1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
29 #include <asm/system.h>
31 #include <asm/pgalloc.h>
32 #include <asm/pgtable.h>
33 #include <asm/oplib.h>
34 #include <asm/iommu.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
40 #include <asm/starfire.h>
42 #include <asm/spitfire.h>
43 #include <asm/sections.h>
45 #include <asm/hypervisor.h>
47 #include <asm/sstate.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
51 #define MAX_PHYS_ADDRESS (1UL << 42UL)
52 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
53 #define KPTE_BITMAP_BYTES \
54 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
56 unsigned long kern_linear_pte_xor[2] __read_mostly;
58 /* A bitmap, one bit for every 256MB of physical memory. If the bit
59 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
60 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
62 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
64 #ifndef CONFIG_DEBUG_PAGEALLOC
65 /* A special kernel TSB for 4MB and 256MB linear mappings.
66 * Space is allocated for this right after the trap table
67 * in arch/sparc64/kernel/head.S
69 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
74 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
75 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
76 static int pavail_ents __initdata;
77 static int pavail_rescan_ents __initdata;
79 static int cmp_p64(const void *a, const void *b)
81 const struct linux_prom64_registers *x = a, *y = b;
83 if (x->phys_addr > y->phys_addr)
85 if (x->phys_addr < y->phys_addr)
90 static void __init read_obp_memory(const char *property,
91 struct linux_prom64_registers *regs,
94 int node = prom_finddevice("/memory");
95 int prop_size = prom_getproplen(node, property);
98 ents = prop_size / sizeof(struct linux_prom64_registers);
99 if (ents > MAX_BANKS) {
100 prom_printf("The machine has more %s property entries than "
101 "this kernel can support (%d).\n",
102 property, MAX_BANKS);
106 ret = prom_getproperty(node, property, (char *) regs, prop_size);
108 prom_printf("Couldn't get %s property from /memory.\n");
112 /* Sanitize what we got from the firmware, by page aligning
115 for (i = 0; i < ents; i++) {
116 unsigned long base, size;
118 base = regs[i].phys_addr;
119 size = regs[i].reg_size;
122 if (base & ~PAGE_MASK) {
123 unsigned long new_base = PAGE_ALIGN(base);
125 size -= new_base - base;
126 if ((long) size < 0L)
131 /* If it is empty, simply get rid of it.
132 * This simplifies the logic of the other
133 * functions that process these arrays.
135 memmove(®s[i], ®s[i + 1],
136 (ents - i - 1) * sizeof(regs[0]));
141 regs[i].phys_addr = base;
142 regs[i].reg_size = size;
147 sort(regs, ents, sizeof(struct linux_prom64_registers),
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
153 /* Kernel physical address base and size in bytes. */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
162 struct page *mem_map_zero __read_mostly;
164 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166 unsigned long sparc64_kern_pri_context __read_mostly;
167 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
168 unsigned long sparc64_kern_sec_context __read_mostly;
170 int num_kernel_image_mappings;
172 #ifdef CONFIG_DEBUG_DCFLUSH
173 atomic_t dcpage_flushes = ATOMIC_INIT(0);
175 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
179 inline void flush_dcache_page_impl(struct page *page)
181 BUG_ON(tlb_type == hypervisor);
182 #ifdef CONFIG_DEBUG_DCFLUSH
183 atomic_inc(&dcpage_flushes);
186 #ifdef DCACHE_ALIASING_POSSIBLE
187 __flush_dcache_page(page_address(page),
188 ((tlb_type == spitfire) &&
189 page_mapping(page) != NULL));
191 if (page_mapping(page) != NULL &&
192 tlb_type == spitfire)
193 __flush_icache_page(__pa(page_address(page)));
197 #define PG_dcache_dirty PG_arch_1
198 #define PG_dcache_cpu_shift 32UL
199 #define PG_dcache_cpu_mask \
200 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202 #define dcache_dirty_cpu(page) \
203 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 unsigned long mask = this_cpu;
208 unsigned long non_cpu_bits;
210 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
211 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213 __asm__ __volatile__("1:\n\t"
215 "and %%g7, %1, %%g1\n\t"
216 "or %%g1, %0, %%g1\n\t"
217 "casx [%2], %%g7, %%g1\n\t"
219 "membar #StoreLoad | #StoreStore\n\t"
220 "bne,pn %%xcc, 1b\n\t"
223 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
227 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
229 unsigned long mask = (1UL << PG_dcache_dirty);
231 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
234 "srlx %%g7, %4, %%g1\n\t"
235 "and %%g1, %3, %%g1\n\t"
237 "bne,pn %%icc, 2f\n\t"
238 " andn %%g7, %1, %%g1\n\t"
239 "casx [%2], %%g7, %%g1\n\t"
241 "membar #StoreLoad | #StoreStore\n\t"
242 "bne,pn %%xcc, 1b\n\t"
246 : "r" (cpu), "r" (mask), "r" (&page->flags),
247 "i" (PG_dcache_cpu_mask),
248 "i" (PG_dcache_cpu_shift)
252 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
254 unsigned long tsb_addr = (unsigned long) ent;
256 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
257 tsb_addr = __pa(tsb_addr);
259 __tsb_insert(tsb_addr, tag, pte);
262 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
263 unsigned long _PAGE_SZBITS __read_mostly;
265 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
267 struct mm_struct *mm;
269 unsigned long tag, flags;
270 unsigned long tsb_index, tsb_hash_shift;
272 if (tlb_type != hypervisor) {
273 unsigned long pfn = pte_pfn(pte);
274 unsigned long pg_flags;
277 if (pfn_valid(pfn) &&
278 (page = pfn_to_page(pfn), page_mapping(page)) &&
279 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
280 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
282 int this_cpu = get_cpu();
284 /* This is just to optimize away some function calls
288 flush_dcache_page_impl(page);
290 smp_flush_dcache_page_impl(page, cpu);
292 clear_dcache_dirty_cpu(page, cpu);
300 tsb_index = MM_TSB_BASE;
301 tsb_hash_shift = PAGE_SHIFT;
303 spin_lock_irqsave(&mm->context.lock, flags);
305 #ifdef CONFIG_HUGETLB_PAGE
306 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
307 if ((tlb_type == hypervisor &&
308 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
309 (tlb_type != hypervisor &&
310 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
311 tsb_index = MM_TSB_HUGE;
312 tsb_hash_shift = HPAGE_SHIFT;
317 tsb = mm->context.tsb_block[tsb_index].tsb;
318 tsb += ((address >> tsb_hash_shift) &
319 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
320 tag = (address >> 22UL);
321 tsb_insert(tsb, tag, pte_val(pte));
323 spin_unlock_irqrestore(&mm->context.lock, flags);
326 void flush_dcache_page(struct page *page)
328 struct address_space *mapping;
331 if (tlb_type == hypervisor)
334 /* Do not bother with the expensive D-cache flush if it
335 * is merely the zero page. The 'bigcore' testcase in GDB
336 * causes this case to run millions of times.
338 if (page == ZERO_PAGE(0))
341 this_cpu = get_cpu();
343 mapping = page_mapping(page);
344 if (mapping && !mapping_mapped(mapping)) {
345 int dirty = test_bit(PG_dcache_dirty, &page->flags);
347 int dirty_cpu = dcache_dirty_cpu(page);
349 if (dirty_cpu == this_cpu)
351 smp_flush_dcache_page_impl(page, dirty_cpu);
353 set_dcache_dirty(page, this_cpu);
355 /* We could delay the flush for the !page_mapping
356 * case too. But that case is for exec env/arg
357 * pages and those are %99 certainly going to get
358 * faulted into the tlb (and thus flushed) anyways.
360 flush_dcache_page_impl(page);
367 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
369 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
370 if (tlb_type == spitfire) {
373 /* This code only runs on Spitfire cpus so this is
374 * why we can assume _PAGE_PADDR_4U.
376 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
377 unsigned long paddr, mask = _PAGE_PADDR_4U;
379 if (kaddr >= PAGE_OFFSET)
380 paddr = kaddr & mask;
382 pgd_t *pgdp = pgd_offset_k(kaddr);
383 pud_t *pudp = pud_offset(pgdp, kaddr);
384 pmd_t *pmdp = pmd_offset(pudp, kaddr);
385 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
387 paddr = pte_val(*ptep) & mask;
389 __flush_icache_page(paddr);
396 unsigned long total = 0, reserved = 0;
397 unsigned long shared = 0, cached = 0;
400 printk(KERN_INFO "Mem-info:\n");
402 printk(KERN_INFO "Free swap: %6ldkB\n",
403 nr_swap_pages << (PAGE_SHIFT-10));
404 for_each_online_pgdat(pgdat) {
405 unsigned long i, flags;
407 pgdat_resize_lock(pgdat, &flags);
408 for (i = 0; i < pgdat->node_spanned_pages; i++) {
409 struct page *page = pgdat_page_nr(pgdat, i);
411 if (PageReserved(page))
413 else if (PageSwapCache(page))
415 else if (page_count(page))
416 shared += page_count(page) - 1;
418 pgdat_resize_unlock(pgdat, &flags);
421 printk(KERN_INFO "%lu pages of RAM\n", total);
422 printk(KERN_INFO "%lu reserved pages\n", reserved);
423 printk(KERN_INFO "%lu pages shared\n", shared);
424 printk(KERN_INFO "%lu pages swap cached\n", cached);
426 printk(KERN_INFO "%lu pages dirty\n",
427 global_page_state(NR_FILE_DIRTY));
428 printk(KERN_INFO "%lu pages writeback\n",
429 global_page_state(NR_WRITEBACK));
430 printk(KERN_INFO "%lu pages mapped\n",
431 global_page_state(NR_FILE_MAPPED));
432 printk(KERN_INFO "%lu pages slab\n",
433 global_page_state(NR_SLAB_RECLAIMABLE) +
434 global_page_state(NR_SLAB_UNRECLAIMABLE));
435 printk(KERN_INFO "%lu pages pagetables\n",
436 global_page_state(NR_PAGETABLE));
439 void mmu_info(struct seq_file *m)
441 if (tlb_type == cheetah)
442 seq_printf(m, "MMU Type\t: Cheetah\n");
443 else if (tlb_type == cheetah_plus)
444 seq_printf(m, "MMU Type\t: Cheetah+\n");
445 else if (tlb_type == spitfire)
446 seq_printf(m, "MMU Type\t: Spitfire\n");
447 else if (tlb_type == hypervisor)
448 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
450 seq_printf(m, "MMU Type\t: ???\n");
452 #ifdef CONFIG_DEBUG_DCFLUSH
453 seq_printf(m, "DCPageFlushes\t: %d\n",
454 atomic_read(&dcpage_flushes));
456 seq_printf(m, "DCPageFlushesXC\t: %d\n",
457 atomic_read(&dcpage_flushes_xcall));
458 #endif /* CONFIG_SMP */
459 #endif /* CONFIG_DEBUG_DCFLUSH */
462 struct linux_prom_translation {
468 /* Exported for kernel TLB miss handling in ktlb.S */
469 struct linux_prom_translation prom_trans[512] __read_mostly;
470 unsigned int prom_trans_ents __read_mostly;
472 /* Exported for SMP bootup purposes. */
473 unsigned long kern_locked_tte_data;
475 /* The obp translations are saved based on 8k pagesize, since obp can
476 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477 * HI_OBP_ADDRESS range are handled in ktlb.S.
479 static inline int in_obp_range(unsigned long vaddr)
481 return (vaddr >= LOW_OBP_ADDRESS &&
482 vaddr < HI_OBP_ADDRESS);
485 static int cmp_ptrans(const void *a, const void *b)
487 const struct linux_prom_translation *x = a, *y = b;
489 if (x->virt > y->virt)
491 if (x->virt < y->virt)
496 /* Read OBP translations property into 'prom_trans[]'. */
497 static void __init read_obp_translations(void)
499 int n, node, ents, first, last, i;
501 node = prom_finddevice("/virtual-memory");
502 n = prom_getproplen(node, "translations");
503 if (unlikely(n == 0 || n == -1)) {
504 prom_printf("prom_mappings: Couldn't get size.\n");
507 if (unlikely(n > sizeof(prom_trans))) {
508 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
512 if ((n = prom_getproperty(node, "translations",
513 (char *)&prom_trans[0],
514 sizeof(prom_trans))) == -1) {
515 prom_printf("prom_mappings: Couldn't get property.\n");
519 n = n / sizeof(struct linux_prom_translation);
523 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
526 /* Now kick out all the non-OBP entries. */
527 for (i = 0; i < ents; i++) {
528 if (in_obp_range(prom_trans[i].virt))
532 for (; i < ents; i++) {
533 if (!in_obp_range(prom_trans[i].virt))
538 for (i = 0; i < (last - first); i++) {
539 struct linux_prom_translation *src = &prom_trans[i + first];
540 struct linux_prom_translation *dest = &prom_trans[i];
544 for (; i < ents; i++) {
545 struct linux_prom_translation *dest = &prom_trans[i];
546 dest->virt = dest->size = dest->data = 0x0UL;
549 prom_trans_ents = last - first;
551 if (tlb_type == spitfire) {
552 /* Clear diag TTE bits. */
553 for (i = 0; i < prom_trans_ents; i++)
554 prom_trans[i].data &= ~0x0003fe0000000000UL;
558 static void __init hypervisor_tlb_lock(unsigned long vaddr,
562 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
565 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
566 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
571 static unsigned long kern_large_tte(unsigned long paddr);
573 static void __init remap_kernel(void)
575 unsigned long phys_page, tte_vaddr, tte_data;
576 int i, tlb_ent = sparc64_highest_locked_tlbent();
578 tte_vaddr = (unsigned long) KERNBASE;
579 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
580 tte_data = kern_large_tte(phys_page);
582 kern_locked_tte_data = tte_data;
584 /* Now lock us into the TLBs via Hypervisor or OBP. */
585 if (tlb_type == hypervisor) {
586 for (i = 0; i < num_kernel_image_mappings; i++) {
587 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
588 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
589 tte_vaddr += 0x400000;
590 tte_data += 0x400000;
593 for (i = 0; i < num_kernel_image_mappings; i++) {
594 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
595 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
596 tte_vaddr += 0x400000;
597 tte_data += 0x400000;
599 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
601 if (tlb_type == cheetah_plus) {
602 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
603 CTX_CHEETAH_PLUS_NUC);
604 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
605 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
610 static void __init inherit_prom_mappings(void)
612 read_obp_translations();
614 /* Now fixup OBP's idea about where we really are mapped. */
615 printk("Remapping the kernel... ");
620 void prom_world(int enter)
623 set_fs((mm_segment_t) { get_thread_current_ds() });
625 __asm__ __volatile__("flushw");
628 void __flush_dcache_range(unsigned long start, unsigned long end)
632 if (tlb_type == spitfire) {
635 for (va = start; va < end; va += 32) {
636 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
640 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
643 for (va = start; va < end; va += 32)
644 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
648 "i" (ASI_DCACHE_INVALIDATE));
652 /* get_new_mmu_context() uses "cache + 1". */
653 DEFINE_SPINLOCK(ctx_alloc_lock);
654 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
655 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
656 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
657 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
659 /* Caller does TLB context flushing on local CPU if necessary.
660 * The caller also ensures that CTX_VALID(mm->context) is false.
662 * We must be careful about boundary cases so that we never
663 * let the user have CTX 0 (nucleus) or we ever use a CTX
664 * version of zero (and thus NO_CONTEXT would not be caught
665 * by version mis-match tests in mmu_context.h).
667 * Always invoked with interrupts disabled.
669 void get_new_mmu_context(struct mm_struct *mm)
671 unsigned long ctx, new_ctx;
672 unsigned long orig_pgsz_bits;
676 spin_lock_irqsave(&ctx_alloc_lock, flags);
677 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
678 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
679 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
681 if (new_ctx >= (1 << CTX_NR_BITS)) {
682 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
683 if (new_ctx >= ctx) {
685 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
688 new_ctx = CTX_FIRST_VERSION;
690 /* Don't call memset, for 16 entries that's just
693 mmu_context_bmap[0] = 3;
694 mmu_context_bmap[1] = 0;
695 mmu_context_bmap[2] = 0;
696 mmu_context_bmap[3] = 0;
697 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
698 mmu_context_bmap[i + 0] = 0;
699 mmu_context_bmap[i + 1] = 0;
700 mmu_context_bmap[i + 2] = 0;
701 mmu_context_bmap[i + 3] = 0;
707 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
708 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
710 tlb_context_cache = new_ctx;
711 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
712 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
714 if (unlikely(new_version))
715 smp_new_mmu_context_version();
718 /* Find a free area for the bootmem map, avoiding the kernel image
719 * and the initial ramdisk.
721 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
722 unsigned long end_pfn)
724 unsigned long avoid_start, avoid_end, bootmap_size;
727 bootmap_size = bootmem_bootmap_pages(end_pfn - start_pfn);
728 bootmap_size <<= PAGE_SHIFT;
730 avoid_start = avoid_end = 0;
731 #ifdef CONFIG_BLK_DEV_INITRD
732 avoid_start = initrd_start;
733 avoid_end = PAGE_ALIGN(initrd_end);
736 for (i = 0; i < pavail_ents; i++) {
737 unsigned long start, end;
739 start = pavail[i].phys_addr;
740 end = start + pavail[i].reg_size;
742 while (start < end) {
743 if (start >= kern_base &&
744 start < PAGE_ALIGN(kern_base + kern_size)) {
745 start = PAGE_ALIGN(kern_base + kern_size);
748 if (start >= avoid_start && start < avoid_end) {
753 if ((end - start) < bootmap_size)
756 if (start < kern_base &&
757 (start + bootmap_size) > kern_base) {
758 start = PAGE_ALIGN(kern_base + kern_size);
762 if (start < avoid_start &&
763 (start + bootmap_size) > avoid_start) {
768 /* OK, it doesn't overlap anything, use it. */
769 return start >> PAGE_SHIFT;
773 prom_printf("Cannot find free area for bootmap, aborting.\n");
777 static void __init trim_pavail(unsigned long *cur_size_p,
778 unsigned long *end_of_phys_p)
780 unsigned long to_trim = *cur_size_p - cmdline_memory_size;
781 unsigned long avoid_start, avoid_end;
784 to_trim = PAGE_ALIGN(to_trim);
786 avoid_start = avoid_end = 0;
787 #ifdef CONFIG_BLK_DEV_INITRD
788 avoid_start = initrd_start;
789 avoid_end = PAGE_ALIGN(initrd_end);
792 /* Trim some pavail[] entries in order to satisfy the
793 * requested "mem=xxx" kernel command line specification.
795 * We must not trim off the kernel image area nor the
796 * initial ramdisk range (if any). Also, we must not trim
797 * any pavail[] entry down to zero in order to preserve
798 * the invariant that all pavail[] entries have a non-zero
799 * size which is assumed by all of the code in here.
801 for (i = 0; i < pavail_ents; i++) {
802 unsigned long start, end, kern_end;
803 unsigned long trim_low, trim_high, n;
805 kern_end = PAGE_ALIGN(kern_base + kern_size);
807 trim_low = start = pavail[i].phys_addr;
808 trim_high = end = start + pavail[i].reg_size;
810 if (kern_base >= start &&
812 trim_low = kern_base;
816 if (kern_end >= start &&
818 trim_high = kern_end;
821 avoid_start >= start &&
823 if (trim_low > avoid_start)
824 trim_low = avoid_start;
825 if (avoid_end >= end)
829 avoid_end >= start &&
831 if (trim_high < avoid_end)
832 trim_high = avoid_end;
835 if (trim_high <= trim_low)
838 if (trim_low == start && trim_high == end) {
839 /* Whole chunk is available for trimming.
840 * Trim all except one page, in order to keep
843 n = (end - start) - PAGE_SIZE;
848 pavail[i].phys_addr += n;
849 pavail[i].reg_size -= n;
853 n = (trim_low - start);
858 pavail[i].phys_addr += n;
859 pavail[i].reg_size -= n;
867 pavail[i].reg_size -= n;
879 for (i = 0; i < pavail_ents; i++) {
880 *end_of_phys_p = pavail[i].phys_addr +
882 *cur_size_p += pavail[i].reg_size;
886 static void __init find_ramdisk(unsigned long phys_base)
888 #ifdef CONFIG_BLK_DEV_INITRD
889 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
890 unsigned long ramdisk_image;
892 /* Older versions of the bootloader only supported a
893 * 32-bit physical address for the ramdisk image
894 * location, stored at sparc_ramdisk_image. Newer
895 * SILO versions set sparc_ramdisk_image to zero and
896 * provide a full 64-bit physical address at
897 * sparc_ramdisk_image64.
899 ramdisk_image = sparc_ramdisk_image;
901 ramdisk_image = sparc_ramdisk_image64;
903 /* Another bootloader quirk. The bootloader normalizes
904 * the physical address to KERNBASE, so we have to
905 * factor that back out and add in the lowest valid
906 * physical page address to get the true physical address.
908 ramdisk_image -= KERNBASE;
909 ramdisk_image += phys_base;
911 initrd_start = ramdisk_image;
912 initrd_end = ramdisk_image + sparc_ramdisk_size;
917 /* About pages_avail, this is the value we will use to calculate
918 * the zholes_size[] argument given to free_area_init_node(). The
919 * page allocator uses this to calculate nr_kernel_pages,
920 * nr_all_pages and zone->present_pages. On NUMA it is used
921 * to calculate zone->min_unmapped_pages and zone->min_slab_pages.
923 * So this number should really be set to what the page allocator
924 * actually ends up with. This means:
925 * 1) It should include bootmem map pages, we'll release those.
926 * 2) It should not include the kernel image, except for the
927 * __init sections which we will also release.
928 * 3) It should include the initrd image, since we'll release
931 static unsigned long __init bootmem_init(unsigned long *pages_avail,
932 unsigned long phys_base)
934 unsigned long bootmap_size, end_pfn;
935 unsigned long end_of_phys_memory = 0UL;
936 unsigned long bootmap_pfn, bytes_avail, size;
940 for (i = 0; i < pavail_ents; i++) {
941 end_of_phys_memory = pavail[i].phys_addr +
943 bytes_avail += pavail[i].reg_size;
946 if (cmdline_memory_size &&
947 bytes_avail > cmdline_memory_size)
948 trim_pavail(&bytes_avail,
949 &end_of_phys_memory);
951 *pages_avail = bytes_avail >> PAGE_SHIFT;
953 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
955 /* Initialize the boot-time allocator. */
956 max_pfn = max_low_pfn = end_pfn;
957 min_low_pfn = (phys_base >> PAGE_SHIFT);
959 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
961 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
962 min_low_pfn, end_pfn);
964 /* Now register the available physical memory with the
967 for (i = 0; i < pavail_ents; i++)
968 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
970 #ifdef CONFIG_BLK_DEV_INITRD
972 size = initrd_end - initrd_start;
974 /* Reserve the initrd image area. */
975 reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
977 initrd_start += PAGE_OFFSET;
978 initrd_end += PAGE_OFFSET;
981 /* Reserve the kernel text/data/bss. */
982 reserve_bootmem(kern_base, kern_size, BOOTMEM_DEFAULT);
983 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
985 /* Add back in the initmem pages. */
986 size = ((unsigned long)(__init_end) & PAGE_MASK) -
987 PAGE_ALIGN((unsigned long)__init_begin);
988 *pages_avail += size >> PAGE_SHIFT;
990 /* Reserve the bootmem map. We do not account for it
991 * in pages_avail because we will release that memory
992 * in free_all_bootmem.
995 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
997 for (i = 0; i < pavail_ents; i++) {
998 unsigned long start_pfn, end_pfn;
1000 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
1001 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
1002 memory_present(0, start_pfn, end_pfn);
1010 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1011 static int pall_ents __initdata;
1013 #ifdef CONFIG_DEBUG_PAGEALLOC
1014 static unsigned long __ref kernel_map_range(unsigned long pstart,
1015 unsigned long pend, pgprot_t prot)
1017 unsigned long vstart = PAGE_OFFSET + pstart;
1018 unsigned long vend = PAGE_OFFSET + pend;
1019 unsigned long alloc_bytes = 0UL;
1021 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1022 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1027 while (vstart < vend) {
1028 unsigned long this_end, paddr = __pa(vstart);
1029 pgd_t *pgd = pgd_offset_k(vstart);
1034 pud = pud_offset(pgd, vstart);
1035 if (pud_none(*pud)) {
1038 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1039 alloc_bytes += PAGE_SIZE;
1040 pud_populate(&init_mm, pud, new);
1043 pmd = pmd_offset(pud, vstart);
1044 if (!pmd_present(*pmd)) {
1047 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1048 alloc_bytes += PAGE_SIZE;
1049 pmd_populate_kernel(&init_mm, pmd, new);
1052 pte = pte_offset_kernel(pmd, vstart);
1053 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1054 if (this_end > vend)
1057 while (vstart < this_end) {
1058 pte_val(*pte) = (paddr | pgprot_val(prot));
1060 vstart += PAGE_SIZE;
1069 extern unsigned int kvmap_linear_patch[1];
1070 #endif /* CONFIG_DEBUG_PAGEALLOC */
1072 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1074 const unsigned long shift_256MB = 28;
1075 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1076 const unsigned long size_256MB = (1UL << shift_256MB);
1078 while (start < end) {
1081 remains = end - start;
1082 if (remains < size_256MB)
1085 if (start & mask_256MB) {
1086 start = (start + size_256MB) & ~mask_256MB;
1090 while (remains >= size_256MB) {
1091 unsigned long index = start >> shift_256MB;
1093 __set_bit(index, kpte_linear_bitmap);
1095 start += size_256MB;
1096 remains -= size_256MB;
1101 static void __init init_kpte_bitmap(void)
1105 for (i = 0; i < pall_ents; i++) {
1106 unsigned long phys_start, phys_end;
1108 phys_start = pall[i].phys_addr;
1109 phys_end = phys_start + pall[i].reg_size;
1111 mark_kpte_bitmap(phys_start, phys_end);
1115 static void __init kernel_physical_mapping_init(void)
1117 #ifdef CONFIG_DEBUG_PAGEALLOC
1118 unsigned long i, mem_alloced = 0UL;
1120 for (i = 0; i < pall_ents; i++) {
1121 unsigned long phys_start, phys_end;
1123 phys_start = pall[i].phys_addr;
1124 phys_end = phys_start + pall[i].reg_size;
1126 mem_alloced += kernel_map_range(phys_start, phys_end,
1130 printk("Allocated %ld bytes for kernel page tables.\n",
1133 kvmap_linear_patch[0] = 0x01000000; /* nop */
1134 flushi(&kvmap_linear_patch[0]);
1140 #ifdef CONFIG_DEBUG_PAGEALLOC
1141 void kernel_map_pages(struct page *page, int numpages, int enable)
1143 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1144 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1146 kernel_map_range(phys_start, phys_end,
1147 (enable ? PAGE_KERNEL : __pgprot(0)));
1149 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1150 PAGE_OFFSET + phys_end);
1152 /* we should perform an IPI and flush all tlbs,
1153 * but that can deadlock->flush only current cpu.
1155 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1156 PAGE_OFFSET + phys_end);
1160 unsigned long __init find_ecache_flush_span(unsigned long size)
1164 for (i = 0; i < pavail_ents; i++) {
1165 if (pavail[i].reg_size >= size)
1166 return pavail[i].phys_addr;
1172 static void __init tsb_phys_patch(void)
1174 struct tsb_ldquad_phys_patch_entry *pquad;
1175 struct tsb_phys_patch_entry *p;
1177 pquad = &__tsb_ldquad_phys_patch;
1178 while (pquad < &__tsb_ldquad_phys_patch_end) {
1179 unsigned long addr = pquad->addr;
1181 if (tlb_type == hypervisor)
1182 *(unsigned int *) addr = pquad->sun4v_insn;
1184 *(unsigned int *) addr = pquad->sun4u_insn;
1186 __asm__ __volatile__("flush %0"
1193 p = &__tsb_phys_patch;
1194 while (p < &__tsb_phys_patch_end) {
1195 unsigned long addr = p->addr;
1197 *(unsigned int *) addr = p->insn;
1199 __asm__ __volatile__("flush %0"
1207 /* Don't mark as init, we give this to the Hypervisor. */
1208 #ifndef CONFIG_DEBUG_PAGEALLOC
1209 #define NUM_KTSB_DESCR 2
1211 #define NUM_KTSB_DESCR 1
1213 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1214 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1216 static void __init sun4v_ktsb_init(void)
1218 unsigned long ktsb_pa;
1220 /* First KTSB for PAGE_SIZE mappings. */
1221 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1223 switch (PAGE_SIZE) {
1226 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1227 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1231 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1232 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1236 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1237 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1240 case 4 * 1024 * 1024:
1241 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1242 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1246 ktsb_descr[0].assoc = 1;
1247 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1248 ktsb_descr[0].ctx_idx = 0;
1249 ktsb_descr[0].tsb_base = ktsb_pa;
1250 ktsb_descr[0].resv = 0;
1252 #ifndef CONFIG_DEBUG_PAGEALLOC
1253 /* Second KTSB for 4MB/256MB mappings. */
1254 ktsb_pa = (kern_base +
1255 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1257 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1258 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1259 HV_PGSZ_MASK_256MB);
1260 ktsb_descr[1].assoc = 1;
1261 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1262 ktsb_descr[1].ctx_idx = 0;
1263 ktsb_descr[1].tsb_base = ktsb_pa;
1264 ktsb_descr[1].resv = 0;
1268 void __cpuinit sun4v_ktsb_register(void)
1270 unsigned long pa, ret;
1272 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1274 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1276 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1277 "errors with %lx\n", pa, ret);
1282 /* paging_init() sets up the page tables */
1284 extern void central_probe(void);
1286 static unsigned long last_valid_pfn;
1287 pgd_t swapper_pg_dir[2048];
1289 static void sun4u_pgprot_init(void);
1290 static void sun4v_pgprot_init(void);
1292 /* Dummy function */
1293 void __init setup_per_cpu_areas(void)
1297 void __init paging_init(void)
1299 unsigned long end_pfn, pages_avail, shift, phys_base;
1300 unsigned long real_end, i;
1302 /* These build time checkes make sure that the dcache_dirty_cpu()
1303 * page->flags usage will work.
1305 * When a page gets marked as dcache-dirty, we store the
1306 * cpu number starting at bit 32 in the page->flags. Also,
1307 * functions like clear_dcache_dirty_cpu use the cpu mask
1308 * in 13-bit signed-immediate instruction fields.
1310 BUILD_BUG_ON(FLAGS_RESERVED != 32);
1311 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1312 ilog2(roundup_pow_of_two(NR_CPUS)) > FLAGS_RESERVED);
1313 BUILD_BUG_ON(NR_CPUS > 4096);
1315 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1316 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1320 /* Invalidate both kernel TSBs. */
1321 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1322 #ifndef CONFIG_DEBUG_PAGEALLOC
1323 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1326 if (tlb_type == hypervisor)
1327 sun4v_pgprot_init();
1329 sun4u_pgprot_init();
1331 if (tlb_type == cheetah_plus ||
1332 tlb_type == hypervisor)
1335 if (tlb_type == hypervisor) {
1336 sun4v_patch_tlb_handlers();
1340 /* Find available physical memory... */
1341 read_obp_memory("available", &pavail[0], &pavail_ents);
1343 phys_base = 0xffffffffffffffffUL;
1344 for (i = 0; i < pavail_ents; i++)
1345 phys_base = min(phys_base, pavail[i].phys_addr);
1347 find_ramdisk(phys_base);
1349 set_bit(0, mmu_context_bmap);
1351 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1353 real_end = (unsigned long)_end;
1354 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1355 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1356 num_kernel_image_mappings);
1358 /* Set kernel pgd to upper alias so physical page computations
1361 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1363 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1365 /* Now can init the kernel/bad page tables. */
1366 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1367 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1369 inherit_prom_mappings();
1371 read_obp_memory("reg", &pall[0], &pall_ents);
1375 /* Ok, we can use our TLB miss and window trap handlers safely. */
1380 if (tlb_type == hypervisor)
1381 sun4v_ktsb_register();
1383 /* Setup bootmem... */
1385 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1387 max_mapnr = last_valid_pfn;
1389 kernel_physical_mapping_init();
1391 real_setup_per_cpu_areas();
1393 prom_build_devicetree();
1395 if (tlb_type == hypervisor)
1399 unsigned long zones_size[MAX_NR_ZONES];
1400 unsigned long zholes_size[MAX_NR_ZONES];
1403 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1404 zones_size[znum] = zholes_size[znum] = 0;
1406 zones_size[ZONE_NORMAL] = end_pfn;
1407 zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
1409 free_area_init_node(0, &contig_page_data, zones_size,
1410 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1414 printk("Booting Linux...\n");
1420 static void __init taint_real_pages(void)
1424 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1426 /* Find changes discovered in the physmem available rescan and
1427 * reserve the lost portions in the bootmem maps.
1429 for (i = 0; i < pavail_ents; i++) {
1430 unsigned long old_start, old_end;
1432 old_start = pavail[i].phys_addr;
1433 old_end = old_start +
1435 while (old_start < old_end) {
1438 for (n = 0; n < pavail_rescan_ents; n++) {
1439 unsigned long new_start, new_end;
1441 new_start = pavail_rescan[n].phys_addr;
1442 new_end = new_start +
1443 pavail_rescan[n].reg_size;
1445 if (new_start <= old_start &&
1446 new_end >= (old_start + PAGE_SIZE)) {
1447 set_bit(old_start >> 22,
1448 sparc64_valid_addr_bitmap);
1452 reserve_bootmem(old_start, PAGE_SIZE, BOOTMEM_DEFAULT);
1455 old_start += PAGE_SIZE;
1460 int __init page_in_phys_avail(unsigned long paddr)
1466 for (i = 0; i < pavail_rescan_ents; i++) {
1467 unsigned long start, end;
1469 start = pavail_rescan[i].phys_addr;
1470 end = start + pavail_rescan[i].reg_size;
1472 if (paddr >= start && paddr < end)
1475 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1477 #ifdef CONFIG_BLK_DEV_INITRD
1478 if (paddr >= __pa(initrd_start) &&
1479 paddr < __pa(PAGE_ALIGN(initrd_end)))
1486 void __init mem_init(void)
1488 unsigned long codepages, datapages, initpages;
1489 unsigned long addr, last;
1492 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1494 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1495 if (sparc64_valid_addr_bitmap == NULL) {
1496 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1499 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1501 addr = PAGE_OFFSET + kern_base;
1502 last = PAGE_ALIGN(kern_size) + addr;
1503 while (addr < last) {
1504 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1510 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1512 /* We subtract one to account for the mem_map_zero page
1515 totalram_pages = num_physpages = free_all_bootmem() - 1;
1518 * Set up the zero page, mark it reserved, so that page count
1519 * is not manipulated when freeing the page from user ptes.
1521 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1522 if (mem_map_zero == NULL) {
1523 prom_printf("paging_init: Cannot alloc zero page.\n");
1526 SetPageReserved(mem_map_zero);
1528 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1529 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1530 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1531 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1532 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1533 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1535 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1536 nr_free_pages() << (PAGE_SHIFT-10),
1537 codepages << (PAGE_SHIFT-10),
1538 datapages << (PAGE_SHIFT-10),
1539 initpages << (PAGE_SHIFT-10),
1540 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1542 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1543 cheetah_ecache_flush_init();
1546 void free_initmem(void)
1548 unsigned long addr, initend;
1551 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1553 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1554 initend = (unsigned long)(__init_end) & PAGE_MASK;
1555 for (; addr < initend; addr += PAGE_SIZE) {
1560 ((unsigned long) __va(kern_base)) -
1561 ((unsigned long) KERNBASE));
1562 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1563 p = virt_to_page(page);
1565 ClearPageReserved(p);
1573 #ifdef CONFIG_BLK_DEV_INITRD
1574 void free_initrd_mem(unsigned long start, unsigned long end)
1577 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1578 for (; start < end; start += PAGE_SIZE) {
1579 struct page *p = virt_to_page(start);
1581 ClearPageReserved(p);
1590 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1591 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1592 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1593 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1594 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1595 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1597 pgprot_t PAGE_KERNEL __read_mostly;
1598 EXPORT_SYMBOL(PAGE_KERNEL);
1600 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1601 pgprot_t PAGE_COPY __read_mostly;
1603 pgprot_t PAGE_SHARED __read_mostly;
1604 EXPORT_SYMBOL(PAGE_SHARED);
1606 pgprot_t PAGE_EXEC __read_mostly;
1607 unsigned long pg_iobits __read_mostly;
1609 unsigned long _PAGE_IE __read_mostly;
1610 EXPORT_SYMBOL(_PAGE_IE);
1612 unsigned long _PAGE_E __read_mostly;
1613 EXPORT_SYMBOL(_PAGE_E);
1615 unsigned long _PAGE_CACHE __read_mostly;
1616 EXPORT_SYMBOL(_PAGE_CACHE);
1618 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1620 #define VMEMMAP_CHUNK_SHIFT 22
1621 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
1622 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
1623 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
1625 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
1626 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
1627 unsigned long vmemmap_table[VMEMMAP_SIZE];
1629 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
1631 unsigned long vstart = (unsigned long) start;
1632 unsigned long vend = (unsigned long) (start + nr);
1633 unsigned long phys_start = (vstart - VMEMMAP_BASE);
1634 unsigned long phys_end = (vend - VMEMMAP_BASE);
1635 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
1636 unsigned long end = VMEMMAP_ALIGN(phys_end);
1637 unsigned long pte_base;
1639 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1640 _PAGE_CP_4U | _PAGE_CV_4U |
1641 _PAGE_P_4U | _PAGE_W_4U);
1642 if (tlb_type == hypervisor)
1643 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1644 _PAGE_CP_4V | _PAGE_CV_4V |
1645 _PAGE_P_4V | _PAGE_W_4V);
1647 for (; addr < end; addr += VMEMMAP_CHUNK) {
1648 unsigned long *vmem_pp =
1649 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
1652 if (!(*vmem_pp & _PAGE_VALID)) {
1653 block = vmemmap_alloc_block(1UL << 22, node);
1657 *vmem_pp = pte_base | __pa(block);
1659 printk(KERN_INFO "[%p-%p] page_structs=%lu "
1660 "node=%d entry=%lu/%lu\n", start, block, nr,
1662 addr >> VMEMMAP_CHUNK_SHIFT,
1663 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
1668 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1670 static void prot_init_common(unsigned long page_none,
1671 unsigned long page_shared,
1672 unsigned long page_copy,
1673 unsigned long page_readonly,
1674 unsigned long page_exec_bit)
1676 PAGE_COPY = __pgprot(page_copy);
1677 PAGE_SHARED = __pgprot(page_shared);
1679 protection_map[0x0] = __pgprot(page_none);
1680 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1681 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1682 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1683 protection_map[0x4] = __pgprot(page_readonly);
1684 protection_map[0x5] = __pgprot(page_readonly);
1685 protection_map[0x6] = __pgprot(page_copy);
1686 protection_map[0x7] = __pgprot(page_copy);
1687 protection_map[0x8] = __pgprot(page_none);
1688 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1689 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1690 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1691 protection_map[0xc] = __pgprot(page_readonly);
1692 protection_map[0xd] = __pgprot(page_readonly);
1693 protection_map[0xe] = __pgprot(page_shared);
1694 protection_map[0xf] = __pgprot(page_shared);
1697 static void __init sun4u_pgprot_init(void)
1699 unsigned long page_none, page_shared, page_copy, page_readonly;
1700 unsigned long page_exec_bit;
1702 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1703 _PAGE_CACHE_4U | _PAGE_P_4U |
1704 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1706 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1707 _PAGE_CACHE_4U | _PAGE_P_4U |
1708 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1709 _PAGE_EXEC_4U | _PAGE_L_4U);
1710 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1712 _PAGE_IE = _PAGE_IE_4U;
1713 _PAGE_E = _PAGE_E_4U;
1714 _PAGE_CACHE = _PAGE_CACHE_4U;
1716 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1717 __ACCESS_BITS_4U | _PAGE_E_4U);
1719 #ifdef CONFIG_DEBUG_PAGEALLOC
1720 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
1723 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1726 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1727 _PAGE_P_4U | _PAGE_W_4U);
1729 /* XXX Should use 256MB on Panther. XXX */
1730 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1732 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1733 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1734 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1735 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1738 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1739 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1740 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1741 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1742 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1743 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1744 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1746 page_exec_bit = _PAGE_EXEC_4U;
1748 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1752 static void __init sun4v_pgprot_init(void)
1754 unsigned long page_none, page_shared, page_copy, page_readonly;
1755 unsigned long page_exec_bit;
1757 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1758 _PAGE_CACHE_4V | _PAGE_P_4V |
1759 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1761 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1762 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1764 _PAGE_IE = _PAGE_IE_4V;
1765 _PAGE_E = _PAGE_E_4V;
1766 _PAGE_CACHE = _PAGE_CACHE_4V;
1768 #ifdef CONFIG_DEBUG_PAGEALLOC
1769 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1772 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1775 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1776 _PAGE_P_4V | _PAGE_W_4V);
1778 #ifdef CONFIG_DEBUG_PAGEALLOC
1779 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
1782 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1785 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1786 _PAGE_P_4V | _PAGE_W_4V);
1788 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1789 __ACCESS_BITS_4V | _PAGE_E_4V);
1791 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1792 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1793 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1794 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1795 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1797 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1798 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1799 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1800 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1801 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1802 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1803 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1805 page_exec_bit = _PAGE_EXEC_4V;
1807 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1811 unsigned long pte_sz_bits(unsigned long sz)
1813 if (tlb_type == hypervisor) {
1817 return _PAGE_SZ8K_4V;
1819 return _PAGE_SZ64K_4V;
1821 return _PAGE_SZ512K_4V;
1822 case 4 * 1024 * 1024:
1823 return _PAGE_SZ4MB_4V;
1829 return _PAGE_SZ8K_4U;
1831 return _PAGE_SZ64K_4U;
1833 return _PAGE_SZ512K_4U;
1834 case 4 * 1024 * 1024:
1835 return _PAGE_SZ4MB_4U;
1840 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1844 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1845 pte_val(pte) |= (((unsigned long)space) << 32);
1846 pte_val(pte) |= pte_sz_bits(page_size);
1851 static unsigned long kern_large_tte(unsigned long paddr)
1855 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1856 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1857 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1858 if (tlb_type == hypervisor)
1859 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1860 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1861 _PAGE_EXEC_4V | _PAGE_W_4V);
1866 /* If not locked, zap it. */
1867 void __flush_tlb_all(void)
1869 unsigned long pstate;
1872 __asm__ __volatile__("flushw\n\t"
1873 "rdpr %%pstate, %0\n\t"
1874 "wrpr %0, %1, %%pstate"
1877 if (tlb_type == hypervisor) {
1878 sun4v_mmu_demap_all();
1879 } else if (tlb_type == spitfire) {
1880 for (i = 0; i < 64; i++) {
1881 /* Spitfire Errata #32 workaround */
1882 /* NOTE: Always runs on spitfire, so no
1883 * cheetah+ page size encodings.
1885 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1889 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1891 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1892 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1895 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1896 spitfire_put_dtlb_data(i, 0x0UL);
1899 /* Spitfire Errata #32 workaround */
1900 /* NOTE: Always runs on spitfire, so no
1901 * cheetah+ page size encodings.
1903 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1907 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1909 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1910 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1913 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1914 spitfire_put_itlb_data(i, 0x0UL);
1917 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1918 cheetah_flush_dtlb_all();
1919 cheetah_flush_itlb_all();
1921 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1925 #ifdef CONFIG_MEMORY_HOTPLUG
1927 void online_page(struct page *page)
1929 ClearPageReserved(page);
1930 init_page_count(page);
1936 #endif /* CONFIG_MEMORY_HOTPLUG */