points back to the probe address
329 * and allow the page fault handler to continue as a
332 regs->tpc = (unsigned long)cur->addr;
333 regs->tnpc = kcb->kprobe_orig_tnpc;
334 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
335 kcb->kprobe_orig_tstate_pil);
336 if (kcb->kprobe_status == KPROBE_REENTER)
337 restore_previous_kprobe(kcb);
339 reset_current_kprobe();
340 preempt_enable_no_resched();
342 case KPROBE_HIT_ACTIVE:
343 case KPROBE_HIT_SSDONE:
345 * We increment the nmissed count for accounting,
346 * we can also use npre/npostfault count for accouting
347 * these specific fault cases.
349 kprobes_inc_nmissed_count(cur);
352 * We come here because instructions in the pre/post
353 * handler caused the page_fault, this could happen
354 * if handler tries to access user space by
355 * copy_from_user(), get_user() etc. Let the
356 * user-specified handler try to fix it first.
358 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
362 * In case the user-specified fault handler returned
363 * zero, try to fix up.
366 entry = search_exception_tables(regs->tpc);
368 regs->tpc = entry->fixup;
369 regs->tnpc = regs->tpc + 4;
374 * fixup_exception() could not handle it,
375 * Let do_page_fault() fix it.
386 * Wrapper routine to for handling exceptions.
388 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
389 unsigned long val, void *data)
391 struct die_args *args = (struct die_args *)data;
392 int ret = NOTIFY_DONE;
394 if (args->regs && user_mode(args->regs))
399 if (kprobe_handler(args->regs))
403 if (post_kprobe_handler(args->regs))
412 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
413 struct pt_regs *regs)
415 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
417 if (user_mode(regs)) {
419 bad_trap(regs, trap_level);
423 /* trap_level == 0x170 --> ta 0x70
424 * trap_level == 0x171 --> ta 0x71
426 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
427 (trap_level == 0x170) ? "debug" : "debug_2",
428 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
429 bad_trap(regs, trap_level);
432 /* Jprobes support. */
433 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
435 struct jprobe *jp = container_of(p, struct jprobe, kp);
436 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
438 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
440 regs->tpc = (unsigned long) jp->entry;
441 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
442 regs->tstate |= TSTATE_PIL;
447 void __kprobes jprobe_return(void)
449 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
450 register unsigned long orig_fp asm("g1");
452 orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
453 __asm__ __volatile__("\n"
454 "1: cmp %%sp, %0\n\t"
455 "blu,a,pt %%xcc, 1b\n\t"
457 ".globl jprobe_return_trap_instruction\n"
458 "jprobe_return_trap_instruction:\n\t"
464 extern void jprobe_return_trap_instruction(void);
466 extern void __show_regs(struct pt_regs * regs);
468 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
470 u32 *addr = (u32 *) regs->tpc;
471 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
473 if (addr == (u32 *) jprobe_return_trap_instruction) {
474 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
475 preempt_enable_no_resched();
481 /* architecture specific initialization */
482 int arch_init_kprobes(void)