Merge branch 'tmp' into upstream
[linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #define __KERNEL_SYSCALLS__
154 #include <linux/fs.h>
155 #include <linux/mm.h>
156 #include <linux/slab.h>
157 #include <linux/unistd.h>
158 #include <linux/stringify.h>
159 #include <linux/tcp.h>
160 #include <linux/types.h>
161 #include <linux/version.h>
162 #include <linux/time.h>
163 #include <linux/firmware.h>
164 #include <linux/acpi.h>
165 #include <linux/ctype.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_work(priv->workqueue, &priv->reset_work);
683
684                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685                         priv->reset_backoff++;
686
687                 wake_up_interruptible(&priv->wait_command_queue);
688         } else
689                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690                                priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696                                    struct host_command *cmd)
697 {
698         struct list_head *element;
699         struct ipw2100_tx_packet *packet;
700         unsigned long flags;
701         int err = 0;
702
703         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704                      command_types[cmd->host_command], cmd->host_command,
705                      cmd->host_command_length);
706         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707                    cmd->host_command_length);
708
709         spin_lock_irqsave(&priv->low_lock, flags);
710
711         if (priv->fatal_error) {
712                 IPW_DEBUG_INFO
713                     ("Attempt to send command while hardware in fatal error condition.\n");
714                 err = -EIO;
715                 goto fail_unlock;
716         }
717
718         if (!(priv->status & STATUS_RUNNING)) {
719                 IPW_DEBUG_INFO
720                     ("Attempt to send command while hardware is not running.\n");
721                 err = -EIO;
722                 goto fail_unlock;
723         }
724
725         if (priv->status & STATUS_CMD_ACTIVE) {
726                 IPW_DEBUG_INFO
727                     ("Attempt to send command while another command is pending.\n");
728                 err = -EBUSY;
729                 goto fail_unlock;
730         }
731
732         if (list_empty(&priv->msg_free_list)) {
733                 IPW_DEBUG_INFO("no available msg buffers\n");
734                 goto fail_unlock;
735         }
736
737         priv->status |= STATUS_CMD_ACTIVE;
738         priv->messages_sent++;
739
740         element = priv->msg_free_list.next;
741
742         packet = list_entry(element, struct ipw2100_tx_packet, list);
743         packet->jiffy_start = jiffies;
744
745         /* initialize the firmware command packet */
746         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748         packet->info.c_struct.cmd->host_command_len_reg =
749             cmd->host_command_length;
750         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753                cmd->host_command_parameters,
754                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756         list_del(element);
757         DEC_STAT(&priv->msg_free_stat);
758
759         list_add_tail(element, &priv->msg_pend_list);
760         INC_STAT(&priv->msg_pend_stat);
761
762         ipw2100_tx_send_commands(priv);
763         ipw2100_tx_send_data(priv);
764
765         spin_unlock_irqrestore(&priv->low_lock, flags);
766
767         /*
768          * We must wait for this command to complete before another
769          * command can be sent...  but if we wait more than 3 seconds
770          * then there is a problem.
771          */
772
773         err =
774             wait_event_interruptible_timeout(priv->wait_command_queue,
775                                              !(priv->
776                                                status & STATUS_CMD_ACTIVE),
777                                              HOST_COMPLETE_TIMEOUT);
778
779         if (err == 0) {
780                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783                 priv->status &= ~STATUS_CMD_ACTIVE;
784                 schedule_reset(priv);
785                 return -EIO;
786         }
787
788         if (priv->fatal_error) {
789                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790                        priv->net_dev->name);
791                 return -EIO;
792         }
793
794         /* !!!!! HACK TEST !!!!!
795          * When lots of debug trace statements are enabled, the driver
796          * doesn't seem to have as many firmware restart cycles...
797          *
798          * As a test, we're sticking in a 1/100s delay here */
799         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801         return 0;
802
803       fail_unlock:
804         spin_unlock_irqrestore(&priv->low_lock, flags);
805
806         return err;
807 }
808
809 /*
810  * Verify the values and data access of the hardware
811  * No locks needed or used.  No functions called.
812  */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815         u32 data1, data2;
816         u32 address;
817
818         u32 val1 = 0x76543210;
819         u32 val2 = 0xFEDCBA98;
820
821         /* Domain 0 check - all values should be DOA_DEBUG */
822         for (address = IPW_REG_DOA_DEBUG_AREA_START;
823              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824                 read_register(priv->net_dev, address, &data1);
825                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826                         return -EIO;
827         }
828
829         /* Domain 1 check - use arbitrary read/write compare  */
830         for (address = 0; address < 5; address++) {
831                 /* The memory area is not used now */
832                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833                                val1);
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835                                val2);
836                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837                               &data1);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839                               &data2);
840                 if (val1 == data1 && val2 == data2)
841                         return 0;
842         }
843
844         return -EIO;
845 }
846
847 /*
848  *
849  * Loop until the CARD_DISABLED bit is the same value as the
850  * supplied parameter
851  *
852  * TODO: See if it would be more efficient to do a wait/wake
853  *       cycle and have the completion event trigger the wakeup
854  *
855  */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859         int i;
860         u32 card_state;
861         u32 len = sizeof(card_state);
862         int err;
863
864         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866                                           &card_state, &len);
867                 if (err) {
868                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869                                        "failed.\n");
870                         return 0;
871                 }
872
873                 /* We'll break out if either the HW state says it is
874                  * in the state we want, or if HOST_COMPLETE command
875                  * finishes */
876                 if ((card_state == state) ||
877                     ((priv->status & STATUS_ENABLED) ?
878                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879                         if (state == IPW_HW_STATE_ENABLED)
880                                 priv->status |= STATUS_ENABLED;
881                         else
882                                 priv->status &= ~STATUS_ENABLED;
883
884                         return 0;
885                 }
886
887                 udelay(50);
888         }
889
890         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891                        state ? "DISABLED" : "ENABLED");
892         return -EIO;
893 }
894
895 /*********************************************************************
896     Procedure   :   sw_reset_and_clock
897     Purpose     :   Asserts s/w reset, asserts clock initialization
898                     and waits for clock stabilization
899  ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902         int i;
903         u32 r;
904
905         // assert s/w reset
906         write_register(priv->net_dev, IPW_REG_RESET_REG,
907                        IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909         // wait for clock stabilization
910         for (i = 0; i < 1000; i++) {
911                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913                 // check clock ready bit
914                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916                         break;
917         }
918
919         if (i == 1000)
920                 return -EIO;    // TODO: better error value
921
922         /* set "initialization complete" bit to move adapter to
923          * D0 state */
924         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927         /* wait for clock stabilization */
928         for (i = 0; i < 10000; i++) {
929                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931                 /* check clock ready bit */
932                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934                         break;
935         }
936
937         if (i == 10000)
938                 return -EIO;    /* TODO: better error value */
939
940         /* set D0 standby bit */
941         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945         return 0;
946 }
947
948 /*********************************************************************
949     Procedure   :   ipw2100_download_firmware
950     Purpose     :   Initiaze adapter after power on.
951                     The sequence is:
952                     1. assert s/w reset first!
953                     2. awake clocks & wait for clock stabilization
954                     3. hold ARC (don't ask me why...)
955                     4. load Dino ucode and reset/clock init again
956                     5. zero-out shared mem
957                     6. download f/w
958  *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961         u32 address;
962         int err;
963
964 #ifndef CONFIG_PM
965         /* Fetch the firmware and microcode */
966         struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969         if (priv->fatal_error) {
970                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971                                 "fatal error %d.  Interface must be brought down.\n",
972                                 priv->net_dev->name, priv->fatal_error);
973                 return -EINVAL;
974         }
975 #ifdef CONFIG_PM
976         if (!ipw2100_firmware.version) {
977                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978                 if (err) {
979                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980                                         priv->net_dev->name, err);
981                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
982                         goto fail;
983                 }
984         }
985 #else
986         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987         if (err) {
988                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989                                 priv->net_dev->name, err);
990                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991                 goto fail;
992         }
993 #endif
994         priv->firmware_version = ipw2100_firmware.version;
995
996         /* s/w reset and clock stabilization */
997         err = sw_reset_and_clock(priv);
998         if (err) {
999                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000                                 priv->net_dev->name, err);
1001                 goto fail;
1002         }
1003
1004         err = ipw2100_verify(priv);
1005         if (err) {
1006                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007                                 priv->net_dev->name, err);
1008                 goto fail;
1009         }
1010
1011         /* Hold ARC */
1012         write_nic_dword(priv->net_dev,
1013                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015         /* allow ARC to run */
1016         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018         /* load microcode */
1019         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020         if (err) {
1021                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022                        priv->net_dev->name, err);
1023                 goto fail;
1024         }
1025
1026         /* release ARC */
1027         write_nic_dword(priv->net_dev,
1028                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030         /* s/w reset and clock stabilization (again!!!) */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 printk(KERN_ERR DRV_NAME
1034                        ": %s: sw_reset_and_clock failed: %d\n",
1035                        priv->net_dev->name, err);
1036                 goto fail;
1037         }
1038
1039         /* load f/w */
1040         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041         if (err) {
1042                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043                                 priv->net_dev->name, err);
1044                 goto fail;
1045         }
1046 #ifndef CONFIG_PM
1047         /*
1048          * When the .resume method of the driver is called, the other
1049          * part of the system, i.e. the ide driver could still stay in
1050          * the suspend stage. This prevents us from loading the firmware
1051          * from the disk.  --YZ
1052          */
1053
1054         /* free any storage allocated for firmware image */
1055         ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058         /* zero out Domain 1 area indirectly (Si requirement) */
1059         for (address = IPW_HOST_FW_SHARED_AREA0;
1060              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061                 write_nic_dword(priv->net_dev, address, 0);
1062         for (address = IPW_HOST_FW_SHARED_AREA1;
1063              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064                 write_nic_dword(priv->net_dev, address, 0);
1065         for (address = IPW_HOST_FW_SHARED_AREA2;
1066              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067                 write_nic_dword(priv->net_dev, address, 0);
1068         for (address = IPW_HOST_FW_SHARED_AREA3;
1069              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070                 write_nic_dword(priv->net_dev, address, 0);
1071         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073                 write_nic_dword(priv->net_dev, address, 0);
1074
1075         return 0;
1076
1077       fail:
1078         ipw2100_release_firmware(priv, &ipw2100_firmware);
1079         return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084         if (priv->status & STATUS_INT_ENABLED)
1085                 return;
1086         priv->status |= STATUS_INT_ENABLED;
1087         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092         if (!(priv->status & STATUS_INT_ENABLED))
1093                 return;
1094         priv->status &= ~STATUS_INT_ENABLED;
1095         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100         struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102         IPW_DEBUG_INFO("enter\n");
1103
1104         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105                       &ord->table1_addr);
1106
1107         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108                       &ord->table2_addr);
1109
1110         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113         ord->table2_size &= 0x0000FFFF;
1114
1115         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117         IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122         u32 reg = 0;
1123         /*
1124          * Set GPIO 3 writable by FW; GPIO 1 writable
1125          * by driver and enable clock
1126          */
1127         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128                IPW_BIT_GPIO_LED_OFF);
1129         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137         unsigned short value = 0;
1138         u32 reg = 0;
1139         int i;
1140
1141         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142                 priv->status &= ~STATUS_RF_KILL_HW;
1143                 return 0;
1144         }
1145
1146         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147                 udelay(RF_KILL_CHECK_DELAY);
1148                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150         }
1151
1152         if (value == 0)
1153                 priv->status |= STATUS_RF_KILL_HW;
1154         else
1155                 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157         return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162         u32 addr, len;
1163         u32 val;
1164
1165         /*
1166          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167          */
1168         len = sizeof(addr);
1169         if (ipw2100_get_ordinal
1170             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172                                __LINE__);
1173                 return -EIO;
1174         }
1175
1176         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178         /*
1179          * EEPROM version is the byte at offset 0xfd in firmware
1180          * We read 4 bytes, then shift out the byte we actually want */
1181         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182         priv->eeprom_version = (val >> 24) & 0xFF;
1183         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185         /*
1186          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187          *
1188          *  notice that the EEPROM bit is reverse polarity, i.e.
1189          *     bit = 0  signifies HW RF kill switch is supported
1190          *     bit = 1  signifies HW RF kill switch is NOT supported
1191          */
1192         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193         if (!((val >> 24) & 0x01))
1194                 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199         return 0;
1200 }
1201
1202 /*
1203  * Start firmware execution after power on and intialization
1204  * The sequence is:
1205  *  1. Release ARC
1206  *  2. Wait for f/w initialization completes;
1207  */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210         int i;
1211         u32 inta, inta_mask, gpio;
1212
1213         IPW_DEBUG_INFO("enter\n");
1214
1215         if (priv->status & STATUS_RUNNING)
1216                 return 0;
1217
1218         /*
1219          * Initialize the hw - drive adapter to DO state by setting
1220          * init_done bit. Wait for clk_ready bit and Download
1221          * fw & dino ucode
1222          */
1223         if (ipw2100_download_firmware(priv)) {
1224                 printk(KERN_ERR DRV_NAME
1225                        ": %s: Failed to power on the adapter.\n",
1226                        priv->net_dev->name);
1227                 return -EIO;
1228         }
1229
1230         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231          * in the firmware RBD and TBD ring queue */
1232         ipw2100_queues_initialize(priv);
1233
1234         ipw2100_hw_set_gpio(priv);
1235
1236         /* TODO -- Look at disabling interrupts here to make sure none
1237          * get fired during FW initialization */
1238
1239         /* Release ARC - clear reset bit */
1240         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242         /* wait for f/w intialization complete */
1243         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244         i = 5000;
1245         do {
1246                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247                 /* Todo... wait for sync command ... */
1248
1249                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251                 /* check "init done" bit */
1252                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253                         /* reset "init done" bit */
1254                         write_register(priv->net_dev, IPW_REG_INTA,
1255                                        IPW2100_INTA_FW_INIT_DONE);
1256                         break;
1257                 }
1258
1259                 /* check error conditions : we check these after the firmware
1260                  * check so that if there is an error, the interrupt handler
1261                  * will see it and the adapter will be reset */
1262                 if (inta &
1263                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264                         /* clear error conditions */
1265                         write_register(priv->net_dev, IPW_REG_INTA,
1266                                        IPW2100_INTA_FATAL_ERROR |
1267                                        IPW2100_INTA_PARITY_ERROR);
1268                 }
1269         } while (i--);
1270
1271         /* Clear out any pending INTAs since we aren't supposed to have
1272          * interrupts enabled at this point... */
1273         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275         inta &= IPW_INTERRUPT_MASK;
1276         /* Clear out any pending interrupts */
1277         if (inta & inta_mask)
1278                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281                      i ? "SUCCESS" : "FAILED");
1282
1283         if (!i) {
1284                 printk(KERN_WARNING DRV_NAME
1285                        ": %s: Firmware did not initialize.\n",
1286                        priv->net_dev->name);
1287                 return -EIO;
1288         }
1289
1290         /* allow firmware to write to GPIO1 & GPIO3 */
1291         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297         /* Ready to receive commands */
1298         priv->status |= STATUS_RUNNING;
1299
1300         /* The adapter has been reset; we are not associated */
1301         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303         IPW_DEBUG_INFO("exit\n");
1304
1305         return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310         if (!priv->fatal_error)
1311                 return;
1312
1313         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315         priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321         u32 reg;
1322         int i;
1323
1324         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326         ipw2100_hw_set_gpio(priv);
1327
1328         /* Step 1. Stop Master Assert */
1329         write_register(priv->net_dev, IPW_REG_RESET_REG,
1330                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332         /* Step 2. Wait for stop Master Assert
1333          *         (not more then 50us, otherwise ret error */
1334         i = 5;
1335         do {
1336                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340                         break;
1341         } while (i--);
1342
1343         priv->status &= ~STATUS_RESET_PENDING;
1344
1345         if (!i) {
1346                 IPW_DEBUG_INFO
1347                     ("exit - waited too long for master assert stop\n");
1348                 return -EIO;
1349         }
1350
1351         write_register(priv->net_dev, IPW_REG_RESET_REG,
1352                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354         /* Reset any fatal_error conditions */
1355         ipw2100_reset_fatalerror(priv);
1356
1357         /* At this point, the adapter is now stopped and disabled */
1358         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359                           STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361         return 0;
1362 }
1363
1364 /*
1365  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366  *
1367  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368  *
1369  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370  * if STATUS_ASSN_LOST is sent.
1371  */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377         struct host_command cmd = {
1378                 .host_command = CARD_DISABLE_PHY_OFF,
1379                 .host_command_sequence = 0,
1380                 .host_command_length = 0,
1381         };
1382         int err, i;
1383         u32 val1, val2;
1384
1385         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387         /* Turn off the radio */
1388         err = ipw2100_hw_send_command(priv, &cmd);
1389         if (err)
1390                 return err;
1391
1392         for (i = 0; i < 2500; i++) {
1393                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397                     (val2 & IPW2100_COMMAND_PHY_OFF))
1398                         return 0;
1399
1400                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401         }
1402
1403         return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408         struct host_command cmd = {
1409                 .host_command = HOST_COMPLETE,
1410                 .host_command_sequence = 0,
1411                 .host_command_length = 0
1412         };
1413         int err = 0;
1414
1415         IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417         if (priv->status & STATUS_ENABLED)
1418                 return 0;
1419
1420         mutex_lock(&priv->adapter_mutex);
1421
1422         if (rf_kill_active(priv)) {
1423                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424                 goto fail_up;
1425         }
1426
1427         err = ipw2100_hw_send_command(priv, &cmd);
1428         if (err) {
1429                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430                 goto fail_up;
1431         }
1432
1433         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434         if (err) {
1435                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436                                priv->net_dev->name);
1437                 goto fail_up;
1438         }
1439
1440         if (priv->stop_hang_check) {
1441                 priv->stop_hang_check = 0;
1442                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443         }
1444
1445       fail_up:
1446         mutex_unlock(&priv->adapter_mutex);
1447         return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454         struct host_command cmd = {
1455                 .host_command = HOST_PRE_POWER_DOWN,
1456                 .host_command_sequence = 0,
1457                 .host_command_length = 0,
1458         };
1459         int err, i;
1460         u32 reg;
1461
1462         if (!(priv->status & STATUS_RUNNING))
1463                 return 0;
1464
1465         priv->status |= STATUS_STOPPING;
1466
1467         /* We can only shut down the card if the firmware is operational.  So,
1468          * if we haven't reset since a fatal_error, then we can not send the
1469          * shutdown commands. */
1470         if (!priv->fatal_error) {
1471                 /* First, make sure the adapter is enabled so that the PHY_OFF
1472                  * command can shut it down */
1473                 ipw2100_enable_adapter(priv);
1474
1475                 err = ipw2100_hw_phy_off(priv);
1476                 if (err)
1477                         printk(KERN_WARNING DRV_NAME
1478                                ": Error disabling radio %d\n", err);
1479
1480                 /*
1481                  * If in D0-standby mode going directly to D3 may cause a
1482                  * PCI bus violation.  Therefore we must change out of the D0
1483                  * state.
1484                  *
1485                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486                  * hardware from going into standby mode and will transition
1487                  * out of D0-standby if it is already in that state.
1488                  *
1489                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490                  * driver upon completion.  Once received, the driver can
1491                  * proceed to the D3 state.
1492                  *
1493                  * Prepare for power down command to fw.  This command would
1494                  * take HW out of D0-standby and prepare it for D3 state.
1495                  *
1496                  * Currently FW does not support event notification for this
1497                  * event. Therefore, skip waiting for it.  Just wait a fixed
1498                  * 100ms
1499                  */
1500                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502                 err = ipw2100_hw_send_command(priv, &cmd);
1503                 if (err)
1504                         printk(KERN_WARNING DRV_NAME ": "
1505                                "%s: Power down command failed: Error %d\n",
1506                                priv->net_dev->name, err);
1507                 else
1508                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509         }
1510
1511         priv->status &= ~STATUS_ENABLED;
1512
1513         /*
1514          * Set GPIO 3 writable by FW; GPIO 1 writable
1515          * by driver and enable clock
1516          */
1517         ipw2100_hw_set_gpio(priv);
1518
1519         /*
1520          * Power down adapter.  Sequence:
1521          * 1. Stop master assert (RESET_REG[9]=1)
1522          * 2. Wait for stop master (RESET_REG[8]==1)
1523          * 3. S/w reset assert (RESET_REG[7] = 1)
1524          */
1525
1526         /* Stop master assert */
1527         write_register(priv->net_dev, IPW_REG_RESET_REG,
1528                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530         /* wait stop master not more than 50 usec.
1531          * Otherwise return error. */
1532         for (i = 5; i > 0; i--) {
1533                 udelay(10);
1534
1535                 /* Check master stop bit */
1536                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539                         break;
1540         }
1541
1542         if (i == 0)
1543                 printk(KERN_WARNING DRV_NAME
1544                        ": %s: Could now power down adapter.\n",
1545                        priv->net_dev->name);
1546
1547         /* assert s/w reset */
1548         write_register(priv->net_dev, IPW_REG_RESET_REG,
1549                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553         return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558         struct host_command cmd = {
1559                 .host_command = CARD_DISABLE,
1560                 .host_command_sequence = 0,
1561                 .host_command_length = 0
1562         };
1563         int err = 0;
1564
1565         IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567         if (!(priv->status & STATUS_ENABLED))
1568                 return 0;
1569
1570         /* Make sure we clear the associated state */
1571         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573         if (!priv->stop_hang_check) {
1574                 priv->stop_hang_check = 1;
1575                 cancel_delayed_work(&priv->hang_check);
1576         }
1577
1578         mutex_lock(&priv->adapter_mutex);
1579
1580         err = ipw2100_hw_send_command(priv, &cmd);
1581         if (err) {
1582                 printk(KERN_WARNING DRV_NAME
1583                        ": exit - failed to send CARD_DISABLE command\n");
1584                 goto fail_up;
1585         }
1586
1587         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588         if (err) {
1589                 printk(KERN_WARNING DRV_NAME
1590                        ": exit - card failed to change to DISABLED\n");
1591                 goto fail_up;
1592         }
1593
1594         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596       fail_up:
1597         mutex_unlock(&priv->adapter_mutex);
1598         return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603         struct host_command cmd = {
1604                 .host_command = SET_SCAN_OPTIONS,
1605                 .host_command_sequence = 0,
1606                 .host_command_length = 8
1607         };
1608         int err;
1609
1610         IPW_DEBUG_INFO("enter\n");
1611
1612         IPW_DEBUG_SCAN("setting scan options\n");
1613
1614         cmd.host_command_parameters[0] = 0;
1615
1616         if (!(priv->config & CFG_ASSOCIATE))
1617                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620         if (priv->config & CFG_PASSIVE_SCAN)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623         cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625         err = ipw2100_hw_send_command(priv, &cmd);
1626
1627         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628                      cmd.host_command_parameters[0]);
1629
1630         return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635         struct host_command cmd = {
1636                 .host_command = BROADCAST_SCAN,
1637                 .host_command_sequence = 0,
1638                 .host_command_length = 4
1639         };
1640         int err;
1641
1642         IPW_DEBUG_HC("START_SCAN\n");
1643
1644         cmd.host_command_parameters[0] = 0;
1645
1646         /* No scanning if in monitor mode */
1647         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648                 return 1;
1649
1650         if (priv->status & STATUS_SCANNING) {
1651                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652                 return 0;
1653         }
1654
1655         IPW_DEBUG_INFO("enter\n");
1656
1657         /* Not clearing here; doing so makes iwlist always return nothing...
1658          *
1659          * We should modify the table logic to use aging tables vs. clearing
1660          * the table on each scan start.
1661          */
1662         IPW_DEBUG_SCAN("starting scan\n");
1663
1664         priv->status |= STATUS_SCANNING;
1665         err = ipw2100_hw_send_command(priv, &cmd);
1666         if (err)
1667                 priv->status &= ~STATUS_SCANNING;
1668
1669         IPW_DEBUG_INFO("exit\n");
1670
1671         return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675         {                       /* Restricted */
1676          "---",
1677          .bg_channels = 14,
1678          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679                 {2427, 4}, {2432, 5}, {2437, 6},
1680                 {2442, 7}, {2447, 8}, {2452, 9},
1681                 {2457, 10}, {2462, 11}, {2467, 12},
1682                 {2472, 13}, {2484, 14}},
1683          },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688         unsigned long flags;
1689         int rc = 0;
1690         u32 lock;
1691         u32 ord_len = sizeof(lock);
1692
1693         /* Quite if manually disabled. */
1694         if (priv->status & STATUS_RF_KILL_SW) {
1695                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696                                "switch\n", priv->net_dev->name);
1697                 return 0;
1698         }
1699
1700         /* If the interrupt is enabled, turn it off... */
1701         spin_lock_irqsave(&priv->low_lock, flags);
1702         ipw2100_disable_interrupts(priv);
1703
1704         /* Reset any fatal_error conditions */
1705         ipw2100_reset_fatalerror(priv);
1706         spin_unlock_irqrestore(&priv->low_lock, flags);
1707
1708         if (priv->status & STATUS_POWERED ||
1709             (priv->status & STATUS_RESET_PENDING)) {
1710                 /* Power cycle the card ... */
1711                 if (ipw2100_power_cycle_adapter(priv)) {
1712                         printk(KERN_WARNING DRV_NAME
1713                                ": %s: Could not cycle adapter.\n",
1714                                priv->net_dev->name);
1715                         rc = 1;
1716                         goto exit;
1717                 }
1718         } else
1719                 priv->status |= STATUS_POWERED;
1720
1721         /* Load the firmware, start the clocks, etc. */
1722         if (ipw2100_start_adapter(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to start the firmware.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         ipw2100_initialize_ordinals(priv);
1731
1732         /* Determine capabilities of this particular HW configuration */
1733         if (ipw2100_get_hw_features(priv)) {
1734                 printk(KERN_ERR DRV_NAME
1735                        ": %s: Failed to determine HW features.\n",
1736                        priv->net_dev->name);
1737                 rc = 1;
1738                 goto exit;
1739         }
1740
1741         /* Initialize the geo */
1742         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1743                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1744                 return 0;
1745         }
1746         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1747
1748         lock = LOCK_NONE;
1749         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1750                 printk(KERN_ERR DRV_NAME
1751                        ": %s: Failed to clear ordinal lock.\n",
1752                        priv->net_dev->name);
1753                 rc = 1;
1754                 goto exit;
1755         }
1756
1757         priv->status &= ~STATUS_SCANNING;
1758
1759         if (rf_kill_active(priv)) {
1760                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1761                        priv->net_dev->name);
1762
1763                 if (priv->stop_rf_kill) {
1764                         priv->stop_rf_kill = 0;
1765                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1766                 }
1767
1768                 deferred = 1;
1769         }
1770
1771         /* Turn on the interrupt so that commands can be processed */
1772         ipw2100_enable_interrupts(priv);
1773
1774         /* Send all of the commands that must be sent prior to
1775          * HOST_COMPLETE */
1776         if (ipw2100_adapter_setup(priv)) {
1777                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1778                        priv->net_dev->name);
1779                 rc = 1;
1780                 goto exit;
1781         }
1782
1783         if (!deferred) {
1784                 /* Enable the adapter - sends HOST_COMPLETE */
1785                 if (ipw2100_enable_adapter(priv)) {
1786                         printk(KERN_ERR DRV_NAME ": "
1787                                "%s: failed in call to enable adapter.\n",
1788                                priv->net_dev->name);
1789                         ipw2100_hw_stop_adapter(priv);
1790                         rc = 1;
1791                         goto exit;
1792                 }
1793
1794                 /* Start a scan . . . */
1795                 ipw2100_set_scan_options(priv);
1796                 ipw2100_start_scan(priv);
1797         }
1798
1799       exit:
1800         return rc;
1801 }
1802
1803 /* Called by register_netdev() */
1804 static int ipw2100_net_init(struct net_device *dev)
1805 {
1806         struct ipw2100_priv *priv = ieee80211_priv(dev);
1807         return ipw2100_up(priv, 1);
1808 }
1809
1810 static void ipw2100_down(struct ipw2100_priv *priv)
1811 {
1812         unsigned long flags;
1813         union iwreq_data wrqu = {
1814                 .ap_addr = {
1815                             .sa_family = ARPHRD_ETHER}
1816         };
1817         int associated = priv->status & STATUS_ASSOCIATED;
1818
1819         /* Kill the RF switch timer */
1820         if (!priv->stop_rf_kill) {
1821                 priv->stop_rf_kill = 1;
1822                 cancel_delayed_work(&priv->rf_kill);
1823         }
1824
1825         /* Kill the firmare hang check timer */
1826         if (!priv->stop_hang_check) {
1827                 priv->stop_hang_check = 1;
1828                 cancel_delayed_work(&priv->hang_check);
1829         }
1830
1831         /* Kill any pending resets */
1832         if (priv->status & STATUS_RESET_PENDING)
1833                 cancel_delayed_work(&priv->reset_work);
1834
1835         /* Make sure the interrupt is on so that FW commands will be
1836          * processed correctly */
1837         spin_lock_irqsave(&priv->low_lock, flags);
1838         ipw2100_enable_interrupts(priv);
1839         spin_unlock_irqrestore(&priv->low_lock, flags);
1840
1841         if (ipw2100_hw_stop_adapter(priv))
1842                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1843                        priv->net_dev->name);
1844
1845         /* Do not disable the interrupt until _after_ we disable
1846          * the adaptor.  Otherwise the CARD_DISABLE command will never
1847          * be ack'd by the firmware */
1848         spin_lock_irqsave(&priv->low_lock, flags);
1849         ipw2100_disable_interrupts(priv);
1850         spin_unlock_irqrestore(&priv->low_lock, flags);
1851
1852 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1853         if (priv->config & CFG_C3_DISABLED) {
1854                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1855                 acpi_set_cstate_limit(priv->cstate_limit);
1856                 priv->config &= ~CFG_C3_DISABLED;
1857         }
1858 #endif
1859
1860         /* We have to signal any supplicant if we are disassociating */
1861         if (associated)
1862                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1863
1864         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1865         netif_carrier_off(priv->net_dev);
1866         netif_stop_queue(priv->net_dev);
1867 }
1868
1869 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1870 {
1871         unsigned long flags;
1872         union iwreq_data wrqu = {
1873                 .ap_addr = {
1874                             .sa_family = ARPHRD_ETHER}
1875         };
1876         int associated = priv->status & STATUS_ASSOCIATED;
1877
1878         spin_lock_irqsave(&priv->low_lock, flags);
1879         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1880         priv->resets++;
1881         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1882         priv->status |= STATUS_SECURITY_UPDATED;
1883
1884         /* Force a power cycle even if interface hasn't been opened
1885          * yet */
1886         cancel_delayed_work(&priv->reset_work);
1887         priv->status |= STATUS_RESET_PENDING;
1888         spin_unlock_irqrestore(&priv->low_lock, flags);
1889
1890         mutex_lock(&priv->action_mutex);
1891         /* stop timed checks so that they don't interfere with reset */
1892         priv->stop_hang_check = 1;
1893         cancel_delayed_work(&priv->hang_check);
1894
1895         /* We have to signal any supplicant if we are disassociating */
1896         if (associated)
1897                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1898
1899         ipw2100_up(priv, 0);
1900         mutex_unlock(&priv->action_mutex);
1901
1902 }
1903
1904 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1905 {
1906
1907 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1908         int ret, len, essid_len;
1909         char essid[IW_ESSID_MAX_SIZE];
1910         u32 txrate;
1911         u32 chan;
1912         char *txratename;
1913         u8 bssid[ETH_ALEN];
1914
1915         /*
1916          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1917          *      an actual MAC of the AP. Seems like FW sets this
1918          *      address too late. Read it later and expose through
1919          *      /proc or schedule a later task to query and update
1920          */
1921
1922         essid_len = IW_ESSID_MAX_SIZE;
1923         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1924                                   essid, &essid_len);
1925         if (ret) {
1926                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1927                                __LINE__);
1928                 return;
1929         }
1930
1931         len = sizeof(u32);
1932         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1933         if (ret) {
1934                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1935                                __LINE__);
1936                 return;
1937         }
1938
1939         len = sizeof(u32);
1940         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1941         if (ret) {
1942                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1943                                __LINE__);
1944                 return;
1945         }
1946         len = ETH_ALEN;
1947         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1948         if (ret) {
1949                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950                                __LINE__);
1951                 return;
1952         }
1953         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1954
1955         switch (txrate) {
1956         case TX_RATE_1_MBIT:
1957                 txratename = "1Mbps";
1958                 break;
1959         case TX_RATE_2_MBIT:
1960                 txratename = "2Mbsp";
1961                 break;
1962         case TX_RATE_5_5_MBIT:
1963                 txratename = "5.5Mbps";
1964                 break;
1965         case TX_RATE_11_MBIT:
1966                 txratename = "11Mbps";
1967                 break;
1968         default:
1969                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1970                 txratename = "unknown rate";
1971                 break;
1972         }
1973
1974         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1975                        MAC_FMT ")\n",
1976                        priv->net_dev->name, escape_essid(essid, essid_len),
1977                        txratename, chan, MAC_ARG(bssid));
1978
1979         /* now we copy read ssid into dev */
1980         if (!(priv->config & CFG_STATIC_ESSID)) {
1981                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1982                 memcpy(priv->essid, essid, priv->essid_len);
1983         }
1984         priv->channel = chan;
1985         memcpy(priv->bssid, bssid, ETH_ALEN);
1986
1987         priv->status |= STATUS_ASSOCIATING;
1988         priv->connect_start = get_seconds();
1989
1990         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1991 }
1992
1993 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1994                              int length, int batch_mode)
1995 {
1996         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1997         struct host_command cmd = {
1998                 .host_command = SSID,
1999                 .host_command_sequence = 0,
2000                 .host_command_length = ssid_len
2001         };
2002         int err;
2003
2004         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2005
2006         if (ssid_len)
2007                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2008
2009         if (!batch_mode) {
2010                 err = ipw2100_disable_adapter(priv);
2011                 if (err)
2012                         return err;
2013         }
2014
2015         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2016          * disable auto association -- so we cheat by setting a bogus SSID */
2017         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2018                 int i;
2019                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2020                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2021                         bogus[i] = 0x18 + i;
2022                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2023         }
2024
2025         /* NOTE:  We always send the SSID command even if the provided ESSID is
2026          * the same as what we currently think is set. */
2027
2028         err = ipw2100_hw_send_command(priv, &cmd);
2029         if (!err) {
2030                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2031                 memcpy(priv->essid, essid, ssid_len);
2032                 priv->essid_len = ssid_len;
2033         }
2034
2035         if (!batch_mode) {
2036                 if (ipw2100_enable_adapter(priv))
2037                         err = -EIO;
2038         }
2039
2040         return err;
2041 }
2042
2043 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2044 {
2045         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2046                   "disassociated: '%s' " MAC_FMT " \n",
2047                   escape_essid(priv->essid, priv->essid_len),
2048                   MAC_ARG(priv->bssid));
2049
2050         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2051
2052         if (priv->status & STATUS_STOPPING) {
2053                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2054                 return;
2055         }
2056
2057         memset(priv->bssid, 0, ETH_ALEN);
2058         memset(priv->ieee->bssid, 0, ETH_ALEN);
2059
2060         netif_carrier_off(priv->net_dev);
2061         netif_stop_queue(priv->net_dev);
2062
2063         if (!(priv->status & STATUS_RUNNING))
2064                 return;
2065
2066         if (priv->status & STATUS_SECURITY_UPDATED)
2067                 queue_work(priv->workqueue, &priv->security_work);
2068
2069         queue_work(priv->workqueue, &priv->wx_event_work);
2070 }
2071
2072 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2073 {
2074         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2075                        priv->net_dev->name);
2076
2077         /* RF_KILL is now enabled (else we wouldn't be here) */
2078         priv->status |= STATUS_RF_KILL_HW;
2079
2080 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2081         if (priv->config & CFG_C3_DISABLED) {
2082                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2083                 acpi_set_cstate_limit(priv->cstate_limit);
2084                 priv->config &= ~CFG_C3_DISABLED;
2085         }
2086 #endif
2087
2088         /* Make sure the RF Kill check timer is running */
2089         priv->stop_rf_kill = 0;
2090         cancel_delayed_work(&priv->rf_kill);
2091         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2092 }
2093
2094 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2095 {
2096         IPW_DEBUG_SCAN("scan complete\n");
2097         /* Age the scan results... */
2098         priv->ieee->scans++;
2099         priv->status &= ~STATUS_SCANNING;
2100 }
2101
2102 #ifdef CONFIG_IPW2100_DEBUG
2103 #define IPW2100_HANDLER(v, f) { v, f, # v }
2104 struct ipw2100_status_indicator {
2105         int status;
2106         void (*cb) (struct ipw2100_priv * priv, u32 status);
2107         char *name;
2108 };
2109 #else
2110 #define IPW2100_HANDLER(v, f) { v, f }
2111 struct ipw2100_status_indicator {
2112         int status;
2113         void (*cb) (struct ipw2100_priv * priv, u32 status);
2114 };
2115 #endif                          /* CONFIG_IPW2100_DEBUG */
2116
2117 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2118 {
2119         IPW_DEBUG_SCAN("Scanning...\n");
2120         priv->status |= STATUS_SCANNING;
2121 }
2122
2123 static const struct ipw2100_status_indicator status_handlers[] = {
2124         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2125         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2126         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2127         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2129         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2130         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2131         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2133         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2134         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2135         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2136         IPW2100_HANDLER(-1, NULL)
2137 };
2138
2139 static void isr_status_change(struct ipw2100_priv *priv, int status)
2140 {
2141         int i;
2142
2143         if (status == IPW_STATE_SCANNING &&
2144             priv->status & STATUS_ASSOCIATED &&
2145             !(priv->status & STATUS_SCANNING)) {
2146                 IPW_DEBUG_INFO("Scan detected while associated, with "
2147                                "no scan request.  Restarting firmware.\n");
2148
2149                 /* Wake up any sleeping jobs */
2150                 schedule_reset(priv);
2151         }
2152
2153         for (i = 0; status_handlers[i].status != -1; i++) {
2154                 if (status == status_handlers[i].status) {
2155                         IPW_DEBUG_NOTIF("Status change: %s\n",
2156                                         status_handlers[i].name);
2157                         if (status_handlers[i].cb)
2158                                 status_handlers[i].cb(priv, status);
2159                         priv->wstats.status = status;
2160                         return;
2161                 }
2162         }
2163
2164         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2165 }
2166
2167 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2168                                     struct ipw2100_cmd_header *cmd)
2169 {
2170 #ifdef CONFIG_IPW2100_DEBUG
2171         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2172                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2173                              command_types[cmd->host_command_reg],
2174                              cmd->host_command_reg);
2175         }
2176 #endif
2177         if (cmd->host_command_reg == HOST_COMPLETE)
2178                 priv->status |= STATUS_ENABLED;
2179
2180         if (cmd->host_command_reg == CARD_DISABLE)
2181                 priv->status &= ~STATUS_ENABLED;
2182
2183         priv->status &= ~STATUS_CMD_ACTIVE;
2184
2185         wake_up_interruptible(&priv->wait_command_queue);
2186 }
2187
2188 #ifdef CONFIG_IPW2100_DEBUG
2189 static const char *frame_types[] = {
2190         "COMMAND_STATUS_VAL",
2191         "STATUS_CHANGE_VAL",
2192         "P80211_DATA_VAL",
2193         "P8023_DATA_VAL",
2194         "HOST_NOTIFICATION_VAL"
2195 };
2196 #endif
2197
2198 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2199                                     struct ipw2100_rx_packet *packet)
2200 {
2201         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2202         if (!packet->skb)
2203                 return -ENOMEM;
2204
2205         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2206         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2207                                           sizeof(struct ipw2100_rx),
2208                                           PCI_DMA_FROMDEVICE);
2209         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2210          *       dma_addr */
2211
2212         return 0;
2213 }
2214
2215 #define SEARCH_ERROR   0xffffffff
2216 #define SEARCH_FAIL    0xfffffffe
2217 #define SEARCH_SUCCESS 0xfffffff0
2218 #define SEARCH_DISCARD 0
2219 #define SEARCH_SNAPSHOT 1
2220
2221 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2222 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2223 {
2224         int i;
2225         if (!priv->snapshot[0])
2226                 return;
2227         for (i = 0; i < 0x30; i++)
2228                 kfree(priv->snapshot[i]);
2229         priv->snapshot[0] = NULL;
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG_C3
2233 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2234 {
2235         int i;
2236         if (priv->snapshot[0])
2237                 return 1;
2238         for (i = 0; i < 0x30; i++) {
2239                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2240                 if (!priv->snapshot[i]) {
2241                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2242                                        "buffer %d\n", priv->net_dev->name, i);
2243                         while (i > 0)
2244                                 kfree(priv->snapshot[--i]);
2245                         priv->snapshot[0] = NULL;
2246                         return 0;
2247                 }
2248         }
2249
2250         return 1;
2251 }
2252
2253 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2254                                     size_t len, int mode)
2255 {
2256         u32 i, j;
2257         u32 tmp;
2258         u8 *s, *d;
2259         u32 ret;
2260
2261         s = in_buf;
2262         if (mode == SEARCH_SNAPSHOT) {
2263                 if (!ipw2100_snapshot_alloc(priv))
2264                         mode = SEARCH_DISCARD;
2265         }
2266
2267         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2268                 read_nic_dword(priv->net_dev, i, &tmp);
2269                 if (mode == SEARCH_SNAPSHOT)
2270                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2271                 if (ret == SEARCH_FAIL) {
2272                         d = (u8 *) & tmp;
2273                         for (j = 0; j < 4; j++) {
2274                                 if (*s != *d) {
2275                                         s = in_buf;
2276                                         continue;
2277                                 }
2278
2279                                 s++;
2280                                 d++;
2281
2282                                 if ((s - in_buf) == len)
2283                                         ret = (i + j) - len + 1;
2284                         }
2285                 } else if (mode == SEARCH_DISCARD)
2286                         return ret;
2287         }
2288
2289         return ret;
2290 }
2291 #endif
2292
2293 /*
2294  *
2295  * 0) Disconnect the SKB from the firmware (just unmap)
2296  * 1) Pack the ETH header into the SKB
2297  * 2) Pass the SKB to the network stack
2298  *
2299  * When packet is provided by the firmware, it contains the following:
2300  *
2301  * .  ieee80211_hdr
2302  * .  ieee80211_snap_hdr
2303  *
2304  * The size of the constructed ethernet
2305  *
2306  */
2307 #ifdef CONFIG_IPW2100_RX_DEBUG
2308 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2309 #endif
2310
2311 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2312 {
2313 #ifdef CONFIG_IPW2100_DEBUG_C3
2314         struct ipw2100_status *status = &priv->status_queue.drv[i];
2315         u32 match, reg;
2316         int j;
2317 #endif
2318 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2319         int limit;
2320 #endif
2321
2322         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2323                        i * sizeof(struct ipw2100_status));
2324
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2327         limit = acpi_get_cstate_limit();
2328         if (limit > 2) {
2329                 priv->cstate_limit = limit;
2330                 acpi_set_cstate_limit(2);
2331                 priv->config |= CFG_C3_DISABLED;
2332         }
2333 #endif
2334
2335 #ifdef CONFIG_IPW2100_DEBUG_C3
2336         /* Halt the fimrware so we can get a good image */
2337         write_register(priv->net_dev, IPW_REG_RESET_REG,
2338                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2339         j = 5;
2340         do {
2341                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2342                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2343
2344                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2345                         break;
2346         } while (j--);
2347
2348         match = ipw2100_match_buf(priv, (u8 *) status,
2349                                   sizeof(struct ipw2100_status),
2350                                   SEARCH_SNAPSHOT);
2351         if (match < SEARCH_SUCCESS)
2352                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2353                                "offset 0x%06X, length %d:\n",
2354                                priv->net_dev->name, match,
2355                                sizeof(struct ipw2100_status));
2356         else
2357                 IPW_DEBUG_INFO("%s: No DMA status match in "
2358                                "Firmware.\n", priv->net_dev->name);
2359
2360         printk_buf((u8 *) priv->status_queue.drv,
2361                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2362 #endif
2363
2364         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2365         priv->ieee->stats.rx_errors++;
2366         schedule_reset(priv);
2367 }
2368
2369 static void isr_rx(struct ipw2100_priv *priv, int i,
2370                           struct ieee80211_rx_stats *stats)
2371 {
2372         struct ipw2100_status *status = &priv->status_queue.drv[i];
2373         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2374
2375         IPW_DEBUG_RX("Handler...\n");
2376
2377         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2378                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2379                                "  Dropping.\n",
2380                                priv->net_dev->name,
2381                                status->frame_size, skb_tailroom(packet->skb));
2382                 priv->ieee->stats.rx_errors++;
2383                 return;
2384         }
2385
2386         if (unlikely(!netif_running(priv->net_dev))) {
2387                 priv->ieee->stats.rx_errors++;
2388                 priv->wstats.discard.misc++;
2389                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2390                 return;
2391         }
2392
2393         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2394                      !(priv->status & STATUS_ASSOCIATED))) {
2395                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2396                 priv->wstats.discard.misc++;
2397                 return;
2398         }
2399
2400         pci_unmap_single(priv->pci_dev,
2401                          packet->dma_addr,
2402                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2403
2404         skb_put(packet->skb, status->frame_size);
2405
2406 #ifdef CONFIG_IPW2100_RX_DEBUG
2407         /* Make a copy of the frame so we can dump it to the logs if
2408          * ieee80211_rx fails */
2409         memcpy(packet_data, packet->skb->data,
2410                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2411 #endif
2412
2413         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2414 #ifdef CONFIG_IPW2100_RX_DEBUG
2415                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2416                                priv->net_dev->name);
2417                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2418 #endif
2419                 priv->ieee->stats.rx_errors++;
2420
2421                 /* ieee80211_rx failed, so it didn't free the SKB */
2422                 dev_kfree_skb_any(packet->skb);
2423                 packet->skb = NULL;
2424         }
2425
2426         /* We need to allocate a new SKB and attach it to the RDB. */
2427         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2428                 printk(KERN_WARNING DRV_NAME ": "
2429                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2430                        "adapter.\n", priv->net_dev->name);
2431                 /* TODO: schedule adapter shutdown */
2432                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2433         }
2434
2435         /* Update the RDB entry */
2436         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2437 }
2438
2439 #ifdef CONFIG_IPW2100_MONITOR
2440
2441 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2442                    struct ieee80211_rx_stats *stats)
2443 {
2444         struct ipw2100_status *status = &priv->status_queue.drv[i];
2445         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2446
2447         /* Magic struct that slots into the radiotap header -- no reason
2448          * to build this manually element by element, we can write it much
2449          * more efficiently than we can parse it. ORDER MATTERS HERE */
2450         struct ipw_rt_hdr {
2451                 struct ieee80211_radiotap_header rt_hdr;
2452                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2453         } *ipw_rt;
2454
2455         IPW_DEBUG_RX("Handler...\n");
2456
2457         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2458                                 sizeof(struct ipw_rt_hdr))) {
2459                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460                                "  Dropping.\n",
2461                                priv->net_dev->name,
2462                                status->frame_size,
2463                                skb_tailroom(packet->skb));
2464                 priv->ieee->stats.rx_errors++;
2465                 return;
2466         }
2467
2468         if (unlikely(!netif_running(priv->net_dev))) {
2469                 priv->ieee->stats.rx_errors++;
2470                 priv->wstats.discard.misc++;
2471                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2472                 return;
2473         }
2474
2475         if (unlikely(priv->config & CFG_CRC_CHECK &&
2476                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2477                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2478                 priv->ieee->stats.rx_errors++;
2479                 return;
2480         }
2481
2482         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2483                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2485                 packet->skb->data, status->frame_size);
2486
2487         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2488
2489         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2490         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2491         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2492
2493         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2494
2495         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2496
2497         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2498
2499         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2500                 priv->ieee->stats.rx_errors++;
2501
2502                 /* ieee80211_rx failed, so it didn't free the SKB */
2503                 dev_kfree_skb_any(packet->skb);
2504                 packet->skb = NULL;
2505         }
2506
2507         /* We need to allocate a new SKB and attach it to the RDB. */
2508         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2509                 IPW_DEBUG_WARNING(
2510                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2511                         "adapter.\n", priv->net_dev->name);
2512                 /* TODO: schedule adapter shutdown */
2513                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2514         }
2515
2516         /* Update the RDB entry */
2517         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2518 }
2519
2520 #endif
2521
2522 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2523 {
2524         struct ipw2100_status *status = &priv->status_queue.drv[i];
2525         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2526         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2527
2528         switch (frame_type) {
2529         case COMMAND_STATUS_VAL:
2530                 return (status->frame_size != sizeof(u->rx_data.command));
2531         case STATUS_CHANGE_VAL:
2532                 return (status->frame_size != sizeof(u->rx_data.status));
2533         case HOST_NOTIFICATION_VAL:
2534                 return (status->frame_size < sizeof(u->rx_data.notification));
2535         case P80211_DATA_VAL:
2536         case P8023_DATA_VAL:
2537 #ifdef CONFIG_IPW2100_MONITOR
2538                 return 0;
2539 #else
2540                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2541                 case IEEE80211_FTYPE_MGMT:
2542                 case IEEE80211_FTYPE_CTL:
2543                         return 0;
2544                 case IEEE80211_FTYPE_DATA:
2545                         return (status->frame_size >
2546                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2547                 }
2548 #endif
2549         }
2550
2551         return 1;
2552 }
2553
2554 /*
2555  * ipw2100 interrupts are disabled at this point, and the ISR
2556  * is the only code that calls this method.  So, we do not need
2557  * to play with any locks.
2558  *
2559  * RX Queue works as follows:
2560  *
2561  * Read index - firmware places packet in entry identified by the
2562  *              Read index and advances Read index.  In this manner,
2563  *              Read index will always point to the next packet to
2564  *              be filled--but not yet valid.
2565  *
2566  * Write index - driver fills this entry with an unused RBD entry.
2567  *               This entry has not filled by the firmware yet.
2568  *
2569  * In between the W and R indexes are the RBDs that have been received
2570  * but not yet processed.
2571  *
2572  * The process of handling packets will start at WRITE + 1 and advance
2573  * until it reaches the READ index.
2574  *
2575  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2576  *
2577  */
2578 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2579 {
2580         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2581         struct ipw2100_status_queue *sq = &priv->status_queue;
2582         struct ipw2100_rx_packet *packet;
2583         u16 frame_type;
2584         u32 r, w, i, s;
2585         struct ipw2100_rx *u;
2586         struct ieee80211_rx_stats stats = {
2587                 .mac_time = jiffies,
2588         };
2589
2590         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2591         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2592
2593         if (r >= rxq->entries) {
2594                 IPW_DEBUG_RX("exit - bad read index\n");
2595                 return;
2596         }
2597
2598         i = (rxq->next + 1) % rxq->entries;
2599         s = i;
2600         while (i != r) {
2601                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2602                    r, rxq->next, i); */
2603
2604                 packet = &priv->rx_buffers[i];
2605
2606                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2607                  * the correct values */
2608                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2609                                             sq->nic +
2610                                             sizeof(struct ipw2100_status) * i,
2611                                             sizeof(struct ipw2100_status),
2612                                             PCI_DMA_FROMDEVICE);
2613
2614                 /* Sync the DMA for the RX buffer so CPU is sure to get
2615                  * the correct values */
2616                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2617                                             sizeof(struct ipw2100_rx),
2618                                             PCI_DMA_FROMDEVICE);
2619
2620                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2621                         ipw2100_corruption_detected(priv, i);
2622                         goto increment;
2623                 }
2624
2625                 u = packet->rxp;
2626                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2627                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2628                 stats.len = sq->drv[i].frame_size;
2629
2630                 stats.mask = 0;
2631                 if (stats.rssi != 0)
2632                         stats.mask |= IEEE80211_STATMASK_RSSI;
2633                 stats.freq = IEEE80211_24GHZ_BAND;
2634
2635                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2636                              priv->net_dev->name, frame_types[frame_type],
2637                              stats.len);
2638
2639                 switch (frame_type) {
2640                 case COMMAND_STATUS_VAL:
2641                         /* Reset Rx watchdog */
2642                         isr_rx_complete_command(priv, &u->rx_data.command);
2643                         break;
2644
2645                 case STATUS_CHANGE_VAL:
2646                         isr_status_change(priv, u->rx_data.status);
2647                         break;
2648
2649                 case P80211_DATA_VAL:
2650                 case P8023_DATA_VAL:
2651 #ifdef CONFIG_IPW2100_MONITOR
2652                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2653                                 isr_rx_monitor(priv, i, &stats);
2654                                 break;
2655                         }
2656 #endif
2657                         if (stats.len < sizeof(u->rx_data.header))
2658                                 break;
2659                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2660                         case IEEE80211_FTYPE_MGMT:
2661                                 ieee80211_rx_mgt(priv->ieee,
2662                                                  &u->rx_data.header, &stats);
2663                                 break;
2664
2665                         case IEEE80211_FTYPE_CTL:
2666                                 break;
2667
2668                         case IEEE80211_FTYPE_DATA:
2669                                 isr_rx(priv, i, &stats);
2670                                 break;
2671
2672                         }
2673                         break;
2674                 }
2675
2676               increment:
2677                 /* clear status field associated with this RBD */
2678                 rxq->drv[i].status.info.field = 0;
2679
2680                 i = (i + 1) % rxq->entries;
2681         }
2682
2683         if (i != s) {
2684                 /* backtrack one entry, wrapping to end if at 0 */
2685                 rxq->next = (i ? i : rxq->entries) - 1;
2686
2687                 write_register(priv->net_dev,
2688                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2689         }
2690 }
2691
2692 /*
2693  * __ipw2100_tx_process
2694  *
2695  * This routine will determine whether the next packet on
2696  * the fw_pend_list has been processed by the firmware yet.
2697  *
2698  * If not, then it does nothing and returns.
2699  *
2700  * If so, then it removes the item from the fw_pend_list, frees
2701  * any associated storage, and places the item back on the
2702  * free list of its source (either msg_free_list or tx_free_list)
2703  *
2704  * TX Queue works as follows:
2705  *
2706  * Read index - points to the next TBD that the firmware will
2707  *              process.  The firmware will read the data, and once
2708  *              done processing, it will advance the Read index.
2709  *
2710  * Write index - driver fills this entry with an constructed TBD
2711  *               entry.  The Write index is not advanced until the
2712  *               packet has been configured.
2713  *
2714  * In between the W and R indexes are the TBDs that have NOT been
2715  * processed.  Lagging behind the R index are packets that have
2716  * been processed but have not been freed by the driver.
2717  *
2718  * In order to free old storage, an internal index will be maintained
2719  * that points to the next packet to be freed.  When all used
2720  * packets have been freed, the oldest index will be the same as the
2721  * firmware's read index.
2722  *
2723  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2724  *
2725  * Because the TBD structure can not contain arbitrary data, the
2726  * driver must keep an internal queue of cached allocations such that
2727  * it can put that data back into the tx_free_list and msg_free_list
2728  * for use by future command and data packets.
2729  *
2730  */
2731 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2732 {
2733         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2734         struct ipw2100_bd *tbd;
2735         struct list_head *element;
2736         struct ipw2100_tx_packet *packet;
2737         int descriptors_used;
2738         int e, i;
2739         u32 r, w, frag_num = 0;
2740
2741         if (list_empty(&priv->fw_pend_list))
2742                 return 0;
2743
2744         element = priv->fw_pend_list.next;
2745
2746         packet = list_entry(element, struct ipw2100_tx_packet, list);
2747         tbd = &txq->drv[packet->index];
2748
2749         /* Determine how many TBD entries must be finished... */
2750         switch (packet->type) {
2751         case COMMAND:
2752                 /* COMMAND uses only one slot; don't advance */
2753                 descriptors_used = 1;
2754                 e = txq->oldest;
2755                 break;
2756
2757         case DATA:
2758                 /* DATA uses two slots; advance and loop position. */
2759                 descriptors_used = tbd->num_fragments;
2760                 frag_num = tbd->num_fragments - 1;
2761                 e = txq->oldest + frag_num;
2762                 e %= txq->entries;
2763                 break;
2764
2765         default:
2766                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2767                        priv->net_dev->name);
2768                 return 0;
2769         }
2770
2771         /* if the last TBD is not done by NIC yet, then packet is
2772          * not ready to be released.
2773          *
2774          */
2775         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2776                       &r);
2777         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2778                       &w);
2779         if (w != txq->next)
2780                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2781                        priv->net_dev->name);
2782
2783         /*
2784          * txq->next is the index of the last packet written txq->oldest is
2785          * the index of the r is the index of the next packet to be read by
2786          * firmware
2787          */
2788
2789         /*
2790          * Quick graphic to help you visualize the following
2791          * if / else statement
2792          *
2793          * ===>|                     s---->|===============
2794          *                               e>|
2795          * | a | b | c | d | e | f | g | h | i | j | k | l
2796          *       r---->|
2797          *               w
2798          *
2799          * w - updated by driver
2800          * r - updated by firmware
2801          * s - start of oldest BD entry (txq->oldest)
2802          * e - end of oldest BD entry
2803          *
2804          */
2805         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2806                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2807                 return 0;
2808         }
2809
2810         list_del(element);
2811         DEC_STAT(&priv->fw_pend_stat);
2812
2813 #ifdef CONFIG_IPW2100_DEBUG
2814         {
2815                 int i = txq->oldest;
2816                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2817                              &txq->drv[i],
2818                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2819                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2820
2821                 if (packet->type == DATA) {
2822                         i = (i + 1) % txq->entries;
2823
2824                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2825                                      &txq->drv[i],
2826                                      (u32) (txq->nic + i *
2827                                             sizeof(struct ipw2100_bd)),
2828                                      (u32) txq->drv[i].host_addr,
2829                                      txq->drv[i].buf_length);
2830                 }
2831         }
2832 #endif
2833
2834         switch (packet->type) {
2835         case DATA:
2836                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2837                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2838                                "Expecting DATA TBD but pulled "
2839                                "something else: ids %d=%d.\n",
2840                                priv->net_dev->name, txq->oldest, packet->index);
2841
2842                 /* DATA packet; we have to unmap and free the SKB */
2843                 for (i = 0; i < frag_num; i++) {
2844                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2845
2846                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2847                                      (packet->index + 1 + i) % txq->entries,
2848                                      tbd->host_addr, tbd->buf_length);
2849
2850                         pci_unmap_single(priv->pci_dev,
2851                                          tbd->host_addr,
2852                                          tbd->buf_length, PCI_DMA_TODEVICE);
2853                 }
2854
2855                 ieee80211_txb_free(packet->info.d_struct.txb);
2856                 packet->info.d_struct.txb = NULL;
2857
2858                 list_add_tail(element, &priv->tx_free_list);
2859                 INC_STAT(&priv->tx_free_stat);
2860
2861                 /* We have a free slot in the Tx queue, so wake up the
2862                  * transmit layer if it is stopped. */
2863                 if (priv->status & STATUS_ASSOCIATED)
2864                         netif_wake_queue(priv->net_dev);
2865
2866                 /* A packet was processed by the hardware, so update the
2867                  * watchdog */
2868                 priv->net_dev->trans_start = jiffies;
2869
2870                 break;
2871
2872         case COMMAND:
2873                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2874                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2875                                "Expecting COMMAND TBD but pulled "
2876                                "something else: ids %d=%d.\n",
2877                                priv->net_dev->name, txq->oldest, packet->index);
2878
2879 #ifdef CONFIG_IPW2100_DEBUG
2880                 if (packet->info.c_struct.cmd->host_command_reg <
2881                     sizeof(command_types) / sizeof(*command_types))
2882                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2883                                      command_types[packet->info.c_struct.cmd->
2884                                                    host_command_reg],
2885                                      packet->info.c_struct.cmd->
2886                                      host_command_reg,
2887                                      packet->info.c_struct.cmd->cmd_status_reg);
2888 #endif
2889
2890                 list_add_tail(element, &priv->msg_free_list);
2891                 INC_STAT(&priv->msg_free_stat);
2892                 break;
2893         }
2894
2895         /* advance oldest used TBD pointer to start of next entry */
2896         txq->oldest = (e + 1) % txq->entries;
2897         /* increase available TBDs number */
2898         txq->available += descriptors_used;
2899         SET_STAT(&priv->txq_stat, txq->available);
2900
2901         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2902                      jiffies - packet->jiffy_start);
2903
2904         return (!list_empty(&priv->fw_pend_list));
2905 }
2906
2907 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2908 {
2909         int i = 0;
2910
2911         while (__ipw2100_tx_process(priv) && i < 200)
2912                 i++;
2913
2914         if (i == 200) {
2915                 printk(KERN_WARNING DRV_NAME ": "
2916                        "%s: Driver is running slow (%d iters).\n",
2917                        priv->net_dev->name, i);
2918         }
2919 }
2920
2921 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2922 {
2923         struct list_head *element;
2924         struct ipw2100_tx_packet *packet;
2925         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2926         struct ipw2100_bd *tbd;
2927         int next = txq->next;
2928
2929         while (!list_empty(&priv->msg_pend_list)) {
2930                 /* if there isn't enough space in TBD queue, then
2931                  * don't stuff a new one in.
2932                  * NOTE: 3 are needed as a command will take one,
2933                  *       and there is a minimum of 2 that must be
2934                  *       maintained between the r and w indexes
2935                  */
2936                 if (txq->available <= 3) {
2937                         IPW_DEBUG_TX("no room in tx_queue\n");
2938                         break;
2939                 }
2940
2941                 element = priv->msg_pend_list.next;
2942                 list_del(element);
2943                 DEC_STAT(&priv->msg_pend_stat);
2944
2945                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2946
2947                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2948                              &txq->drv[txq->next],
2949                              (void *)(txq->nic + txq->next *
2950                                       sizeof(struct ipw2100_bd)));
2951
2952                 packet->index = txq->next;
2953
2954                 tbd = &txq->drv[txq->next];
2955
2956                 /* initialize TBD */
2957                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2958                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2959                 /* not marking number of fragments causes problems
2960                  * with f/w debug version */
2961                 tbd->num_fragments = 1;
2962                 tbd->status.info.field =
2963                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2964                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2965
2966                 /* update TBD queue counters */
2967                 txq->next++;
2968                 txq->next %= txq->entries;
2969                 txq->available--;
2970                 DEC_STAT(&priv->txq_stat);
2971
2972                 list_add_tail(element, &priv->fw_pend_list);
2973                 INC_STAT(&priv->fw_pend_stat);
2974         }
2975
2976         if (txq->next != next) {
2977                 /* kick off the DMA by notifying firmware the
2978                  * write index has moved; make sure TBD stores are sync'd */
2979                 wmb();
2980                 write_register(priv->net_dev,
2981                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2982                                txq->next);
2983         }
2984 }
2985
2986 /*
2987  * ipw2100_tx_send_data
2988  *
2989  */
2990 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2991 {
2992         struct list_head *element;
2993         struct ipw2100_tx_packet *packet;
2994         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2995         struct ipw2100_bd *tbd;
2996         int next = txq->next;
2997         int i = 0;
2998         struct ipw2100_data_header *ipw_hdr;
2999         struct ieee80211_hdr_3addr *hdr;
3000
3001         while (!list_empty(&priv->tx_pend_list)) {
3002                 /* if there isn't enough space in TBD queue, then
3003                  * don't stuff a new one in.
3004                  * NOTE: 4 are needed as a data will take two,
3005                  *       and there is a minimum of 2 that must be
3006                  *       maintained between the r and w indexes
3007                  */
3008                 element = priv->tx_pend_list.next;
3009                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3010
3011                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3012                              IPW_MAX_BDS)) {
3013                         /* TODO: Support merging buffers if more than
3014                          * IPW_MAX_BDS are used */
3015                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3016                                        "Increase fragmentation level.\n",
3017                                        priv->net_dev->name);
3018                 }
3019
3020                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3021                         IPW_DEBUG_TX("no room in tx_queue\n");
3022                         break;
3023                 }
3024
3025                 list_del(element);
3026                 DEC_STAT(&priv->tx_pend_stat);
3027
3028                 tbd = &txq->drv[txq->next];
3029
3030                 packet->index = txq->next;
3031
3032                 ipw_hdr = packet->info.d_struct.data;
3033                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3034                     fragments[0]->data;
3035
3036                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3037                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3038                            Addr3 = DA */
3039                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3040                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3041                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3042                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3043                            Addr3 = BSSID */
3044                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3045                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3046                 }
3047
3048                 ipw_hdr->host_command_reg = SEND;
3049                 ipw_hdr->host_command_reg1 = 0;
3050
3051                 /* For now we only support host based encryption */
3052                 ipw_hdr->needs_encryption = 0;
3053                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3054                 if (packet->info.d_struct.txb->nr_frags > 1)
3055                         ipw_hdr->fragment_size =
3056                             packet->info.d_struct.txb->frag_size -
3057                             IEEE80211_3ADDR_LEN;
3058                 else
3059                         ipw_hdr->fragment_size = 0;
3060
3061                 tbd->host_addr = packet->info.d_struct.data_phys;
3062                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3063                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3064                 tbd->status.info.field =
3065                     IPW_BD_STATUS_TX_FRAME_802_3 |
3066                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3067                 txq->next++;
3068                 txq->next %= txq->entries;
3069
3070                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3071                              packet->index, tbd->host_addr, tbd->buf_length);
3072 #ifdef CONFIG_IPW2100_DEBUG
3073                 if (packet->info.d_struct.txb->nr_frags > 1)
3074                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3075                                        packet->info.d_struct.txb->nr_frags);
3076 #endif
3077
3078                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3079                         tbd = &txq->drv[txq->next];
3080                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3081                                 tbd->status.info.field =
3082                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3083                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3084                         else
3085                                 tbd->status.info.field =
3086                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3087                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088
3089                         tbd->buf_length = packet->info.d_struct.txb->
3090                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3091
3092                         tbd->host_addr = pci_map_single(priv->pci_dev,
3093                                                         packet->info.d_struct.
3094                                                         txb->fragments[i]->
3095                                                         data +
3096                                                         IEEE80211_3ADDR_LEN,
3097                                                         tbd->buf_length,
3098                                                         PCI_DMA_TODEVICE);
3099
3100                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3101                                      txq->next, tbd->host_addr,
3102                                      tbd->buf_length);
3103
3104                         pci_dma_sync_single_for_device(priv->pci_dev,
3105                                                        tbd->host_addr,
3106                                                        tbd->buf_length,
3107                                                        PCI_DMA_TODEVICE);
3108
3109                         txq->next++;
3110                         txq->next %= txq->entries;
3111                 }
3112
3113                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3114                 SET_STAT(&priv->txq_stat, txq->available);
3115
3116                 list_add_tail(element, &priv->fw_pend_list);
3117                 INC_STAT(&priv->fw_pend_stat);
3118         }
3119
3120         if (txq->next != next) {
3121                 /* kick off the DMA by notifying firmware the
3122                  * write index has moved; make sure TBD stores are sync'd */
3123                 write_register(priv->net_dev,
3124                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3125                                txq->next);
3126         }
3127         return;
3128 }
3129
3130 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3131 {
3132         struct net_device *dev = priv->net_dev;
3133         unsigned long flags;
3134         u32 inta, tmp;
3135
3136         spin_lock_irqsave(&priv->low_lock, flags);
3137         ipw2100_disable_interrupts(priv);
3138
3139         read_register(dev, IPW_REG_INTA, &inta);
3140
3141         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3142                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3143
3144         priv->in_isr++;
3145         priv->interrupts++;
3146
3147         /* We do not loop and keep polling for more interrupts as this
3148          * is frowned upon and doesn't play nicely with other potentially
3149          * chained IRQs */
3150         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3151                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3152
3153         if (inta & IPW2100_INTA_FATAL_ERROR) {
3154                 printk(KERN_WARNING DRV_NAME
3155                        ": Fatal interrupt. Scheduling firmware restart.\n");
3156                 priv->inta_other++;
3157                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3158
3159                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3160                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3161                                priv->net_dev->name, priv->fatal_error);
3162
3163                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3164                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3165                                priv->net_dev->name, tmp);
3166
3167                 /* Wake up any sleeping jobs */
3168                 schedule_reset(priv);
3169         }
3170
3171         if (inta & IPW2100_INTA_PARITY_ERROR) {
3172                 printk(KERN_ERR DRV_NAME
3173                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3174                 priv->inta_other++;
3175                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3176         }
3177
3178         if (inta & IPW2100_INTA_RX_TRANSFER) {
3179                 IPW_DEBUG_ISR("RX interrupt\n");
3180
3181                 priv->rx_interrupts++;
3182
3183                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3184
3185                 __ipw2100_rx_process(priv);
3186                 __ipw2100_tx_complete(priv);
3187         }
3188
3189         if (inta & IPW2100_INTA_TX_TRANSFER) {
3190                 IPW_DEBUG_ISR("TX interrupt\n");
3191
3192                 priv->tx_interrupts++;
3193
3194                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3195
3196                 __ipw2100_tx_complete(priv);
3197                 ipw2100_tx_send_commands(priv);
3198                 ipw2100_tx_send_data(priv);
3199         }
3200
3201         if (inta & IPW2100_INTA_TX_COMPLETE) {
3202                 IPW_DEBUG_ISR("TX complete\n");
3203                 priv->inta_other++;
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3205
3206                 __ipw2100_tx_complete(priv);
3207         }
3208
3209         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3210                 /* ipw2100_handle_event(dev); */
3211                 priv->inta_other++;
3212                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3213         }
3214
3215         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3216                 IPW_DEBUG_ISR("FW init done interrupt\n");
3217                 priv->inta_other++;
3218
3219                 read_register(dev, IPW_REG_INTA, &tmp);
3220                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3221                            IPW2100_INTA_PARITY_ERROR)) {
3222                         write_register(dev, IPW_REG_INTA,
3223                                        IPW2100_INTA_FATAL_ERROR |
3224                                        IPW2100_INTA_PARITY_ERROR);
3225                 }
3226
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3228         }
3229
3230         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3231                 IPW_DEBUG_ISR("Status change interrupt\n");
3232                 priv->inta_other++;
3233                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3234         }
3235
3236         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3237                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3238                 priv->inta_other++;
3239                 write_register(dev, IPW_REG_INTA,
3240                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3241         }
3242
3243         priv->in_isr--;
3244         ipw2100_enable_interrupts(priv);
3245
3246         spin_unlock_irqrestore(&priv->low_lock, flags);
3247
3248         IPW_DEBUG_ISR("exit\n");
3249 }
3250
3251 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3252 {
3253         struct ipw2100_priv *priv = data;
3254         u32 inta, inta_mask;
3255
3256         if (!data)
3257                 return IRQ_NONE;
3258
3259         spin_lock(&priv->low_lock);
3260
3261         /* We check to see if we should be ignoring interrupts before
3262          * we touch the hardware.  During ucode load if we try and handle
3263          * an interrupt we can cause keyboard problems as well as cause
3264          * the ucode to fail to initialize */
3265         if (!(priv->status & STATUS_INT_ENABLED)) {
3266                 /* Shared IRQ */
3267                 goto none;
3268         }
3269
3270         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3271         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3272
3273         if (inta == 0xFFFFFFFF) {
3274                 /* Hardware disappeared */
3275                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3276                 goto none;
3277         }
3278
3279         inta &= IPW_INTERRUPT_MASK;
3280
3281         if (!(inta & inta_mask)) {
3282                 /* Shared interrupt */
3283                 goto none;
3284         }
3285
3286         /* We disable the hardware interrupt here just to prevent unneeded
3287          * calls to be made.  We disable this again within the actual
3288          * work tasklet, so if another part of the code re-enables the
3289          * interrupt, that is fine */
3290         ipw2100_disable_interrupts(priv);
3291
3292         tasklet_schedule(&priv->irq_tasklet);
3293         spin_unlock(&priv->low_lock);
3294
3295         return IRQ_HANDLED;
3296       none:
3297         spin_unlock(&priv->low_lock);
3298         return IRQ_NONE;
3299 }
3300
3301 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3302                       int pri)
3303 {
3304         struct ipw2100_priv *priv = ieee80211_priv(dev);
3305         struct list_head *element;
3306         struct ipw2100_tx_packet *packet;
3307         unsigned long flags;
3308
3309         spin_lock_irqsave(&priv->low_lock, flags);
3310
3311         if (!(priv->status & STATUS_ASSOCIATED)) {
3312                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3313                 priv->ieee->stats.tx_carrier_errors++;
3314                 netif_stop_queue(dev);
3315                 goto fail_unlock;
3316         }
3317
3318         if (list_empty(&priv->tx_free_list))
3319                 goto fail_unlock;
3320
3321         element = priv->tx_free_list.next;
3322         packet = list_entry(element, struct ipw2100_tx_packet, list);
3323
3324         packet->info.d_struct.txb = txb;
3325
3326         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3327         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3328
3329         packet->jiffy_start = jiffies;
3330
3331         list_del(element);
3332         DEC_STAT(&priv->tx_free_stat);
3333
3334         list_add_tail(element, &priv->tx_pend_list);
3335         INC_STAT(&priv->tx_pend_stat);
3336
3337         ipw2100_tx_send_data(priv);
3338
3339         spin_unlock_irqrestore(&priv->low_lock, flags);
3340         return 0;
3341
3342       fail_unlock:
3343         netif_stop_queue(dev);
3344         spin_unlock_irqrestore(&priv->low_lock, flags);
3345         return 1;
3346 }
3347
3348 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3349 {
3350         int i, j, err = -EINVAL;
3351         void *v;
3352         dma_addr_t p;
3353
3354         priv->msg_buffers =
3355             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3356                                                 sizeof(struct
3357                                                        ipw2100_tx_packet),
3358                                                 GFP_KERNEL);
3359         if (!priv->msg_buffers) {
3360                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3361                        "buffers.\n", priv->net_dev->name);
3362                 return -ENOMEM;
3363         }
3364
3365         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3366                 v = pci_alloc_consistent(priv->pci_dev,
3367                                          sizeof(struct ipw2100_cmd_header), &p);
3368                 if (!v) {
3369                         printk(KERN_ERR DRV_NAME ": "
3370                                "%s: PCI alloc failed for msg "
3371                                "buffers.\n", priv->net_dev->name);
3372                         err = -ENOMEM;
3373                         break;
3374                 }
3375
3376                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3377
3378                 priv->msg_buffers[i].type = COMMAND;
3379                 priv->msg_buffers[i].info.c_struct.cmd =
3380                     (struct ipw2100_cmd_header *)v;
3381                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3382         }
3383
3384         if (i == IPW_COMMAND_POOL_SIZE)
3385                 return 0;
3386
3387         for (j = 0; j < i; j++) {
3388                 pci_free_consistent(priv->pci_dev,
3389                                     sizeof(struct ipw2100_cmd_header),
3390                                     priv->msg_buffers[j].info.c_struct.cmd,
3391                                     priv->msg_buffers[j].info.c_struct.
3392                                     cmd_phys);
3393         }
3394
3395         kfree(priv->msg_buffers);
3396         priv->msg_buffers = NULL;
3397
3398         return err;
3399 }
3400
3401 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3402 {
3403         int i;
3404
3405         INIT_LIST_HEAD(&priv->msg_free_list);
3406         INIT_LIST_HEAD(&priv->msg_pend_list);
3407
3408         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3409                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3410         SET_STAT(&priv->msg_free_stat, i);
3411
3412         return 0;
3413 }
3414
3415 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3416 {
3417         int i;
3418
3419         if (!priv->msg_buffers)
3420                 return;
3421
3422         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3423                 pci_free_consistent(priv->pci_dev,
3424                                     sizeof(struct ipw2100_cmd_header),
3425                                     priv->msg_buffers[i].info.c_struct.cmd,
3426                                     priv->msg_buffers[i].info.c_struct.
3427                                     cmd_phys);
3428         }
3429
3430         kfree(priv->msg_buffers);
3431         priv->msg_buffers = NULL;
3432 }
3433
3434 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3435                         char *buf)
3436 {
3437         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3438         char *out = buf;
3439         int i, j;
3440         u32 val;
3441
3442         for (i = 0; i < 16; i++) {
3443                 out += sprintf(out, "[%08X] ", i * 16);
3444                 for (j = 0; j < 16; j += 4) {
3445                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3446                         out += sprintf(out, "%08X ", val);
3447                 }
3448                 out += sprintf(out, "\n");
3449         }
3450
3451         return out - buf;
3452 }
3453
3454 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3455
3456 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3457                         char *buf)
3458 {
3459         struct ipw2100_priv *p = d->driver_data;
3460         return sprintf(buf, "0x%08x\n", (int)p->config);
3461 }
3462
3463 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3464
3465 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3466                            char *buf)
3467 {
3468         struct ipw2100_priv *p = d->driver_data;
3469         return sprintf(buf, "0x%08x\n", (int)p->status);
3470 }
3471
3472 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3473
3474 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3475                                char *buf)
3476 {
3477         struct ipw2100_priv *p = d->driver_data;
3478         return sprintf(buf, "0x%08x\n", (int)p->capability);
3479 }
3480
3481 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3482
3483 #define IPW2100_REG(x) { IPW_ ##x, #x }
3484 static const struct {
3485         u32 addr;
3486         const char *name;
3487 } hw_data[] = {
3488 IPW2100_REG(REG_GP_CNTRL),
3489             IPW2100_REG(REG_GPIO),
3490             IPW2100_REG(REG_INTA),
3491             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3492 #define IPW2100_NIC(x, s) { x, #x, s }
3493 static const struct {
3494         u32 addr;
3495         const char *name;
3496         size_t size;
3497 } nic_data[] = {
3498 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3499             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3500 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3501 static const struct {
3502         u8 index;
3503         const char *name;
3504         const char *desc;
3505 } ord_data[] = {
3506 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3507             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3508                                 "successful Host Tx's (MSDU)"),
3509             IPW2100_ORD(STAT_TX_DIR_DATA,
3510                                 "successful Directed Tx's (MSDU)"),
3511             IPW2100_ORD(STAT_TX_DIR_DATA1,
3512                                 "successful Directed Tx's (MSDU) @ 1MB"),
3513             IPW2100_ORD(STAT_TX_DIR_DATA2,
3514                                 "successful Directed Tx's (MSDU) @ 2MB"),
3515             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3516                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3517             IPW2100_ORD(STAT_TX_DIR_DATA11,
3518                                 "successful Directed Tx's (MSDU) @ 11MB"),
3519             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3520                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3521             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3522                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3523             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3524                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3525             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3526                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3527             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3528             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3529             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3530             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3531             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3532             IPW2100_ORD(STAT_TX_ASSN_RESP,
3533                                 "successful Association response Tx's"),
3534             IPW2100_ORD(STAT_TX_REASSN,
3535                                 "successful Reassociation Tx's"),
3536             IPW2100_ORD(STAT_TX_REASSN_RESP,
3537                                 "successful Reassociation response Tx's"),
3538             IPW2100_ORD(STAT_TX_PROBE,
3539                                 "probes successfully transmitted"),
3540             IPW2100_ORD(STAT_TX_PROBE_RESP,
3541                                 "probe responses successfully transmitted"),
3542             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3543             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3544             IPW2100_ORD(STAT_TX_DISASSN,
3545                                 "successful Disassociation TX"),
3546             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3547             IPW2100_ORD(STAT_TX_DEAUTH,
3548                                 "successful Deauthentication TX"),
3549             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3550                                 "Total successful Tx data bytes"),
3551             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3552             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3553             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3554             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3555             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3556             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3557             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3558                                 "times max tries in a hop failed"),
3559             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3560                                 "times disassociation failed"),
3561             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3562             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3563             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3564             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3565             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3566             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3567             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3568                                 "directed packets at 5.5MB"),
3569             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3570             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3571             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3572                                 "nondirected packets at 1MB"),
3573             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3574                                 "nondirected packets at 2MB"),
3575             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3576                                 "nondirected packets at 5.5MB"),
3577             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3578                                 "nondirected packets at 11MB"),
3579             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3580             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3581                                                                     "Rx CTS"),
3582             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3583             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3584             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3585             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3586             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3587             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3588             IPW2100_ORD(STAT_RX_REASSN_RESP,
3589                                 "Reassociation response Rx's"),
3590             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3591             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3592             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3593             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3594             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3595             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3596             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3597             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3598                                 "Total rx data bytes received"),
3599             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3600             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3601             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3602             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3603             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3604             IPW2100_ORD(STAT_RX_DUPLICATE1,
3605                                 "duplicate rx packets at 1MB"),
3606             IPW2100_ORD(STAT_RX_DUPLICATE2,
3607                                 "duplicate rx packets at 2MB"),
3608             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3609                                 "duplicate rx packets at 5.5MB"),
3610             IPW2100_ORD(STAT_RX_DUPLICATE11,
3611                                 "duplicate rx packets at 11MB"),
3612             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3613             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3614             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3615             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3616             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3617                                 "rx frames with invalid protocol"),
3618             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3619             IPW2100_ORD(STAT_RX_NO_BUFFER,
3620                                 "rx frames rejected due to no buffer"),
3621             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3622                                 "rx frames dropped due to missing fragment"),
3623             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3624                                 "rx frames dropped due to non-sequential fragment"),
3625             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3626                                 "rx frames dropped due to unmatched 1st frame"),
3627             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3628                                 "rx frames dropped due to uncompleted frame"),
3629             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3630                                 "ICV errors during decryption"),
3631             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3632             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3633             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3634                                 "poll response timeouts"),
3635             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3636                                 "timeouts waiting for last {broad,multi}cast pkt"),
3637             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3638             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3639             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3640             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3641             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3642                                 "current calculation of % missed beacons"),
3643             IPW2100_ORD(STAT_PERCENT_RETRIES,
3644                                 "current calculation of % missed tx retries"),
3645             IPW2100_ORD(ASSOCIATED_AP_PTR,
3646                                 "0 if not associated, else pointer to AP table entry"),
3647             IPW2100_ORD(AVAILABLE_AP_CNT,
3648                                 "AP's decsribed in the AP table"),
3649             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3650             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3651             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3652             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3653                                 "failures due to response fail"),
3654             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3655             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3656             IPW2100_ORD(STAT_ROAM_INHIBIT,
3657                                 "times roaming was inhibited due to activity"),
3658             IPW2100_ORD(RSSI_AT_ASSN,
3659                                 "RSSI of associated AP at time of association"),
3660             IPW2100_ORD(STAT_ASSN_CAUSE1,
3661                                 "reassociation: no probe response or TX on hop"),
3662             IPW2100_ORD(STAT_ASSN_CAUSE2,
3663                                 "reassociation: poor tx/rx quality"),
3664             IPW2100_ORD(STAT_ASSN_CAUSE3,
3665                                 "reassociation: tx/rx quality (excessive AP load"),
3666             IPW2100_ORD(STAT_ASSN_CAUSE4,
3667                                 "reassociation: AP RSSI level"),
3668             IPW2100_ORD(STAT_ASSN_CAUSE5,
3669                                 "reassociations due to load leveling"),
3670             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3671             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3672                                 "times authentication response failed"),
3673             IPW2100_ORD(STATION_TABLE_CNT,
3674                                 "entries in association table"),
3675             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3676             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3677             IPW2100_ORD(COUNTRY_CODE,
3678                                 "IEEE country code as recv'd from beacon"),
3679             IPW2100_ORD(COUNTRY_CHANNELS,
3680                                 "channels suported by country"),
3681             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3682             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3683             IPW2100_ORD(ANTENNA_DIVERSITY,
3684                                 "TRUE if antenna diversity is disabled"),
3685             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3686             IPW2100_ORD(OUR_FREQ,
3687                                 "current radio freq lower digits - channel ID"),
3688             IPW2100_ORD(RTC_TIME, "current RTC time"),
3689             IPW2100_ORD(PORT_TYPE, "operating mode"),
3690             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3691             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3692             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3693             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3694             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3695             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3696             IPW2100_ORD(CAPABILITIES,
3697                                 "Management frame capability field"),
3698             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3699             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3700             IPW2100_ORD(RTS_THRESHOLD,
3701                                 "Min packet length for RTS handshaking"),
3702             IPW2100_ORD(INT_MODE, "International mode"),
3703             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3704                                 "protocol frag threshold"),
3705             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3706                                 "EEPROM offset in SRAM"),
3707             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3708                                 "EEPROM size in SRAM"),
3709             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3710             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3711                                 "EEPROM IBSS 11b channel set"),
3712             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3713             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3714             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3715             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3716             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3717
3718 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3719                               char *buf)
3720 {
3721         int i;
3722         struct ipw2100_priv *priv = dev_get_drvdata(d);
3723         struct net_device *dev = priv->net_dev;
3724         char *out = buf;
3725         u32 val = 0;
3726
3727         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3728
3729         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3730                 read_register(dev, hw_data[i].addr, &val);
3731                 out += sprintf(out, "%30s [%08X] : %08X\n",
3732                                hw_data[i].name, hw_data[i].addr, val);
3733         }
3734
3735         return out - buf;
3736 }
3737
3738 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3739
3740 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3741                              char *buf)
3742 {
3743         struct ipw2100_priv *priv = dev_get_drvdata(d);
3744         struct net_device *dev = priv->net_dev;
3745         char *out = buf;
3746         int i;
3747
3748         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3749
3750         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3751                 u8 tmp8;
3752                 u16 tmp16;
3753                 u32 tmp32;
3754
3755                 switch (nic_data[i].size) {
3756                 case 1:
3757                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3758                         out += sprintf(out, "%30s [%08X] : %02X\n",
3759                                        nic_data[i].name, nic_data[i].addr,
3760                                        tmp8);
3761                         break;
3762                 case 2:
3763                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3764                         out += sprintf(out, "%30s [%08X] : %04X\n",
3765                                        nic_data[i].name, nic_data[i].addr,
3766                                        tmp16);
3767                         break;
3768                 case 4:
3769                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3770                         out += sprintf(out, "%30s [%08X] : %08X\n",
3771                                        nic_data[i].name, nic_data[i].addr,
3772                                        tmp32);
3773                         break;
3774                 }
3775         }
3776         return out - buf;
3777 }
3778
3779 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3780
3781 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3782                            char *buf)
3783 {
3784         struct ipw2100_priv *priv = dev_get_drvdata(d);
3785         struct net_device *dev = priv->net_dev;
3786         static unsigned long loop = 0;
3787         int len = 0;
3788         u32 buffer[4];
3789         int i;
3790         char line[81];
3791
3792         if (loop >= 0x30000)
3793                 loop = 0;
3794
3795         /* sysfs provides us PAGE_SIZE buffer */
3796         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3797
3798                 if (priv->snapshot[0])
3799                         for (i = 0; i < 4; i++)
3800                                 buffer[i] =
3801                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3802                 else
3803                         for (i = 0; i < 4; i++)
3804                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3805
3806                 if (priv->dump_raw)
3807                         len += sprintf(buf + len,
3808                                        "%c%c%c%c"
3809                                        "%c%c%c%c"
3810                                        "%c%c%c%c"
3811                                        "%c%c%c%c",
3812                                        ((u8 *) buffer)[0x0],
3813                                        ((u8 *) buffer)[0x1],
3814                                        ((u8 *) buffer)[0x2],
3815                                        ((u8 *) buffer)[0x3],
3816                                        ((u8 *) buffer)[0x4],
3817                                        ((u8 *) buffer)[0x5],
3818                                        ((u8 *) buffer)[0x6],
3819                                        ((u8 *) buffer)[0x7],
3820                                        ((u8 *) buffer)[0x8],
3821                                        ((u8 *) buffer)[0x9],
3822                                        ((u8 *) buffer)[0xa],
3823                                        ((u8 *) buffer)[0xb],
3824                                        ((u8 *) buffer)[0xc],
3825                                        ((u8 *) buffer)[0xd],
3826                                        ((u8 *) buffer)[0xe],
3827                                        ((u8 *) buffer)[0xf]);
3828                 else
3829                         len += sprintf(buf + len, "%s\n",
3830                                        snprint_line(line, sizeof(line),
3831                                                     (u8 *) buffer, 16, loop));
3832                 loop += 16;
3833         }
3834
3835         return len;
3836 }
3837
3838 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3839                             const char *buf, size_t count)
3840 {
3841         struct ipw2100_priv *priv = dev_get_drvdata(d);
3842         struct net_device *dev = priv->net_dev;
3843         const char *p = buf;
3844
3845         (void)dev;              /* kill unused-var warning for debug-only code */
3846
3847         if (count < 1)
3848                 return count;
3849
3850         if (p[0] == '1' ||
3851             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3852                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3853                                dev->name);
3854                 priv->dump_raw = 1;
3855
3856         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3857                                    tolower(p[1]) == 'f')) {
3858                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3859                                dev->name);
3860                 priv->dump_raw = 0;
3861
3862         } else if (tolower(p[0]) == 'r') {
3863                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3864                 ipw2100_snapshot_free(priv);
3865
3866         } else
3867                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3868                                "reset = clear memory snapshot\n", dev->name);
3869
3870         return count;
3871 }
3872
3873 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3874
3875 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3876                              char *buf)
3877 {
3878         struct ipw2100_priv *priv = dev_get_drvdata(d);
3879         u32 val = 0;
3880         int len = 0;
3881         u32 val_len;
3882         static int loop = 0;
3883
3884         if (priv->status & STATUS_RF_KILL_MASK)
3885                 return 0;
3886
3887         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3888                 loop = 0;
3889
3890         /* sysfs provides us PAGE_SIZE buffer */
3891         while (len < PAGE_SIZE - 128 &&
3892                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3893
3894                 val_len = sizeof(u32);
3895
3896                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3897                                         &val_len))
3898                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3899                                        ord_data[loop].index,
3900                                        ord_data[loop].desc);
3901                 else
3902                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3903                                        ord_data[loop].index, val,
3904                                        ord_data[loop].desc);
3905                 loop++;
3906         }
3907
3908         return len;
3909 }
3910
3911 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3912
3913 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3914                           char *buf)
3915 {
3916         struct ipw2100_priv *priv = dev_get_drvdata(d);
3917         char *out = buf;
3918
3919         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3920                        priv->interrupts, priv->tx_interrupts,
3921                        priv->rx_interrupts, priv->inta_other);
3922         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3923         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3924 #ifdef CONFIG_IPW2100_DEBUG
3925         out += sprintf(out, "packet mismatch image: %s\n",
3926                        priv->snapshot[0] ? "YES" : "NO");
3927 #endif
3928
3929         return out - buf;
3930 }
3931
3932 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3933
3934 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3935 {
3936         int err;
3937
3938         if (mode == priv->ieee->iw_mode)
3939                 return 0;
3940
3941         err = ipw2100_disable_adapter(priv);
3942         if (err) {
3943                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3944                        priv->net_dev->name, err);
3945                 return err;
3946         }
3947
3948         switch (mode) {
3949         case IW_MODE_INFRA:
3950                 priv->net_dev->type = ARPHRD_ETHER;
3951                 break;
3952         case IW_MODE_ADHOC:
3953                 priv->net_dev->type = ARPHRD_ETHER;
3954                 break;
3955 #ifdef CONFIG_IPW2100_MONITOR
3956         case IW_MODE_MONITOR:
3957                 priv->last_mode = priv->ieee->iw_mode;
3958                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3959                 break;
3960 #endif                          /* CONFIG_IPW2100_MONITOR */
3961         }
3962
3963         priv->ieee->iw_mode = mode;
3964
3965 #ifdef CONFIG_PM
3966         /* Indicate ipw2100_download_firmware download firmware
3967          * from disk instead of memory. */
3968         ipw2100_firmware.version = 0;
3969 #endif
3970
3971         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3972         priv->reset_backoff = 0;
3973         schedule_reset(priv);
3974
3975         return 0;
3976 }
3977
3978 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3979                               char *buf)
3980 {
3981         struct ipw2100_priv *priv = dev_get_drvdata(d);
3982         int len = 0;
3983
3984 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3985
3986         if (priv->status & STATUS_ASSOCIATED)
3987                 len += sprintf(buf + len, "connected: %lu\n",
3988                                get_seconds() - priv->connect_start);
3989         else
3990                 len += sprintf(buf + len, "not connected\n");
3991
3992         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3993         DUMP_VAR(status, "08lx");
3994         DUMP_VAR(config, "08lx");
3995         DUMP_VAR(capability, "08lx");
3996
3997         len +=
3998             sprintf(buf + len, "last_rtc: %lu\n",
3999                     (unsigned long)priv->last_rtc);
4000
4001         DUMP_VAR(fatal_error, "d");
4002         DUMP_VAR(stop_hang_check, "d");
4003         DUMP_VAR(stop_rf_kill, "d");
4004         DUMP_VAR(messages_sent, "d");
4005
4006         DUMP_VAR(tx_pend_stat.value, "d");
4007         DUMP_VAR(tx_pend_stat.hi, "d");
4008
4009         DUMP_VAR(tx_free_stat.value, "d");
4010         DUMP_VAR(tx_free_stat.lo, "d");
4011
4012         DUMP_VAR(msg_free_stat.value, "d");
4013         DUMP_VAR(msg_free_stat.lo, "d");
4014
4015         DUMP_VAR(msg_pend_stat.value, "d");
4016         DUMP_VAR(msg_pend_stat.hi, "d");
4017
4018         DUMP_VAR(fw_pend_stat.value, "d");
4019         DUMP_VAR(fw_pend_stat.hi, "d");
4020
4021         DUMP_VAR(txq_stat.value, "d");
4022         DUMP_VAR(txq_stat.lo, "d");
4023
4024         DUMP_VAR(ieee->scans, "d");
4025         DUMP_VAR(reset_backoff, "d");
4026
4027         return len;
4028 }
4029
4030 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4031
4032 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4033                             char *buf)
4034 {
4035         struct ipw2100_priv *priv = dev_get_drvdata(d);
4036         char essid[IW_ESSID_MAX_SIZE + 1];
4037         u8 bssid[ETH_ALEN];
4038         u32 chan = 0;
4039         char *out = buf;
4040         int length;
4041         int ret;
4042
4043         if (priv->status & STATUS_RF_KILL_MASK)
4044                 return 0;
4045
4046         memset(essid, 0, sizeof(essid));
4047         memset(bssid, 0, sizeof(bssid));
4048
4049         length = IW_ESSID_MAX_SIZE;
4050         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4051         if (ret)
4052                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4053                                __LINE__);
4054
4055         length = sizeof(bssid);
4056         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4057                                   bssid, &length);
4058         if (ret)
4059                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060                                __LINE__);
4061
4062         length = sizeof(u32);
4063         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4064         if (ret)
4065                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4066                                __LINE__);
4067
4068         out += sprintf(out, "ESSID: %s\n", essid);
4069         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4070                        bssid[0], bssid[1], bssid[2],
4071                        bssid[3], bssid[4], bssid[5]);
4072         out += sprintf(out, "Channel: %d\n", chan);
4073
4074         return out - buf;
4075 }
4076
4077 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4078
4079 #ifdef CONFIG_IPW2100_DEBUG
4080 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4081 {
4082         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4083 }
4084
4085 static ssize_t store_debug_level(struct device_driver *d,
4086                                  const char *buf, size_t count)
4087 {
4088         char *p = (char *)buf;
4089         u32 val;
4090
4091         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4092                 p++;
4093                 if (p[0] == 'x' || p[0] == 'X')
4094                         p++;
4095                 val = simple_strtoul(p, &p, 16);
4096         } else
4097                 val = simple_strtoul(p, &p, 10);
4098         if (p == buf)
4099                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4100         else
4101                 ipw2100_debug_level = val;
4102
4103         return strnlen(buf, count);
4104 }
4105
4106 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4107                    store_debug_level);
4108 #endif                          /* CONFIG_IPW2100_DEBUG */
4109
4110 static ssize_t show_fatal_error(struct device *d,
4111                                 struct device_attribute *attr, char *buf)
4112 {
4113         struct ipw2100_priv *priv = dev_get_drvdata(d);
4114         char *out = buf;
4115         int i;
4116
4117         if (priv->fatal_error)
4118                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4119         else
4120                 out += sprintf(out, "0\n");
4121
4122         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4123                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4124                                         IPW2100_ERROR_QUEUE])
4125                         continue;
4126
4127                 out += sprintf(out, "%d. 0x%08X\n", i,
4128                                priv->fatal_errors[(priv->fatal_index - i) %
4129                                                   IPW2100_ERROR_QUEUE]);
4130         }
4131
4132         return out - buf;
4133 }
4134
4135 static ssize_t store_fatal_error(struct device *d,
4136                                  struct device_attribute *attr, const char *buf,
4137                                  size_t count)
4138 {
4139         struct ipw2100_priv *priv = dev_get_drvdata(d);
4140         schedule_reset(priv);
4141         return count;
4142 }
4143
4144 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4145                    store_fatal_error);
4146
4147 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4148                              char *buf)
4149 {
4150         struct ipw2100_priv *priv = dev_get_drvdata(d);
4151         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4152 }
4153
4154 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4155                               const char *buf, size_t count)
4156 {
4157         struct ipw2100_priv *priv = dev_get_drvdata(d);
4158         struct net_device *dev = priv->net_dev;
4159         char buffer[] = "00000000";
4160         unsigned long len =
4161             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4162         unsigned long val;
4163         char *p = buffer;
4164
4165         (void)dev;              /* kill unused-var warning for debug-only code */
4166
4167         IPW_DEBUG_INFO("enter\n");
4168
4169         strncpy(buffer, buf, len);
4170         buffer[len] = 0;
4171
4172         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4173                 p++;
4174                 if (p[0] == 'x' || p[0] == 'X')
4175                         p++;
4176                 val = simple_strtoul(p, &p, 16);
4177         } else
4178                 val = simple_strtoul(p, &p, 10);
4179         if (p == buffer) {
4180                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4181         } else {
4182                 priv->ieee->scan_age = val;
4183                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4184         }
4185
4186         IPW_DEBUG_INFO("exit\n");
4187         return len;
4188 }
4189
4190 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4191
4192 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4193                             char *buf)
4194 {
4195         /* 0 - RF kill not enabled
4196            1 - SW based RF kill active (sysfs)
4197            2 - HW based RF kill active
4198            3 - Both HW and SW baed RF kill active */
4199         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4200         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4201             (rf_kill_active(priv) ? 0x2 : 0x0);
4202         return sprintf(buf, "%i\n", val);
4203 }
4204
4205 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4206 {
4207         if ((disable_radio ? 1 : 0) ==
4208             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4209                 return 0;
4210
4211         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4212                           disable_radio ? "OFF" : "ON");
4213
4214         mutex_lock(&priv->action_mutex);
4215
4216         if (disable_radio) {
4217                 priv->status |= STATUS_RF_KILL_SW;
4218                 ipw2100_down(priv);
4219         } else {
4220                 priv->status &= ~STATUS_RF_KILL_SW;
4221                 if (rf_kill_active(priv)) {
4222                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4223                                           "disabled by HW switch\n");
4224                         /* Make sure the RF_KILL check timer is running */
4225                         priv->stop_rf_kill = 0;
4226                         cancel_delayed_work(&priv->rf_kill);
4227                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4228                 } else
4229                         schedule_reset(priv);
4230         }
4231
4232         mutex_unlock(&priv->action_mutex);
4233         return 1;
4234 }
4235
4236 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4237                              const char *buf, size_t count)
4238 {
4239         struct ipw2100_priv *priv = dev_get_drvdata(d);
4240         ipw_radio_kill_sw(priv, buf[0] == '1');
4241         return count;
4242 }
4243
4244 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4245
4246 static struct attribute *ipw2100_sysfs_entries[] = {
4247         &dev_attr_hardware.attr,
4248         &dev_attr_registers.attr,
4249         &dev_attr_ordinals.attr,
4250         &dev_attr_pci.attr,
4251         &dev_attr_stats.attr,
4252         &dev_attr_internals.attr,
4253         &dev_attr_bssinfo.attr,
4254         &dev_attr_memory.attr,
4255         &dev_attr_scan_age.attr,
4256         &dev_attr_fatal_error.attr,
4257         &dev_attr_rf_kill.attr,
4258         &dev_attr_cfg.attr,
4259         &dev_attr_status.attr,
4260         &dev_attr_capability.attr,
4261         NULL,
4262 };
4263
4264 static struct attribute_group ipw2100_attribute_group = {
4265         .attrs = ipw2100_sysfs_entries,
4266 };
4267
4268 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4269 {
4270         struct ipw2100_status_queue *q = &priv->status_queue;
4271
4272         IPW_DEBUG_INFO("enter\n");
4273
4274         q->size = entries * sizeof(struct ipw2100_status);
4275         q->drv =
4276             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4277                                                           q->size, &q->nic);
4278         if (!q->drv) {
4279                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4280                 return -ENOMEM;
4281         }
4282
4283         memset(q->drv, 0, q->size);
4284
4285         IPW_DEBUG_INFO("exit\n");
4286
4287         return 0;
4288 }
4289
4290 static void status_queue_free(struct ipw2100_priv *priv)
4291 {
4292         IPW_DEBUG_INFO("enter\n");
4293
4294         if (priv->status_queue.drv) {
4295                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4296                                     priv->status_queue.drv,
4297                                     priv->status_queue.nic);
4298                 priv->status_queue.drv = NULL;
4299         }
4300
4301         IPW_DEBUG_INFO("exit\n");
4302 }
4303
4304 static int bd_queue_allocate(struct ipw2100_priv *priv,
4305                              struct ipw2100_bd_queue *q, int entries)
4306 {
4307         IPW_DEBUG_INFO("enter\n");
4308
4309         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4310
4311         q->entries = entries;
4312         q->size = entries * sizeof(struct ipw2100_bd);
4313         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4314         if (!q->drv) {
4315                 IPW_DEBUG_INFO
4316                     ("can't allocate shared memory for buffer descriptors\n");
4317                 return -ENOMEM;
4318         }
4319         memset(q->drv, 0, q->size);
4320
4321         IPW_DEBUG_INFO("exit\n");
4322
4323         return 0;
4324 }
4325
4326 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4327 {
4328         IPW_DEBUG_INFO("enter\n");
4329
4330         if (!q)
4331                 return;
4332
4333         if (q->drv) {
4334                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4335                 q->drv = NULL;
4336         }
4337
4338         IPW_DEBUG_INFO("exit\n");
4339 }
4340
4341 static void bd_queue_initialize(struct ipw2100_priv *priv,
4342                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4343                                 u32 r, u32 w)
4344 {
4345         IPW_DEBUG_INFO("enter\n");
4346
4347         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4348                        (u32) q->nic);
4349
4350         write_register(priv->net_dev, base, q->nic);
4351         write_register(priv->net_dev, size, q->entries);
4352         write_register(priv->net_dev, r, q->oldest);
4353         write_register(priv->net_dev, w, q->next);
4354
4355         IPW_DEBUG_INFO("exit\n");
4356 }
4357
4358 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4359 {
4360         if (priv->workqueue) {
4361                 priv->stop_rf_kill = 1;
4362                 priv->stop_hang_check = 1;
4363                 cancel_delayed_work(&priv->reset_work);
4364                 cancel_delayed_work(&priv->security_work);
4365                 cancel_delayed_work(&priv->wx_event_work);
4366                 cancel_delayed_work(&priv->hang_check);
4367                 cancel_delayed_work(&priv->rf_kill);
4368                 destroy_workqueue(priv->workqueue);
4369                 priv->workqueue = NULL;
4370         }
4371 }
4372
4373 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4374 {
4375         int i, j, err = -EINVAL;
4376         void *v;
4377         dma_addr_t p;
4378
4379         IPW_DEBUG_INFO("enter\n");
4380
4381         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4382         if (err) {
4383                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4384                                 priv->net_dev->name);
4385                 return err;
4386         }
4387
4388         priv->tx_buffers =
4389             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4390                                                 sizeof(struct
4391                                                        ipw2100_tx_packet),
4392                                                 GFP_ATOMIC);
4393         if (!priv->tx_buffers) {
4394                 printk(KERN_ERR DRV_NAME
4395                        ": %s: alloc failed form tx buffers.\n",
4396                        priv->net_dev->name);
4397                 bd_queue_free(priv, &priv->tx_queue);
4398                 return -ENOMEM;
4399         }
4400
4401         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4402                 v = pci_alloc_consistent(priv->pci_dev,
4403                                          sizeof(struct ipw2100_data_header),
4404                                          &p);
4405                 if (!v) {
4406                         printk(KERN_ERR DRV_NAME
4407                                ": %s: PCI alloc failed for tx " "buffers.\n",
4408                                priv->net_dev->name);
4409                         err = -ENOMEM;
4410                         break;
4411                 }
4412
4413                 priv->tx_buffers[i].type = DATA;
4414                 priv->tx_buffers[i].info.d_struct.data =
4415                     (struct ipw2100_data_header *)v;
4416                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4417                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4418         }
4419
4420         if (i == TX_PENDED_QUEUE_LENGTH)
4421                 return 0;
4422
4423         for (j = 0; j < i; j++) {
4424                 pci_free_consistent(priv->pci_dev,
4425                                     sizeof(struct ipw2100_data_header),
4426                                     priv->tx_buffers[j].info.d_struct.data,
4427                                     priv->tx_buffers[j].info.d_struct.
4428                                     data_phys);
4429         }
4430
4431         kfree(priv->tx_buffers);
4432         priv->tx_buffers = NULL;
4433
4434         return err;
4435 }
4436
4437 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4438 {
4439         int i;
4440
4441         IPW_DEBUG_INFO("enter\n");
4442
4443         /*
4444          * reinitialize packet info lists
4445          */
4446         INIT_LIST_HEAD(&priv->fw_pend_list);
4447         INIT_STAT(&priv->fw_pend_stat);
4448
4449         /*
4450          * reinitialize lists
4451          */
4452         INIT_LIST_HEAD(&priv->tx_pend_list);
4453         INIT_LIST_HEAD(&priv->tx_free_list);
4454         INIT_STAT(&priv->tx_pend_stat);
4455         INIT_STAT(&priv->tx_free_stat);
4456
4457         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458                 /* We simply drop any SKBs that have been queued for
4459                  * transmit */
4460                 if (priv->tx_buffers[i].info.d_struct.txb) {
4461                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4462                                            txb);
4463                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4464                 }
4465
4466                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4467         }
4468
4469         SET_STAT(&priv->tx_free_stat, i);
4470
4471         priv->tx_queue.oldest = 0;
4472         priv->tx_queue.available = priv->tx_queue.entries;
4473         priv->tx_queue.next = 0;
4474         INIT_STAT(&priv->txq_stat);
4475         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4476
4477         bd_queue_initialize(priv, &priv->tx_queue,
4478                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4479                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4480                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4481                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4482
4483         IPW_DEBUG_INFO("exit\n");
4484
4485 }
4486
4487 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4488 {
4489         int i;
4490
4491         IPW_DEBUG_INFO("enter\n");
4492
4493         bd_queue_free(priv, &priv->tx_queue);
4494
4495         if (!priv->tx_buffers)
4496                 return;
4497
4498         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4499                 if (priv->tx_buffers[i].info.d_struct.txb) {
4500                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4501                                            txb);
4502                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4503                 }
4504                 if (priv->tx_buffers[i].info.d_struct.data)
4505                         pci_free_consistent(priv->pci_dev,
4506                                             sizeof(struct ipw2100_data_header),
4507                                             priv->tx_buffers[i].info.d_struct.
4508                                             data,
4509                                             priv->tx_buffers[i].info.d_struct.
4510                                             data_phys);
4511         }
4512
4513         kfree(priv->tx_buffers);
4514         priv->tx_buffers = NULL;
4515
4516         IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4520 {
4521         int i, j, err = -EINVAL;
4522
4523         IPW_DEBUG_INFO("enter\n");
4524
4525         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4526         if (err) {
4527                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4528                 return err;
4529         }
4530
4531         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4532         if (err) {
4533                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4534                 bd_queue_free(priv, &priv->rx_queue);
4535                 return err;
4536         }
4537
4538         /*
4539          * allocate packets
4540          */
4541         priv->rx_buffers = (struct ipw2100_rx_packet *)
4542             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4543                     GFP_KERNEL);
4544         if (!priv->rx_buffers) {
4545                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4546
4547                 bd_queue_free(priv, &priv->rx_queue);
4548
4549                 status_queue_free(priv);
4550
4551                 return -ENOMEM;
4552         }
4553
4554         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4555                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4556
4557                 err = ipw2100_alloc_skb(priv, packet);
4558                 if (unlikely(err)) {
4559                         err = -ENOMEM;
4560                         break;
4561                 }
4562
4563                 /* The BD holds the cache aligned address */
4564                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4565                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4566                 priv->status_queue.drv[i].status_fields = 0;
4567         }
4568
4569         if (i == RX_QUEUE_LENGTH)
4570                 return 0;
4571
4572         for (j = 0; j < i; j++) {
4573                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4574                                  sizeof(struct ipw2100_rx_packet),
4575                                  PCI_DMA_FROMDEVICE);
4576                 dev_kfree_skb(priv->rx_buffers[j].skb);
4577         }
4578
4579         kfree(priv->rx_buffers);
4580         priv->rx_buffers = NULL;
4581
4582         bd_queue_free(priv, &priv->rx_queue);
4583
4584         status_queue_free(priv);
4585
4586         return err;
4587 }
4588
4589 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4590 {
4591         IPW_DEBUG_INFO("enter\n");
4592
4593         priv->rx_queue.oldest = 0;
4594         priv->rx_queue.available = priv->rx_queue.entries - 1;
4595         priv->rx_queue.next = priv->rx_queue.entries - 1;
4596
4597         INIT_STAT(&priv->rxq_stat);
4598         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4599
4600         bd_queue_initialize(priv, &priv->rx_queue,
4601                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4602                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4603                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4604                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4605
4606         /* set up the status queue */
4607         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4608                        priv->status_queue.nic);
4609
4610         IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4614 {
4615         int i;
4616
4617         IPW_DEBUG_INFO("enter\n");
4618
4619         bd_queue_free(priv, &priv->rx_queue);
4620         status_queue_free(priv);
4621
4622         if (!priv->rx_buffers)
4623                 return;
4624
4625         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4626                 if (priv->rx_buffers[i].rxp) {
4627                         pci_unmap_single(priv->pci_dev,
4628                                          priv->rx_buffers[i].dma_addr,
4629                                          sizeof(struct ipw2100_rx),
4630                                          PCI_DMA_FROMDEVICE);
4631                         dev_kfree_skb(priv->rx_buffers[i].skb);
4632                 }
4633         }
4634
4635         kfree(priv->rx_buffers);
4636         priv->rx_buffers = NULL;
4637
4638         IPW_DEBUG_INFO("exit\n");
4639 }
4640
4641 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4642 {
4643         u32 length = ETH_ALEN;
4644         u8 mac[ETH_ALEN];
4645
4646         int err;
4647
4648         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4649         if (err) {
4650                 IPW_DEBUG_INFO("MAC address read failed\n");
4651                 return -EIO;
4652         }
4653         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4654                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4655
4656         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4657
4658         return 0;
4659 }
4660
4661 /********************************************************************
4662  *
4663  * Firmware Commands
4664  *
4665  ********************************************************************/
4666
4667 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4668 {
4669         struct host_command cmd = {
4670                 .host_command = ADAPTER_ADDRESS,
4671                 .host_command_sequence = 0,
4672                 .host_command_length = ETH_ALEN
4673         };
4674         int err;
4675
4676         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4677
4678         IPW_DEBUG_INFO("enter\n");
4679
4680         if (priv->config & CFG_CUSTOM_MAC) {
4681                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4682                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4683         } else
4684                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4685                        ETH_ALEN);
4686
4687         err = ipw2100_hw_send_command(priv, &cmd);
4688
4689         IPW_DEBUG_INFO("exit\n");
4690         return err;
4691 }
4692
4693 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4694                                  int batch_mode)
4695 {
4696         struct host_command cmd = {
4697                 .host_command = PORT_TYPE,
4698                 .host_command_sequence = 0,
4699                 .host_command_length = sizeof(u32)
4700         };
4701         int err;
4702
4703         switch (port_type) {
4704         case IW_MODE_INFRA:
4705                 cmd.host_command_parameters[0] = IPW_BSS;
4706                 break;
4707         case IW_MODE_ADHOC:
4708                 cmd.host_command_parameters[0] = IPW_IBSS;
4709                 break;
4710         }
4711
4712         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4713                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4714
4715         if (!batch_mode) {
4716                 err = ipw2100_disable_adapter(priv);
4717                 if (err) {
4718                         printk(KERN_ERR DRV_NAME
4719                                ": %s: Could not disable adapter %d\n",
4720                                priv->net_dev->name, err);
4721                         return err;
4722                 }
4723         }
4724
4725         /* send cmd to firmware */
4726         err = ipw2100_hw_send_command(priv, &cmd);
4727
4728         if (!batch_mode)
4729                 ipw2100_enable_adapter(priv);
4730
4731         return err;
4732 }
4733
4734 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4735                                int batch_mode)
4736 {
4737         struct host_command cmd = {
4738                 .host_command = CHANNEL,
4739                 .host_command_sequence = 0,
4740                 .host_command_length = sizeof(u32)
4741         };
4742         int err;
4743
4744         cmd.host_command_parameters[0] = channel;
4745
4746         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4747
4748         /* If BSS then we don't support channel selection */
4749         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4750                 return 0;
4751
4752         if ((channel != 0) &&
4753             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4754                 return -EINVAL;
4755
4756         if (!batch_mode) {
4757                 err = ipw2100_disable_adapter(priv);
4758                 if (err)
4759                         return err;
4760         }
4761
4762         err = ipw2100_hw_send_command(priv, &cmd);
4763         if (err) {
4764                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4765                 return err;
4766         }
4767
4768         if (channel)
4769                 priv->config |= CFG_STATIC_CHANNEL;
4770         else
4771                 priv->config &= ~CFG_STATIC_CHANNEL;
4772
4773         priv->channel = channel;
4774
4775         if (!batch_mode) {
4776                 err = ipw2100_enable_adapter(priv);
4777                 if (err)
4778                         return err;
4779         }
4780
4781         return 0;
4782 }
4783
4784 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = SYSTEM_CONFIG,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = 12,
4790         };
4791         u32 ibss_mask, len = sizeof(u32);
4792         int err;
4793
4794         /* Set system configuration */
4795
4796         if (!batch_mode) {
4797                 err = ipw2100_disable_adapter(priv);
4798                 if (err)
4799                         return err;
4800         }
4801
4802         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4803                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4804
4805         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4806             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4807
4808         if (!(priv->config & CFG_LONG_PREAMBLE))
4809                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4810
4811         err = ipw2100_get_ordinal(priv,
4812                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4813                                   &ibss_mask, &len);
4814         if (err)
4815                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4816
4817         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4818         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4819
4820         /* 11b only */
4821         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4822
4823         err = ipw2100_hw_send_command(priv, &cmd);
4824         if (err)
4825                 return err;
4826
4827 /* If IPv6 is configured in the kernel then we don't want to filter out all
4828  * of the multicast packets as IPv6 needs some. */
4829 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4830         cmd.host_command = ADD_MULTICAST;
4831         cmd.host_command_sequence = 0;
4832         cmd.host_command_length = 0;
4833
4834         ipw2100_hw_send_command(priv, &cmd);
4835 #endif
4836         if (!batch_mode) {
4837                 err = ipw2100_enable_adapter(priv);
4838                 if (err)
4839                         return err;
4840         }
4841
4842         return 0;
4843 }
4844
4845 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4846                                 int batch_mode)
4847 {
4848         struct host_command cmd = {
4849                 .host_command = BASIC_TX_RATES,
4850                 .host_command_sequence = 0,
4851                 .host_command_length = 4
4852         };
4853         int err;
4854
4855         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4856
4857         if (!batch_mode) {
4858                 err = ipw2100_disable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         /* Set BASIC TX Rate first */
4864         ipw2100_hw_send_command(priv, &cmd);
4865
4866         /* Set TX Rate */
4867         cmd.host_command = TX_RATES;
4868         ipw2100_hw_send_command(priv, &cmd);
4869
4870         /* Set MSDU TX Rate */
4871         cmd.host_command = MSDU_TX_RATES;
4872         ipw2100_hw_send_command(priv, &cmd);
4873
4874         if (!batch_mode) {
4875                 err = ipw2100_enable_adapter(priv);
4876                 if (err)
4877                         return err;
4878         }
4879
4880         priv->tx_rates = rate;
4881
4882         return 0;
4883 }
4884
4885 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4886 {
4887         struct host_command cmd = {
4888                 .host_command = POWER_MODE,
4889                 .host_command_sequence = 0,
4890                 .host_command_length = 4
4891         };
4892         int err;
4893
4894         cmd.host_command_parameters[0] = power_level;
4895
4896         err = ipw2100_hw_send_command(priv, &cmd);
4897         if (err)
4898                 return err;
4899
4900         if (power_level == IPW_POWER_MODE_CAM)
4901                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4902         else
4903                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4904
4905 #ifdef CONFIG_IPW2100_TX_POWER
4906         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4907                 /* Set beacon interval */
4908                 cmd.host_command = TX_POWER_INDEX;
4909                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4910
4911                 err = ipw2100_hw_send_command(priv, &cmd);
4912                 if (err)
4913                         return err;
4914         }
4915 #endif
4916
4917         return 0;
4918 }
4919
4920 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4921 {
4922         struct host_command cmd = {
4923                 .host_command = RTS_THRESHOLD,
4924                 .host_command_sequence = 0,
4925                 .host_command_length = 4
4926         };
4927         int err;
4928
4929         if (threshold & RTS_DISABLED)
4930                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4931         else
4932                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4933
4934         err = ipw2100_hw_send_command(priv, &cmd);
4935         if (err)
4936                 return err;
4937
4938         priv->rts_threshold = threshold;
4939
4940         return 0;
4941 }
4942
4943 #if 0
4944 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4945                                         u32 threshold, int batch_mode)
4946 {
4947         struct host_command cmd = {
4948                 .host_command = FRAG_THRESHOLD,
4949                 .host_command_sequence = 0,
4950                 .host_command_length = 4,
4951                 .host_command_parameters[0] = 0,
4952         };
4953         int err;
4954
4955         if (!batch_mode) {
4956                 err = ipw2100_disable_adapter(priv);
4957                 if (err)
4958                         return err;
4959         }
4960
4961         if (threshold == 0)
4962                 threshold = DEFAULT_FRAG_THRESHOLD;
4963         else {
4964                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4965                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4966         }
4967
4968         cmd.host_command_parameters[0] = threshold;
4969
4970         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4971
4972         err = ipw2100_hw_send_command(priv, &cmd);
4973
4974         if (!batch_mode)
4975                 ipw2100_enable_adapter(priv);
4976
4977         if (!err)
4978                 priv->frag_threshold = threshold;
4979
4980         return err;
4981 }
4982 #endif
4983
4984 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4985 {
4986         struct host_command cmd = {
4987                 .host_command = SHORT_RETRY_LIMIT,
4988                 .host_command_sequence = 0,
4989                 .host_command_length = 4
4990         };
4991         int err;
4992
4993         cmd.host_command_parameters[0] = retry;
4994
4995         err = ipw2100_hw_send_command(priv, &cmd);
4996         if (err)
4997                 return err;
4998
4999         priv->short_retry_limit = retry;
5000
5001         return 0;
5002 }
5003
5004 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006         struct host_command cmd = {
5007                 .host_command = LONG_RETRY_LIMIT,
5008                 .host_command_sequence = 0,
5009                 .host_command_length = 4
5010         };
5011         int err;
5012
5013         cmd.host_command_parameters[0] = retry;
5014
5015         err = ipw2100_hw_send_command(priv, &cmd);
5016         if (err)
5017                 return err;
5018
5019         priv->long_retry_limit = retry;
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5025                                        int batch_mode)
5026 {
5027         struct host_command cmd = {
5028                 .host_command = MANDATORY_BSSID,
5029                 .host_command_sequence = 0,
5030                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5031         };
5032         int err;
5033
5034 #ifdef CONFIG_IPW2100_DEBUG
5035         if (bssid != NULL)
5036                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5037                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5038                              bssid[5]);
5039         else
5040                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5041 #endif
5042         /* if BSSID is empty then we disable mandatory bssid mode */
5043         if (bssid != NULL)
5044                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5045
5046         if (!batch_mode) {
5047                 err = ipw2100_disable_adapter(priv);
5048                 if (err)
5049                         return err;
5050         }
5051
5052         err = ipw2100_hw_send_command(priv, &cmd);
5053
5054         if (!batch_mode)
5055                 ipw2100_enable_adapter(priv);
5056
5057         return err;
5058 }
5059
5060 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5061 {
5062         struct host_command cmd = {
5063                 .host_command = DISASSOCIATION_BSSID,
5064                 .host_command_sequence = 0,
5065                 .host_command_length = ETH_ALEN
5066         };
5067         int err;
5068         int len;
5069
5070         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5071
5072         len = ETH_ALEN;
5073         /* The Firmware currently ignores the BSSID and just disassociates from
5074          * the currently associated AP -- but in the off chance that a future
5075          * firmware does use the BSSID provided here, we go ahead and try and
5076          * set it to the currently associated AP's BSSID */
5077         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5078
5079         err = ipw2100_hw_send_command(priv, &cmd);
5080
5081         return err;
5082 }
5083
5084 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5085                               struct ipw2100_wpa_assoc_frame *, int)
5086     __attribute__ ((unused));
5087
5088 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5089                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5090                               int batch_mode)
5091 {
5092         struct host_command cmd = {
5093                 .host_command = SET_WPA_IE,
5094                 .host_command_sequence = 0,
5095                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5096         };
5097         int err;
5098
5099         IPW_DEBUG_HC("SET_WPA_IE\n");
5100
5101         if (!batch_mode) {
5102                 err = ipw2100_disable_adapter(priv);
5103                 if (err)
5104                         return err;
5105         }
5106
5107         memcpy(cmd.host_command_parameters, wpa_frame,
5108                sizeof(struct ipw2100_wpa_assoc_frame));
5109
5110         err = ipw2100_hw_send_command(priv, &cmd);
5111
5112         if (!batch_mode) {
5113                 if (ipw2100_enable_adapter(priv))
5114                         err = -EIO;
5115         }
5116
5117         return err;
5118 }
5119
5120 struct security_info_params {
5121         u32 allowed_ciphers;
5122         u16 version;
5123         u8 auth_mode;
5124         u8 replay_counters_number;
5125         u8 unicast_using_group;
5126 } __attribute__ ((packed));
5127
5128 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5129                                             int auth_mode,
5130                                             int security_level,
5131                                             int unicast_using_group,
5132                                             int batch_mode)
5133 {
5134         struct host_command cmd = {
5135                 .host_command = SET_SECURITY_INFORMATION,
5136                 .host_command_sequence = 0,
5137                 .host_command_length = sizeof(struct security_info_params)
5138         };
5139         struct security_info_params *security =
5140             (struct security_info_params *)&cmd.host_command_parameters;
5141         int err;
5142         memset(security, 0, sizeof(*security));
5143
5144         /* If shared key AP authentication is turned on, then we need to
5145          * configure the firmware to try and use it.
5146          *
5147          * Actual data encryption/decryption is handled by the host. */
5148         security->auth_mode = auth_mode;
5149         security->unicast_using_group = unicast_using_group;
5150
5151         switch (security_level) {
5152         default:
5153         case SEC_LEVEL_0:
5154                 security->allowed_ciphers = IPW_NONE_CIPHER;
5155                 break;
5156         case SEC_LEVEL_1:
5157                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5158                     IPW_WEP104_CIPHER;
5159                 break;
5160         case SEC_LEVEL_2:
5161                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5162                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5163                 break;
5164         case SEC_LEVEL_2_CKIP:
5165                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5167                 break;
5168         case SEC_LEVEL_3:
5169                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5171                 break;
5172         }
5173
5174         IPW_DEBUG_HC
5175             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5176              security->auth_mode, security->allowed_ciphers, security_level);
5177
5178         security->replay_counters_number = 0;
5179
5180         if (!batch_mode) {
5181                 err = ipw2100_disable_adapter(priv);
5182                 if (err)
5183                         return err;
5184         }
5185
5186         err = ipw2100_hw_send_command(priv, &cmd);
5187
5188         if (!batch_mode)
5189                 ipw2100_enable_adapter(priv);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5195 {
5196         struct host_command cmd = {
5197                 .host_command = TX_POWER_INDEX,
5198                 .host_command_sequence = 0,
5199                 .host_command_length = 4
5200         };
5201         int err = 0;
5202         u32 tmp = tx_power;
5203
5204         if (tx_power != IPW_TX_POWER_DEFAULT)
5205                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5206                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5207
5208         cmd.host_command_parameters[0] = tmp;
5209
5210         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5211                 err = ipw2100_hw_send_command(priv, &cmd);
5212         if (!err)
5213                 priv->tx_power = tx_power;
5214
5215         return 0;
5216 }
5217
5218 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5219                                             u32 interval, int batch_mode)
5220 {
5221         struct host_command cmd = {
5222                 .host_command = BEACON_INTERVAL,
5223                 .host_command_sequence = 0,
5224                 .host_command_length = 4
5225         };
5226         int err;
5227
5228         cmd.host_command_parameters[0] = interval;
5229
5230         IPW_DEBUG_INFO("enter\n");
5231
5232         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5233                 if (!batch_mode) {
5234                         err = ipw2100_disable_adapter(priv);
5235                         if (err)
5236                                 return err;
5237                 }
5238
5239                 ipw2100_hw_send_command(priv, &cmd);
5240
5241                 if (!batch_mode) {
5242                         err = ipw2100_enable_adapter(priv);
5243                         if (err)
5244                                 return err;
5245                 }
5246         }
5247
5248         IPW_DEBUG_INFO("exit\n");
5249
5250         return 0;
5251 }
5252
5253 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5254 {
5255         ipw2100_tx_initialize(priv);
5256         ipw2100_rx_initialize(priv);
5257         ipw2100_msg_initialize(priv);
5258 }
5259
5260 void ipw2100_queues_free(struct ipw2100_priv *priv)
5261 {
5262         ipw2100_tx_free(priv);
5263         ipw2100_rx_free(priv);
5264         ipw2100_msg_free(priv);
5265 }
5266
5267 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5268 {
5269         if (ipw2100_tx_allocate(priv) ||
5270             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5271                 goto fail;
5272
5273         return 0;
5274
5275       fail:
5276         ipw2100_tx_free(priv);
5277         ipw2100_rx_free(priv);
5278         ipw2100_msg_free(priv);
5279         return -ENOMEM;
5280 }
5281
5282 #define IPW_PRIVACY_CAPABLE 0x0008
5283
5284 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5285                                  int batch_mode)
5286 {
5287         struct host_command cmd = {
5288                 .host_command = WEP_FLAGS,
5289                 .host_command_sequence = 0,
5290                 .host_command_length = 4
5291         };
5292         int err;
5293
5294         cmd.host_command_parameters[0] = flags;
5295
5296         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5297
5298         if (!batch_mode) {
5299                 err = ipw2100_disable_adapter(priv);
5300                 if (err) {
5301                         printk(KERN_ERR DRV_NAME
5302                                ": %s: Could not disable adapter %d\n",
5303                                priv->net_dev->name, err);
5304                         return err;
5305                 }
5306         }
5307
5308         /* send cmd to firmware */
5309         err = ipw2100_hw_send_command(priv, &cmd);
5310
5311         if (!batch_mode)
5312                 ipw2100_enable_adapter(priv);
5313
5314         return err;
5315 }
5316
5317 struct ipw2100_wep_key {
5318         u8 idx;
5319         u8 len;
5320         u8 key[13];
5321 };
5322
5323 /* Macros to ease up priting WEP keys */
5324 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5325 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5326 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5327 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5328
5329 /**
5330  * Set a the wep key
5331  *
5332  * @priv: struct to work on
5333  * @idx: index of the key we want to set
5334  * @key: ptr to the key data to set
5335  * @len: length of the buffer at @key
5336  * @batch_mode: FIXME perform the operation in batch mode, not
5337  *              disabling the device.
5338  *
5339  * @returns 0 if OK, < 0 errno code on error.
5340  *
5341  * Fill out a command structure with the new wep key, length an
5342  * index and send it down the wire.
5343  */
5344 static int ipw2100_set_key(struct ipw2100_priv *priv,
5345                            int idx, char *key, int len, int batch_mode)
5346 {
5347         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5348         struct host_command cmd = {
5349                 .host_command = WEP_KEY_INFO,
5350                 .host_command_sequence = 0,
5351                 .host_command_length = sizeof(struct ipw2100_wep_key),
5352         };
5353         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5354         int err;
5355
5356         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5357                      idx, keylen, len);
5358
5359         /* NOTE: We don't check cached values in case the firmware was reset
5360          * or some other problem is occurring.  If the user is setting the key,
5361          * then we push the change */
5362
5363         wep_key->idx = idx;
5364         wep_key->len = keylen;
5365
5366         if (keylen) {
5367                 memcpy(wep_key->key, key, len);
5368                 memset(wep_key->key + len, 0, keylen - len);
5369         }
5370
5371         /* Will be optimized out on debug not being configured in */
5372         if (keylen == 0)
5373                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5374                               priv->net_dev->name, wep_key->idx);
5375         else if (keylen == 5)
5376                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5377                               priv->net_dev->name, wep_key->idx, wep_key->len,
5378                               WEP_STR_64(wep_key->key));
5379         else
5380                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5381                               "\n",
5382                               priv->net_dev->name, wep_key->idx, wep_key->len,
5383                               WEP_STR_128(wep_key->key));
5384
5385         if (!batch_mode) {
5386                 err = ipw2100_disable_adapter(priv);
5387                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5388                 if (err) {
5389                         printk(KERN_ERR DRV_NAME
5390                                ": %s: Could not disable adapter %d\n",
5391                                priv->net_dev->name, err);
5392                         return err;
5393                 }
5394         }
5395
5396         /* send cmd to firmware */
5397         err = ipw2100_hw_send_command(priv, &cmd);
5398
5399         if (!batch_mode) {
5400                 int err2 = ipw2100_enable_adapter(priv);
5401                 if (err == 0)
5402                         err = err2;
5403         }
5404         return err;
5405 }
5406
5407 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5408                                  int idx, int batch_mode)
5409 {
5410         struct host_command cmd = {
5411                 .host_command = WEP_KEY_INDEX,
5412                 .host_command_sequence = 0,
5413                 .host_command_length = 4,
5414                 .host_command_parameters = {idx},
5415         };
5416         int err;
5417
5418         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5419
5420         if (idx < 0 || idx > 3)
5421                 return -EINVAL;
5422
5423         if (!batch_mode) {
5424                 err = ipw2100_disable_adapter(priv);
5425                 if (err) {
5426                         printk(KERN_ERR DRV_NAME
5427                                ": %s: Could not disable adapter %d\n",
5428                                priv->net_dev->name, err);
5429                         return err;
5430                 }
5431         }
5432
5433         /* send cmd to firmware */
5434         err = ipw2100_hw_send_command(priv, &cmd);
5435
5436         if (!batch_mode)
5437                 ipw2100_enable_adapter(priv);
5438
5439         return err;
5440 }
5441
5442 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5443 {
5444         int i, err, auth_mode, sec_level, use_group;
5445
5446         if (!(priv->status & STATUS_RUNNING))
5447                 return 0;
5448
5449         if (!batch_mode) {
5450                 err = ipw2100_disable_adapter(priv);
5451                 if (err)
5452                         return err;
5453         }
5454
5455         if (!priv->ieee->sec.enabled) {
5456                 err =
5457                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5458                                                      SEC_LEVEL_0, 0, 1);
5459         } else {
5460                 auth_mode = IPW_AUTH_OPEN;
5461                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5462                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5463                                 auth_mode = IPW_AUTH_SHARED;
5464                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5465                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5466                 }
5467
5468                 sec_level = SEC_LEVEL_0;
5469                 if (priv->ieee->sec.flags & SEC_LEVEL)
5470                         sec_level = priv->ieee->sec.level;
5471
5472                 use_group = 0;
5473                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5474                         use_group = priv->ieee->sec.unicast_uses_group;
5475
5476                 err =
5477                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5478                                                      use_group, 1);
5479         }
5480
5481         if (err)
5482                 goto exit;
5483
5484         if (priv->ieee->sec.enabled) {
5485                 for (i = 0; i < 4; i++) {
5486                         if (!(priv->ieee->sec.flags & (1 << i))) {
5487                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5488                                 priv->ieee->sec.key_sizes[i] = 0;
5489                         } else {
5490                                 err = ipw2100_set_key(priv, i,
5491                                                       priv->ieee->sec.keys[i],
5492                                                       priv->ieee->sec.
5493                                                       key_sizes[i], 1);
5494                                 if (err)
5495                                         goto exit;
5496                         }
5497                 }
5498
5499                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5500         }
5501
5502         /* Always enable privacy so the Host can filter WEP packets if
5503          * encrypted data is sent up */
5504         err =
5505             ipw2100_set_wep_flags(priv,
5506                                   priv->ieee->sec.
5507                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5508         if (err)
5509                 goto exit;
5510
5511         priv->status &= ~STATUS_SECURITY_UPDATED;
5512
5513       exit:
5514         if (!batch_mode)
5515                 ipw2100_enable_adapter(priv);
5516
5517         return err;
5518 }
5519
5520 static void ipw2100_security_work(struct ipw2100_priv *priv)
5521 {
5522         /* If we happen to have reconnected before we get a chance to
5523          * process this, then update the security settings--which causes
5524          * a disassociation to occur */
5525         if (!(priv->status & STATUS_ASSOCIATED) &&
5526             priv->status & STATUS_SECURITY_UPDATED)
5527                 ipw2100_configure_security(priv, 0);
5528 }
5529
5530 static void shim__set_security(struct net_device *dev,
5531                                struct ieee80211_security *sec)
5532 {
5533         struct ipw2100_priv *priv = ieee80211_priv(dev);
5534         int i, force_update = 0;
5535
5536         mutex_lock(&priv->action_mutex);
5537         if (!(priv->status & STATUS_INITIALIZED))
5538                 goto done;
5539
5540         for (i = 0; i < 4; i++) {
5541                 if (sec->flags & (1 << i)) {
5542                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5543                         if (sec->key_sizes[i] == 0)
5544                                 priv->ieee->sec.flags &= ~(1 << i);
5545                         else
5546                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5547                                        sec->key_sizes[i]);
5548                         if (sec->level == SEC_LEVEL_1) {
5549                                 priv->ieee->sec.flags |= (1 << i);
5550                                 priv->status |= STATUS_SECURITY_UPDATED;
5551                         } else
5552                                 priv->ieee->sec.flags &= ~(1 << i);
5553                 }
5554         }
5555
5556         if ((sec->flags & SEC_ACTIVE_KEY) &&
5557             priv->ieee->sec.active_key != sec->active_key) {
5558                 if (sec->active_key <= 3) {
5559                         priv->ieee->sec.active_key = sec->active_key;
5560                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5561                 } else
5562                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5563
5564                 priv->status |= STATUS_SECURITY_UPDATED;
5565         }
5566
5567         if ((sec->flags & SEC_AUTH_MODE) &&
5568             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5569                 priv->ieee->sec.auth_mode = sec->auth_mode;
5570                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5571                 priv->status |= STATUS_SECURITY_UPDATED;
5572         }
5573
5574         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5575                 priv->ieee->sec.flags |= SEC_ENABLED;
5576                 priv->ieee->sec.enabled = sec->enabled;
5577                 priv->status |= STATUS_SECURITY_UPDATED;
5578                 force_update = 1;
5579         }
5580
5581         if (sec->flags & SEC_ENCRYPT)
5582                 priv->ieee->sec.encrypt = sec->encrypt;
5583
5584         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5585                 priv->ieee->sec.level = sec->level;
5586                 priv->ieee->sec.flags |= SEC_LEVEL;
5587                 priv->status |= STATUS_SECURITY_UPDATED;
5588         }
5589
5590         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5591                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5592                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5593                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5594                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5595                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5596                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5597                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5598                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5599                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5600
5601 /* As a temporary work around to enable WPA until we figure out why
5602  * wpa_supplicant toggles the security capability of the driver, which
5603  * forces a disassocation with force_update...
5604  *
5605  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5606         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5607                 ipw2100_configure_security(priv, 0);
5608       done:
5609         mutex_unlock(&priv->action_mutex);
5610 }
5611
5612 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5613 {
5614         int err;
5615         int batch_mode = 1;
5616         u8 *bssid;
5617
5618         IPW_DEBUG_INFO("enter\n");
5619
5620         err = ipw2100_disable_adapter(priv);
5621         if (err)
5622                 return err;
5623 #ifdef CONFIG_IPW2100_MONITOR
5624         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5625                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5626                 if (err)
5627                         return err;
5628
5629                 IPW_DEBUG_INFO("exit\n");
5630
5631                 return 0;
5632         }
5633 #endif                          /* CONFIG_IPW2100_MONITOR */
5634
5635         err = ipw2100_read_mac_address(priv);
5636         if (err)
5637                 return -EIO;
5638
5639         err = ipw2100_set_mac_address(priv, batch_mode);
5640         if (err)
5641                 return err;
5642
5643         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5644         if (err)
5645                 return err;
5646
5647         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5648                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5649                 if (err)
5650                         return err;
5651         }
5652
5653         err = ipw2100_system_config(priv, batch_mode);
5654         if (err)
5655                 return err;
5656
5657         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5658         if (err)
5659                 return err;
5660
5661         /* Default to power mode OFF */
5662         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5663         if (err)
5664                 return err;
5665
5666         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5667         if (err)
5668                 return err;
5669
5670         if (priv->config & CFG_STATIC_BSSID)
5671                 bssid = priv->bssid;
5672         else
5673                 bssid = NULL;
5674         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5675         if (err)
5676                 return err;
5677
5678         if (priv->config & CFG_STATIC_ESSID)
5679                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5680                                         batch_mode);
5681         else
5682                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5683         if (err)
5684                 return err;
5685
5686         err = ipw2100_configure_security(priv, batch_mode);
5687         if (err)
5688                 return err;
5689
5690         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5691                 err =
5692                     ipw2100_set_ibss_beacon_interval(priv,
5693                                                      priv->beacon_interval,
5694                                                      batch_mode);
5695                 if (err)
5696                         return err;
5697
5698                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5699                 if (err)
5700                         return err;
5701         }
5702
5703         /*
5704            err = ipw2100_set_fragmentation_threshold(
5705            priv, priv->frag_threshold, batch_mode);
5706            if (err)
5707            return err;
5708          */
5709
5710         IPW_DEBUG_INFO("exit\n");
5711
5712         return 0;
5713 }
5714
5715 /*************************************************************************
5716  *
5717  * EXTERNALLY CALLED METHODS
5718  *
5719  *************************************************************************/
5720
5721 /* This method is called by the network layer -- not to be confused with
5722  * ipw2100_set_mac_address() declared above called by this driver (and this
5723  * method as well) to talk to the firmware */
5724 static int ipw2100_set_address(struct net_device *dev, void *p)
5725 {
5726         struct ipw2100_priv *priv = ieee80211_priv(dev);
5727         struct sockaddr *addr = p;
5728         int err = 0;
5729
5730         if (!is_valid_ether_addr(addr->sa_data))
5731                 return -EADDRNOTAVAIL;
5732
5733         mutex_lock(&priv->action_mutex);
5734
5735         priv->config |= CFG_CUSTOM_MAC;
5736         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5737
5738         err = ipw2100_set_mac_address(priv, 0);
5739         if (err)
5740                 goto done;
5741
5742         priv->reset_backoff = 0;
5743         mutex_unlock(&priv->action_mutex);
5744         ipw2100_reset_adapter(priv);
5745         return 0;
5746
5747       done:
5748         mutex_unlock(&priv->action_mutex);
5749         return err;
5750 }
5751
5752 static int ipw2100_open(struct net_device *dev)
5753 {
5754         struct ipw2100_priv *priv = ieee80211_priv(dev);
5755         unsigned long flags;
5756         IPW_DEBUG_INFO("dev->open\n");
5757
5758         spin_lock_irqsave(&priv->low_lock, flags);
5759         if (priv->status & STATUS_ASSOCIATED) {
5760                 netif_carrier_on(dev);
5761                 netif_start_queue(dev);
5762         }
5763         spin_unlock_irqrestore(&priv->low_lock, flags);
5764
5765         return 0;
5766 }
5767
5768 static int ipw2100_close(struct net_device *dev)
5769 {
5770         struct ipw2100_priv *priv = ieee80211_priv(dev);
5771         unsigned long flags;
5772         struct list_head *element;
5773         struct ipw2100_tx_packet *packet;
5774
5775         IPW_DEBUG_INFO("enter\n");
5776
5777         spin_lock_irqsave(&priv->low_lock, flags);
5778
5779         if (priv->status & STATUS_ASSOCIATED)
5780                 netif_carrier_off(dev);
5781         netif_stop_queue(dev);
5782
5783         /* Flush the TX queue ... */
5784         while (!list_empty(&priv->tx_pend_list)) {
5785                 element = priv->tx_pend_list.next;
5786                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5787
5788                 list_del(element);
5789                 DEC_STAT(&priv->tx_pend_stat);
5790
5791                 ieee80211_txb_free(packet->info.d_struct.txb);
5792                 packet->info.d_struct.txb = NULL;
5793
5794                 list_add_tail(element, &priv->tx_free_list);
5795                 INC_STAT(&priv->tx_free_stat);
5796         }
5797         spin_unlock_irqrestore(&priv->low_lock, flags);
5798
5799         IPW_DEBUG_INFO("exit\n");
5800
5801         return 0;
5802 }
5803
5804 /*
5805  * TODO:  Fix this function... its just wrong
5806  */
5807 static void ipw2100_tx_timeout(struct net_device *dev)
5808 {
5809         struct ipw2100_priv *priv = ieee80211_priv(dev);
5810
5811         priv->ieee->stats.tx_errors++;
5812
5813 #ifdef CONFIG_IPW2100_MONITOR
5814         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5815                 return;
5816 #endif
5817
5818         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5819                        dev->name);
5820         schedule_reset(priv);
5821 }
5822
5823 /*
5824  * TODO: reimplement it so that it reads statistics
5825  *       from the adapter using ordinal tables
5826  *       instead of/in addition to collecting them
5827  *       in the driver
5828  */
5829 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5830 {
5831         struct ipw2100_priv *priv = ieee80211_priv(dev);
5832
5833         return &priv->ieee->stats;
5834 }
5835
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 {
5838         /* This is called when wpa_supplicant loads and closes the driver
5839          * interface. */
5840         priv->ieee->wpa_enabled = value;
5841         return 0;
5842 }
5843
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 {
5846
5847         struct ieee80211_device *ieee = priv->ieee;
5848         struct ieee80211_security sec = {
5849                 .flags = SEC_AUTH_MODE,
5850         };
5851         int ret = 0;
5852
5853         if (value & IW_AUTH_ALG_SHARED_KEY) {
5854                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855                 ieee->open_wep = 0;
5856         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857                 sec.auth_mode = WLAN_AUTH_OPEN;
5858                 ieee->open_wep = 1;
5859         } else if (value & IW_AUTH_ALG_LEAP) {
5860                 sec.auth_mode = WLAN_AUTH_LEAP;
5861                 ieee->open_wep = 1;
5862         } else
5863                 return -EINVAL;
5864
5865         if (ieee->set_security)
5866                 ieee->set_security(ieee->dev, &sec);
5867         else
5868                 ret = -EOPNOTSUPP;
5869
5870         return ret;
5871 }
5872
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874                                     char *wpa_ie, int wpa_ie_len)
5875 {
5876
5877         struct ipw2100_wpa_assoc_frame frame;
5878
5879         frame.fixed_ie_mask = 0;
5880
5881         /* copy WPA IE */
5882         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883         frame.var_ie_len = wpa_ie_len;
5884
5885         /* make sure WPA is enabled */
5886         ipw2100_wpa_enable(priv, 1);
5887         ipw2100_set_wpa_ie(priv, &frame, 0);
5888 }
5889
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891                                     struct ethtool_drvinfo *info)
5892 {
5893         struct ipw2100_priv *priv = ieee80211_priv(dev);
5894         char fw_ver[64], ucode_ver[64];
5895
5896         strcpy(info->driver, DRV_NAME);
5897         strcpy(info->version, DRV_VERSION);
5898
5899         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901
5902         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903                  fw_ver, priv->eeprom_version, ucode_ver);
5904
5905         strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 }
5907
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = ieee80211_priv(dev);
5911         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 }
5913
5914 static struct ethtool_ops ipw2100_ethtool_ops = {
5915         .get_link = ipw2100_ethtool_get_link,
5916         .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 };
5918
5919 static void ipw2100_hang_check(void *adapter)
5920 {
5921         struct ipw2100_priv *priv = adapter;
5922         unsigned long flags;
5923         u32 rtc = 0xa5a5a5a5;
5924         u32 len = sizeof(rtc);
5925         int restart = 0;
5926
5927         spin_lock_irqsave(&priv->low_lock, flags);
5928
5929         if (priv->fatal_error != 0) {
5930                 /* If fatal_error is set then we need to restart */
5931                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932                                priv->net_dev->name);
5933
5934                 restart = 1;
5935         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936                    (rtc == priv->last_rtc)) {
5937                 /* Check if firmware is hung */
5938                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939                                priv->net_dev->name);
5940
5941                 restart = 1;
5942         }
5943
5944         if (restart) {
5945                 /* Kill timer */
5946                 priv->stop_hang_check = 1;
5947                 priv->hangs++;
5948
5949                 /* Restart the NIC */
5950                 schedule_reset(priv);
5951         }
5952
5953         priv->last_rtc = rtc;
5954
5955         if (!priv->stop_hang_check)
5956                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958         spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(void *adapter)
5962 {
5963         struct ipw2100_priv *priv = adapter;
5964         unsigned long flags;
5965
5966         spin_lock_irqsave(&priv->low_lock, flags);
5967
5968         if (rf_kill_active(priv)) {
5969                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970                 if (!priv->stop_rf_kill)
5971                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972                 goto exit_unlock;
5973         }
5974
5975         /* RF Kill is now disabled, so bring the device back up */
5976
5977         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979                                   "device\n");
5980                 schedule_reset(priv);
5981         } else
5982                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5983                                   "enabled\n");
5984
5985       exit_unlock:
5986         spin_unlock_irqrestore(&priv->low_lock, flags);
5987 }
5988
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5990
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5992
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994                                                void __iomem * base_addr,
5995                                                unsigned long mem_start,
5996                                                unsigned long mem_len)
5997 {
5998         struct ipw2100_priv *priv;
5999         struct net_device *dev;
6000
6001         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002         if (!dev)
6003                 return NULL;
6004         priv = ieee80211_priv(dev);
6005         priv->ieee = netdev_priv(dev);
6006         priv->pci_dev = pci_dev;
6007         priv->net_dev = dev;
6008
6009         priv->ieee->hard_start_xmit = ipw2100_tx;
6010         priv->ieee->set_security = shim__set_security;
6011
6012         priv->ieee->perfect_rssi = -20;
6013         priv->ieee->worst_rssi = -85;
6014
6015         dev->open = ipw2100_open;
6016         dev->stop = ipw2100_close;
6017         dev->init = ipw2100_net_init;
6018         dev->get_stats = ipw2100_stats;
6019         dev->ethtool_ops = &ipw2100_ethtool_ops;
6020         dev->tx_timeout = ipw2100_tx_timeout;
6021         dev->wireless_handlers = &ipw2100_wx_handler_def;
6022         priv->wireless_data.ieee80211 = priv->ieee;
6023         dev->wireless_data = &priv->wireless_data;
6024         dev->set_mac_address = ipw2100_set_address;
6025         dev->watchdog_timeo = 3 * HZ;
6026         dev->irq = 0;
6027
6028         dev->base_addr = (unsigned long)base_addr;
6029         dev->mem_start = mem_start;
6030         dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032         /* NOTE: We don't use the wireless_handlers hook
6033          * in dev as the system will start throwing WX requests
6034          * to us before we're actually initialized and it just
6035          * ends up causing problems.  So, we just handle
6036          * the WX extensions through the ipw2100_ioctl interface */
6037
6038         /* memset() puts everything to 0, so we only have explicitely set
6039          * those values that need to be something else */
6040
6041         /* If power management is turned on, default to AUTO mode */
6042         priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045         priv->config |= CFG_CRC_CHECK;
6046 #endif
6047         priv->ieee->wpa_enabled = 0;
6048         priv->ieee->drop_unencrypted = 0;
6049         priv->ieee->privacy_invoked = 0;
6050         priv->ieee->ieee802_1x = 1;
6051
6052         /* Set module parameters */
6053         switch (mode) {
6054         case 1:
6055                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056                 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058         case 2:
6059                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060                 break;
6061 #endif
6062         default:
6063         case 0:
6064                 priv->ieee->iw_mode = IW_MODE_INFRA;
6065                 break;
6066         }
6067
6068         if (disable == 1)
6069                 priv->status |= STATUS_RF_KILL_SW;
6070
6071         if (channel != 0 &&
6072             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073                 priv->config |= CFG_STATIC_CHANNEL;
6074                 priv->channel = channel;
6075         }
6076
6077         if (associate)
6078                 priv->config |= CFG_ASSOCIATE;
6079
6080         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085         priv->tx_power = IPW_TX_POWER_DEFAULT;
6086         priv->tx_rates = DEFAULT_TX_RATES;
6087
6088         strcpy(priv->nick, "ipw2100");
6089
6090         spin_lock_init(&priv->low_lock);
6091         mutex_init(&priv->action_mutex);
6092         mutex_init(&priv->adapter_mutex);
6093
6094         init_waitqueue_head(&priv->wait_command_queue);
6095
6096         netif_carrier_off(dev);
6097
6098         INIT_LIST_HEAD(&priv->msg_free_list);
6099         INIT_LIST_HEAD(&priv->msg_pend_list);
6100         INIT_STAT(&priv->msg_free_stat);
6101         INIT_STAT(&priv->msg_pend_stat);
6102
6103         INIT_LIST_HEAD(&priv->tx_free_list);
6104         INIT_LIST_HEAD(&priv->tx_pend_list);
6105         INIT_STAT(&priv->tx_free_stat);
6106         INIT_STAT(&priv->tx_pend_stat);
6107
6108         INIT_LIST_HEAD(&priv->fw_pend_list);
6109         INIT_STAT(&priv->fw_pend_stat);
6110
6111         priv->workqueue = create_workqueue(DRV_NAME);
6112
6113         INIT_WORK(&priv->reset_work,
6114                   (void (*)(void *))ipw2100_reset_adapter, priv);
6115         INIT_WORK(&priv->security_work,
6116                   (void (*)(void *))ipw2100_security_work, priv);
6117         INIT_WORK(&priv->wx_event_work,
6118                   (void (*)(void *))ipw2100_wx_event_work, priv);
6119         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6120         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6121
6122         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123                      ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125         /* NOTE:  We do not start the deferred work for status checks yet */
6126         priv->stop_rf_kill = 1;
6127         priv->stop_hang_check = 1;
6128
6129         return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133                                 const struct pci_device_id *ent)
6134 {
6135         unsigned long mem_start, mem_len, mem_flags;
6136         void __iomem *base_addr = NULL;
6137         struct net_device *dev = NULL;
6138         struct ipw2100_priv *priv = NULL;
6139         int err = 0;
6140         int registered = 0;
6141         u32 val;
6142
6143         IPW_DEBUG_INFO("enter\n");
6144
6145         mem_start = pci_resource_start(pci_dev, 0);
6146         mem_len = pci_resource_len(pci_dev, 0);
6147         mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151                 err = -ENODEV;
6152                 goto fail;
6153         }
6154
6155         base_addr = ioremap_nocache(mem_start, mem_len);
6156         if (!base_addr) {
6157                 printk(KERN_WARNING DRV_NAME
6158                        "Error calling ioremap_nocache.\n");
6159                 err = -EIO;
6160                 goto fail;
6161         }
6162
6163         /* allocate and initialize our net_device */
6164         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165         if (!dev) {
6166                 printk(KERN_WARNING DRV_NAME
6167                        "Error calling ipw2100_alloc_device.\n");
6168                 err = -ENOMEM;
6169                 goto fail;
6170         }
6171
6172         /* set up PCI mappings for device */
6173         err = pci_enable_device(pci_dev);
6174         if (err) {
6175                 printk(KERN_WARNING DRV_NAME
6176                        "Error calling pci_enable_device.\n");
6177                 return err;
6178         }
6179
6180         priv = ieee80211_priv(dev);
6181
6182         pci_set_master(pci_dev);
6183         pci_set_drvdata(pci_dev, priv);
6184
6185         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_set_dma_mask.\n");
6189                 pci_disable_device(pci_dev);
6190                 return err;
6191         }
6192
6193         err = pci_request_regions(pci_dev, DRV_NAME);
6194         if (err) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling pci_request_regions.\n");
6197                 pci_disable_device(pci_dev);
6198                 return err;
6199         }
6200
6201         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202          * PCI Tx retries from interfering with C3 CPU state */
6203         pci_read_config_dword(pci_dev, 0x40, &val);
6204         if ((val & 0x0000ff00) != 0)
6205                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207         pci_set_power_state(pci_dev, PCI_D0);
6208
6209         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210                 printk(KERN_WARNING DRV_NAME
6211                        "Device not found via register read.\n");
6212                 err = -ENODEV;
6213                 goto fail;
6214         }
6215
6216         SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218         /* Force interrupts to be shut off on the device */
6219         priv->status |= STATUS_INT_ENABLED;
6220         ipw2100_disable_interrupts(priv);
6221
6222         /* Allocate and initialize the Tx/Rx queues and lists */
6223         if (ipw2100_queues_allocate(priv)) {
6224                 printk(KERN_WARNING DRV_NAME
6225                        "Error calilng ipw2100_queues_allocate.\n");
6226                 err = -ENOMEM;
6227                 goto fail;
6228         }
6229         ipw2100_queues_initialize(priv);
6230
6231         err = request_irq(pci_dev->irq,
6232                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233         if (err) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling request_irq: %d.\n", pci_dev->irq);
6236                 goto fail;
6237         }
6238         dev->irq = pci_dev->irq;
6239
6240         IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242         SET_MODULE_OWNER(dev);
6243
6244         printk(KERN_INFO DRV_NAME
6245                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247         /* Bring up the interface.  Pre 0.46, after we registered the
6248          * network device we would call ipw2100_up.  This introduced a race
6249          * condition with newer hotplug configurations (network was coming
6250          * up and making calls before the device was initialized).
6251          *
6252          * If we called ipw2100_up before we registered the device, then the
6253          * device name wasn't registered.  So, we instead use the net_dev->init
6254          * member to call a function that then just turns and calls ipw2100_up.
6255          * net_dev->init is called after name allocation but before the
6256          * notifier chain is called */
6257         err = register_netdev(dev);
6258         if (err) {
6259                 printk(KERN_WARNING DRV_NAME
6260                        "Error calling register_netdev.\n");
6261                 goto fail;
6262         }
6263
6264         mutex_lock(&priv->action_mutex);
6265         registered = 1;
6266
6267         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269         /* perform this after register_netdev so that dev->name is set */
6270         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271
6272         /* If the RF Kill switch is disabled, go ahead and complete the
6273          * startup sequence */
6274         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275                 /* Enable the adapter - sends HOST_COMPLETE */
6276                 if (ipw2100_enable_adapter(priv)) {
6277                         printk(KERN_WARNING DRV_NAME
6278                                ": %s: failed in call to enable adapter.\n",
6279                                priv->net_dev->name);
6280                         ipw2100_hw_stop_adapter(priv);
6281                         err = -EIO;
6282                         goto fail_unlock;
6283                 }
6284
6285                 /* Start a scan . . . */
6286                 ipw2100_set_scan_options(priv);
6287                 ipw2100_start_scan(priv);
6288         }
6289
6290         IPW_DEBUG_INFO("exit\n");
6291
6292         priv->status |= STATUS_INITIALIZED;
6293
6294         mutex_unlock(&priv->action_mutex);
6295
6296         return 0;
6297
6298       fail_unlock:
6299         mutex_unlock(&priv->action_mutex);
6300
6301       fail:
6302         if (dev) {
6303                 if (registered)
6304                         unregister_netdev(dev);
6305
6306                 ipw2100_hw_stop_adapter(priv);
6307
6308                 ipw2100_disable_interrupts(priv);
6309
6310                 if (dev->irq)
6311                         free_irq(dev->irq, priv);
6312
6313                 ipw2100_kill_workqueue(priv);
6314
6315                 /* These are safe to call even if they weren't allocated */
6316                 ipw2100_queues_free(priv);
6317                 sysfs_remove_group(&pci_dev->dev.kobj,
6318                                    &ipw2100_attribute_group);
6319
6320                 free_ieee80211(dev);
6321                 pci_set_drvdata(pci_dev, NULL);
6322         }
6323
6324         if (base_addr)
6325                 iounmap(base_addr);
6326
6327         pci_release_regions(pci_dev);
6328         pci_disable_device(pci_dev);
6329
6330         return err;
6331 }
6332
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6334 {
6335         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336         struct net_device *dev;
6337
6338         if (priv) {
6339                 mutex_lock(&priv->action_mutex);
6340
6341                 priv->status &= ~STATUS_INITIALIZED;
6342
6343                 dev = priv->net_dev;
6344                 sysfs_remove_group(&pci_dev->dev.kobj,
6345                                    &ipw2100_attribute_group);
6346
6347 #ifdef CONFIG_PM
6348                 if (ipw2100_firmware.version)
6349                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351                 /* Take down the hardware */
6352                 ipw2100_down(priv);
6353
6354                 /* Release the mutex so that the network subsystem can
6355                  * complete any needed calls into the driver... */
6356                 mutex_unlock(&priv->action_mutex);
6357
6358                 /* Unregister the device first - this results in close()
6359                  * being called if the device is open.  If we free storage
6360                  * first, then close() will crash. */
6361                 unregister_netdev(dev);
6362
6363                 /* ipw2100_down will ensure that there is no more pending work
6364                  * in the workqueue's, so we can safely remove them now. */
6365                 ipw2100_kill_workqueue(priv);
6366
6367                 ipw2100_queues_free(priv);
6368
6369                 /* Free potential debugging firmware snapshot */
6370                 ipw2100_snapshot_free(priv);
6371
6372                 if (dev->irq)
6373                         free_irq(dev->irq, priv);
6374
6375                 if (dev->base_addr)
6376                         iounmap((void __iomem *)dev->base_addr);
6377
6378                 free_ieee80211(dev);
6379         }
6380
6381         pci_release_regions(pci_dev);
6382         pci_disable_device(pci_dev);
6383
6384         IPW_DEBUG_INFO("exit\n");
6385 }
6386
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6389 {
6390         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391         struct net_device *dev = priv->net_dev;
6392
6393         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6394
6395         mutex_lock(&priv->action_mutex);
6396         if (priv->status & STATUS_INITIALIZED) {
6397                 /* Take down the device; powers it off, etc. */
6398                 ipw2100_down(priv);
6399         }
6400
6401         /* Remove the PRESENT state of the device */
6402         netif_device_detach(dev);
6403
6404         pci_save_state(pci_dev);
6405         pci_disable_device(pci_dev);
6406         pci_set_power_state(pci_dev, PCI_D3hot);
6407
6408         mutex_unlock(&priv->action_mutex);
6409
6410         return 0;
6411 }
6412
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6414 {
6415         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416         struct net_device *dev = priv->net_dev;
6417         u32 val;
6418
6419         if (IPW2100_PM_DISABLED)
6420                 return 0;
6421
6422         mutex_lock(&priv->action_mutex);
6423
6424         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426         pci_set_power_state(pci_dev, PCI_D0);
6427         pci_enable_device(pci_dev);
6428         pci_restore_state(pci_dev);
6429
6430         /*
6431          * Suspend/Resume resets the PCI configuration space, so we have to
6432          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6433          * from interfering with C3 CPU state. pci_restore_state won't help
6434          * here since it only restores the first 64 bytes pci config header.
6435          */
6436         pci_read_config_dword(pci_dev, 0x40, &val);
6437         if ((val & 0x0000ff00) != 0)
6438                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6439
6440         /* Set the device back into the PRESENT state; this will also wake
6441          * the queue of needed */
6442         netif_device_attach(dev);
6443
6444         /* Bring the device back up */
6445         if (!(priv->status & STATUS_RF_KILL_SW))
6446                 ipw2100_up(priv, 0);
6447
6448         mutex_unlock(&priv->action_mutex);
6449
6450         return 0;
6451 }
6452 #endif
6453
6454 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6455
6456 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6457         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6458         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6459         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6460         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6461         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6462         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6463         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6464         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6465         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6466         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6467         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6468         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6469         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6470
6471         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6472         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6473         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6474         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6476
6477         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6478         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6479         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6480         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6481         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6482         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6483         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6484
6485         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6486
6487         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6488         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6489         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6490         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6491         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6492         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6493         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6494
6495         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6496         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6497         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6498         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6499         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6501
6502         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6503         {0,},
6504 };
6505
6506 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6507
6508 static struct pci_driver ipw2100_pci_driver = {
6509         .name = DRV_NAME,
6510         .id_table = ipw2100_pci_id_table,
6511         .probe = ipw2100_pci_init_one,
6512         .remove = __devexit_p(ipw2100_pci_remove_one),
6513 #ifdef CONFIG_PM
6514         .suspend = ipw2100_suspend,
6515         .resume = ipw2100_resume,
6516 #endif
6517 };
6518
6519 /**
6520  * Initialize the ipw2100 driver/module
6521  *
6522  * @returns 0 if ok, < 0 errno node con error.
6523  *
6524  * Note: we cannot init the /proc stuff until the PCI driver is there,
6525  * or we risk an unlikely race condition on someone accessing
6526  * uninitialized data in the PCI dev struct through /proc.
6527  */
6528 static int __init ipw2100_init(void)
6529 {
6530         int ret;
6531
6532         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6533         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6534
6535         ret = pci_register_driver(&ipw2100_pci_driver);
6536
6537 #ifdef CONFIG_IPW2100_DEBUG
6538         ipw2100_debug_level = debug;
6539         driver_create_file(&ipw2100_pci_driver.driver,
6540                            &driver_attr_debug_level);
6541 #endif
6542
6543         return ret;
6544 }
6545
6546 /**
6547  * Cleanup ipw2100 driver registration
6548  */
6549 static void __exit ipw2100_exit(void)
6550 {
6551         /* FIXME: IPG: check that we have no instances of the devices open */
6552 #ifdef CONFIG_IPW2100_DEBUG
6553         driver_remove_file(&ipw2100_pci_driver.driver,
6554                            &driver_attr_debug_level);
6555 #endif
6556         pci_unregister_driver(&ipw2100_pci_driver);
6557 }
6558
6559 module_init(ipw2100_init);
6560 module_exit(ipw2100_exit);
6561
6562 #define WEXT_USECHANNELS 1
6563
6564 static const long ipw2100_frequencies[] = {
6565         2412, 2417, 2422, 2427,
6566         2432, 2437, 2442, 2447,
6567         2452, 2457, 2462, 2467,
6568         2472, 2484
6569 };
6570
6571 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6572                     sizeof(ipw2100_frequencies[0]))
6573
6574 static const long ipw2100_rates_11b[] = {
6575         1000000,
6576         2000000,
6577         5500000,
6578         11000000
6579 };
6580
6581 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6582
6583 static int ipw2100_wx_get_name(struct net_device *dev,
6584                                struct iw_request_info *info,
6585                                union iwreq_data *wrqu, char *extra)
6586 {
6587         /*
6588          * This can be called at any time.  No action lock required
6589          */
6590
6591         struct ipw2100_priv *priv = ieee80211_priv(dev);
6592         if (!(priv->status & STATUS_ASSOCIATED))
6593                 strcpy(wrqu->name, "unassociated");
6594         else
6595                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6596
6597         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6598         return 0;
6599 }
6600
6601 static int ipw2100_wx_set_freq(struct net_device *dev,
6602                                struct iw_request_info *info,
6603                                union iwreq_data *wrqu, char *extra)
6604 {
6605         struct ipw2100_priv *priv = ieee80211_priv(dev);
6606         struct iw_freq *fwrq = &wrqu->freq;
6607         int err = 0;
6608
6609         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6610                 return -EOPNOTSUPP;
6611
6612         mutex_lock(&priv->action_mutex);
6613         if (!(priv->status & STATUS_INITIALIZED)) {
6614                 err = -EIO;
6615                 goto done;
6616         }
6617
6618         /* if setting by freq convert to channel */
6619         if (fwrq->e == 1) {
6620                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6621                         int f = fwrq->m / 100000;
6622                         int c = 0;
6623
6624                         while ((c < REG_MAX_CHANNEL) &&
6625                                (f != ipw2100_frequencies[c]))
6626                                 c++;
6627
6628                         /* hack to fall through */
6629                         fwrq->e = 0;
6630                         fwrq->m = c + 1;
6631                 }
6632         }
6633
6634         if (fwrq->e > 0 || fwrq->m > 1000) {
6635                 err = -EOPNOTSUPP;
6636                 goto done;
6637         } else {                /* Set the channel */
6638                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6639                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6640         }
6641
6642       done:
6643         mutex_unlock(&priv->action_mutex);
6644         return err;
6645 }
6646
6647 static int ipw2100_wx_get_freq(struct net_device *dev,
6648                                struct iw_request_info *info,
6649                                union iwreq_data *wrqu, char *extra)
6650 {
6651         /*
6652          * This can be called at any time.  No action lock required
6653          */
6654
6655         struct ipw2100_priv *priv = ieee80211_priv(dev);
6656
6657         wrqu->freq.e = 0;
6658
6659         /* If we are associated, trying to associate, or have a statically
6660          * configured CHANNEL then return that; otherwise return ANY */
6661         if (priv->config & CFG_STATIC_CHANNEL ||
6662             priv->status & STATUS_ASSOCIATED)
6663                 wrqu->freq.m = priv->channel;
6664         else
6665                 wrqu->freq.m = 0;
6666
6667         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6668         return 0;
6669
6670 }
6671
6672 static int ipw2100_wx_set_mode(struct net_device *dev,
6673                                struct iw_request_info *info,
6674                                union iwreq_data *wrqu, char *extra)
6675 {
6676         struct ipw2100_priv *priv = ieee80211_priv(dev);
6677         int err = 0;
6678
6679         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6680
6681         if (wrqu->mode == priv->ieee->iw_mode)
6682                 return 0;
6683
6684         mutex_lock(&priv->action_mutex);
6685         if (!(priv->status & STATUS_INITIALIZED)) {
6686                 err = -EIO;
6687                 goto done;
6688         }
6689
6690         switch (wrqu->mode) {
6691 #ifdef CONFIG_IPW2100_MONITOR
6692         case IW_MODE_MONITOR:
6693                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6694                 break;
6695 #endif                          /* CONFIG_IPW2100_MONITOR */
6696         case IW_MODE_ADHOC:
6697                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6698                 break;
6699         case IW_MODE_INFRA:
6700         case IW_MODE_AUTO:
6701         default:
6702                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6703                 break;
6704         }
6705
6706       done:
6707         mutex_unlock(&priv->action_mutex);
6708         return err;
6709 }
6710
6711 static int ipw2100_wx_get_mode(struct net_device *dev,
6712                                struct iw_request_info *info,
6713                                union iwreq_data *wrqu, char *extra)
6714 {
6715         /*
6716          * This can be called at any time.  No action lock required
6717          */
6718
6719         struct ipw2100_priv *priv = ieee80211_priv(dev);
6720
6721         wrqu->mode = priv->ieee->iw_mode;
6722         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6723
6724         return 0;
6725 }
6726
6727 #define POWER_MODES 5
6728
6729 /* Values are in microsecond */
6730 static const s32 timeout_duration[POWER_MODES] = {
6731         350000,
6732         250000,
6733         75000,
6734         37000,
6735         25000,
6736 };
6737
6738 static const s32 period_duration[POWER_MODES] = {
6739         400000,
6740         700000,
6741         1000000,
6742         1000000,
6743         1000000
6744 };
6745
6746 static int ipw2100_wx_get_range(struct net_device *dev,
6747                                 struct iw_request_info *info,
6748                                 union iwreq_data *wrqu, char *extra)
6749 {
6750         /*
6751          * This can be called at any time.  No action lock required
6752          */
6753
6754         struct ipw2100_priv *priv = ieee80211_priv(dev);
6755         struct iw_range *range = (struct iw_range *)extra;
6756         u16 val;
6757         int i, level;
6758
6759         wrqu->data.length = sizeof(*range);
6760         memset(range, 0, sizeof(*range));
6761
6762         /* Let's try to keep this struct in the same order as in
6763          * linux/include/wireless.h
6764          */
6765
6766         /* TODO: See what values we can set, and remove the ones we can't
6767          * set, or fill them with some default data.
6768          */
6769
6770         /* ~5 Mb/s real (802.11b) */
6771         range->throughput = 5 * 1000 * 1000;
6772
6773 //      range->sensitivity;     /* signal level threshold range */
6774
6775         range->max_qual.qual = 100;
6776         /* TODO: Find real max RSSI and stick here */
6777         range->max_qual.level = 0;
6778         range->max_qual.noise = 0;
6779         range->max_qual.updated = 7;    /* Updated all three */
6780
6781         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6782         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6783         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6784         range->avg_qual.noise = 0;
6785         range->avg_qual.updated = 7;    /* Updated all three */
6786
6787         range->num_bitrates = RATE_COUNT;
6788
6789         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6790                 range->bitrate[i] = ipw2100_rates_11b[i];
6791         }
6792
6793         range->min_rts = MIN_RTS_THRESHOLD;
6794         range->max_rts = MAX_RTS_THRESHOLD;
6795         range->min_frag = MIN_FRAG_THRESHOLD;
6796         range->max_frag = MAX_FRAG_THRESHOLD;
6797
6798         range->min_pmp = period_duration[0];    /* Minimal PM period */
6799         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6800         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6801         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6802
6803         /* How to decode max/min PM period */
6804         range->pmp_flags = IW_POWER_PERIOD;
6805         /* How to decode max/min PM period */
6806         range->pmt_flags = IW_POWER_TIMEOUT;
6807         /* What PM options are supported */
6808         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6809
6810         range->encoding_size[0] = 5;
6811         range->encoding_size[1] = 13;   /* Different token sizes */
6812         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6813         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6814 //      range->encoding_login_index;            /* token index for login token */
6815
6816         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6817                 range->txpower_capa = IW_TXPOW_DBM;
6818                 range->num_txpower = IW_MAX_TXPOWER;
6819                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6820                      i < IW_MAX_TXPOWER;
6821                      i++, level -=
6822                      ((IPW_TX_POWER_MAX_DBM -
6823                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6824                         range->txpower[i] = level / 16;
6825         } else {
6826                 range->txpower_capa = 0;
6827                 range->num_txpower = 0;
6828         }
6829
6830         /* Set the Wireless Extension versions */
6831         range->we_version_compiled = WIRELESS_EXT;
6832         range->we_version_source = 18;
6833
6834 //      range->retry_capa;      /* What retry options are supported */
6835 //      range->retry_flags;     /* How to decode max/min retry limit */
6836 //      range->r_time_flags;    /* How to decode max/min retry life */
6837 //      range->min_retry;       /* Minimal number of retries */
6838 //      range->max_retry;       /* Maximal number of retries */
6839 //      range->min_r_time;      /* Minimal retry lifetime */
6840 //      range->max_r_time;      /* Maximal retry lifetime */
6841
6842         range->num_channels = FREQ_COUNT;
6843
6844         val = 0;
6845         for (i = 0; i < FREQ_COUNT; i++) {
6846                 // TODO: Include only legal frequencies for some countries
6847 //              if (local->channel_mask & (1 << i)) {
6848                 range->freq[val].i = i + 1;
6849                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6850                 range->freq[val].e = 1;
6851                 val++;
6852 //              }
6853                 if (val == IW_MAX_FREQUENCIES)
6854                         break;
6855         }
6856         range->num_frequency = val;
6857
6858         /* Event capability (kernel + driver) */
6859         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6860                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6861         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6862
6863         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6864                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6865
6866         IPW_DEBUG_WX("GET Range\n");
6867
6868         return 0;
6869 }
6870
6871 static int ipw2100_wx_set_wap(struct net_device *dev,
6872                               struct iw_request_info *info,
6873                               union iwreq_data *wrqu, char *extra)
6874 {
6875         struct ipw2100_priv *priv = ieee80211_priv(dev);
6876         int err = 0;
6877
6878         static const unsigned char any[] = {
6879                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6880         };
6881         static const unsigned char off[] = {
6882                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6883         };
6884
6885         // sanity checks
6886         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6887                 return -EINVAL;
6888
6889         mutex_lock(&priv->action_mutex);
6890         if (!(priv->status & STATUS_INITIALIZED)) {
6891                 err = -EIO;
6892                 goto done;
6893         }
6894
6895         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6896             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6897                 /* we disable mandatory BSSID association */
6898                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6899                 priv->config &= ~CFG_STATIC_BSSID;
6900                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6901                 goto done;
6902         }
6903
6904         priv->config |= CFG_STATIC_BSSID;
6905         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6906
6907         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6908
6909         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6910                      wrqu->ap_addr.sa_data[0] & 0xff,
6911                      wrqu->ap_addr.sa_data[1] & 0xff,
6912                      wrqu->ap_addr.sa_data[2] & 0xff,
6913                      wrqu->ap_addr.sa_data[3] & 0xff,
6914                      wrqu->ap_addr.sa_data[4] & 0xff,
6915                      wrqu->ap_addr.sa_data[5] & 0xff);
6916
6917       done:
6918         mutex_unlock(&priv->action_mutex);
6919         return err;
6920 }
6921
6922 static int ipw2100_wx_get_wap(struct net_device *dev,
6923                               struct iw_request_info *info,
6924                               union iwreq_data *wrqu, char *extra)
6925 {
6926         /*
6927          * This can be called at any time.  No action lock required
6928          */
6929
6930         struct ipw2100_priv *priv = ieee80211_priv(dev);
6931
6932         /* If we are associated, trying to associate, or have a statically
6933          * configured BSSID then return that; otherwise return ANY */
6934         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6935                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6936                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6937         } else
6938                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6939
6940         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6941                      MAC_ARG(wrqu->ap_addr.sa_data));
6942         return 0;
6943 }
6944
6945 static int ipw2100_wx_set_essid(struct net_device *dev,
6946                                 struct iw_request_info *info,
6947                                 union iwreq_data *wrqu, char *extra)
6948 {
6949         struct ipw2100_priv *priv = ieee80211_priv(dev);
6950         char *essid = "";       /* ANY */
6951         int length = 0;
6952         int err = 0;
6953
6954         mutex_lock(&priv->action_mutex);
6955         if (!(priv->status & STATUS_INITIALIZED)) {
6956                 err = -EIO;
6957                 goto done;
6958         }
6959
6960         if (wrqu->essid.flags && wrqu->essid.length) {
6961                 length = wrqu->essid.length - 1;
6962                 essid = extra;
6963         }
6964
6965         if (length == 0) {
6966                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6967                 priv->config &= ~CFG_STATIC_ESSID;
6968                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6969                 goto done;
6970         }
6971
6972         length = min(length, IW_ESSID_MAX_SIZE);
6973
6974         priv->config |= CFG_STATIC_ESSID;
6975
6976         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6977                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6978                 err = 0;
6979                 goto done;
6980         }
6981
6982         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6983                      length);
6984
6985         priv->essid_len = length;
6986         memcpy(priv->essid, essid, priv->essid_len);
6987
6988         err = ipw2100_set_essid(priv, essid, length, 0);
6989
6990       done:
6991         mutex_unlock(&priv->action_mutex);
6992         return err;
6993 }
6994
6995 static int ipw2100_wx_get_essid(struct net_device *dev,
6996                                 struct iw_request_info *info,
6997                                 union iwreq_data *wrqu, char *extra)
6998 {
6999         /*
7000          * This can be called at any time.  No action lock required
7001          */
7002
7003         struct ipw2100_priv *priv = ieee80211_priv(dev);
7004
7005         /* If we are associated, trying to associate, or have a statically
7006          * configured ESSID then return that; otherwise return ANY */
7007         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7008                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7009                              escape_essid(priv->essid, priv->essid_len));
7010                 memcpy(extra, priv->essid, priv->essid_len);
7011                 wrqu->essid.length = priv->essid_len;
7012                 wrqu->essid.flags = 1;  /* active */
7013         } else {
7014                 IPW_DEBUG_WX("Getting essid: ANY\n");
7015                 wrqu->essid.length = 0;
7016                 wrqu->essid.flags = 0;  /* active */
7017         }
7018
7019         return 0;
7020 }
7021
7022 static int ipw2100_wx_set_nick(struct net_device *dev,
7023                                struct iw_request_info *info,
7024                                union iwreq_data *wrqu, char *extra)
7025 {
7026         /*
7027          * This can be called at any time.  No action lock required
7028          */
7029
7030         struct ipw2100_priv *priv = ieee80211_priv(dev);
7031
7032         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7033                 return -E2BIG;
7034
7035         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7036         memset(priv->nick, 0, sizeof(priv->nick));
7037         memcpy(priv->nick, extra, wrqu->data.length);
7038
7039         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7040
7041         return 0;
7042 }
7043
7044 static int ipw2100_wx_get_nick(struct net_device *dev,
7045                                struct iw_request_info *info,
7046                                union iwreq_data *wrqu, char *extra)
7047 {
7048         /*
7049          * This can be called at any time.  No action lock required
7050          */
7051
7052         struct ipw2100_priv *priv = ieee80211_priv(dev);
7053
7054         wrqu->data.length = strlen(priv->nick) + 1;
7055         memcpy(extra, priv->nick, wrqu->data.length);
7056         wrqu->data.flags = 1;   /* active */
7057
7058         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7059
7060         return 0;
7061 }
7062
7063 static int ipw2100_wx_set_rate(struct net_device *dev,
7064                                struct iw_request_info *info,
7065                                union iwreq_data *wrqu, char *extra)
7066 {
7067         struct ipw2100_priv *priv = ieee80211_priv(dev);
7068         u32 target_rate = wrqu->bitrate.value;
7069         u32 rate;
7070         int err = 0;
7071
7072         mutex_lock(&priv->action_mutex);
7073         if (!(priv->status & STATUS_INITIALIZED)) {
7074                 err = -EIO;
7075                 goto done;
7076         }
7077
7078         rate = 0;
7079
7080         if (target_rate == 1000000 ||
7081             (!wrqu->bitrate.fixed && target_rate > 1000000))
7082                 rate |= TX_RATE_1_MBIT;
7083         if (target_rate == 2000000 ||
7084             (!wrqu->bitrate.fixed && target_rate > 2000000))
7085                 rate |= TX_RATE_2_MBIT;
7086         if (target_rate == 5500000 ||
7087             (!wrqu->bitrate.fixed && target_rate > 5500000))
7088                 rate |= TX_RATE_5_5_MBIT;
7089         if (target_rate == 11000000 ||
7090             (!wrqu->bitrate.fixed && target_rate > 11000000))
7091                 rate |= TX_RATE_11_MBIT;
7092         if (rate == 0)
7093                 rate = DEFAULT_TX_RATES;
7094
7095         err = ipw2100_set_tx_rates(priv, rate, 0);
7096
7097         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7098       done:
7099         mutex_unlock(&priv->action_mutex);
7100         return err;
7101 }
7102
7103 static int ipw2100_wx_get_rate(struct net_device *dev,
7104                                struct iw_request_info *info,
7105                                union iwreq_data *wrqu, char *extra)
7106 {
7107         struct ipw2100_priv *priv = ieee80211_priv(dev);
7108         int val;
7109         int len = sizeof(val);
7110         int err = 0;
7111
7112         if (!(priv->status & STATUS_ENABLED) ||
7113             priv->status & STATUS_RF_KILL_MASK ||
7114             !(priv->status & STATUS_ASSOCIATED)) {
7115                 wrqu->bitrate.value = 0;
7116                 return 0;
7117         }
7118
7119         mutex_lock(&priv->action_mutex);
7120         if (!(priv->status & STATUS_INITIALIZED)) {
7121                 err = -EIO;
7122                 goto done;
7123         }
7124
7125         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7126         if (err) {
7127                 IPW_DEBUG_WX("failed querying ordinals.\n");
7128                 return err;
7129         }
7130
7131         switch (val & TX_RATE_MASK) {
7132         case TX_RATE_1_MBIT:
7133                 wrqu->bitrate.value = 1000000;
7134                 break;
7135         case TX_RATE_2_MBIT:
7136                 wrqu->bitrate.value = 2000000;
7137                 break;
7138         case TX_RATE_5_5_MBIT:
7139                 wrqu->bitrate.value = 5500000;
7140                 break;
7141         case TX_RATE_11_MBIT:
7142                 wrqu->bitrate.value = 11000000;
7143                 break;
7144         default:
7145                 wrqu->bitrate.value = 0;
7146         }
7147
7148         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7149
7150       done:
7151         mutex_unlock(&priv->action_mutex);
7152         return err;
7153 }
7154
7155 static int ipw2100_wx_set_rts(struct net_device *dev,
7156                               struct iw_request_info *info,
7157                               union iwreq_data *wrqu, char *extra)
7158 {
7159         struct ipw2100_priv *priv = ieee80211_priv(dev);
7160         int value, err;
7161
7162         /* Auto RTS not yet supported */
7163         if (wrqu->rts.fixed == 0)
7164                 return -EINVAL;
7165
7166         mutex_lock(&priv->action_mutex);
7167         if (!(priv->status & STATUS_INITIALIZED)) {
7168                 err = -EIO;
7169                 goto done;
7170         }
7171
7172         if (wrqu->rts.disabled)
7173                 value = priv->rts_threshold | RTS_DISABLED;
7174         else {
7175                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7176                         err = -EINVAL;
7177                         goto done;
7178                 }
7179                 value = wrqu->rts.value;
7180         }
7181
7182         err = ipw2100_set_rts_threshold(priv, value);
7183
7184         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7185       done:
7186         mutex_unlock(&priv->action_mutex);
7187         return err;
7188 }
7189
7190 static int ipw2100_wx_get_rts(struct net_device *dev,
7191                               struct iw_request_info *info,
7192                               union iwreq_data *wrqu, char *extra)
7193 {
7194         /*
7195          * This can be called at any time.  No action lock required
7196          */
7197
7198         struct ipw2100_priv *priv = ieee80211_priv(dev);
7199
7200         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7201         wrqu->rts.fixed = 1;    /* no auto select */
7202
7203         /* If RTS is set to the default value, then it is disabled */
7204         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7205
7206         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7207
7208         return 0;
7209 }
7210
7211 static int ipw2100_wx_set_txpow(struct net_device *dev,
7212                                 struct iw_request_info *info,
7213                                 union iwreq_data *wrqu, char *extra)
7214 {
7215         struct ipw2100_priv *priv = ieee80211_priv(dev);
7216         int err = 0, value;
7217         
7218         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7219                 return -EINPROGRESS;
7220
7221         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7222                 return 0;
7223
7224         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7225                 return -EINVAL;
7226
7227         if (wrqu->txpower.fixed == 0)
7228                 value = IPW_TX_POWER_DEFAULT;
7229         else {
7230                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7231                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7232                         return -EINVAL;
7233
7234                 value = wrqu->txpower.value;
7235         }
7236
7237         mutex_lock(&priv->action_mutex);
7238         if (!(priv->status & STATUS_INITIALIZED)) {
7239                 err = -EIO;
7240                 goto done;
7241         }
7242
7243         err = ipw2100_set_tx_power(priv, value);
7244
7245         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7246
7247       done:
7248         mutex_unlock(&priv->action_mutex);
7249         return err;
7250 }
7251
7252 static int ipw2100_wx_get_txpow(struct net_device *dev,
7253                                 struct iw_request_info *info,
7254                                 union iwreq_data *wrqu, char *extra)
7255 {
7256         /*
7257          * This can be called at any time.  No action lock required
7258          */
7259
7260         struct ipw2100_priv *priv = ieee80211_priv(dev);
7261
7262         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7263
7264         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7265                 wrqu->txpower.fixed = 0;
7266                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7267         } else {
7268                 wrqu->txpower.fixed = 1;
7269                 wrqu->txpower.value = priv->tx_power;
7270         }
7271
7272         wrqu->txpower.flags = IW_TXPOW_DBM;
7273
7274         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7275
7276         return 0;
7277 }
7278
7279 static int ipw2100_wx_set_frag(struct net_device *dev,
7280                                struct iw_request_info *info,
7281                                union iwreq_data *wrqu, char *extra)
7282 {
7283         /*
7284          * This can be called at any time.  No action lock required
7285          */
7286
7287         struct ipw2100_priv *priv = ieee80211_priv(dev);
7288
7289         if (!wrqu->frag.fixed)
7290                 return -EINVAL;
7291
7292         if (wrqu->frag.disabled) {
7293                 priv->frag_threshold |= FRAG_DISABLED;
7294                 priv->ieee->fts = DEFAULT_FTS;
7295         } else {
7296                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7297                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7298                         return -EINVAL;
7299
7300                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7301                 priv->frag_threshold = priv->ieee->fts;
7302         }
7303
7304         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7305
7306         return 0;
7307 }
7308
7309 static int ipw2100_wx_get_frag(struct net_device *dev,
7310                                struct iw_request_info *info,
7311                                union iwreq_data *wrqu, char *extra)
7312 {
7313         /*
7314          * This can be called at any time.  No action lock required
7315          */
7316
7317         struct ipw2100_priv *priv = ieee80211_priv(dev);
7318         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7319         wrqu->frag.fixed = 0;   /* no auto select */
7320         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7321
7322         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7323
7324         return 0;
7325 }
7326
7327 static int ipw2100_wx_set_retry(struct net_device *dev,
7328                                 struct iw_request_info *info,
7329                                 union iwreq_data *wrqu, char *extra)
7330 {
7331         struct ipw2100_priv *priv = ieee80211_priv(dev);
7332         int err = 0;
7333
7334         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7335                 return -EINVAL;
7336
7337         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7338                 return 0;
7339
7340         mutex_lock(&priv->action_mutex);
7341         if (!(priv->status & STATUS_INITIALIZED)) {
7342                 err = -EIO;
7343                 goto done;
7344         }
7345
7346         if (wrqu->retry.flags & IW_RETRY_MIN) {
7347                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7348                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7349                              wrqu->retry.value);
7350                 goto done;
7351         }
7352
7353         if (wrqu->retry.flags & IW_RETRY_MAX) {
7354                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7355                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7356                              wrqu->retry.value);
7357                 goto done;
7358         }
7359
7360         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7361         if (!err)
7362                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7363
7364         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7365
7366       done:
7367         mutex_unlock(&priv->action_mutex);
7368         return err;
7369 }
7370
7371 static int ipw2100_wx_get_retry(struct net_device *dev,
7372                                 struct iw_request_info *info,
7373                                 union iwreq_data *wrqu, char *extra)
7374 {
7375         /*
7376          * This can be called at any time.  No action lock required
7377          */
7378
7379         struct ipw2100_priv *priv = ieee80211_priv(dev);
7380
7381         wrqu->retry.disabled = 0;       /* can't be disabled */
7382
7383         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7384                 return -EINVAL;
7385
7386         if (wrqu->retry.flags & IW_RETRY_MAX) {
7387                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7388                 wrqu->retry.value = priv->long_retry_limit;
7389         } else {
7390                 wrqu->retry.flags =
7391                     (priv->short_retry_limit !=
7392                      priv->long_retry_limit) ?
7393                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7394
7395                 wrqu->retry.value = priv->short_retry_limit;
7396         }
7397
7398         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7399
7400         return 0;
7401 }
7402
7403 static int ipw2100_wx_set_scan(struct net_device *dev,
7404                                struct iw_request_info *info,
7405                                union iwreq_data *wrqu, char *extra)
7406 {
7407         struct ipw2100_priv *priv = ieee80211_priv(dev);
7408         int err = 0;
7409
7410         mutex_lock(&priv->action_mutex);
7411         if (!(priv->status & STATUS_INITIALIZED)) {
7412                 err = -EIO;
7413                 goto done;
7414         }
7415
7416         IPW_DEBUG_WX("Initiating scan...\n");
7417         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7418                 IPW_DEBUG_WX("Start scan failed.\n");
7419
7420                 /* TODO: Mark a scan as pending so when hardware initialized
7421                  *       a scan starts */
7422         }
7423
7424       done:
7425         mutex_unlock(&priv->action_mutex);
7426         return err;
7427 }
7428
7429 static int ipw2100_wx_get_scan(struct net_device *dev,
7430                                struct iw_request_info *info,
7431                                union iwreq_data *wrqu, char *extra)
7432 {
7433         /*
7434          * This can be called at any time.  No action lock required
7435          */
7436
7437         struct ipw2100_priv *priv = ieee80211_priv(dev);
7438         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7439 }
7440
7441 /*
7442  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7443  */
7444 static int ipw2100_wx_set_encode(struct net_device *dev,
7445                                  struct iw_request_info *info,
7446                                  union iwreq_data *wrqu, char *key)
7447 {
7448         /*
7449          * No check of STATUS_INITIALIZED required
7450          */
7451
7452         struct ipw2100_priv *priv = ieee80211_priv(dev);
7453         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7454 }
7455
7456 static int ipw2100_wx_get_encode(struct net_device *dev,
7457                                  struct iw_request_info *info,
7458                                  union iwreq_data *wrqu, char *key)
7459 {
7460         /*
7461          * This can be called at any time.  No action lock required
7462          */
7463
7464         struct ipw2100_priv *priv = ieee80211_priv(dev);
7465         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7466 }
7467
7468 static int ipw2100_wx_set_power(struct net_device *dev,
7469                                 struct iw_request_info *info,
7470                                 union iwreq_data *wrqu, char *extra)
7471 {
7472         struct ipw2100_priv *priv = ieee80211_priv(dev);
7473         int err = 0;
7474
7475         mutex_lock(&priv->action_mutex);
7476         if (!(priv->status & STATUS_INITIALIZED)) {
7477                 err = -EIO;
7478                 goto done;
7479         }
7480
7481         if (wrqu->power.disabled) {
7482                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7483                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7484                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7485                 goto done;
7486         }
7487
7488         switch (wrqu->power.flags & IW_POWER_MODE) {
7489         case IW_POWER_ON:       /* If not specified */
7490         case IW_POWER_MODE:     /* If set all mask */
7491         case IW_POWER_ALL_R:    /* If explicitely state all */
7492                 break;
7493         default:                /* Otherwise we don't support it */
7494                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7495                              wrqu->power.flags);
7496                 err = -EOPNOTSUPP;
7497                 goto done;
7498         }
7499
7500         /* If the user hasn't specified a power management mode yet, default
7501          * to BATTERY */
7502         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7503         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7504
7505         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7506
7507       done:
7508         mutex_unlock(&priv->action_mutex);
7509         return err;
7510
7511 }
7512
7513 static int ipw2100_wx_get_power(struct net_device *dev,
7514                                 struct iw_request_info *info,
7515                                 union iwreq_data *wrqu, char *extra)
7516 {
7517         /*
7518          * This can be called at any time.  No action lock required
7519          */
7520
7521         struct ipw2100_priv *priv = ieee80211_priv(dev);
7522
7523         if (!(priv->power_mode & IPW_POWER_ENABLED))
7524                 wrqu->power.disabled = 1;
7525         else {
7526                 wrqu->power.disabled = 0;
7527                 wrqu->power.flags = 0;
7528         }
7529
7530         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7531
7532         return 0;
7533 }
7534
7535 /*
7536  * WE-18 WPA support
7537  */
7538
7539 /* SIOCSIWGENIE */
7540 static int ipw2100_wx_set_genie(struct net_device *dev,
7541                                 struct iw_request_info *info,
7542                                 union iwreq_data *wrqu, char *extra)
7543 {
7544
7545         struct ipw2100_priv *priv = ieee80211_priv(dev);
7546         struct ieee80211_device *ieee = priv->ieee;
7547         u8 *buf;
7548
7549         if (!ieee->wpa_enabled)
7550                 return -EOPNOTSUPP;
7551
7552         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7553             (wrqu->data.length && extra == NULL))
7554                 return -EINVAL;
7555
7556         if (wrqu->data.length) {
7557                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7558                 if (buf == NULL)
7559                         return -ENOMEM;
7560
7561                 memcpy(buf, extra, wrqu->data.length);
7562                 kfree(ieee->wpa_ie);
7563                 ieee->wpa_ie = buf;
7564                 ieee->wpa_ie_len = wrqu->data.length;
7565         } else {
7566                 kfree(ieee->wpa_ie);
7567                 ieee->wpa_ie = NULL;
7568                 ieee->wpa_ie_len = 0;
7569         }
7570
7571         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7572
7573         return 0;
7574 }
7575
7576 /* SIOCGIWGENIE */
7577 static int ipw2100_wx_get_genie(struct net_device *dev,
7578                                 struct iw_request_info *info,
7579                                 union iwreq_data *wrqu, char *extra)
7580 {
7581         struct ipw2100_priv *priv = ieee80211_priv(dev);
7582         struct ieee80211_device *ieee = priv->ieee;
7583
7584         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7585                 wrqu->data.length = 0;
7586                 return 0;
7587         }
7588
7589         if (wrqu->data.length < ieee->wpa_ie_len)
7590                 return -E2BIG;
7591
7592         wrqu->data.length = ieee->wpa_ie_len;
7593         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7594
7595         return 0;
7596 }
7597
7598 /* SIOCSIWAUTH */
7599 static int ipw2100_wx_set_auth(struct net_device *dev,
7600                                struct iw_request_info *info,
7601                                union iwreq_data *wrqu, char *extra)
7602 {
7603         struct ipw2100_priv *priv = ieee80211_priv(dev);
7604         struct ieee80211_device *ieee = priv->ieee;
7605         struct iw_param *param = &wrqu->param;
7606         struct ieee80211_crypt_data *crypt;
7607         unsigned long flags;
7608         int ret = 0;
7609
7610         switch (param->flags & IW_AUTH_INDEX) {
7611         case IW_AUTH_WPA_VERSION:
7612         case IW_AUTH_CIPHER_PAIRWISE:
7613         case IW_AUTH_CIPHER_GROUP:
7614         case IW_AUTH_KEY_MGMT:
7615                 /*
7616                  * ipw2200 does not use these parameters
7617                  */
7618                 break;
7619
7620         case IW_AUTH_TKIP_COUNTERMEASURES:
7621                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7622                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7623                         break;
7624
7625                 flags = crypt->ops->get_flags(crypt->priv);
7626
7627                 if (param->value)
7628                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7629                 else
7630                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7631
7632                 crypt->ops->set_flags(flags, crypt->priv);
7633
7634                 break;
7635
7636         case IW_AUTH_DROP_UNENCRYPTED:{
7637                         /* HACK:
7638                          *
7639                          * wpa_supplicant calls set_wpa_enabled when the driver
7640                          * is loaded and unloaded, regardless of if WPA is being
7641                          * used.  No other calls are made which can be used to
7642                          * determine if encryption will be used or not prior to
7643                          * association being expected.  If encryption is not being
7644                          * used, drop_unencrypted is set to false, else true -- we
7645                          * can use this to determine if the CAP_PRIVACY_ON bit should
7646                          * be set.
7647                          */
7648                         struct ieee80211_security sec = {
7649                                 .flags = SEC_ENABLED,
7650                                 .enabled = param->value,
7651                         };
7652                         priv->ieee->drop_unencrypted = param->value;
7653                         /* We only change SEC_LEVEL for open mode. Others
7654                          * are set by ipw_wpa_set_encryption.
7655                          */
7656                         if (!param->value) {
7657                                 sec.flags |= SEC_LEVEL;
7658                                 sec.level = SEC_LEVEL_0;
7659                         } else {
7660                                 sec.flags |= SEC_LEVEL;
7661                                 sec.level = SEC_LEVEL_1;
7662                         }
7663                         if (priv->ieee->set_security)
7664                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7665                         break;
7666                 }
7667
7668         case IW_AUTH_80211_AUTH_ALG:
7669                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7670                 break;
7671
7672         case IW_AUTH_WPA_ENABLED:
7673                 ret = ipw2100_wpa_enable(priv, param->value);
7674                 break;
7675
7676         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7677                 ieee->ieee802_1x = param->value;
7678                 break;
7679
7680                 //case IW_AUTH_ROAMING_CONTROL:
7681         case IW_AUTH_PRIVACY_INVOKED:
7682                 ieee->privacy_invoked = param->value;
7683                 break;
7684
7685         default:
7686                 return -EOPNOTSUPP;
7687         }
7688         return ret;
7689 }
7690
7691 /* SIOCGIWAUTH */
7692 static int ipw2100_wx_get_auth(struct net_device *dev,
7693                                struct iw_request_info *info,
7694                                union iwreq_data *wrqu, char *extra)
7695 {
7696         struct ipw2100_priv *priv = ieee80211_priv(dev);
7697         struct ieee80211_device *ieee = priv->ieee;
7698         struct ieee80211_crypt_data *crypt;
7699         struct iw_param *param = &wrqu->param;
7700         int ret = 0;
7701
7702         switch (param->flags & IW_AUTH_INDEX) {
7703         case IW_AUTH_WPA_VERSION:
7704         case IW_AUTH_CIPHER_PAIRWISE:
7705         case IW_AUTH_CIPHER_GROUP:
7706         case IW_AUTH_KEY_MGMT:
7707                 /*
7708                  * wpa_supplicant will control these internally
7709                  */
7710                 ret = -EOPNOTSUPP;
7711                 break;
7712
7713         case IW_AUTH_TKIP_COUNTERMEASURES:
7714                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7715                 if (!crypt || !crypt->ops->get_flags) {
7716                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7717                                           "crypt not set!\n");
7718                         break;
7719                 }
7720
7721                 param->value = (crypt->ops->get_flags(crypt->priv) &
7722                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7723
7724                 break;
7725
7726         case IW_AUTH_DROP_UNENCRYPTED:
7727                 param->value = ieee->drop_unencrypted;
7728                 break;
7729
7730         case IW_AUTH_80211_AUTH_ALG:
7731                 param->value = priv->ieee->sec.auth_mode;
7732                 break;
7733
7734         case IW_AUTH_WPA_ENABLED:
7735                 param->value = ieee->wpa_enabled;
7736                 break;
7737
7738         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7739                 param->value = ieee->ieee802_1x;
7740                 break;
7741
7742         case IW_AUTH_ROAMING_CONTROL:
7743         case IW_AUTH_PRIVACY_INVOKED:
7744                 param->value = ieee->privacy_invoked;
7745                 break;
7746
7747         default:
7748                 return -EOPNOTSUPP;
7749         }
7750         return 0;
7751 }
7752
7753 /* SIOCSIWENCODEEXT */
7754 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7755                                     struct iw_request_info *info,
7756                                     union iwreq_data *wrqu, char *extra)
7757 {
7758         struct ipw2100_priv *priv = ieee80211_priv(dev);
7759         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7760 }
7761
7762 /* SIOCGIWENCODEEXT */
7763 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7764                                     struct iw_request_info *info,
7765                                     union iwreq_data *wrqu, char *extra)
7766 {
7767         struct ipw2100_priv *priv = ieee80211_priv(dev);
7768         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCSIWMLME */
7772 static int ipw2100_wx_set_mlme(struct net_device *dev,
7773                                struct iw_request_info *info,
7774                                union iwreq_data *wrqu, char *extra)
7775 {
7776         struct ipw2100_priv *priv = ieee80211_priv(dev);
7777         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7778         u16 reason;
7779
7780         reason = cpu_to_le16(mlme->reason_code);
7781
7782         switch (mlme->cmd) {
7783         case IW_MLME_DEAUTH:
7784                 // silently ignore
7785                 break;
7786
7787         case IW_MLME_DISASSOC:
7788                 ipw2100_disassociate_bssid(priv);
7789                 break;
7790
7791         default:
7792                 return -EOPNOTSUPP;
7793         }
7794         return 0;
7795 }
7796
7797 /*
7798  *
7799  * IWPRIV handlers
7800  *
7801  */
7802 #ifdef CONFIG_IPW2100_MONITOR
7803 static int ipw2100_wx_set_promisc(struct net_device *dev,
7804                                   struct iw_request_info *info,
7805                                   union iwreq_data *wrqu, char *extra)
7806 {
7807         struct ipw2100_priv *priv = ieee80211_priv(dev);
7808         int *parms = (int *)extra;
7809         int enable = (parms[0] > 0);
7810         int err = 0;
7811
7812         mutex_lock(&priv->action_mutex);
7813         if (!(priv->status & STATUS_INITIALIZED)) {
7814                 err = -EIO;
7815                 goto done;
7816         }
7817
7818         if (enable) {
7819                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7820                         err = ipw2100_set_channel(priv, parms[1], 0);
7821                         goto done;
7822                 }
7823                 priv->channel = parms[1];
7824                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7825         } else {
7826                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7827                         err = ipw2100_switch_mode(priv, priv->last_mode);
7828         }
7829       done:
7830         mutex_unlock(&priv->action_mutex);
7831         return err;
7832 }
7833
7834 static int ipw2100_wx_reset(struct net_device *dev,
7835                             struct iw_request_info *info,
7836                             union iwreq_data *wrqu, char *extra)
7837 {
7838         struct ipw2100_priv *priv = ieee80211_priv(dev);
7839         if (priv->status & STATUS_INITIALIZED)
7840                 schedule_reset(priv);
7841         return 0;
7842 }
7843
7844 #endif
7845
7846 static int ipw2100_wx_set_powermode(struct net_device *dev,
7847                                     struct iw_request_info *info,
7848                                     union iwreq_data *wrqu, char *extra)
7849 {
7850         struct ipw2100_priv *priv = ieee80211_priv(dev);
7851         int err = 0, mode = *(int *)extra;
7852
7853         mutex_lock(&priv->action_mutex);
7854         if (!(priv->status & STATUS_INITIALIZED)) {
7855                 err = -EIO;
7856                 goto done;
7857         }
7858
7859         if ((mode < 1) || (mode > POWER_MODES))
7860                 mode = IPW_POWER_AUTO;
7861
7862         if (priv->power_mode != mode)
7863                 err = ipw2100_set_power_mode(priv, mode);
7864       done:
7865         mutex_unlock(&priv->action_mutex);
7866         return err;
7867 }
7868
7869 #define MAX_POWER_STRING 80
7870 static int ipw2100_wx_get_powermode(struct net_device *dev,
7871                                     struct iw_request_info *info,
7872                                     union iwreq_data *wrqu, char *extra)
7873 {
7874         /*
7875          * This can be called at any time.  No action lock required
7876          */
7877
7878         struct ipw2100_priv *priv = ieee80211_priv(dev);
7879         int level = IPW_POWER_LEVEL(priv->power_mode);
7880         s32 timeout, period;
7881
7882         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7883                 snprintf(extra, MAX_POWER_STRING,
7884                          "Power save level: %d (Off)", level);
7885         } else {
7886                 switch (level) {
7887                 case IPW_POWER_MODE_CAM:
7888                         snprintf(extra, MAX_POWER_STRING,
7889                                  "Power save level: %d (None)", level);
7890                         break;
7891                 case IPW_POWER_AUTO:
7892                         snprintf(extra, MAX_POWER_STRING,
7893                                  "Power save level: %d (Auto)", 0);
7894                         break;
7895                 default:
7896                         timeout = timeout_duration[level - 1] / 1000;
7897                         period = period_duration[level - 1] / 1000;
7898                         snprintf(extra, MAX_POWER_STRING,
7899                                  "Power save level: %d "
7900                                  "(Timeout %dms, Period %dms)",
7901                                  level, timeout, period);
7902                 }
7903         }
7904
7905         wrqu->data.length = strlen(extra) + 1;
7906
7907         return 0;
7908 }
7909
7910 static int ipw2100_wx_set_preamble(struct net_device *dev,
7911                                    struct iw_request_info *info,
7912                                    union iwreq_data *wrqu, char *extra)
7913 {
7914         struct ipw2100_priv *priv = ieee80211_priv(dev);
7915         int err, mode = *(int *)extra;
7916
7917         mutex_lock(&priv->action_mutex);
7918         if (!(priv->status & STATUS_INITIALIZED)) {
7919                 err = -EIO;
7920                 goto done;
7921         }
7922
7923         if (mode == 1)
7924                 priv->config |= CFG_LONG_PREAMBLE;
7925         else if (mode == 0)
7926                 priv->config &= ~CFG_LONG_PREAMBLE;
7927         else {
7928                 err = -EINVAL;
7929                 goto done;
7930         }
7931
7932         err = ipw2100_system_config(priv, 0);
7933
7934       done:
7935         mutex_unlock(&priv->action_mutex);
7936         return err;
7937 }
7938
7939 static int ipw2100_wx_get_preamble(struct net_device *dev,
7940                                    struct iw_request_info *info,
7941                                    union iwreq_data *wrqu, char *extra)
7942 {
7943         /*
7944          * This can be called at any time.  No action lock required
7945          */
7946
7947         struct ipw2100_priv *priv = ieee80211_priv(dev);
7948
7949         if (priv->config & CFG_LONG_PREAMBLE)
7950                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7951         else
7952                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7953
7954         return 0;
7955 }
7956
7957 #ifdef CONFIG_IPW2100_MONITOR
7958 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7959                                     struct iw_request_info *info,
7960                                     union iwreq_data *wrqu, char *extra)
7961 {
7962         struct ipw2100_priv *priv = ieee80211_priv(dev);
7963         int err, mode = *(int *)extra;
7964
7965         mutex_lock(&priv->action_mutex);
7966         if (!(priv->status & STATUS_INITIALIZED)) {
7967                 err = -EIO;
7968                 goto done;
7969         }
7970
7971         if (mode == 1)
7972                 priv->config |= CFG_CRC_CHECK;
7973         else if (mode == 0)
7974                 priv->config &= ~CFG_CRC_CHECK;
7975         else {
7976                 err = -EINVAL;
7977                 goto done;
7978         }
7979         err = 0;
7980
7981       done:
7982         mutex_unlock(&priv->action_mutex);
7983         return err;
7984 }
7985
7986 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7987                                     struct iw_request_info *info,
7988                                     union iwreq_data *wrqu, char *extra)
7989 {
7990         /*
7991          * This can be called at any time.  No action lock required
7992          */
7993
7994         struct ipw2100_priv *priv = ieee80211_priv(dev);
7995
7996         if (priv->config & CFG_CRC_CHECK)
7997                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7998         else
7999                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8000
8001         return 0;
8002 }
8003 #endif                          /* CONFIG_IPW2100_MONITOR */
8004
8005 static iw_handler ipw2100_wx_handlers[] = {
8006         NULL,                   /* SIOCSIWCOMMIT */
8007         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8008         NULL,                   /* SIOCSIWNWID */
8009         NULL,                   /* SIOCGIWNWID */
8010         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8011         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8012         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8013         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8014         NULL,                   /* SIOCSIWSENS */
8015         NULL,                   /* SIOCGIWSENS */
8016         NULL,                   /* SIOCSIWRANGE */
8017         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8018         NULL,                   /* SIOCSIWPRIV */
8019         NULL,                   /* SIOCGIWPRIV */
8020         NULL,                   /* SIOCSIWSTATS */
8021         NULL,                   /* SIOCGIWSTATS */
8022         NULL,                   /* SIOCSIWSPY */
8023         NULL,                   /* SIOCGIWSPY */
8024         NULL,                   /* SIOCGIWTHRSPY */
8025         NULL,                   /* SIOCWIWTHRSPY */
8026         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8027         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8028         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8029         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8030         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8031         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8032         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8033         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8034         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8035         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8036         NULL,                   /* -- hole -- */
8037         NULL,                   /* -- hole -- */
8038         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8039         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8040         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8041         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8042         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8043         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8044         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8045         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8046         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8047         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8048         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8049         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8050         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8051         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8052         NULL,                   /* -- hole -- */
8053         NULL,                   /* -- hole -- */
8054         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8055         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8056         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8057         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8058         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8059         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8060         NULL,                   /* SIOCSIWPMKSA */
8061 };
8062
8063 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8064 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8065 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8066 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8067 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8068 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8069 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8070 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8071
8072 static const struct iw_priv_args ipw2100_private_args[] = {
8073
8074 #ifdef CONFIG_IPW2100_MONITOR
8075         {
8076          IPW2100_PRIV_SET_MONITOR,
8077          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8078         {
8079          IPW2100_PRIV_RESET,
8080          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8081 #endif                          /* CONFIG_IPW2100_MONITOR */
8082
8083         {
8084          IPW2100_PRIV_SET_POWER,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8086         {
8087          IPW2100_PRIV_GET_POWER,
8088          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8089          "get_power"},
8090         {
8091          IPW2100_PRIV_SET_LONGPREAMBLE,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8093         {
8094          IPW2100_PRIV_GET_LONGPREAMBLE,
8095          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8096 #ifdef CONFIG_IPW2100_MONITOR
8097         {
8098          IPW2100_PRIV_SET_CRC_CHECK,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8100         {
8101          IPW2100_PRIV_GET_CRC_CHECK,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8103 #endif                          /* CONFIG_IPW2100_MONITOR */
8104 };
8105
8106 static iw_handler ipw2100_private_handler[] = {
8107 #ifdef CONFIG_IPW2100_MONITOR
8108         ipw2100_wx_set_promisc,
8109         ipw2100_wx_reset,
8110 #else                           /* CONFIG_IPW2100_MONITOR */
8111         NULL,
8112         NULL,
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114         ipw2100_wx_set_powermode,
8115         ipw2100_wx_get_powermode,
8116         ipw2100_wx_set_preamble,
8117         ipw2100_wx_get_preamble,
8118 #ifdef CONFIG_IPW2100_MONITOR
8119         ipw2100_wx_set_crc_check,
8120         ipw2100_wx_get_crc_check,
8121 #else                           /* CONFIG_IPW2100_MONITOR */
8122         NULL,
8123         NULL,
8124 #endif                          /* CONFIG_IPW2100_MONITOR */
8125 };
8126
8127 /*
8128  * Get wireless statistics.
8129  * Called by /proc/net/wireless
8130  * Also called by SIOCGIWSTATS
8131  */
8132 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8133 {
8134         enum {
8135                 POOR = 30,
8136                 FAIR = 60,
8137                 GOOD = 80,
8138                 VERY_GOOD = 90,
8139                 EXCELLENT = 95,
8140                 PERFECT = 100
8141         };
8142         int rssi_qual;
8143         int tx_qual;
8144         int beacon_qual;
8145
8146         struct ipw2100_priv *priv = ieee80211_priv(dev);
8147         struct iw_statistics *wstats;
8148         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8149         u32 ord_len = sizeof(u32);
8150
8151         if (!priv)
8152                 return (struct iw_statistics *)NULL;
8153
8154         wstats = &priv->wstats;
8155
8156         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8157          * ipw2100_wx_wireless_stats seems to be called before fw is
8158          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8159          * and associated; if not associcated, the values are all meaningless
8160          * anyway, so set them all to NULL and INVALID */
8161         if (!(priv->status & STATUS_ASSOCIATED)) {
8162                 wstats->miss.beacon = 0;
8163                 wstats->discard.retries = 0;
8164                 wstats->qual.qual = 0;
8165                 wstats->qual.level = 0;
8166                 wstats->qual.noise = 0;
8167                 wstats->qual.updated = 7;
8168                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8169                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8170                 return wstats;
8171         }
8172
8173         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8174                                 &missed_beacons, &ord_len))
8175                 goto fail_get_ordinal;
8176
8177         /* If we don't have a connection the quality and level is 0 */
8178         if (!(priv->status & STATUS_ASSOCIATED)) {
8179                 wstats->qual.qual = 0;
8180                 wstats->qual.level = 0;
8181         } else {
8182                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8183                                         &rssi, &ord_len))
8184                         goto fail_get_ordinal;
8185                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8186                 if (rssi < 10)
8187                         rssi_qual = rssi * POOR / 10;
8188                 else if (rssi < 15)
8189                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8190                 else if (rssi < 20)
8191                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8192                 else if (rssi < 30)
8193                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8194                             10 + GOOD;
8195                 else
8196                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8197                             10 + VERY_GOOD;
8198
8199                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8200                                         &tx_retries, &ord_len))
8201                         goto fail_get_ordinal;
8202
8203                 if (tx_retries > 75)
8204                         tx_qual = (90 - tx_retries) * POOR / 15;
8205                 else if (tx_retries > 70)
8206                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8207                 else if (tx_retries > 65)
8208                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8209                 else if (tx_retries > 50)
8210                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8211                             15 + GOOD;
8212                 else
8213                         tx_qual = (50 - tx_retries) *
8214                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8215
8216                 if (missed_beacons > 50)
8217                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8218                 else if (missed_beacons > 40)
8219                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8220                             10 + POOR;
8221                 else if (missed_beacons > 32)
8222                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8223                             18 + FAIR;
8224                 else if (missed_beacons > 20)
8225                         beacon_qual = (32 - missed_beacons) *
8226                             (VERY_GOOD - GOOD) / 20 + GOOD;
8227                 else
8228                         beacon_qual = (20 - missed_beacons) *
8229                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8230
8231                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8232
8233 #ifdef CONFIG_IPW2100_DEBUG
8234                 if (beacon_qual == quality)
8235                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8236                 else if (tx_qual == quality)
8237                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8238                 else if (quality != 100)
8239                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8240                 else
8241                         IPW_DEBUG_WX("Quality not clamped.\n");
8242 #endif
8243
8244                 wstats->qual.qual = quality;
8245                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8246         }
8247
8248         wstats->qual.noise = 0;
8249         wstats->qual.updated = 7;
8250         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8251
8252         /* FIXME: this is percent and not a # */
8253         wstats->miss.beacon = missed_beacons;
8254
8255         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8256                                 &tx_failures, &ord_len))
8257                 goto fail_get_ordinal;
8258         wstats->discard.retries = tx_failures;
8259
8260         return wstats;
8261
8262       fail_get_ordinal:
8263         IPW_DEBUG_WX("failed querying ordinals.\n");
8264
8265         return (struct iw_statistics *)NULL;
8266 }
8267
8268 static struct iw_handler_def ipw2100_wx_handler_def = {
8269         .standard = ipw2100_wx_handlers,
8270         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8271         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8272         .num_private_args = sizeof(ipw2100_private_args) /
8273             sizeof(struct iw_priv_args),
8274         .private = (iw_handler *) ipw2100_private_handler,
8275         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8276         .get_wireless_stats = ipw2100_wx_wireless_stats,
8277 };
8278
8279 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8280 {
8281         union iwreq_data wrqu;
8282         int len = ETH_ALEN;
8283
8284         if (priv->status & STATUS_STOPPING)
8285                 return;
8286
8287         mutex_lock(&priv->action_mutex);
8288
8289         IPW_DEBUG_WX("enter\n");
8290
8291         mutex_unlock(&priv->action_mutex);
8292
8293         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8294
8295         /* Fetch BSSID from the hardware */
8296         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8297             priv->status & STATUS_RF_KILL_MASK ||
8298             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8299                                 &priv->bssid, &len)) {
8300                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8301         } else {
8302                 /* We now have the BSSID, so can finish setting to the full
8303                  * associated state */
8304                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8305                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8306                 priv->status &= ~STATUS_ASSOCIATING;
8307                 priv->status |= STATUS_ASSOCIATED;
8308                 netif_carrier_on(priv->net_dev);
8309                 netif_wake_queue(priv->net_dev);
8310         }
8311
8312         if (!(priv->status & STATUS_ASSOCIATED)) {
8313                 IPW_DEBUG_WX("Configuring ESSID\n");
8314                 mutex_lock(&priv->action_mutex);
8315                 /* This is a disassociation event, so kick the firmware to
8316                  * look for another AP */
8317                 if (priv->config & CFG_STATIC_ESSID)
8318                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8319                                           0);
8320                 else
8321                         ipw2100_set_essid(priv, NULL, 0, 0);
8322                 mutex_unlock(&priv->action_mutex);
8323         }
8324
8325         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8326 }
8327
8328 #define IPW2100_FW_MAJOR_VERSION 1
8329 #define IPW2100_FW_MINOR_VERSION 3
8330
8331 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8332 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8333
8334 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8335                              IPW2100_FW_MAJOR_VERSION)
8336
8337 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8338 "." __stringify(IPW2100_FW_MINOR_VERSION)
8339
8340 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8341
8342 /*
8343
8344 BINARY FIRMWARE HEADER FORMAT
8345
8346 offset      length   desc
8347 0           2        version
8348 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8349 4           4        fw_len
8350 8           4        uc_len
8351 C           fw_len   firmware data
8352 12 + fw_len uc_len   microcode data
8353
8354 */
8355
8356 struct ipw2100_fw_header {
8357         short version;
8358         short mode;
8359         unsigned int fw_size;
8360         unsigned int uc_size;
8361 } __attribute__ ((packed));
8362
8363 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8364 {
8365         struct ipw2100_fw_header *h =
8366             (struct ipw2100_fw_header *)fw->fw_entry->data;
8367
8368         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8369                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8370                        "(detected version id of %u). "
8371                        "See Documentation/networking/README.ipw2100\n",
8372                        h->version);
8373                 return 1;
8374         }
8375
8376         fw->version = h->version;
8377         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8378         fw->fw.size = h->fw_size;
8379         fw->uc.data = fw->fw.data + h->fw_size;
8380         fw->uc.size = h->uc_size;
8381
8382         return 0;
8383 }
8384
8385 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8386                                 struct ipw2100_fw *fw)
8387 {
8388         char *fw_name;
8389         int rc;
8390
8391         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8392                        priv->net_dev->name);
8393
8394         switch (priv->ieee->iw_mode) {
8395         case IW_MODE_ADHOC:
8396                 fw_name = IPW2100_FW_NAME("-i");
8397                 break;
8398 #ifdef CONFIG_IPW2100_MONITOR
8399         case IW_MODE_MONITOR:
8400                 fw_name = IPW2100_FW_NAME("-p");
8401                 break;
8402 #endif
8403         case IW_MODE_INFRA:
8404         default:
8405                 fw_name = IPW2100_FW_NAME("");
8406                 break;
8407         }
8408
8409         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8410
8411         if (rc < 0) {
8412                 printk(KERN_ERR DRV_NAME ": "
8413                        "%s: Firmware '%s' not available or load failed.\n",
8414                        priv->net_dev->name, fw_name);
8415                 return rc;
8416         }
8417         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8418                        fw->fw_entry->size);
8419
8420         ipw2100_mod_firmware_load(fw);
8421
8422         return 0;
8423 }
8424
8425 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8426                                      struct ipw2100_fw *fw)
8427 {
8428         fw->version = 0;
8429         if (fw->fw_entry)
8430                 release_firmware(fw->fw_entry);
8431         fw->fw_entry = NULL;
8432 }
8433
8434 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8435                                  size_t max)
8436 {
8437         char ver[MAX_FW_VERSION_LEN];
8438         u32 len = MAX_FW_VERSION_LEN;
8439         u32 tmp;
8440         int i;
8441         /* firmware version is an ascii string (max len of 14) */
8442         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8443                 return -EIO;
8444         tmp = max;
8445         if (len >= max)
8446                 len = max - 1;
8447         for (i = 0; i < len; i++)
8448                 buf[i] = ver[i];
8449         buf[i] = '\0';
8450         return tmp;
8451 }
8452
8453 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8454                                     size_t max)
8455 {
8456         u32 ver;
8457         u32 len = sizeof(ver);
8458         /* microcode version is a 32 bit integer */
8459         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8460                 return -EIO;
8461         return snprintf(buf, max, "%08X", ver);
8462 }
8463
8464 /*
8465  * On exit, the firmware will have been freed from the fw list
8466  */
8467 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8468 {
8469         /* firmware is constructed of N contiguous entries, each entry is
8470          * structured as:
8471          *
8472          * offset    sie         desc
8473          * 0         4           address to write to
8474          * 4         2           length of data run
8475          * 6         length      data
8476          */
8477         unsigned int addr;
8478         unsigned short len;
8479
8480         const unsigned char *firmware_data = fw->fw.data;
8481         unsigned int firmware_data_left = fw->fw.size;
8482
8483         while (firmware_data_left > 0) {
8484                 addr = *(u32 *) (firmware_data);
8485                 firmware_data += 4;
8486                 firmware_data_left -= 4;
8487
8488                 len = *(u16 *) (firmware_data);
8489                 firmware_data += 2;
8490                 firmware_data_left -= 2;
8491
8492                 if (len > 32) {
8493                         printk(KERN_ERR DRV_NAME ": "
8494                                "Invalid firmware run-length of %d bytes\n",
8495                                len);
8496                         return -EINVAL;
8497                 }
8498
8499                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8500                 firmware_data += len;
8501                 firmware_data_left -= len;
8502         }
8503
8504         return 0;
8505 }
8506
8507 struct symbol_alive_response {
8508         u8 cmd_id;
8509         u8 seq_num;
8510         u8 ucode_rev;
8511         u8 eeprom_valid;
8512         u16 valid_flags;
8513         u8 IEEE_addr[6];
8514         u16 flags;
8515         u16 pcb_rev;
8516         u16 clock_settle_time;  // 1us LSB
8517         u16 powerup_settle_time;        // 1us LSB
8518         u16 hop_settle_time;    // 1us LSB
8519         u8 date[3];             // month, day, year
8520         u8 time[2];             // hours, minutes
8521         u8 ucode_valid;
8522 };
8523
8524 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8525                                   struct ipw2100_fw *fw)
8526 {
8527         struct net_device *dev = priv->net_dev;
8528         const unsigned char *microcode_data = fw->uc.data;
8529         unsigned int microcode_data_left = fw->uc.size;
8530         void __iomem *reg = (void __iomem *)dev->base_addr;
8531
8532         struct symbol_alive_response response;
8533         int i, j;
8534         u8 data;
8535
8536         /* Symbol control */
8537         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8538         readl(reg);
8539         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8540         readl(reg);
8541
8542         /* HW config */
8543         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8544         readl(reg);
8545         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8546         readl(reg);
8547
8548         /* EN_CS_ACCESS bit to reset control store pointer */
8549         write_nic_byte(dev, 0x210000, 0x40);
8550         readl(reg);
8551         write_nic_byte(dev, 0x210000, 0x0);
8552         readl(reg);
8553         write_nic_byte(dev, 0x210000, 0x40);
8554         readl(reg);
8555
8556         /* copy microcode from buffer into Symbol */
8557
8558         while (microcode_data_left > 0) {
8559                 write_nic_byte(dev, 0x210010, *microcode_data++);
8560                 write_nic_byte(dev, 0x210010, *microcode_data++);
8561                 microcode_data_left -= 2;
8562         }
8563
8564         /* EN_CS_ACCESS bit to reset the control store pointer */
8565         write_nic_byte(dev, 0x210000, 0x0);
8566         readl(reg);
8567
8568         /* Enable System (Reg 0)
8569          * first enable causes garbage in RX FIFO */
8570         write_nic_byte(dev, 0x210000, 0x0);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x80);
8573         readl(reg);
8574
8575         /* Reset External Baseband Reg */
8576         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8577         readl(reg);
8578         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8579         readl(reg);
8580
8581         /* HW Config (Reg 5) */
8582         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8583         readl(reg);
8584         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8585         readl(reg);
8586
8587         /* Enable System (Reg 0)
8588          * second enable should be OK */
8589         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8590         readl(reg);
8591         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8592
8593         /* check Symbol is enabled - upped this from 5 as it wasn't always
8594          * catching the update */
8595         for (i = 0; i < 10; i++) {
8596                 udelay(10);
8597
8598                 /* check Dino is enabled bit */
8599                 read_nic_byte(dev, 0x210000, &data);
8600                 if (data & 0x1)
8601                         break;
8602         }
8603
8604         if (i == 10) {
8605                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8606                        dev->name);
8607                 return -EIO;
8608         }
8609
8610         /* Get Symbol alive response */
8611         for (i = 0; i < 30; i++) {
8612                 /* Read alive response structure */
8613                 for (j = 0;
8614                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8615                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8616
8617                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8618                         break;
8619                 udelay(10);
8620         }
8621
8622         if (i == 30) {
8623                 printk(KERN_ERR DRV_NAME
8624                        ": %s: No response from Symbol - hw not alive\n",
8625                        dev->name);
8626                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8627                 return -EIO;
8628         }
8629
8630         return 0;
8631 }