[SPARC64]: Move ramdisk discovery code out to seperate function.
[linux-2.6] / arch / sparc64 / mm / init.c
1 /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27
28 #include <asm/head.h>
29 #include <asm/system.h>
30 #include <asm/page.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
35 #include <asm/io.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/dma.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
44 #include <asm/tsb.h>
45 #include <asm/hypervisor.h>
46 #include <asm/prom.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50
51 #define MAX_PHYS_ADDRESS        (1UL << 42UL)
52 #define KPTE_BITMAP_CHUNK_SZ    (256UL * 1024UL * 1024UL)
53 #define KPTE_BITMAP_BYTES       \
54         ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
55
56 unsigned long kern_linear_pte_xor[2] __read_mostly;
57
58 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
59  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
60  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
61  */
62 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
63
64 #ifndef CONFIG_DEBUG_PAGEALLOC
65 /* A special kernel TSB for 4MB and 256MB linear mappings.
66  * Space is allocated for this right after the trap table
67  * in arch/sparc64/kernel/head.S
68  */
69 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
70 #endif
71
72 #define MAX_BANKS       32
73
74 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
75 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
76 static int pavail_ents __initdata;
77 static int pavail_rescan_ents __initdata;
78
79 static int cmp_p64(const void *a, const void *b)
80 {
81         const struct linux_prom64_registers *x = a, *y = b;
82
83         if (x->phys_addr > y->phys_addr)
84                 return 1;
85         if (x->phys_addr < y->phys_addr)
86                 return -1;
87         return 0;
88 }
89
90 static void __init read_obp_memory(const char *property,
91                                    struct linux_prom64_registers *regs,
92                                    int *num_ents)
93 {
94         int node = prom_finddevice("/memory");
95         int prop_size = prom_getproplen(node, property);
96         int ents, ret, i;
97
98         ents = prop_size / sizeof(struct linux_prom64_registers);
99         if (ents > MAX_BANKS) {
100                 prom_printf("The machine has more %s property entries than "
101                             "this kernel can support (%d).\n",
102                             property, MAX_BANKS);
103                 prom_halt();
104         }
105
106         ret = prom_getproperty(node, property, (char *) regs, prop_size);
107         if (ret == -1) {
108                 prom_printf("Couldn't get %s property from /memory.\n");
109                 prom_halt();
110         }
111
112         /* Sanitize what we got from the firmware, by page aligning
113          * everything.
114          */
115         for (i = 0; i < ents; i++) {
116                 unsigned long base, size;
117
118                 base = regs[i].phys_addr;
119                 size = regs[i].reg_size;
120
121                 size &= PAGE_MASK;
122                 if (base & ~PAGE_MASK) {
123                         unsigned long new_base = PAGE_ALIGN(base);
124
125                         size -= new_base - base;
126                         if ((long) size < 0L)
127                                 size = 0UL;
128                         base = new_base;
129                 }
130                 if (size == 0UL) {
131                         /* If it is empty, simply get rid of it.
132                          * This simplifies the logic of the other
133                          * functions that process these arrays.
134                          */
135                         memmove(&regs[i], &regs[i + 1],
136                                 (ents - i - 1) * sizeof(regs[0]));
137                         i--;
138                         ents--;
139                         continue;
140                 }
141                 regs[i].phys_addr = base;
142                 regs[i].reg_size = size;
143         }
144
145         *num_ents = ents;
146
147         sort(regs, ents, sizeof(struct linux_prom64_registers),
148              cmp_p64, NULL);
149 }
150
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
152
153 /* Kernel physical address base and size in bytes.  */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
156
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
161
162 struct page *mem_map_zero __read_mostly;
163
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
165
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
169
170 int num_kernel_image_mappings;
171
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
174 #ifdef CONFIG_SMP
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
176 #endif
177 #endif
178
179 inline void flush_dcache_page_impl(struct page *page)
180 {
181         BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183         atomic_inc(&dcpage_flushes);
184 #endif
185
186 #ifdef DCACHE_ALIASING_POSSIBLE
187         __flush_dcache_page(page_address(page),
188                             ((tlb_type == spitfire) &&
189                              page_mapping(page) != NULL));
190 #else
191         if (page_mapping(page) != NULL &&
192             tlb_type == spitfire)
193                 __flush_icache_page(__pa(page_address(page)));
194 #endif
195 }
196
197 #define PG_dcache_dirty         PG_arch_1
198 #define PG_dcache_cpu_shift     32UL
199 #define PG_dcache_cpu_mask      \
200         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
201
202 #define dcache_dirty_cpu(page) \
203         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
204
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
206 {
207         unsigned long mask = this_cpu;
208         unsigned long non_cpu_bits;
209
210         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
212
213         __asm__ __volatile__("1:\n\t"
214                              "ldx       [%2], %%g7\n\t"
215                              "and       %%g7, %1, %%g1\n\t"
216                              "or        %%g1, %0, %%g1\n\t"
217                              "casx      [%2], %%g7, %%g1\n\t"
218                              "cmp       %%g7, %%g1\n\t"
219                              "membar    #StoreLoad | #StoreStore\n\t"
220                              "bne,pn    %%xcc, 1b\n\t"
221                              " nop"
222                              : /* no outputs */
223                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
224                              : "g1", "g7");
225 }
226
227 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
228 {
229         unsigned long mask = (1UL << PG_dcache_dirty);
230
231         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
232                              "1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "srlx      %%g7, %4, %%g1\n\t"
235                              "and       %%g1, %3, %%g1\n\t"
236                              "cmp       %%g1, %0\n\t"
237                              "bne,pn    %%icc, 2f\n\t"
238                              " andn     %%g7, %1, %%g1\n\t"
239                              "casx      [%2], %%g7, %%g1\n\t"
240                              "cmp       %%g7, %%g1\n\t"
241                              "membar    #StoreLoad | #StoreStore\n\t"
242                              "bne,pn    %%xcc, 1b\n\t"
243                              " nop\n"
244                              "2:"
245                              : /* no outputs */
246                              : "r" (cpu), "r" (mask), "r" (&page->flags),
247                                "i" (PG_dcache_cpu_mask),
248                                "i" (PG_dcache_cpu_shift)
249                              : "g1", "g7");
250 }
251
252 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
253 {
254         unsigned long tsb_addr = (unsigned long) ent;
255
256         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
257                 tsb_addr = __pa(tsb_addr);
258
259         __tsb_insert(tsb_addr, tag, pte);
260 }
261
262 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
263 unsigned long _PAGE_SZBITS __read_mostly;
264
265 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
266 {
267         struct mm_struct *mm;
268         struct tsb *tsb;
269         unsigned long tag, flags;
270         unsigned long tsb_index, tsb_hash_shift;
271
272         if (tlb_type != hypervisor) {
273                 unsigned long pfn = pte_pfn(pte);
274                 unsigned long pg_flags;
275                 struct page *page;
276
277                 if (pfn_valid(pfn) &&
278                     (page = pfn_to_page(pfn), page_mapping(page)) &&
279                     ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
280                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
281                                    PG_dcache_cpu_mask);
282                         int this_cpu = get_cpu();
283
284                         /* This is just to optimize away some function calls
285                          * in the SMP case.
286                          */
287                         if (cpu == this_cpu)
288                                 flush_dcache_page_impl(page);
289                         else
290                                 smp_flush_dcache_page_impl(page, cpu);
291
292                         clear_dcache_dirty_cpu(page, cpu);
293
294                         put_cpu();
295                 }
296         }
297
298         mm = vma->vm_mm;
299
300         tsb_index = MM_TSB_BASE;
301         tsb_hash_shift = PAGE_SHIFT;
302
303         spin_lock_irqsave(&mm->context.lock, flags);
304
305 #ifdef CONFIG_HUGETLB_PAGE
306         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
307                 if ((tlb_type == hypervisor &&
308                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
309                     (tlb_type != hypervisor &&
310                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
311                         tsb_index = MM_TSB_HUGE;
312                         tsb_hash_shift = HPAGE_SHIFT;
313                 }
314         }
315 #endif
316
317         tsb = mm->context.tsb_block[tsb_index].tsb;
318         tsb += ((address >> tsb_hash_shift) &
319                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320         tag = (address >> 22UL);
321         tsb_insert(tsb, tag, pte_val(pte));
322
323         spin_unlock_irqrestore(&mm->context.lock, flags);
324 }
325
326 void flush_dcache_page(struct page *page)
327 {
328         struct address_space *mapping;
329         int this_cpu;
330
331         if (tlb_type == hypervisor)
332                 return;
333
334         /* Do not bother with the expensive D-cache flush if it
335          * is merely the zero page.  The 'bigcore' testcase in GDB
336          * causes this case to run millions of times.
337          */
338         if (page == ZERO_PAGE(0))
339                 return;
340
341         this_cpu = get_cpu();
342
343         mapping = page_mapping(page);
344         if (mapping && !mapping_mapped(mapping)) {
345                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
346                 if (dirty) {
347                         int dirty_cpu = dcache_dirty_cpu(page);
348
349                         if (dirty_cpu == this_cpu)
350                                 goto out;
351                         smp_flush_dcache_page_impl(page, dirty_cpu);
352                 }
353                 set_dcache_dirty(page, this_cpu);
354         } else {
355                 /* We could delay the flush for the !page_mapping
356                  * case too.  But that case is for exec env/arg
357                  * pages and those are %99 certainly going to get
358                  * faulted into the tlb (and thus flushed) anyways.
359                  */
360                 flush_dcache_page_impl(page);
361         }
362
363 out:
364         put_cpu();
365 }
366
367 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
368 {
369         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
370         if (tlb_type == spitfire) {
371                 unsigned long kaddr;
372
373                 /* This code only runs on Spitfire cpus so this is
374                  * why we can assume _PAGE_PADDR_4U.
375                  */
376                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
377                         unsigned long paddr, mask = _PAGE_PADDR_4U;
378
379                         if (kaddr >= PAGE_OFFSET)
380                                 paddr = kaddr & mask;
381                         else {
382                                 pgd_t *pgdp = pgd_offset_k(kaddr);
383                                 pud_t *pudp = pud_offset(pgdp, kaddr);
384                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
385                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
386
387                                 paddr = pte_val(*ptep) & mask;
388                         }
389                         __flush_icache_page(paddr);
390                 }
391         }
392 }
393
394 void show_mem(void)
395 {
396         unsigned long total = 0, reserved = 0;
397         unsigned long shared = 0, cached = 0;
398         pg_data_t *pgdat;
399
400         printk(KERN_INFO "Mem-info:\n");
401         show_free_areas();
402         printk(KERN_INFO "Free swap:       %6ldkB\n",
403                nr_swap_pages << (PAGE_SHIFT-10));
404         for_each_online_pgdat(pgdat) {
405                 unsigned long i, flags;
406
407                 pgdat_resize_lock(pgdat, &flags);
408                 for (i = 0; i < pgdat->node_spanned_pages; i++) {
409                         struct page *page = pgdat_page_nr(pgdat, i);
410                         total++;
411                         if (PageReserved(page))
412                                 reserved++;
413                         else if (PageSwapCache(page))
414                                 cached++;
415                         else if (page_count(page))
416                                 shared += page_count(page) - 1;
417                 }
418                 pgdat_resize_unlock(pgdat, &flags);
419         }
420
421         printk(KERN_INFO "%lu pages of RAM\n", total);
422         printk(KERN_INFO "%lu reserved pages\n", reserved);
423         printk(KERN_INFO "%lu pages shared\n", shared);
424         printk(KERN_INFO "%lu pages swap cached\n", cached);
425
426         printk(KERN_INFO "%lu pages dirty\n",
427                global_page_state(NR_FILE_DIRTY));
428         printk(KERN_INFO "%lu pages writeback\n",
429                global_page_state(NR_WRITEBACK));
430         printk(KERN_INFO "%lu pages mapped\n",
431                global_page_state(NR_FILE_MAPPED));
432         printk(KERN_INFO "%lu pages slab\n",
433                 global_page_state(NR_SLAB_RECLAIMABLE) +
434                 global_page_state(NR_SLAB_UNRECLAIMABLE));
435         printk(KERN_INFO "%lu pages pagetables\n",
436                global_page_state(NR_PAGETABLE));
437 }
438
439 void mmu_info(struct seq_file *m)
440 {
441         if (tlb_type == cheetah)
442                 seq_printf(m, "MMU Type\t: Cheetah\n");
443         else if (tlb_type == cheetah_plus)
444                 seq_printf(m, "MMU Type\t: Cheetah+\n");
445         else if (tlb_type == spitfire)
446                 seq_printf(m, "MMU Type\t: Spitfire\n");
447         else if (tlb_type == hypervisor)
448                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
449         else
450                 seq_printf(m, "MMU Type\t: ???\n");
451
452 #ifdef CONFIG_DEBUG_DCFLUSH
453         seq_printf(m, "DCPageFlushes\t: %d\n",
454                    atomic_read(&dcpage_flushes));
455 #ifdef CONFIG_SMP
456         seq_printf(m, "DCPageFlushesXC\t: %d\n",
457                    atomic_read(&dcpage_flushes_xcall));
458 #endif /* CONFIG_SMP */
459 #endif /* CONFIG_DEBUG_DCFLUSH */
460 }
461
462 struct linux_prom_translation {
463         unsigned long virt;
464         unsigned long size;
465         unsigned long data;
466 };
467
468 /* Exported for kernel TLB miss handling in ktlb.S */
469 struct linux_prom_translation prom_trans[512] __read_mostly;
470 unsigned int prom_trans_ents __read_mostly;
471
472 /* Exported for SMP bootup purposes. */
473 unsigned long kern_locked_tte_data;
474
475 /* The obp translations are saved based on 8k pagesize, since obp can
476  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477  * HI_OBP_ADDRESS range are handled in ktlb.S.
478  */
479 static inline int in_obp_range(unsigned long vaddr)
480 {
481         return (vaddr >= LOW_OBP_ADDRESS &&
482                 vaddr < HI_OBP_ADDRESS);
483 }
484
485 static int cmp_ptrans(const void *a, const void *b)
486 {
487         const struct linux_prom_translation *x = a, *y = b;
488
489         if (x->virt > y->virt)
490                 return 1;
491         if (x->virt < y->virt)
492                 return -1;
493         return 0;
494 }
495
496 /* Read OBP translations property into 'prom_trans[]'.  */
497 static void __init read_obp_translations(void)
498 {
499         int n, node, ents, first, last, i;
500
501         node = prom_finddevice("/virtual-memory");
502         n = prom_getproplen(node, "translations");
503         if (unlikely(n == 0 || n == -1)) {
504                 prom_printf("prom_mappings: Couldn't get size.\n");
505                 prom_halt();
506         }
507         if (unlikely(n > sizeof(prom_trans))) {
508                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
509                 prom_halt();
510         }
511
512         if ((n = prom_getproperty(node, "translations",
513                                   (char *)&prom_trans[0],
514                                   sizeof(prom_trans))) == -1) {
515                 prom_printf("prom_mappings: Couldn't get property.\n");
516                 prom_halt();
517         }
518
519         n = n / sizeof(struct linux_prom_translation);
520
521         ents = n;
522
523         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524              cmp_ptrans, NULL);
525
526         /* Now kick out all the non-OBP entries.  */
527         for (i = 0; i < ents; i++) {
528                 if (in_obp_range(prom_trans[i].virt))
529                         break;
530         }
531         first = i;
532         for (; i < ents; i++) {
533                 if (!in_obp_range(prom_trans[i].virt))
534                         break;
535         }
536         last = i;
537
538         for (i = 0; i < (last - first); i++) {
539                 struct linux_prom_translation *src = &prom_trans[i + first];
540                 struct linux_prom_translation *dest = &prom_trans[i];
541
542                 *dest = *src;
543         }
544         for (; i < ents; i++) {
545                 struct linux_prom_translation *dest = &prom_trans[i];
546                 dest->virt = dest->size = dest->data = 0x0UL;
547         }
548
549         prom_trans_ents = last - first;
550
551         if (tlb_type == spitfire) {
552                 /* Clear diag TTE bits. */
553                 for (i = 0; i < prom_trans_ents; i++)
554                         prom_trans[i].data &= ~0x0003fe0000000000UL;
555         }
556 }
557
558 static void __init hypervisor_tlb_lock(unsigned long vaddr,
559                                        unsigned long pte,
560                                        unsigned long mmu)
561 {
562         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
563
564         if (ret != 0) {
565                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
566                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
567                 prom_halt();
568         }
569 }
570
571 static unsigned long kern_large_tte(unsigned long paddr);
572
573 static void __init remap_kernel(void)
574 {
575         unsigned long phys_page, tte_vaddr, tte_data;
576         int i, tlb_ent = sparc64_highest_locked_tlbent();
577
578         tte_vaddr = (unsigned long) KERNBASE;
579         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
580         tte_data = kern_large_tte(phys_page);
581
582         kern_locked_tte_data = tte_data;
583
584         /* Now lock us into the TLBs via Hypervisor or OBP. */
585         if (tlb_type == hypervisor) {
586                 for (i = 0; i < num_kernel_image_mappings; i++) {
587                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
588                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
589                         tte_vaddr += 0x400000;
590                         tte_data += 0x400000;
591                 }
592         } else {
593                 for (i = 0; i < num_kernel_image_mappings; i++) {
594                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
595                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
596                         tte_vaddr += 0x400000;
597                         tte_data += 0x400000;
598                 }
599                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
600         }
601         if (tlb_type == cheetah_plus) {
602                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
603                                             CTX_CHEETAH_PLUS_NUC);
604                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
605                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
606         }
607 }
608
609
610 static void __init inherit_prom_mappings(void)
611 {
612         read_obp_translations();
613
614         /* Now fixup OBP's idea about where we really are mapped. */
615         printk("Remapping the kernel... ");
616         remap_kernel();
617         printk("done.\n");
618 }
619
620 void prom_world(int enter)
621 {
622         if (!enter)
623                 set_fs((mm_segment_t) { get_thread_current_ds() });
624
625         __asm__ __volatile__("flushw");
626 }
627
628 void __flush_dcache_range(unsigned long start, unsigned long end)
629 {
630         unsigned long va;
631
632         if (tlb_type == spitfire) {
633                 int n = 0;
634
635                 for (va = start; va < end; va += 32) {
636                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
637                         if (++n >= 512)
638                                 break;
639                 }
640         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
641                 start = __pa(start);
642                 end = __pa(end);
643                 for (va = start; va < end; va += 32)
644                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
645                                              "membar #Sync"
646                                              : /* no outputs */
647                                              : "r" (va),
648                                                "i" (ASI_DCACHE_INVALIDATE));
649         }
650 }
651
652 /* get_new_mmu_context() uses "cache + 1".  */
653 DEFINE_SPINLOCK(ctx_alloc_lock);
654 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
655 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
656 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
657 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
658
659 /* Caller does TLB context flushing on local CPU if necessary.
660  * The caller also ensures that CTX_VALID(mm->context) is false.
661  *
662  * We must be careful about boundary cases so that we never
663  * let the user have CTX 0 (nucleus) or we ever use a CTX
664  * version of zero (and thus NO_CONTEXT would not be caught
665  * by version mis-match tests in mmu_context.h).
666  *
667  * Always invoked with interrupts disabled.
668  */
669 void get_new_mmu_context(struct mm_struct *mm)
670 {
671         unsigned long ctx, new_ctx;
672         unsigned long orig_pgsz_bits;
673         unsigned long flags;
674         int new_version;
675
676         spin_lock_irqsave(&ctx_alloc_lock, flags);
677         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
680         new_version = 0;
681         if (new_ctx >= (1 << CTX_NR_BITS)) {
682                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683                 if (new_ctx >= ctx) {
684                         int i;
685                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
686                                 CTX_FIRST_VERSION;
687                         if (new_ctx == 1)
688                                 new_ctx = CTX_FIRST_VERSION;
689
690                         /* Don't call memset, for 16 entries that's just
691                          * plain silly...
692                          */
693                         mmu_context_bmap[0] = 3;
694                         mmu_context_bmap[1] = 0;
695                         mmu_context_bmap[2] = 0;
696                         mmu_context_bmap[3] = 0;
697                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698                                 mmu_context_bmap[i + 0] = 0;
699                                 mmu_context_bmap[i + 1] = 0;
700                                 mmu_context_bmap[i + 2] = 0;
701                                 mmu_context_bmap[i + 3] = 0;
702                         }
703                         new_version = 1;
704                         goto out;
705                 }
706         }
707         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
709 out:
710         tlb_context_cache = new_ctx;
711         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
713
714         if (unlikely(new_version))
715                 smp_new_mmu_context_version();
716 }
717
718 /* Find a free area for the bootmem map, avoiding the kernel image
719  * and the initial ramdisk.
720  */
721 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
722                                                unsigned long end_pfn)
723 {
724         unsigned long avoid_start, avoid_end, bootmap_size;
725         int i;
726
727         bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
728         bootmap_size <<= PAGE_SHIFT;
729
730         avoid_start = avoid_end = 0;
731 #ifdef CONFIG_BLK_DEV_INITRD
732         avoid_start = initrd_start;
733         avoid_end = PAGE_ALIGN(initrd_end);
734 #endif
735
736         for (i = 0; i < pavail_ents; i++) {
737                 unsigned long start, end;
738
739                 start = pavail[i].phys_addr;
740                 end = start + pavail[i].reg_size;
741
742                 while (start < end) {
743                         if (start >= kern_base &&
744                             start < PAGE_ALIGN(kern_base + kern_size)) {
745                                 start = PAGE_ALIGN(kern_base + kern_size);
746                                 continue;
747                         }
748                         if (start >= avoid_start && start < avoid_end) {
749                                 start = avoid_end;
750                                 continue;
751                         }
752
753                         if ((end - start) < bootmap_size)
754                                 break;
755
756                         if (start < kern_base &&
757                             (start + bootmap_size) > kern_base) {
758                                 start = PAGE_ALIGN(kern_base + kern_size);
759                                 continue;
760                         }
761
762                         if (start < avoid_start &&
763                             (start + bootmap_size) > avoid_start) {
764                                 start = avoid_end;
765                                 continue;
766                         }
767
768                         /* OK, it doesn't overlap anything, use it.  */
769                         return start >> PAGE_SHIFT;
770                 }
771         }
772
773         prom_printf("Cannot find free area for bootmap, aborting.\n");
774         prom_halt();
775 }
776
777 static void __init trim_pavail(unsigned long *cur_size_p,
778                                unsigned long *end_of_phys_p)
779 {
780         unsigned long to_trim = *cur_size_p - cmdline_memory_size;
781         unsigned long avoid_start, avoid_end;
782         int i;
783
784         to_trim = PAGE_ALIGN(to_trim);
785
786         avoid_start = avoid_end = 0;
787 #ifdef CONFIG_BLK_DEV_INITRD
788         avoid_start = initrd_start;
789         avoid_end = PAGE_ALIGN(initrd_end);
790 #endif
791
792         /* Trim some pavail[] entries in order to satisfy the
793          * requested "mem=xxx" kernel command line specification.
794          *
795          * We must not trim off the kernel image area nor the
796          * initial ramdisk range (if any).  Also, we must not trim
797          * any pavail[] entry down to zero in order to preserve
798          * the invariant that all pavail[] entries have a non-zero
799          * size which is assumed by all of the code in here.
800          */
801         for (i = 0; i < pavail_ents; i++) {
802                 unsigned long start, end, kern_end;
803                 unsigned long trim_low, trim_high, n;
804
805                 kern_end = PAGE_ALIGN(kern_base + kern_size);
806
807                 trim_low = start = pavail[i].phys_addr;
808                 trim_high = end = start + pavail[i].reg_size;
809
810                 if (kern_base >= start &&
811                     kern_base < end) {
812                         trim_low = kern_base;
813                         if (kern_end >= end)
814                                 continue;
815                 }
816                 if (kern_end >= start &&
817                     kern_end < end) {
818                         trim_high = kern_end;
819                 }
820                 if (avoid_start &&
821                     avoid_start >= start &&
822                     avoid_start < end) {
823                         if (trim_low > avoid_start)
824                                 trim_low = avoid_start;
825                         if (avoid_end >= end)
826                                 continue;
827                 }
828                 if (avoid_end &&
829                     avoid_end >= start &&
830                     avoid_end < end) {
831                         if (trim_high < avoid_end)
832                                 trim_high = avoid_end;
833                 }
834
835                 if (trim_high <= trim_low)
836                         continue;
837
838                 if (trim_low == start && trim_high == end) {
839                         /* Whole chunk is available for trimming.
840                          * Trim all except one page, in order to keep
841                          * entry non-empty.
842                          */
843                         n = (end - start) - PAGE_SIZE;
844                         if (n > to_trim)
845                                 n = to_trim;
846
847                         if (n) {
848                                 pavail[i].phys_addr += n;
849                                 pavail[i].reg_size -= n;
850                                 to_trim -= n;
851                         }
852                 } else {
853                         n = (trim_low - start);
854                         if (n > to_trim)
855                                 n = to_trim;
856
857                         if (n) {
858                                 pavail[i].phys_addr += n;
859                                 pavail[i].reg_size -= n;
860                                 to_trim -= n;
861                         }
862                         if (to_trim) {
863                                 n = end - trim_high;
864                                 if (n > to_trim)
865                                         n = to_trim;
866                                 if (n) {
867                                         pavail[i].reg_size -= n;
868                                         to_trim -= n;
869                                 }
870                         }
871                 }
872
873                 if (!to_trim)
874                         break;
875         }
876
877         /* Recalculate.  */
878         *cur_size_p = 0UL;
879         for (i = 0; i < pavail_ents; i++) {
880                 *end_of_phys_p = pavail[i].phys_addr +
881                         pavail[i].reg_size;
882                 *cur_size_p += pavail[i].reg_size;
883         }
884 }
885
886 static void __init find_ramdisk(unsigned long phys_base)
887 {
888 #ifdef CONFIG_BLK_DEV_INITRD
889         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
890                 unsigned long ramdisk_image;
891
892                 /* Older versions of the bootloader only supported a
893                  * 32-bit physical address for the ramdisk image
894                  * location, stored at sparc_ramdisk_image.  Newer
895                  * SILO versions set sparc_ramdisk_image to zero and
896                  * provide a full 64-bit physical address at
897                  * sparc_ramdisk_image64.
898                  */
899                 ramdisk_image = sparc_ramdisk_image;
900                 if (!ramdisk_image)
901                         ramdisk_image = sparc_ramdisk_image64;
902
903                 /* Another bootloader quirk.  The bootloader normalizes
904                  * the physical address to KERNBASE, so we have to
905                  * factor that back out and add in the lowest valid
906                  * physical page address to get the true physical address.
907                  */
908                 ramdisk_image -= KERNBASE;
909                 ramdisk_image += phys_base;
910
911                 initrd_start = ramdisk_image;
912                 initrd_end = ramdisk_image + sparc_ramdisk_size;
913         }
914 #endif
915 }
916
917 /* About pages_avail, this is the value we will use to calculate
918  * the zholes_size[] argument given to free_area_init_node().  The
919  * page allocator uses this to calculate nr_kernel_pages,
920  * nr_all_pages and zone->present_pages.  On NUMA it is used
921  * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
922  *
923  * So this number should really be set to what the page allocator
924  * actually ends up with.  This means:
925  * 1) It should include bootmem map pages, we'll release those.
926  * 2) It should not include the kernel image, except for the
927  *    __init sections which we will also release.
928  * 3) It should include the initrd image, since we'll release
929  *    that too.
930  */
931 static unsigned long __init bootmem_init(unsigned long *pages_avail,
932                                          unsigned long phys_base)
933 {
934         unsigned long bootmap_size, end_pfn;
935         unsigned long end_of_phys_memory = 0UL;
936         unsigned long bootmap_pfn, bytes_avail, size;
937         int i;
938
939         bytes_avail = 0UL;
940         for (i = 0; i < pavail_ents; i++) {
941                 end_of_phys_memory = pavail[i].phys_addr +
942                         pavail[i].reg_size;
943                 bytes_avail += pavail[i].reg_size;
944         }
945
946         if (cmdline_memory_size &&
947             bytes_avail > cmdline_memory_size)
948                 trim_pavail(&bytes_avail,
949                             &end_of_phys_memory);
950
951         *pages_avail = bytes_avail >> PAGE_SHIFT;
952
953         end_pfn = end_of_phys_memory >> PAGE_SHIFT;
954
955         /* Initialize the boot-time allocator. */
956         max_pfn = max_low_pfn = end_pfn;
957         min_low_pfn = (phys_base >> PAGE_SHIFT);
958
959         bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
960
961         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
962                                          min_low_pfn, end_pfn);
963
964         /* Now register the available physical memory with the
965          * allocator.
966          */
967         for (i = 0; i < pavail_ents; i++)
968                 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
969
970 #ifdef CONFIG_BLK_DEV_INITRD
971         if (initrd_start) {
972                 size = initrd_end - initrd_start;
973
974                 /* Reserve the initrd image area. */
975                 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
976
977                 initrd_start += PAGE_OFFSET;
978                 initrd_end += PAGE_OFFSET;
979         }
980 #endif
981         /* Reserve the kernel text/data/bss. */
982         reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT);
983         *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
984
985         /* Add back in the initmem pages. */
986         size = ((unsigned long)(__init_end) & PAGE_MASK) -
987                 PAGE_ALIGN((unsigned long)__init_begin);
988         *pages_avail += size >> PAGE_SHIFT;
989
990         /* Reserve the bootmem map.   We do not account for it
991          * in pages_avail because we will release that memory
992          * in free_all_bootmem.
993          */
994         size = bootmap_size;
995         reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
996
997         for (i = 0; i < pavail_ents; i++) {
998                 unsigned long start_pfn, end_pfn;
999
1000                 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1001                 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1002                 memory_present(0, start_pfn, end_pfn);
1003         }
1004
1005         sparse_init();
1006
1007         return end_pfn;
1008 }
1009
1010 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1011 static int pall_ents __initdata;
1012
1013 #ifdef CONFIG_DEBUG_PAGEALLOC
1014 static unsigned long __ref kernel_map_range(unsigned long pstart,
1015                                             unsigned long pend, pgprot_t prot)
1016 {
1017         unsigned long vstart = PAGE_OFFSET + pstart;
1018         unsigned long vend = PAGE_OFFSET + pend;
1019         unsigned long alloc_bytes = 0UL;
1020
1021         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1022                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1023                             vstart, vend);
1024                 prom_halt();
1025         }
1026
1027         while (vstart < vend) {
1028                 unsigned long this_end, paddr = __pa(vstart);
1029                 pgd_t *pgd = pgd_offset_k(vstart);
1030                 pud_t *pud;
1031                 pmd_t *pmd;
1032                 pte_t *pte;
1033
1034                 pud = pud_offset(pgd, vstart);
1035                 if (pud_none(*pud)) {
1036                         pmd_t *new;
1037
1038                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1039                         alloc_bytes += PAGE_SIZE;
1040                         pud_populate(&init_mm, pud, new);
1041                 }
1042
1043                 pmd = pmd_offset(pud, vstart);
1044                 if (!pmd_present(*pmd)) {
1045                         pte_t *new;
1046
1047                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1048                         alloc_bytes += PAGE_SIZE;
1049                         pmd_populate_kernel(&init_mm, pmd, new);
1050                 }
1051
1052                 pte = pte_offset_kernel(pmd, vstart);
1053                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1054                 if (this_end > vend)
1055                         this_end = vend;
1056
1057                 while (vstart < this_end) {
1058                         pte_val(*pte) = (paddr | pgprot_val(prot));
1059
1060                         vstart += PAGE_SIZE;
1061                         paddr += PAGE_SIZE;
1062                         pte++;
1063                 }
1064         }
1065
1066         return alloc_bytes;
1067 }
1068
1069 extern unsigned int kvmap_linear_patch[1];
1070 #endif /* CONFIG_DEBUG_PAGEALLOC */
1071
1072 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1073 {
1074         const unsigned long shift_256MB = 28;
1075         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1076         const unsigned long size_256MB = (1UL << shift_256MB);
1077
1078         while (start < end) {
1079                 long remains;
1080
1081                 remains = end - start;
1082                 if (remains < size_256MB)
1083                         break;
1084
1085                 if (start & mask_256MB) {
1086                         start = (start + size_256MB) & ~mask_256MB;
1087                         continue;
1088                 }
1089
1090                 while (remains >= size_256MB) {
1091                         unsigned long index = start >> shift_256MB;
1092
1093                         __set_bit(index, kpte_linear_bitmap);
1094
1095                         start += size_256MB;
1096                         remains -= size_256MB;
1097                 }
1098         }
1099 }
1100
1101 static void __init init_kpte_bitmap(void)
1102 {
1103         unsigned long i;
1104
1105         for (i = 0; i < pall_ents; i++) {
1106                 unsigned long phys_start, phys_end;
1107
1108                 phys_start = pall[i].phys_addr;
1109                 phys_end = phys_start + pall[i].reg_size;
1110
1111                 mark_kpte_bitmap(phys_start, phys_end);
1112         }
1113 }
1114
1115 static void __init kernel_physical_mapping_init(void)
1116 {
1117 #ifdef CONFIG_DEBUG_PAGEALLOC
1118         unsigned long i, mem_alloced = 0UL;
1119
1120         for (i = 0; i < pall_ents; i++) {
1121                 unsigned long phys_start, phys_end;
1122
1123                 phys_start = pall[i].phys_addr;
1124                 phys_end = phys_start + pall[i].reg_size;
1125
1126                 mem_alloced += kernel_map_range(phys_start, phys_end,
1127                                                 PAGE_KERNEL);
1128         }
1129
1130         printk("Allocated %ld bytes for kernel page tables.\n",
1131                mem_alloced);
1132
1133         kvmap_linear_patch[0] = 0x01000000; /* nop */
1134         flushi(&kvmap_linear_patch[0]);
1135
1136         __flush_tlb_all();
1137 #endif
1138 }
1139
1140 #ifdef CONFIG_DEBUG_PAGEALLOC
1141 void kernel_map_pages(struct page *page, int numpages, int enable)
1142 {
1143         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1144         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1145
1146         kernel_map_range(phys_start, phys_end,
1147                          (enable ? PAGE_KERNEL : __pgprot(0)));
1148
1149         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1150                                PAGE_OFFSET + phys_end);
1151
1152         /* we should perform an IPI and flush all tlbs,
1153          * but that can deadlock->flush only current cpu.
1154          */
1155         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1156                                  PAGE_OFFSET + phys_end);
1157 }
1158 #endif
1159
1160 unsigned long __init find_ecache_flush_span(unsigned long size)
1161 {
1162         int i;
1163
1164         for (i = 0; i < pavail_ents; i++) {
1165                 if (pavail[i].reg_size >= size)
1166                         return pavail[i].phys_addr;
1167         }
1168
1169         return ~0UL;
1170 }
1171
1172 static void __init tsb_phys_patch(void)
1173 {
1174         struct tsb_ldquad_phys_patch_entry *pquad;
1175         struct tsb_phys_patch_entry *p;
1176
1177         pquad = &__tsb_ldquad_phys_patch;
1178         while (pquad < &__tsb_ldquad_phys_patch_end) {
1179                 unsigned long addr = pquad->addr;
1180
1181                 if (tlb_type == hypervisor)
1182                         *(unsigned int *) addr = pquad->sun4v_insn;
1183                 else
1184                         *(unsigned int *) addr = pquad->sun4u_insn;
1185                 wmb();
1186                 __asm__ __volatile__("flush     %0"
1187                                      : /* no outputs */
1188                                      : "r" (addr));
1189
1190                 pquad++;
1191         }
1192
1193         p = &__tsb_phys_patch;
1194         while (p < &__tsb_phys_patch_end) {
1195                 unsigned long addr = p->addr;
1196
1197                 *(unsigned int *) addr = p->insn;
1198                 wmb();
1199                 __asm__ __volatile__("flush     %0"
1200                                      : /* no outputs */
1201                                      : "r" (addr));
1202
1203                 p++;
1204         }
1205 }
1206
1207 /* Don't mark as init, we give this to the Hypervisor.  */
1208 #ifndef CONFIG_DEBUG_PAGEALLOC
1209 #define NUM_KTSB_DESCR  2
1210 #else
1211 #define NUM_KTSB_DESCR  1
1212 #endif
1213 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1214 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1215
1216 static void __init sun4v_ktsb_init(void)
1217 {
1218         unsigned long ktsb_pa;
1219
1220         /* First KTSB for PAGE_SIZE mappings.  */
1221         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1222
1223         switch (PAGE_SIZE) {
1224         case 8 * 1024:
1225         default:
1226                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1227                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1228                 break;
1229
1230         case 64 * 1024:
1231                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1232                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1233                 break;
1234
1235         case 512 * 1024:
1236                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1237                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1238                 break;
1239
1240         case 4 * 1024 * 1024:
1241                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1242                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1243                 break;
1244         };
1245
1246         ktsb_descr[0].assoc = 1;
1247         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1248         ktsb_descr[0].ctx_idx = 0;
1249         ktsb_descr[0].tsb_base = ktsb_pa;
1250         ktsb_descr[0].resv = 0;
1251
1252 #ifndef CONFIG_DEBUG_PAGEALLOC
1253         /* Second KTSB for 4MB/256MB mappings.  */
1254         ktsb_pa = (kern_base +
1255                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1256
1257         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1258         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1259                                    HV_PGSZ_MASK_256MB);
1260         ktsb_descr[1].assoc = 1;
1261         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1262         ktsb_descr[1].ctx_idx = 0;
1263         ktsb_descr[1].tsb_base = ktsb_pa;
1264         ktsb_descr[1].resv = 0;
1265 #endif
1266 }
1267
1268 void __cpuinit sun4v_ktsb_register(void)
1269 {
1270         unsigned long pa, ret;
1271
1272         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1273
1274         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1275         if (ret != 0) {
1276                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1277                             "errors with %lx\n", pa, ret);
1278                 prom_halt();
1279         }
1280 }
1281
1282 /* paging_init() sets up the page tables */
1283
1284 extern void central_probe(void);
1285
1286 static unsigned long last_valid_pfn;
1287 pgd_t swapper_pg_dir[2048];
1288
1289 static void sun4u_pgprot_init(void);
1290 static void sun4v_pgprot_init(void);
1291
1292 /* Dummy function */
1293 void __init setup_per_cpu_areas(void)
1294 {
1295 }
1296
1297 void __init paging_init(void)
1298 {
1299         unsigned long end_pfn, pages_avail, shift, phys_base;
1300         unsigned long real_end, i;
1301
1302         /* These build time checkes make sure that the dcache_dirty_cpu()
1303          * page->flags usage will work.
1304          *
1305          * When a page gets marked as dcache-dirty, we store the
1306          * cpu number starting at bit 32 in the page->flags.  Also,
1307          * functions like clear_dcache_dirty_cpu use the cpu mask
1308          * in 13-bit signed-immediate instruction fields.
1309          */
1310         BUILD_BUG_ON(FLAGS_RESERVED != 32);
1311         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1312                      ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1313         BUILD_BUG_ON(NR_CPUS > 4096);
1314
1315         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1316         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1317
1318         sstate_booting();
1319
1320         /* Invalidate both kernel TSBs.  */
1321         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1322 #ifndef CONFIG_DEBUG_PAGEALLOC
1323         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1324 #endif
1325
1326         if (tlb_type == hypervisor)
1327                 sun4v_pgprot_init();
1328         else
1329                 sun4u_pgprot_init();
1330
1331         if (tlb_type == cheetah_plus ||
1332             tlb_type == hypervisor)
1333                 tsb_phys_patch();
1334
1335         if (tlb_type == hypervisor) {
1336                 sun4v_patch_tlb_handlers();
1337                 sun4v_ktsb_init();
1338         }
1339
1340         /* Find available physical memory... */
1341         read_obp_memory("available", &pavail[0], &pavail_ents);
1342
1343         phys_base = 0xffffffffffffffffUL;
1344         for (i = 0; i < pavail_ents; i++)
1345                 phys_base = min(phys_base, pavail[i].phys_addr);
1346
1347         find_ramdisk(phys_base);
1348
1349         set_bit(0, mmu_context_bmap);
1350
1351         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1352
1353         real_end = (unsigned long)_end;
1354         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1355         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1356                num_kernel_image_mappings);
1357
1358         /* Set kernel pgd to upper alias so physical page computations
1359          * work.
1360          */
1361         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1362         
1363         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1364
1365         /* Now can init the kernel/bad page tables. */
1366         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1367                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1368         
1369         inherit_prom_mappings();
1370         
1371         read_obp_memory("reg", &pall[0], &pall_ents);
1372
1373         init_kpte_bitmap();
1374
1375         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1376         setup_tba();
1377
1378         __flush_tlb_all();
1379
1380         if (tlb_type == hypervisor)
1381                 sun4v_ktsb_register();
1382
1383         /* Setup bootmem... */
1384         pages_avail = 0;
1385         last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1386
1387         max_mapnr = last_valid_pfn;
1388
1389         kernel_physical_mapping_init();
1390
1391         real_setup_per_cpu_areas();
1392
1393         prom_build_devicetree();
1394
1395         if (tlb_type == hypervisor)
1396                 sun4v_mdesc_init();
1397
1398         {
1399                 unsigned long zones_size[MAX_NR_ZONES];
1400                 unsigned long zholes_size[MAX_NR_ZONES];
1401                 int znum;
1402
1403                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1404                         zones_size[znum] = zholes_size[znum] = 0;
1405
1406                 zones_size[ZONE_NORMAL] = end_pfn;
1407                 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1408
1409                 free_area_init_node(0, &contig_page_data, zones_size,
1410                                     __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1411                                     zholes_size);
1412         }
1413
1414         printk("Booting Linux...\n");
1415
1416         central_probe();
1417         cpu_probe();
1418 }
1419
1420 static void __init taint_real_pages(void)
1421 {
1422         int i;
1423
1424         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1425
1426         /* Find changes discovered in the physmem available rescan and
1427          * reserve the lost portions in the bootmem maps.
1428          */
1429         for (i = 0; i < pavail_ents; i++) {
1430                 unsigned long old_start, old_end;
1431
1432                 old_start = pavail[i].phys_addr;
1433                 old_end = old_start +
1434                         pavail[i].reg_size;
1435                 while (old_start < old_end) {
1436                         int n;
1437
1438                         for (n = 0; n < pavail_rescan_ents; n++) {
1439                                 unsigned long new_start, new_end;
1440
1441                                 new_start = pavail_rescan[n].phys_addr;
1442                                 new_end = new_start +
1443                                         pavail_rescan[n].reg_size;
1444
1445                                 if (new_start <= old_start &&
1446                                     new_end >= (old_start + PAGE_SIZE)) {
1447                                         set_bit(old_start >> 22,
1448                                                 sparc64_valid_addr_bitmap);
1449                                         goto do_next_page;
1450                                 }
1451                         }
1452                         reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1453
1454                 do_next_page:
1455                         old_start += PAGE_SIZE;
1456                 }
1457         }
1458 }
1459
1460 int __init page_in_phys_avail(unsigned long paddr)
1461 {
1462         int i;
1463
1464         paddr &= PAGE_MASK;
1465
1466         for (i = 0; i < pavail_rescan_ents; i++) {
1467                 unsigned long start, end;
1468
1469                 start = pavail_rescan[i].phys_addr;
1470                 end = start + pavail_rescan[i].reg_size;
1471
1472                 if (paddr >= start && paddr < end)
1473                         return 1;
1474         }
1475         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1476                 return 1;
1477 #ifdef CONFIG_BLK_DEV_INITRD
1478         if (paddr >= __pa(initrd_start) &&
1479             paddr < __pa(PAGE_ALIGN(initrd_end)))
1480                 return 1;
1481 #endif
1482
1483         return 0;
1484 }
1485
1486 void __init mem_init(void)
1487 {
1488         unsigned long codepages, datapages, initpages;
1489         unsigned long addr, last;
1490         int i;
1491
1492         i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1493         i += 1;
1494         sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1495         if (sparc64_valid_addr_bitmap == NULL) {
1496                 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1497                 prom_halt();
1498         }
1499         memset(sparc64_valid_addr_bitmap, 0, i << 3);
1500
1501         addr = PAGE_OFFSET + kern_base;
1502         last = PAGE_ALIGN(kern_size) + addr;
1503         while (addr < last) {
1504                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1505                 addr += PAGE_SIZE;
1506         }
1507
1508         taint_real_pages();
1509
1510         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1511
1512         /* We subtract one to account for the mem_map_zero page
1513          * allocated below.
1514          */
1515         totalram_pages = num_physpages = free_all_bootmem() - 1;
1516
1517         /*
1518          * Set up the zero page, mark it reserved, so that page count
1519          * is not manipulated when freeing the page from user ptes.
1520          */
1521         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1522         if (mem_map_zero == NULL) {
1523                 prom_printf("paging_init: Cannot alloc zero page.\n");
1524                 prom_halt();
1525         }
1526         SetPageReserved(mem_map_zero);
1527
1528         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1529         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1530         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1531         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1532         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1533         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1534
1535         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1536                nr_free_pages() << (PAGE_SHIFT-10),
1537                codepages << (PAGE_SHIFT-10),
1538                datapages << (PAGE_SHIFT-10), 
1539                initpages << (PAGE_SHIFT-10), 
1540                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1541
1542         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1543                 cheetah_ecache_flush_init();
1544 }
1545
1546 void free_initmem(void)
1547 {
1548         unsigned long addr, initend;
1549
1550         /*
1551          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1552          */
1553         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1554         initend = (unsigned long)(__init_end) & PAGE_MASK;
1555         for (; addr < initend; addr += PAGE_SIZE) {
1556                 unsigned long page;
1557                 struct page *p;
1558
1559                 page = (addr +
1560                         ((unsigned long) __va(kern_base)) -
1561                         ((unsigned long) KERNBASE));
1562                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1563                 p = virt_to_page(page);
1564
1565                 ClearPageReserved(p);
1566                 init_page_count(p);
1567                 __free_page(p);
1568                 num_physpages++;
1569                 totalram_pages++;
1570         }
1571 }
1572
1573 #ifdef CONFIG_BLK_DEV_INITRD
1574 void free_initrd_mem(unsigned long start, unsigned long end)
1575 {
1576         if (start < end)
1577                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1578         for (; start < end; start += PAGE_SIZE) {
1579                 struct page *p = virt_to_page(start);
1580
1581                 ClearPageReserved(p);
1582                 init_page_count(p);
1583                 __free_page(p);
1584                 num_physpages++;
1585                 totalram_pages++;
1586         }
1587 }
1588 #endif
1589
1590 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1591 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1592 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1593 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1594 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1595 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1596
1597 pgprot_t PAGE_KERNEL __read_mostly;
1598 EXPORT_SYMBOL(PAGE_KERNEL);
1599
1600 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1601 pgprot_t PAGE_COPY __read_mostly;
1602
1603 pgprot_t PAGE_SHARED __read_mostly;
1604 EXPORT_SYMBOL(PAGE_SHARED);
1605
1606 pgprot_t PAGE_EXEC __read_mostly;
1607 unsigned long pg_iobits __read_mostly;
1608
1609 unsigned long _PAGE_IE __read_mostly;
1610 EXPORT_SYMBOL(_PAGE_IE);
1611
1612 unsigned long _PAGE_E __read_mostly;
1613 EXPORT_SYMBOL(_PAGE_E);
1614
1615 unsigned long _PAGE_CACHE __read_mostly;
1616 EXPORT_SYMBOL(_PAGE_CACHE);
1617
1618 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1619
1620 #define VMEMMAP_CHUNK_SHIFT     22
1621 #define VMEMMAP_CHUNK           (1UL << VMEMMAP_CHUNK_SHIFT)
1622 #define VMEMMAP_CHUNK_MASK      ~(VMEMMAP_CHUNK - 1UL)
1623 #define VMEMMAP_ALIGN(x)        (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1624
1625 #define VMEMMAP_SIZE    ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1626                           sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1627 unsigned long vmemmap_table[VMEMMAP_SIZE];
1628
1629 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1630 {
1631         unsigned long vstart = (unsigned long) start;
1632         unsigned long vend = (unsigned long) (start + nr);
1633         unsigned long phys_start = (vstart - VMEMMAP_BASE);
1634         unsigned long phys_end = (vend - VMEMMAP_BASE);
1635         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1636         unsigned long end = VMEMMAP_ALIGN(phys_end);
1637         unsigned long pte_base;
1638
1639         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1640                     _PAGE_CP_4U | _PAGE_CV_4U |
1641                     _PAGE_P_4U | _PAGE_W_4U);
1642         if (tlb_type == hypervisor)
1643                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1644                             _PAGE_CP_4V | _PAGE_CV_4V |
1645                             _PAGE_P_4V | _PAGE_W_4V);
1646
1647         for (; addr < end; addr += VMEMMAP_CHUNK) {
1648                 unsigned long *vmem_pp =
1649                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1650                 void *block;
1651
1652                 if (!(*vmem_pp & _PAGE_VALID)) {
1653                         block = vmemmap_alloc_block(1UL << 22, node);
1654                         if (!block)
1655                                 return -ENOMEM;
1656
1657                         *vmem_pp = pte_base | __pa(block);
1658
1659                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
1660                                "node=%d entry=%lu/%lu\n", start, block, nr,
1661                                node,
1662                                addr >> VMEMMAP_CHUNK_SHIFT,
1663                                VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1664                 }
1665         }
1666         return 0;
1667 }
1668 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1669
1670 static void prot_init_common(unsigned long page_none,
1671                              unsigned long page_shared,
1672                              unsigned long page_copy,
1673                              unsigned long page_readonly,
1674                              unsigned long page_exec_bit)
1675 {
1676         PAGE_COPY = __pgprot(page_copy);
1677         PAGE_SHARED = __pgprot(page_shared);
1678
1679         protection_map[0x0] = __pgprot(page_none);
1680         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1681         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1682         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1683         protection_map[0x4] = __pgprot(page_readonly);
1684         protection_map[0x5] = __pgprot(page_readonly);
1685         protection_map[0x6] = __pgprot(page_copy);
1686         protection_map[0x7] = __pgprot(page_copy);
1687         protection_map[0x8] = __pgprot(page_none);
1688         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1689         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1690         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1691         protection_map[0xc] = __pgprot(page_readonly);
1692         protection_map[0xd] = __pgprot(page_readonly);
1693         protection_map[0xe] = __pgprot(page_shared);
1694         protection_map[0xf] = __pgprot(page_shared);
1695 }
1696
1697 static void __init sun4u_pgprot_init(void)
1698 {
1699         unsigned long page_none, page_shared, page_copy, page_readonly;
1700         unsigned long page_exec_bit;
1701
1702         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1703                                 _PAGE_CACHE_4U | _PAGE_P_4U |
1704                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1705                                 _PAGE_EXEC_4U);
1706         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1707                                        _PAGE_CACHE_4U | _PAGE_P_4U |
1708                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1709                                        _PAGE_EXEC_4U | _PAGE_L_4U);
1710         PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1711
1712         _PAGE_IE = _PAGE_IE_4U;
1713         _PAGE_E = _PAGE_E_4U;
1714         _PAGE_CACHE = _PAGE_CACHE_4U;
1715
1716         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1717                      __ACCESS_BITS_4U | _PAGE_E_4U);
1718
1719 #ifdef CONFIG_DEBUG_PAGEALLOC
1720         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1721                 0xfffff80000000000;
1722 #else
1723         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1724                 0xfffff80000000000;
1725 #endif
1726         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1727                                    _PAGE_P_4U | _PAGE_W_4U);
1728
1729         /* XXX Should use 256MB on Panther. XXX */
1730         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1731
1732         _PAGE_SZBITS = _PAGE_SZBITS_4U;
1733         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1734                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1735                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1736
1737
1738         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1739         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1740                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1741         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1742                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1743         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1744                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1745
1746         page_exec_bit = _PAGE_EXEC_4U;
1747
1748         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1749                          page_exec_bit);
1750 }
1751
1752 static void __init sun4v_pgprot_init(void)
1753 {
1754         unsigned long page_none, page_shared, page_copy, page_readonly;
1755         unsigned long page_exec_bit;
1756
1757         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1758                                 _PAGE_CACHE_4V | _PAGE_P_4V |
1759                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1760                                 _PAGE_EXEC_4V);
1761         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1762         PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1763
1764         _PAGE_IE = _PAGE_IE_4V;
1765         _PAGE_E = _PAGE_E_4V;
1766         _PAGE_CACHE = _PAGE_CACHE_4V;
1767
1768 #ifdef CONFIG_DEBUG_PAGEALLOC
1769         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1770                 0xfffff80000000000;
1771 #else
1772         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1773                 0xfffff80000000000;
1774 #endif
1775         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1776                                    _PAGE_P_4V | _PAGE_W_4V);
1777
1778 #ifdef CONFIG_DEBUG_PAGEALLOC
1779         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1780                 0xfffff80000000000;
1781 #else
1782         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1783                 0xfffff80000000000;
1784 #endif
1785         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1786                                    _PAGE_P_4V | _PAGE_W_4V);
1787
1788         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1789                      __ACCESS_BITS_4V | _PAGE_E_4V);
1790
1791         _PAGE_SZBITS = _PAGE_SZBITS_4V;
1792         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1793                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1794                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1795                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1796
1797         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1798         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1799                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1800         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1801                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1802         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1803                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1804
1805         page_exec_bit = _PAGE_EXEC_4V;
1806
1807         prot_init_common(page_none, page_shared, page_copy, page_readonly,
1808                          page_exec_bit);
1809 }
1810
1811 unsigned long pte_sz_bits(unsigned long sz)
1812 {
1813         if (tlb_type == hypervisor) {
1814                 switch (sz) {
1815                 case 8 * 1024:
1816                 default:
1817                         return _PAGE_SZ8K_4V;
1818                 case 64 * 1024:
1819                         return _PAGE_SZ64K_4V;
1820                 case 512 * 1024:
1821                         return _PAGE_SZ512K_4V;
1822                 case 4 * 1024 * 1024:
1823                         return _PAGE_SZ4MB_4V;
1824                 };
1825         } else {
1826                 switch (sz) {
1827                 case 8 * 1024:
1828                 default:
1829                         return _PAGE_SZ8K_4U;
1830                 case 64 * 1024:
1831                         return _PAGE_SZ64K_4U;
1832                 case 512 * 1024:
1833                         return _PAGE_SZ512K_4U;
1834                 case 4 * 1024 * 1024:
1835                         return _PAGE_SZ4MB_4U;
1836                 };
1837         }
1838 }
1839
1840 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1841 {
1842         pte_t pte;
1843
1844         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
1845         pte_val(pte) |= (((unsigned long)space) << 32);
1846         pte_val(pte) |= pte_sz_bits(page_size);
1847
1848         return pte;
1849 }
1850
1851 static unsigned long kern_large_tte(unsigned long paddr)
1852 {
1853         unsigned long val;
1854
1855         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1856                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1857                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1858         if (tlb_type == hypervisor)
1859                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1860                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1861                        _PAGE_EXEC_4V | _PAGE_W_4V);
1862
1863         return val | paddr;
1864 }
1865
1866 /* If not locked, zap it. */
1867 void __flush_tlb_all(void)
1868 {
1869         unsigned long pstate;
1870         int i;
1871
1872         __asm__ __volatile__("flushw\n\t"
1873                              "rdpr      %%pstate, %0\n\t"
1874                              "wrpr      %0, %1, %%pstate"
1875                              : "=r" (pstate)
1876                              : "i" (PSTATE_IE));
1877         if (tlb_type == hypervisor) {
1878                 sun4v_mmu_demap_all();
1879         } else if (tlb_type == spitfire) {
1880                 for (i = 0; i < 64; i++) {
1881                         /* Spitfire Errata #32 workaround */
1882                         /* NOTE: Always runs on spitfire, so no
1883                          *       cheetah+ page size encodings.
1884                          */
1885                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1886                                              "flush     %%g6"
1887                                              : /* No outputs */
1888                                              : "r" (0),
1889                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1890
1891                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1892                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1893                                                      "membar #Sync"
1894                                                      : /* no outputs */
1895                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1896                                 spitfire_put_dtlb_data(i, 0x0UL);
1897                         }
1898
1899                         /* Spitfire Errata #32 workaround */
1900                         /* NOTE: Always runs on spitfire, so no
1901                          *       cheetah+ page size encodings.
1902                          */
1903                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
1904                                              "flush     %%g6"
1905                                              : /* No outputs */
1906                                              : "r" (0),
1907                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1908
1909                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1910                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1911                                                      "membar #Sync"
1912                                                      : /* no outputs */
1913                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1914                                 spitfire_put_itlb_data(i, 0x0UL);
1915                         }
1916                 }
1917         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1918                 cheetah_flush_dtlb_all();
1919                 cheetah_flush_itlb_all();
1920         }
1921         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
1922                              : : "r" (pstate));
1923 }
1924
1925 #ifdef CONFIG_MEMORY_HOTPLUG
1926
1927 void online_page(struct page *page)
1928 {
1929         ClearPageReserved(page);
1930         init_page_count(page);
1931         __free_page(page);
1932         totalram_pages++;
1933         num_physpages++;
1934 }
1935
1936 #endif /* CONFIG_MEMORY_HOTPLUG */