drivers/block/umem: trim trailing whitespace
[linux-2.6] / drivers / block / umem.c
1 /*
2  * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3  *
4  * (C) 2001 San Mehat <nettwerk@valinux.com>
5  * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6  * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7  *
8  * This driver for the Micro Memory PCI Memory Module with Battery Backup
9  * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
10  *
11  * This driver is released to the public under the terms of the
12  *  GNU GENERAL PUBLIC LICENSE version 2
13  * See the file COPYING for details.
14  *
15  * This driver provides a standard block device interface for Micro Memory(tm)
16  * PCI based RAM boards.
17  * 10/05/01: Phap Nguyen - Rebuilt the driver
18  * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19  * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
20  *                       - use stand disk partitioning (so fdisk works).
21  * 08nov2001:NeilBrown   - change driver name from "mm" to "umem"
22  *                       - incorporate into main kernel
23  * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
24  *                       - use spin_lock_bh instead of _irq
25  *                       - Never block on make_request.  queue
26  *                         bh's instead.
27  *                       - unregister umem from devfs at mod unload
28  *                       - Change version to 2.3
29  * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30  * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
31  * 15May2002:NeilBrown   - convert to bio for 2.5
32  * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
33  *                       - a sequence of writes that cover the card, and
34  *                       - set initialised bit then.
35  */
36
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
38 #include <linux/fs.h>
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
41 #include <linux/mm.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
51
52 #include <linux/fcntl.h>        /* O_ACCMODE */
53 #include <linux/hdreg.h>  /* HDIO_GETGEO */
54
55 #include "umem.h"
56
57 #include <asm/uaccess.h>
58 #include <asm/io.h>
59
60 #define MM_MAXCARDS 4
61 #define MM_RAHEAD 2      /* two sectors */
62 #define MM_BLKSIZE 1024  /* 1k blocks */
63 #define MM_HARDSECT 512  /* 512-byte hardware sectors */
64 #define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
65
66 /*
67  * Version Information
68  */
69
70 #define DRIVER_NAME     "umem"
71 #define DRIVER_VERSION  "v2.3"
72 #define DRIVER_AUTHOR   "San Mehat, Johannes Erdfelt, NeilBrown"
73 #define DRIVER_DESC     "Micro Memory(tm) PCI memory board block driver"
74
75 static int debug;
76 /* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
77 #define HW_TRACE(x)
78
79 #define DEBUG_LED_ON_TRANSFER   0x01
80 #define DEBUG_BATTERY_POLLING   0x02
81
82 module_param(debug, int, 0644);
83 MODULE_PARM_DESC(debug, "Debug bitmask");
84
85 static int pci_read_cmd = 0x0C;         /* Read Multiple */
86 module_param(pci_read_cmd, int, 0);
87 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88
89 static int pci_write_cmd = 0x0F;        /* Write and Invalidate */
90 module_param(pci_write_cmd, int, 0);
91 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
92
93 static int pci_cmds;
94
95 static int major_nr;
96
97 #include <linux/blkdev.h>
98 #include <linux/blkpg.h>
99
100 struct cardinfo {
101         struct pci_dev  *dev;
102
103         unsigned char   __iomem *csr_remap;
104         unsigned int    mm_size;  /* size in kbytes */
105
106         unsigned int    init_size; /* initial segment, in sectors,
107                                     * that we know to
108                                     * have been written
109                                     */
110         struct bio      *bio, *currentbio, **biotail;
111         int             current_idx;
112         sector_t        current_sector;
113
114         struct request_queue *queue;
115
116         struct mm_page {
117                 dma_addr_t              page_dma;
118                 struct mm_dma_desc      *desc;
119                 int                     cnt, headcnt;
120                 struct bio              *bio, **biotail;
121                 int                     idx;
122         } mm_pages[2];
123 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
124
125         int  Active, Ready;
126
127         struct tasklet_struct   tasklet;
128         unsigned int dma_status;
129
130         struct {
131                 int             good;
132                 int             warned;
133                 unsigned long   last_change;
134         } battery[2];
135
136         spinlock_t      lock;
137         int             check_batteries;
138
139         int             flags;
140 };
141
142 static struct cardinfo cards[MM_MAXCARDS];
143 static struct block_device_operations mm_fops;
144 static struct timer_list battery_timer;
145
146 static int num_cards = 0;
147
148 static struct gendisk *mm_gendisk[MM_MAXCARDS];
149
150 static void check_batteries(struct cardinfo *card);
151
152 /*
153 -----------------------------------------------------------------------------------
154 --                           get_userbit
155 -----------------------------------------------------------------------------------
156 */
157 static int get_userbit(struct cardinfo *card, int bit)
158 {
159         unsigned char led;
160
161         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
162         return led & bit;
163 }
164 /*
165 -----------------------------------------------------------------------------------
166 --                            set_userbit
167 -----------------------------------------------------------------------------------
168 */
169 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
170 {
171         unsigned char led;
172
173         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
174         if (state)
175                 led |= bit;
176         else
177                 led &= ~bit;
178         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
179
180         return 0;
181 }
182 /*
183 -----------------------------------------------------------------------------------
184 --                             set_led
185 -----------------------------------------------------------------------------------
186 */
187 /*
188  * NOTE: For the power LED, use the LED_POWER_* macros since they differ
189  */
190 static void set_led(struct cardinfo *card, int shift, unsigned char state)
191 {
192         unsigned char led;
193
194         led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
195         if (state == LED_FLIP)
196                 led ^= (1<<shift);
197         else {
198                 led &= ~(0x03 << shift);
199                 led |= (state << shift);
200         }
201         writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
202
203 }
204
205 #ifdef MM_DIAG
206 /*
207 -----------------------------------------------------------------------------------
208 --                              dump_regs
209 -----------------------------------------------------------------------------------
210 */
211 static void dump_regs(struct cardinfo *card)
212 {
213         unsigned char *p;
214         int i, i1;
215
216         p = card->csr_remap;
217         for (i = 0; i < 8; i++) {
218                 printk(KERN_DEBUG "%p   ", p);
219
220                 for (i1 = 0; i1 < 16; i1++)
221                         printk("%02x ", *p++);
222
223                 printk("\n");
224         }
225 }
226 #endif
227 /*
228 -----------------------------------------------------------------------------------
229 --                            dump_dmastat
230 -----------------------------------------------------------------------------------
231 */
232 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
233 {
234         dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
235         if (dmastat & DMASCR_ANY_ERR)
236                 printk("ANY_ERR ");
237         if (dmastat & DMASCR_MBE_ERR)
238                 printk("MBE_ERR ");
239         if (dmastat & DMASCR_PARITY_ERR_REP)
240                 printk("PARITY_ERR_REP ");
241         if (dmastat & DMASCR_PARITY_ERR_DET)
242                 printk("PARITY_ERR_DET ");
243         if (dmastat & DMASCR_SYSTEM_ERR_SIG)
244                 printk("SYSTEM_ERR_SIG ");
245         if (dmastat & DMASCR_TARGET_ABT)
246                 printk("TARGET_ABT ");
247         if (dmastat & DMASCR_MASTER_ABT)
248                 printk("MASTER_ABT ");
249         if (dmastat & DMASCR_CHAIN_COMPLETE)
250                 printk("CHAIN_COMPLETE ");
251         if (dmastat & DMASCR_DMA_COMPLETE)
252                 printk("DMA_COMPLETE ");
253         printk("\n");
254 }
255
256 /*
257  * Theory of request handling
258  *
259  * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
260  * We have two pages of mm_dma_desc, holding about 64 descriptors
261  * each.  These are allocated at init time.
262  * One page is "Ready" and is either full, or can have request added.
263  * The other page might be "Active", which DMA is happening on it.
264  *
265  * Whenever IO on the active page completes, the Ready page is activated
266  * and the ex-Active page is clean out and made Ready.
267  * Otherwise the Ready page is only activated when it becomes full, or
268  * when mm_unplug_device is called via the unplug_io_fn.
269  *
270  * If a request arrives while both pages a full, it is queued, and b_rdev is
271  * overloaded to record whether it was a read or a write.
272  *
273  * The interrupt handler only polls the device to clear the interrupt.
274  * The processing of the result is done in a tasklet.
275  */
276
277 static void mm_start_io(struct cardinfo *card)
278 {
279         /* we have the lock, we know there is
280          * no IO active, and we know that card->Active
281          * is set
282          */
283         struct mm_dma_desc *desc;
284         struct mm_page *page;
285         int offset;
286
287         /* make the last descriptor end the chain */
288         page = &card->mm_pages[card->Active];
289         pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
290         desc = &page->desc[page->cnt-1];
291
292         desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
293         desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
294         desc->sem_control_bits = desc->control_bits;
295
296
297         if (debug & DEBUG_LED_ON_TRANSFER)
298                 set_led(card, LED_REMOVE, LED_ON);
299
300         desc = &page->desc[page->headcnt];
301         writel(0, card->csr_remap + DMA_PCI_ADDR);
302         writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
303
304         writel(0, card->csr_remap + DMA_LOCAL_ADDR);
305         writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
306
307         writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
308         writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
309
310         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
311         writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
312
313         offset = ((char*)desc) - ((char*)page->desc);
314         writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
315                card->csr_remap + DMA_DESCRIPTOR_ADDR);
316         /* Force the value to u64 before shifting otherwise >> 32 is undefined C
317          * and on some ports will do nothing ! */
318         writel(cpu_to_le32(((u64)page->page_dma)>>32),
319                card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
320
321         /* Go, go, go */
322         writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
323                card->csr_remap + DMA_STATUS_CTRL);
324 }
325
326 static int add_bio(struct cardinfo *card);
327
328 static void activate(struct cardinfo *card)
329 {
330         /* if No page is Active, and Ready is
331          * not empty, then switch Ready page
332          * to active and start IO.
333          * Then add any bh's that are available to Ready
334          */
335
336         do {
337                 while (add_bio(card))
338                         ;
339
340                 if (card->Active == -1 &&
341                     card->mm_pages[card->Ready].cnt > 0) {
342                         card->Active = card->Ready;
343                         card->Ready = 1-card->Ready;
344                         mm_start_io(card);
345                 }
346
347         } while (card->Active == -1 && add_bio(card));
348 }
349
350 static inline void reset_page(struct mm_page *page)
351 {
352         page->cnt = 0;
353         page->headcnt = 0;
354         page->bio = NULL;
355         page->biotail = & page->bio;
356 }
357
358 static void mm_unplug_device(struct request_queue *q)
359 {
360         struct cardinfo *card = q->queuedata;
361         unsigned long flags;
362
363         spin_lock_irqsave(&card->lock, flags);
364         if (blk_remove_plug(q))
365                 activate(card);
366         spin_unlock_irqrestore(&card->lock, flags);
367 }
368
369 /*
370  * If there is room on Ready page, take
371  * one bh off list and add it.
372  * return 1 if there was room, else 0.
373  */
374 static int add_bio(struct cardinfo *card)
375 {
376         struct mm_page *p;
377         struct mm_dma_desc *desc;
378         dma_addr_t dma_handle;
379         int offset;
380         struct bio *bio;
381         struct bio_vec *vec;
382         int idx;
383         int rw;
384         int len;
385
386         bio = card->currentbio;
387         if (!bio && card->bio) {
388                 card->currentbio = card->bio;
389                 card->current_idx = card->bio->bi_idx;
390                 card->current_sector = card->bio->bi_sector;
391                 card->bio = card->bio->bi_next;
392                 if (card->bio == NULL)
393                         card->biotail = &card->bio;
394                 card->currentbio->bi_next = NULL;
395                 return 1;
396         }
397         if (!bio)
398                 return 0;
399         idx = card->current_idx;
400
401         rw = bio_rw(bio);
402         if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
403                 return 0;
404
405         vec = bio_iovec_idx(bio, idx);
406         len = vec->bv_len;
407         dma_handle = pci_map_page(card->dev,
408                                   vec->bv_page,
409                                   vec->bv_offset,
410                                   len,
411                                   (rw==READ) ?
412                                   PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
413
414         p = &card->mm_pages[card->Ready];
415         desc = &p->desc[p->cnt];
416         p->cnt++;
417         if (p->bio == NULL)
418                 p->idx = idx;
419         if ((p->biotail) != &bio->bi_next) {
420                 *(p->biotail) = bio;
421                 p->biotail = &(bio->bi_next);
422                 bio->bi_next = NULL;
423         }
424
425         desc->data_dma_handle = dma_handle;
426
427         desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
428         desc->local_addr = cpu_to_le64(card->current_sector << 9);
429         desc->transfer_size = cpu_to_le32(len);
430         offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
431         desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
432         desc->zero1 = desc->zero2 = 0;
433         offset = ( ((char*)(desc+1)) - ((char*)p->desc));
434         desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
435         desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
436                                          DMASCR_PARITY_INT_EN|
437                                          DMASCR_CHAIN_EN |
438                                          DMASCR_SEM_EN |
439                                          pci_cmds);
440         if (rw == WRITE)
441                 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
442         desc->sem_control_bits = desc->control_bits;
443
444         card->current_sector += (len >> 9);
445         idx++;
446         card->current_idx = idx;
447         if (idx >= bio->bi_vcnt)
448                 card->currentbio = NULL;
449
450         return 1;
451 }
452
453 static void process_page(unsigned long data)
454 {
455         /* check if any of the requests in the page are DMA_COMPLETE,
456          * and deal with them appropriately.
457          * If we find a descriptor without DMA_COMPLETE in the semaphore, then
458          * dma must have hit an error on that descriptor, so use dma_status instead
459          * and assume that all following descriptors must be re-tried.
460          */
461         struct mm_page *page;
462         struct bio *return_bio=NULL;
463         struct cardinfo *card = (struct cardinfo *)data;
464         unsigned int dma_status = card->dma_status;
465
466         spin_lock_bh(&card->lock);
467         if (card->Active < 0)
468                 goto out_unlock;
469         page = &card->mm_pages[card->Active];
470
471         while (page->headcnt < page->cnt) {
472                 struct bio *bio = page->bio;
473                 struct mm_dma_desc *desc = &page->desc[page->headcnt];
474                 int control = le32_to_cpu(desc->sem_control_bits);
475                 int last=0;
476                 int idx;
477
478                 if (!(control & DMASCR_DMA_COMPLETE)) {
479                         control = dma_status;
480                         last=1;
481                 }
482                 page->headcnt++;
483                 idx = page->idx;
484                 page->idx++;
485                 if (page->idx >= bio->bi_vcnt) {
486                         page->bio = bio->bi_next;
487                         page->idx = page->bio->bi_idx;
488                 }
489
490                 pci_unmap_page(card->dev, desc->data_dma_handle,
491                                bio_iovec_idx(bio,idx)->bv_len,
492                                  (control& DMASCR_TRANSFER_READ) ?
493                                 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
494                 if (control & DMASCR_HARD_ERROR) {
495                         /* error */
496                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
497                         dev_printk(KERN_WARNING, &card->dev->dev,
498                                 "I/O error on sector %d/%d\n",
499                                 le32_to_cpu(desc->local_addr)>>9,
500                                 le32_to_cpu(desc->transfer_size));
501                         dump_dmastat(card, control);
502                 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
503                            le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
504                         card->init_size += le32_to_cpu(desc->transfer_size)>>9;
505                         if (card->init_size>>1 >= card->mm_size) {
506                                 dev_printk(KERN_INFO, &card->dev->dev,
507                                         "memory now initialised\n");
508                                 set_userbit(card, MEMORY_INITIALIZED, 1);
509                         }
510                 }
511                 if (bio != page->bio) {
512                         bio->bi_next = return_bio;
513                         return_bio = bio;
514                 }
515
516                 if (last) break;
517         }
518
519         if (debug & DEBUG_LED_ON_TRANSFER)
520                 set_led(card, LED_REMOVE, LED_OFF);
521
522         if (card->check_batteries) {
523                 card->check_batteries = 0;
524                 check_batteries(card);
525         }
526         if (page->headcnt >= page->cnt) {
527                 reset_page(page);
528                 card->Active = -1;
529                 activate(card);
530         } else {
531                 /* haven't finished with this one yet */
532                 pr_debug("do some more\n");
533                 mm_start_io(card);
534         }
535  out_unlock:
536         spin_unlock_bh(&card->lock);
537
538         while(return_bio) {
539                 struct bio *bio = return_bio;
540
541                 return_bio = bio->bi_next;
542                 bio->bi_next = NULL;
543                 bio_endio(bio, 0);
544         }
545 }
546
547 /*
548 -----------------------------------------------------------------------------------
549 --                              mm_make_request
550 -----------------------------------------------------------------------------------
551 */
552 static int mm_make_request(struct request_queue *q, struct bio *bio)
553 {
554         struct cardinfo *card = q->queuedata;
555         pr_debug("mm_make_request %llu %u\n",
556                  (unsigned long long)bio->bi_sector, bio->bi_size);
557
558         spin_lock_irq(&card->lock);
559         *card->biotail = bio;
560         bio->bi_next = NULL;
561         card->biotail = &bio->bi_next;
562         blk_plug_device(q);
563         spin_unlock_irq(&card->lock);
564
565         return 0;
566 }
567
568 /*
569 -----------------------------------------------------------------------------------
570 --                              mm_interrupt
571 -----------------------------------------------------------------------------------
572 */
573 static irqreturn_t mm_interrupt(int irq, void *__card)
574 {
575         struct cardinfo *card = (struct cardinfo *) __card;
576         unsigned int dma_status;
577         unsigned short cfg_status;
578
579 HW_TRACE(0x30);
580
581         dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
582
583         if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
584                 /* interrupt wasn't for me ... */
585                 return IRQ_NONE;
586         }
587
588         /* clear COMPLETION interrupts */
589         if (card->flags & UM_FLAG_NO_BYTE_STATUS)
590                 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
591                        card->csr_remap+ DMA_STATUS_CTRL);
592         else
593                 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
594                        card->csr_remap+ DMA_STATUS_CTRL + 2);
595
596         /* log errors and clear interrupt status */
597         if (dma_status & DMASCR_ANY_ERR) {
598                 unsigned int    data_log1, data_log2;
599                 unsigned int    addr_log1, addr_log2;
600                 unsigned char   stat, count, syndrome, check;
601
602                 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
603
604                 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
605                 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
606                 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
607                 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
608
609                 count = readb(card->csr_remap + ERROR_COUNT);
610                 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
611                 check = readb(card->csr_remap + ERROR_CHECK);
612
613                 dump_dmastat(card, dma_status);
614
615                 if (stat & 0x01)
616                         dev_printk(KERN_ERR, &card->dev->dev,
617                                 "Memory access error detected (err count %d)\n",
618                                 count);
619                 if (stat & 0x02)
620                         dev_printk(KERN_ERR, &card->dev->dev,
621                                 "Multi-bit EDC error\n");
622
623                 dev_printk(KERN_ERR, &card->dev->dev,
624                         "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
625                         addr_log2, addr_log1, data_log2, data_log1);
626                 dev_printk(KERN_ERR, &card->dev->dev,
627                         "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
628                         check, syndrome);
629
630                 writeb(0, card->csr_remap + ERROR_COUNT);
631         }
632
633         if (dma_status & DMASCR_PARITY_ERR_REP) {
634                 dev_printk(KERN_ERR, &card->dev->dev,
635                         "PARITY ERROR REPORTED\n");
636                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
637                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
638         }
639
640         if (dma_status & DMASCR_PARITY_ERR_DET) {
641                 dev_printk(KERN_ERR, &card->dev->dev,
642                         "PARITY ERROR DETECTED\n");
643                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
645         }
646
647         if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
648                 dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
649                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
651         }
652
653         if (dma_status & DMASCR_TARGET_ABT) {
654                 dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
655                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
656                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
657         }
658
659         if (dma_status & DMASCR_MASTER_ABT) {
660                 dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
661                 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
662                 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
663         }
664
665         /* and process the DMA descriptors */
666         card->dma_status = dma_status;
667         tasklet_schedule(&card->tasklet);
668
669 HW_TRACE(0x36);
670
671         return IRQ_HANDLED;
672 }
673 /*
674 -----------------------------------------------------------------------------------
675 --                         set_fault_to_battery_status
676 -----------------------------------------------------------------------------------
677 */
678 /*
679  * If both batteries are good, no LED
680  * If either battery has been warned, solid LED
681  * If both batteries are bad, flash the LED quickly
682  * If either battery is bad, flash the LED semi quickly
683  */
684 static void set_fault_to_battery_status(struct cardinfo *card)
685 {
686         if (card->battery[0].good && card->battery[1].good)
687                 set_led(card, LED_FAULT, LED_OFF);
688         else if (card->battery[0].warned || card->battery[1].warned)
689                 set_led(card, LED_FAULT, LED_ON);
690         else if (!card->battery[0].good && !card->battery[1].good)
691                 set_led(card, LED_FAULT, LED_FLASH_7_0);
692         else
693                 set_led(card, LED_FAULT, LED_FLASH_3_5);
694 }
695
696 static void init_battery_timer(void);
697
698
699 /*
700 -----------------------------------------------------------------------------------
701 --                            check_battery
702 -----------------------------------------------------------------------------------
703 */
704 static int check_battery(struct cardinfo *card, int battery, int status)
705 {
706         if (status != card->battery[battery].good) {
707                 card->battery[battery].good = !card->battery[battery].good;
708                 card->battery[battery].last_change = jiffies;
709
710                 if (card->battery[battery].good) {
711                         dev_printk(KERN_ERR, &card->dev->dev,
712                                 "Battery %d now good\n", battery + 1);
713                         card->battery[battery].warned = 0;
714                 } else
715                         dev_printk(KERN_ERR, &card->dev->dev,
716                                 "Battery %d now FAILED\n", battery + 1);
717
718                 return 1;
719         } else if (!card->battery[battery].good &&
720                    !card->battery[battery].warned &&
721                    time_after_eq(jiffies, card->battery[battery].last_change +
722                                  (HZ * 60 * 60 * 5))) {
723                 dev_printk(KERN_ERR, &card->dev->dev,
724                         "Battery %d still FAILED after 5 hours\n", battery + 1);
725                 card->battery[battery].warned = 1;
726
727                 return 1;
728         }
729
730         return 0;
731 }
732 /*
733 -----------------------------------------------------------------------------------
734 --                              check_batteries
735 -----------------------------------------------------------------------------------
736 */
737 static void check_batteries(struct cardinfo *card)
738 {
739         /* NOTE: this must *never* be called while the card
740          * is doing (bus-to-card) DMA, or you will need the
741          * reset switch
742          */
743         unsigned char status;
744         int ret1, ret2;
745
746         status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
747         if (debug & DEBUG_BATTERY_POLLING)
748                 dev_printk(KERN_DEBUG, &card->dev->dev,
749                         "checking battery status, 1 = %s, 2 = %s\n",
750                        (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
751                        (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
752
753         ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
754         ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
755
756         if (ret1 || ret2)
757                 set_fault_to_battery_status(card);
758 }
759
760 static void check_all_batteries(unsigned long ptr)
761 {
762         int i;
763
764         for (i = 0; i < num_cards; i++)
765                 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
766                         struct cardinfo *card = &cards[i];
767                         spin_lock_bh(&card->lock);
768                         if (card->Active >= 0)
769                                 card->check_batteries = 1;
770                         else
771                                 check_batteries(card);
772                         spin_unlock_bh(&card->lock);
773                 }
774
775         init_battery_timer();
776 }
777 /*
778 -----------------------------------------------------------------------------------
779 --                            init_battery_timer
780 -----------------------------------------------------------------------------------
781 */
782 static void init_battery_timer(void)
783 {
784         init_timer(&battery_timer);
785         battery_timer.function = check_all_batteries;
786         battery_timer.expires = jiffies + (HZ * 60);
787         add_timer(&battery_timer);
788 }
789 /*
790 -----------------------------------------------------------------------------------
791 --                              del_battery_timer
792 -----------------------------------------------------------------------------------
793 */
794 static void del_battery_timer(void)
795 {
796         del_timer(&battery_timer);
797 }
798 /*
799 -----------------------------------------------------------------------------------
800 --                                mm_revalidate
801 -----------------------------------------------------------------------------------
802 */
803 /*
804  * Note no locks taken out here.  In a worst case scenario, we could drop
805  * a chunk of system memory.  But that should never happen, since validation
806  * happens at open or mount time, when locks are held.
807  *
808  *      That's crap, since doing that while some partitions are opened
809  * or mounted will give you really nasty results.
810  */
811 static int mm_revalidate(struct gendisk *disk)
812 {
813         struct cardinfo *card = disk->private_data;
814         set_capacity(disk, card->mm_size << 1);
815         return 0;
816 }
817
818 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
819 {
820         struct cardinfo *card = bdev->bd_disk->private_data;
821         int size = card->mm_size * (1024 / MM_HARDSECT);
822
823         /*
824          * get geometry: we have to fake one...  trim the size to a
825          * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
826          * whatever cylinders.
827          */
828         geo->heads     = 64;
829         geo->sectors   = 32;
830         geo->cylinders = size / (geo->heads * geo->sectors);
831         return 0;
832 }
833
834 /*
835 -----------------------------------------------------------------------------------
836 --                                mm_check_change
837 -----------------------------------------------------------------------------------
838   Future support for removable devices
839 */
840 static int mm_check_change(struct gendisk *disk)
841 {
842 /*  struct cardinfo *dev = disk->private_data; */
843         return 0;
844 }
845 /*
846 -----------------------------------------------------------------------------------
847 --                             mm_fops
848 -----------------------------------------------------------------------------------
849 */
850 static struct block_device_operations mm_fops = {
851         .owner          = THIS_MODULE,
852         .getgeo         = mm_getgeo,
853         .revalidate_disk= mm_revalidate,
854         .media_changed  = mm_check_change,
855 };
856 /*
857 -----------------------------------------------------------------------------------
858 --                                mm_pci_probe
859 -----------------------------------------------------------------------------------
860 */
861 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
862 {
863         int ret = -ENODEV;
864         struct cardinfo *card = &cards[num_cards];
865         unsigned char   mem_present;
866         unsigned char   batt_status;
867         unsigned int    saved_bar, data;
868         unsigned long   csr_base;
869         unsigned long   csr_len;
870         int             magic_number;
871         static int      printed_version;
872
873         if (!printed_version++)
874                 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
875
876         ret = pci_enable_device(dev);
877         if (ret)
878                 return ret;
879
880         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
881         pci_set_master(dev);
882
883         card->dev         = dev;
884
885         csr_base = pci_resource_start(dev, 0);
886         csr_len  = pci_resource_len(dev, 0);
887         if (!csr_base || !csr_len)
888                 return -ENODEV;
889
890         dev_printk(KERN_INFO, &dev->dev,
891                 "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
892
893         if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
894             pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
895                 dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
896                 return  -ENOMEM;
897         }
898
899         ret = pci_request_regions(dev, DRIVER_NAME);
900         if (ret) {
901                 dev_printk(KERN_ERR, &card->dev->dev,
902                         "Unable to request memory region\n");
903                 goto failed_req_csr;
904         }
905
906         card->csr_remap = ioremap_nocache(csr_base, csr_len);
907         if (!card->csr_remap) {
908                 dev_printk(KERN_ERR, &card->dev->dev,
909                         "Unable to remap memory region\n");
910                 ret = -ENOMEM;
911
912                 goto failed_remap_csr;
913         }
914
915         dev_printk(KERN_INFO, &card->dev->dev,
916                 "CSR 0x%08lx -> 0x%p (0x%lx)\n",
917                csr_base, card->csr_remap, csr_len);
918
919         switch(card->dev->device) {
920         case 0x5415:
921                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
922                 magic_number = 0x59;
923                 break;
924
925         case 0x5425:
926                 card->flags |= UM_FLAG_NO_BYTE_STATUS;
927                 magic_number = 0x5C;
928                 break;
929
930         case 0x6155:
931                 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
932                 magic_number = 0x99;
933                 break;
934
935         default:
936                 magic_number = 0x100;
937                 break;
938         }
939
940         if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
941                 dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
942                 ret = -ENOMEM;
943                 goto failed_magic;
944         }
945
946         card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
947                                                       PAGE_SIZE*2,
948                                                       &card->mm_pages[0].page_dma);
949         card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
950                                                       PAGE_SIZE*2,
951                                                       &card->mm_pages[1].page_dma);
952         if (card->mm_pages[0].desc == NULL ||
953             card->mm_pages[1].desc == NULL) {
954                 dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
955                 goto failed_alloc;
956         }
957         reset_page(&card->mm_pages[0]);
958         reset_page(&card->mm_pages[1]);
959         card->Ready = 0;        /* page 0 is ready */
960         card->Active = -1;      /* no page is active */
961         card->bio = NULL;
962         card->biotail = &card->bio;
963
964         card->queue = blk_alloc_queue(GFP_KERNEL);
965         if (!card->queue)
966                 goto failed_alloc;
967
968         blk_queue_make_request(card->queue, mm_make_request);
969         card->queue->queuedata = card;
970         card->queue->unplug_fn = mm_unplug_device;
971
972         tasklet_init(&card->tasklet, process_page, (unsigned long)card);
973
974         card->check_batteries = 0;
975
976         mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
977         switch (mem_present) {
978         case MEM_128_MB:
979                 card->mm_size = 1024 * 128;
980                 break;
981         case MEM_256_MB:
982                 card->mm_size = 1024 * 256;
983                 break;
984         case MEM_512_MB:
985                 card->mm_size = 1024 * 512;
986                 break;
987         case MEM_1_GB:
988                 card->mm_size = 1024 * 1024;
989                 break;
990         case MEM_2_GB:
991                 card->mm_size = 1024 * 2048;
992                 break;
993         default:
994                 card->mm_size = 0;
995                 break;
996         }
997
998         /* Clear the LED's we control */
999         set_led(card, LED_REMOVE, LED_OFF);
1000         set_led(card, LED_FAULT, LED_OFF);
1001
1002         batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1003
1004         card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1005         card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1006         card->battery[0].last_change = card->battery[1].last_change = jiffies;
1007
1008         if (card->flags & UM_FLAG_NO_BATT)
1009                 dev_printk(KERN_INFO, &card->dev->dev,
1010                         "Size %d KB\n", card->mm_size);
1011         else {
1012                 dev_printk(KERN_INFO, &card->dev->dev,
1013                         "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1014                        card->mm_size,
1015                        (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1016                        card->battery[0].good ? "OK" : "FAILURE",
1017                        (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1018                        card->battery[1].good ? "OK" : "FAILURE");
1019
1020                 set_fault_to_battery_status(card);
1021         }
1022
1023         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1024         data = 0xffffffff;
1025         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1026         pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1027         pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1028         data &= 0xfffffff0;
1029         data = ~data;
1030         data += 1;
1031
1032         if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1033                 dev_printk(KERN_ERR, &card->dev->dev,
1034                         "Unable to allocate IRQ\n");
1035                 ret = -ENODEV;
1036
1037                 goto failed_req_irq;
1038         }
1039
1040         dev_printk(KERN_INFO, &card->dev->dev,
1041                 "Window size %d bytes, IRQ %d\n", data, dev->irq);
1042
1043         spin_lock_init(&card->lock);
1044
1045         pci_set_drvdata(dev, card);
1046
1047         if (pci_write_cmd != 0x0F)      /* If not Memory Write & Invalidate */
1048                 pci_write_cmd = 0x07;   /* then Memory Write command */
1049
1050         if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1051                 unsigned short cfg_command;
1052                 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1053                 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1054                 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1055         }
1056         pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1057
1058         num_cards++;
1059
1060         if (!get_userbit(card, MEMORY_INITIALIZED)) {
1061                 dev_printk(KERN_INFO, &card->dev->dev,
1062                         "memory NOT initialized. Consider over-writing whole device.\n");
1063                 card->init_size = 0;
1064         } else {
1065                 dev_printk(KERN_INFO, &card->dev->dev,
1066                         "memory already initialized\n");
1067                 card->init_size = card->mm_size;
1068         }
1069
1070         /* Enable ECC */
1071         writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1072
1073         return 0;
1074
1075  failed_req_irq:
1076  failed_alloc:
1077         if (card->mm_pages[0].desc)
1078                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1079                                     card->mm_pages[0].desc,
1080                                     card->mm_pages[0].page_dma);
1081         if (card->mm_pages[1].desc)
1082                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1083                                     card->mm_pages[1].desc,
1084                                     card->mm_pages[1].page_dma);
1085  failed_magic:
1086         iounmap(card->csr_remap);
1087  failed_remap_csr:
1088         pci_release_regions(dev);
1089  failed_req_csr:
1090
1091         return ret;
1092 }
1093 /*
1094 -----------------------------------------------------------------------------------
1095 --                              mm_pci_remove
1096 -----------------------------------------------------------------------------------
1097 */
1098 static void mm_pci_remove(struct pci_dev *dev)
1099 {
1100         struct cardinfo *card = pci_get_drvdata(dev);
1101
1102         tasklet_kill(&card->tasklet);
1103         free_irq(dev->irq, card);
1104         iounmap(card->csr_remap);
1105
1106         if (card->mm_pages[0].desc)
1107                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1108                                     card->mm_pages[0].desc,
1109                                     card->mm_pages[0].page_dma);
1110         if (card->mm_pages[1].desc)
1111                 pci_free_consistent(card->dev, PAGE_SIZE*2,
1112                                     card->mm_pages[1].desc,
1113                                     card->mm_pages[1].page_dma);
1114         blk_cleanup_queue(card->queue);
1115
1116         pci_release_regions(dev);
1117         pci_disable_device(dev);
1118 }
1119
1120 static const struct pci_device_id mm_pci_ids[] = {
1121     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
1122     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
1123     {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY,PCI_DEVICE_ID_MICRO_MEMORY_6155)},
1124     {
1125         .vendor =       0x8086,
1126         .device =       0xB555,
1127         .subvendor=     0x1332,
1128         .subdevice=     0x5460,
1129         .class  =       0x050000,
1130         .class_mask=    0,
1131     }, { /* end: all zeroes */ }
1132 };
1133
1134 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1135
1136 static struct pci_driver mm_pci_driver = {
1137         .name           = DRIVER_NAME,
1138         .id_table       = mm_pci_ids,
1139         .probe          = mm_pci_probe,
1140         .remove         = mm_pci_remove,
1141 };
1142
1143 /*
1144 -----------------------------------------------------------------------------------
1145 --                               mm_init
1146 -----------------------------------------------------------------------------------
1147 */
1148
1149 static int __init mm_init(void)
1150 {
1151         int retval, i;
1152         int err;
1153
1154         retval = pci_register_driver(&mm_pci_driver);
1155         if (retval)
1156                 return -ENOMEM;
1157
1158         err = major_nr = register_blkdev(0, "umem");
1159         if (err < 0) {
1160                 pci_unregister_driver(&mm_pci_driver);
1161                 return -EIO;
1162         }
1163
1164         for (i = 0; i < num_cards; i++) {
1165                 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1166                 if (!mm_gendisk[i])
1167                         goto out;
1168         }
1169
1170         for (i = 0; i < num_cards; i++) {
1171                 struct gendisk *disk = mm_gendisk[i];
1172                 sprintf(disk->disk_name, "umem%c", 'a'+i);
1173                 spin_lock_init(&cards[i].lock);
1174                 disk->major = major_nr;
1175                 disk->first_minor  = i << MM_SHIFT;
1176                 disk->fops = &mm_fops;
1177                 disk->private_data = &cards[i];
1178                 disk->queue = cards[i].queue;
1179                 set_capacity(disk, cards[i].mm_size << 1);
1180                 add_disk(disk);
1181         }
1182
1183         init_battery_timer();
1184         printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1185 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1186         return 0;
1187
1188 out:
1189         pci_unregister_driver(&mm_pci_driver);
1190         unregister_blkdev(major_nr, "umem");
1191         while (i--)
1192                 put_disk(mm_gendisk[i]);
1193         return -ENOMEM;
1194 }
1195 /*
1196 -----------------------------------------------------------------------------------
1197 --                             mm_cleanup
1198 -----------------------------------------------------------------------------------
1199 */
1200 static void __exit mm_cleanup(void)
1201 {
1202         int i;
1203
1204         del_battery_timer();
1205
1206         for (i=0; i < num_cards ; i++) {
1207                 del_gendisk(mm_gendisk[i]);
1208                 put_disk(mm_gendisk[i]);
1209         }
1210
1211         pci_unregister_driver(&mm_pci_driver);
1212
1213         unregister_blkdev(major_nr, "umem");
1214 }
1215
1216 module_init(mm_init);
1217 module_exit(mm_cleanup);
1218
1219 MODULE_AUTHOR(DRIVER_AUTHOR);
1220 MODULE_DESCRIPTION(DRIVER_DESC);
1221 MODULE_LICENSE("GPL");