[NET]: Do not check netif_running() and carrier state in ->poll()
[linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  */
42
43 #include <linux/netdevice.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/pci.h>
47
48 #include "e1000.h"
49
50 #define ICH_FLASH_GFPREG                0x0000
51 #define ICH_FLASH_HSFSTS                0x0004
52 #define ICH_FLASH_HSFCTL                0x0006
53 #define ICH_FLASH_FADDR                 0x0008
54 #define ICH_FLASH_FDATA0                0x0010
55
56 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
57 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
58 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
59 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
60 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
61
62 #define ICH_CYCLE_READ                  0
63 #define ICH_CYCLE_WRITE                 2
64 #define ICH_CYCLE_ERASE                 3
65
66 #define FLASH_GFPREG_BASE_MASK          0x1FFF
67 #define FLASH_SECTOR_ADDR_SHIFT         12
68
69 #define ICH_FLASH_SEG_SIZE_256          256
70 #define ICH_FLASH_SEG_SIZE_4K           4096
71 #define ICH_FLASH_SEG_SIZE_8K           8192
72 #define ICH_FLASH_SEG_SIZE_64K          65536
73
74
75 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
76
77 #define E1000_ICH_MNG_IAMT_MODE         0x2
78
79 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
80                                  (ID_LED_DEF1_OFF2 <<  8) | \
81                                  (ID_LED_DEF1_ON2  <<  4) | \
82                                  (ID_LED_DEF1_DEF2))
83
84 #define E1000_ICH_NVM_SIG_WORD          0x13
85 #define E1000_ICH_NVM_SIG_MASK          0xC000
86
87 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
88
89 #define E1000_FEXTNVM_SW_CONFIG         1
90 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
91
92 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
93
94 #define E1000_ICH_RAR_ENTRIES           7
95
96 #define PHY_PAGE_SHIFT 5
97 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
98                            ((reg) & MAX_PHY_REG_ADDRESS))
99 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
100 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
101
102 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
103 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
104 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
105
106 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
107 /* Offset 04h HSFSTS */
108 union ich8_hws_flash_status {
109         struct ich8_hsfsts {
110                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
111                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
112                 u16 dael       :1; /* bit 2 Direct Access error Log */
113                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
114                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
115                 u16 reserved1  :2; /* bit 13:6 Reserved */
116                 u16 reserved2  :6; /* bit 13:6 Reserved */
117                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
118                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
119         } hsf_status;
120         u16 regval;
121 };
122
123 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
124 /* Offset 06h FLCTL */
125 union ich8_hws_flash_ctrl {
126         struct ich8_hsflctl {
127                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
128                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
129                 u16 reserved   :5;   /* 7:3 Reserved  */
130                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
131                 u16 flockdn    :6;   /* 15:10 Reserved */
132         } hsf_ctrl;
133         u16 regval;
134 };
135
136 /* ICH Flash Region Access Permissions */
137 union ich8_hws_flash_regacc {
138         struct ich8_flracc {
139                 u32 grra      :8; /* 0:7 GbE region Read Access */
140                 u32 grwa      :8; /* 8:15 GbE region Write Access */
141                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
142                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
143         } hsf_flregacc;
144         u16 regval;
145 };
146
147 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
148 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
149 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
150 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
151 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
152 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
153                                                 u32 offset, u8 byte);
154 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
155                                          u16 *data);
156 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
157                                          u8 size, u16 *data);
158 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
159 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
160
161 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
162 {
163         return readw(hw->flash_address + reg);
164 }
165
166 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
167 {
168         return readl(hw->flash_address + reg);
169 }
170
171 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
172 {
173         writew(val, hw->flash_address + reg);
174 }
175
176 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
177 {
178         writel(val, hw->flash_address + reg);
179 }
180
181 #define er16flash(reg)          __er16flash(hw, (reg))
182 #define er32flash(reg)          __er32flash(hw, (reg))
183 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
184 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
185
186 /**
187  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
188  *  @hw: pointer to the HW structure
189  *
190  *  Initialize family-specific PHY parameters and function pointers.
191  **/
192 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
193 {
194         struct e1000_phy_info *phy = &hw->phy;
195         s32 ret_val;
196         u16 i = 0;
197
198         phy->addr                       = 1;
199         phy->reset_delay_us             = 100;
200
201         phy->id = 0;
202         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
203                (i++ < 100)) {
204                 msleep(1);
205                 ret_val = e1000e_get_phy_id(hw);
206                 if (ret_val)
207                         return ret_val;
208         }
209
210         /* Verify phy id */
211         switch (phy->id) {
212         case IGP03E1000_E_PHY_ID:
213                 phy->type = e1000_phy_igp_3;
214                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
215                 break;
216         case IFE_E_PHY_ID:
217         case IFE_PLUS_E_PHY_ID:
218         case IFE_C_E_PHY_ID:
219                 phy->type = e1000_phy_ife;
220                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
221                 break;
222         default:
223                 return -E1000_ERR_PHY;
224                 break;
225         }
226
227         return 0;
228 }
229
230 /**
231  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
232  *  @hw: pointer to the HW structure
233  *
234  *  Initialize family-specific NVM parameters and function
235  *  pointers.
236  **/
237 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
238 {
239         struct e1000_nvm_info *nvm = &hw->nvm;
240         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
241         u32 gfpreg;
242         u32 sector_base_addr;
243         u32 sector_end_addr;
244         u16 i;
245
246         /* Can't read flash registers if the register set isn't mapped.
247          */
248         if (!hw->flash_address) {
249                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
250                 return -E1000_ERR_CONFIG;
251         }
252
253         nvm->type = e1000_nvm_flash_sw;
254
255         gfpreg = er32flash(ICH_FLASH_GFPREG);
256
257         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
258          * Add 1 to sector_end_addr since this sector is included in
259          * the overall size. */
260         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
261         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
262
263         /* flash_base_addr is byte-aligned */
264         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
265
266         /* find total size of the NVM, then cut in half since the total
267          * size represents two separate NVM banks. */
268         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
269                                 << FLASH_SECTOR_ADDR_SHIFT;
270         nvm->flash_bank_size /= 2;
271         /* Adjust to word count */
272         nvm->flash_bank_size /= sizeof(u16);
273
274         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
275
276         /* Clear shadow ram */
277         for (i = 0; i < nvm->word_size; i++) {
278                 dev_spec->shadow_ram[i].modified = 0;
279                 dev_spec->shadow_ram[i].value    = 0xFFFF;
280         }
281
282         return 0;
283 }
284
285 /**
286  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
287  *  @hw: pointer to the HW structure
288  *
289  *  Initialize family-specific MAC parameters and function
290  *  pointers.
291  **/
292 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
293 {
294         struct e1000_hw *hw = &adapter->hw;
295         struct e1000_mac_info *mac = &hw->mac;
296
297         /* Set media type function pointer */
298         hw->media_type = e1000_media_type_copper;
299
300         /* Set mta register count */
301         mac->mta_reg_count = 32;
302         /* Set rar entry count */
303         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
304         if (mac->type == e1000_ich8lan)
305                 mac->rar_entry_count--;
306         /* Set if manageability features are enabled. */
307         mac->arc_subsystem_valid = 1;
308
309         /* Enable PCS Lock-loss workaround for ICH8 */
310         if (mac->type == e1000_ich8lan)
311                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
312
313         return 0;
314 }
315
316 static s32 e1000_get_invariants_ich8lan(struct e1000_adapter *adapter)
317 {
318         struct e1000_hw *hw = &adapter->hw;
319         s32 rc;
320
321         rc = e1000_init_mac_params_ich8lan(adapter);
322         if (rc)
323                 return rc;
324
325         rc = e1000_init_nvm_params_ich8lan(hw);
326         if (rc)
327                 return rc;
328
329         rc = e1000_init_phy_params_ich8lan(hw);
330         if (rc)
331                 return rc;
332
333         if ((adapter->hw.mac.type == e1000_ich8lan) &&
334             (adapter->hw.phy.type == e1000_phy_igp_3))
335                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
336
337         return 0;
338 }
339
340 /**
341  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
342  *  @hw: pointer to the HW structure
343  *
344  *  Acquires the software control flag for performing NVM and PHY
345  *  operations.  This is a function pointer entry point only called by
346  *  read/write routines for the PHY and NVM parts.
347  **/
348 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
349 {
350         u32 extcnf_ctrl;
351         u32 timeout = PHY_CFG_TIMEOUT;
352
353         while (timeout) {
354                 extcnf_ctrl = er32(EXTCNF_CTRL);
355                 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
356                 ew32(EXTCNF_CTRL, extcnf_ctrl);
357
358                 extcnf_ctrl = er32(EXTCNF_CTRL);
359                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
360                         break;
361                 mdelay(1);
362                 timeout--;
363         }
364
365         if (!timeout) {
366                 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
367                 return -E1000_ERR_CONFIG;
368         }
369
370         return 0;
371 }
372
373 /**
374  *  e1000_release_swflag_ich8lan - Release software control flag
375  *  @hw: pointer to the HW structure
376  *
377  *  Releases the software control flag for performing NVM and PHY operations.
378  *  This is a function pointer entry point only called by read/write
379  *  routines for the PHY and NVM parts.
380  **/
381 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
382 {
383         u32 extcnf_ctrl;
384
385         extcnf_ctrl = er32(EXTCNF_CTRL);
386         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
387         ew32(EXTCNF_CTRL, extcnf_ctrl);
388 }
389
390 /**
391  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
392  *  @hw: pointer to the HW structure
393  *
394  *  Checks if firmware is blocking the reset of the PHY.
395  *  This is a function pointer entry point only called by
396  *  reset routines.
397  **/
398 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
399 {
400         u32 fwsm;
401
402         fwsm = er32(FWSM);
403
404         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
405 }
406
407 /**
408  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
409  *  @hw: pointer to the HW structure
410  *
411  *  Forces the speed and duplex settings of the PHY.
412  *  This is a function pointer entry point only called by
413  *  PHY setup routines.
414  **/
415 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
416 {
417         struct e1000_phy_info *phy = &hw->phy;
418         s32 ret_val;
419         u16 data;
420         bool link;
421
422         if (phy->type != e1000_phy_ife) {
423                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
424                 return ret_val;
425         }
426
427         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
428         if (ret_val)
429                 return ret_val;
430
431         e1000e_phy_force_speed_duplex_setup(hw, &data);
432
433         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
434         if (ret_val)
435                 return ret_val;
436
437         /* Disable MDI-X support for 10/100 */
438         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
439         if (ret_val)
440                 return ret_val;
441
442         data &= ~IFE_PMC_AUTO_MDIX;
443         data &= ~IFE_PMC_FORCE_MDIX;
444
445         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
446         if (ret_val)
447                 return ret_val;
448
449         hw_dbg(hw, "IFE PMC: %X\n", data);
450
451         udelay(1);
452
453         if (phy->wait_for_link) {
454                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
455
456                 ret_val = e1000e_phy_has_link_generic(hw,
457                                                      PHY_FORCE_LIMIT,
458                                                      100000,
459                                                      &link);
460                 if (ret_val)
461                         return ret_val;
462
463                 if (!link)
464                         hw_dbg(hw, "Link taking longer than expected.\n");
465
466                 /* Try once more */
467                 ret_val = e1000e_phy_has_link_generic(hw,
468                                                      PHY_FORCE_LIMIT,
469                                                      100000,
470                                                      &link);
471                 if (ret_val)
472                         return ret_val;
473         }
474
475         return 0;
476 }
477
478 /**
479  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
480  *  @hw: pointer to the HW structure
481  *
482  *  Resets the PHY
483  *  This is a function pointer entry point called by drivers
484  *  or other shared routines.
485  **/
486 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
487 {
488         struct e1000_phy_info *phy = &hw->phy;
489         u32 i;
490         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
491         s32 ret_val;
492         u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
493         u16 word_addr, reg_data, reg_addr, phy_page = 0;
494
495         ret_val = e1000e_phy_hw_reset_generic(hw);
496         if (ret_val)
497                 return ret_val;
498
499         /* Initialize the PHY from the NVM on ICH platforms.  This
500          * is needed due to an issue where the NVM configuration is
501          * not properly autoloaded after power transitions.
502          * Therefore, after each PHY reset, we will load the
503          * configuration data out of the NVM manually.
504          */
505         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
506                 struct e1000_adapter *adapter = hw->adapter;
507
508                 /* Check if SW needs configure the PHY */
509                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
510                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
511                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
512                 else
513                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
514
515                 data = er32(FEXTNVM);
516                 if (!(data & sw_cfg_mask))
517                         return 0;
518
519                 /* Wait for basic configuration completes before proceeding*/
520                 do {
521                         data = er32(STATUS);
522                         data &= E1000_STATUS_LAN_INIT_DONE;
523                         udelay(100);
524                 } while ((!data) && --loop);
525
526                 /* If basic configuration is incomplete before the above loop
527                  * count reaches 0, loading the configuration from NVM will
528                  * leave the PHY in a bad state possibly resulting in no link.
529                  */
530                 if (loop == 0) {
531                         hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
532                 }
533
534                 /* Clear the Init Done bit for the next init event */
535                 data = er32(STATUS);
536                 data &= ~E1000_STATUS_LAN_INIT_DONE;
537                 ew32(STATUS, data);
538
539                 /* Make sure HW does not configure LCD from PHY
540                  * extended configuration before SW configuration */
541                 data = er32(EXTCNF_CTRL);
542                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
543                         return 0;
544
545                 cnf_size = er32(EXTCNF_SIZE);
546                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
547                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
548                 if (!cnf_size)
549                         return 0;
550
551                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
552                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
553
554                 /* Configure LCD from extended configuration
555                  * region. */
556
557                 /* cnf_base_addr is in DWORD */
558                 word_addr = (u16)(cnf_base_addr << 1);
559
560                 for (i = 0; i < cnf_size; i++) {
561                         ret_val = e1000_read_nvm(hw,
562                                                 (word_addr + i * 2),
563                                                 1,
564                                                 &reg_data);
565                         if (ret_val)
566                                 return ret_val;
567
568                         ret_val = e1000_read_nvm(hw,
569                                                 (word_addr + i * 2 + 1),
570                                                 1,
571                                                 &reg_addr);
572                         if (ret_val)
573                                 return ret_val;
574
575                         /* Save off the PHY page for future writes. */
576                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
577                                 phy_page = reg_data;
578                                 continue;
579                         }
580
581                         reg_addr |= phy_page;
582
583                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
584                         if (ret_val)
585                                 return ret_val;
586                 }
587         }
588
589         return 0;
590 }
591
592 /**
593  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
594  *  @hw: pointer to the HW structure
595  *
596  *  Populates "phy" structure with various feature states.
597  *  This function is only called by other family-specific
598  *  routines.
599  **/
600 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
601 {
602         struct e1000_phy_info *phy = &hw->phy;
603         s32 ret_val;
604         u16 data;
605         bool link;
606
607         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
608         if (ret_val)
609                 return ret_val;
610
611         if (!link) {
612                 hw_dbg(hw, "Phy info is only valid if link is up\n");
613                 return -E1000_ERR_CONFIG;
614         }
615
616         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
617         if (ret_val)
618                 return ret_val;
619         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
620
621         if (phy->polarity_correction) {
622                 ret_val = e1000_check_polarity_ife_ich8lan(hw);
623                 if (ret_val)
624                         return ret_val;
625         } else {
626                 /* Polarity is forced */
627                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
628                                       ? e1000_rev_polarity_reversed
629                                       : e1000_rev_polarity_normal;
630         }
631
632         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
633         if (ret_val)
634                 return ret_val;
635
636         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
637
638         /* The following parameters are undefined for 10/100 operation. */
639         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
640         phy->local_rx = e1000_1000t_rx_status_undefined;
641         phy->remote_rx = e1000_1000t_rx_status_undefined;
642
643         return 0;
644 }
645
646 /**
647  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
648  *  @hw: pointer to the HW structure
649  *
650  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
651  *  This is a function pointer entry point called by drivers
652  *  or other shared routines.
653  **/
654 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
655 {
656         switch (hw->phy.type) {
657         case e1000_phy_ife:
658                 return e1000_get_phy_info_ife_ich8lan(hw);
659                 break;
660         case e1000_phy_igp_3:
661                 return e1000e_get_phy_info_igp(hw);
662                 break;
663         default:
664                 break;
665         }
666
667         return -E1000_ERR_PHY_TYPE;
668 }
669
670 /**
671  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
672  *  @hw: pointer to the HW structure
673  *
674  *  Polarity is determined on the polarity reveral feature being enabled.
675  *  This function is only called by other family-specific
676  *  routines.
677  **/
678 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
679 {
680         struct e1000_phy_info *phy = &hw->phy;
681         s32 ret_val;
682         u16 phy_data, offset, mask;
683
684         /* Polarity is determined based on the reversal feature
685          * being enabled.
686          */
687         if (phy->polarity_correction) {
688                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
689                 mask    = IFE_PESC_POLARITY_REVERSED;
690         } else {
691                 offset  = IFE_PHY_SPECIAL_CONTROL;
692                 mask    = IFE_PSC_FORCE_POLARITY;
693         }
694
695         ret_val = e1e_rphy(hw, offset, &phy_data);
696
697         if (!ret_val)
698                 phy->cable_polarity = (phy_data & mask)
699                                       ? e1000_rev_polarity_reversed
700                                       : e1000_rev_polarity_normal;
701
702         return ret_val;
703 }
704
705 /**
706  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
707  *  @hw: pointer to the HW structure
708  *  @active: TRUE to enable LPLU, FALSE to disable
709  *
710  *  Sets the LPLU D0 state according to the active flag.  When
711  *  activating LPLU this function also disables smart speed
712  *  and vice versa.  LPLU will not be activated unless the
713  *  device autonegotiation advertisement meets standards of
714  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
715  *  This is a function pointer entry point only called by
716  *  PHY setup routines.
717  **/
718 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
719 {
720         struct e1000_phy_info *phy = &hw->phy;
721         u32 phy_ctrl;
722         s32 ret_val = 0;
723         u16 data;
724
725         if (phy->type != e1000_phy_igp_3)
726                 return ret_val;
727
728         phy_ctrl = er32(PHY_CTRL);
729
730         if (active) {
731                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
732                 ew32(PHY_CTRL, phy_ctrl);
733
734                 /* Call gig speed drop workaround on LPLU before accessing
735                  * any PHY registers */
736                 if ((hw->mac.type == e1000_ich8lan) &&
737                     (hw->phy.type == e1000_phy_igp_3))
738                         e1000e_gig_downshift_workaround_ich8lan(hw);
739
740                 /* When LPLU is enabled, we should disable SmartSpeed */
741                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
742                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
743                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
744                 if (ret_val)
745                         return ret_val;
746         } else {
747                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
748                 ew32(PHY_CTRL, phy_ctrl);
749
750                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
751                  * during Dx states where the power conservation is most
752                  * important.  During driver activity we should enable
753                  * SmartSpeed, so performance is maintained. */
754                 if (phy->smart_speed == e1000_smart_speed_on) {
755                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
756                                                     &data);
757                         if (ret_val)
758                                 return ret_val;
759
760                         data |= IGP01E1000_PSCFR_SMART_SPEED;
761                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
762                                                      data);
763                         if (ret_val)
764                                 return ret_val;
765                 } else if (phy->smart_speed == e1000_smart_speed_off) {
766                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
767                                                     &data);
768                         if (ret_val)
769                                 return ret_val;
770
771                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
772                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
773                                                      data);
774                         if (ret_val)
775                                 return ret_val;
776                 }
777         }
778
779         return 0;
780 }
781
782 /**
783  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
784  *  @hw: pointer to the HW structure
785  *  @active: TRUE to enable LPLU, FALSE to disable
786  *
787  *  Sets the LPLU D3 state according to the active flag.  When
788  *  activating LPLU this function also disables smart speed
789  *  and vice versa.  LPLU will not be activated unless the
790  *  device autonegotiation advertisement meets standards of
791  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
792  *  This is a function pointer entry point only called by
793  *  PHY setup routines.
794  **/
795 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
796 {
797         struct e1000_phy_info *phy = &hw->phy;
798         u32 phy_ctrl;
799         s32 ret_val;
800         u16 data;
801
802         phy_ctrl = er32(PHY_CTRL);
803
804         if (!active) {
805                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
806                 ew32(PHY_CTRL, phy_ctrl);
807                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
808                  * during Dx states where the power conservation is most
809                  * important.  During driver activity we should enable
810                  * SmartSpeed, so performance is maintained. */
811                 if (phy->smart_speed == e1000_smart_speed_on) {
812                         ret_val = e1e_rphy(hw,
813                                                     IGP01E1000_PHY_PORT_CONFIG,
814                                                     &data);
815                         if (ret_val)
816                                 return ret_val;
817
818                         data |= IGP01E1000_PSCFR_SMART_SPEED;
819                         ret_val = e1e_wphy(hw,
820                                                      IGP01E1000_PHY_PORT_CONFIG,
821                                                      data);
822                         if (ret_val)
823                                 return ret_val;
824                 } else if (phy->smart_speed == e1000_smart_speed_off) {
825                         ret_val = e1e_rphy(hw,
826                                                     IGP01E1000_PHY_PORT_CONFIG,
827                                                     &data);
828                         if (ret_val)
829                                 return ret_val;
830
831                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
832                         ret_val = e1e_wphy(hw,
833                                                      IGP01E1000_PHY_PORT_CONFIG,
834                                                      data);
835                         if (ret_val)
836                                 return ret_val;
837                 }
838         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
839                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
840                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
841                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
842                 ew32(PHY_CTRL, phy_ctrl);
843
844                 /* Call gig speed drop workaround on LPLU before accessing
845                  * any PHY registers */
846                 if ((hw->mac.type == e1000_ich8lan) &&
847                     (hw->phy.type == e1000_phy_igp_3))
848                         e1000e_gig_downshift_workaround_ich8lan(hw);
849
850                 /* When LPLU is enabled, we should disable SmartSpeed */
851                 ret_val = e1e_rphy(hw,
852                                             IGP01E1000_PHY_PORT_CONFIG,
853                                             &data);
854                 if (ret_val)
855                         return ret_val;
856
857                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
858                 ret_val = e1e_wphy(hw,
859                                              IGP01E1000_PHY_PORT_CONFIG,
860                                              data);
861         }
862
863         return 0;
864 }
865
866 /**
867  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
868  *  @hw: pointer to the HW structure
869  *  @offset: The offset (in bytes) of the word(s) to read.
870  *  @words: Size of data to read in words
871  *  @data: Pointer to the word(s) to read at offset.
872  *
873  *  Reads a word(s) from the NVM using the flash access registers.
874  **/
875 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
876                                   u16 *data)
877 {
878         struct e1000_nvm_info *nvm = &hw->nvm;
879         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
880         u32 act_offset;
881         s32 ret_val;
882         u16 i, word;
883
884         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
885             (words == 0)) {
886                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
887                 return -E1000_ERR_NVM;
888         }
889
890         ret_val = e1000_acquire_swflag_ich8lan(hw);
891         if (ret_val)
892                 return ret_val;
893
894         /* Start with the bank offset, then add the relative offset. */
895         act_offset = (er32(EECD) & E1000_EECD_SEC1VAL)
896                      ? nvm->flash_bank_size
897                      : 0;
898         act_offset += offset;
899
900         for (i = 0; i < words; i++) {
901                 if ((dev_spec->shadow_ram) &&
902                     (dev_spec->shadow_ram[offset+i].modified)) {
903                         data[i] = dev_spec->shadow_ram[offset+i].value;
904                 } else {
905                         ret_val = e1000_read_flash_word_ich8lan(hw,
906                                                                 act_offset + i,
907                                                                 &word);
908                         if (ret_val)
909                                 break;
910                         data[i] = word;
911                 }
912         }
913
914         e1000_release_swflag_ich8lan(hw);
915
916         return ret_val;
917 }
918
919 /**
920  *  e1000_flash_cycle_init_ich8lan - Initialize flash
921  *  @hw: pointer to the HW structure
922  *
923  *  This function does initial flash setup so that a new read/write/erase cycle
924  *  can be started.
925  **/
926 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
927 {
928         union ich8_hws_flash_status hsfsts;
929         s32 ret_val = -E1000_ERR_NVM;
930         s32 i = 0;
931
932         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
933
934         /* Check if the flash descriptor is valid */
935         if (hsfsts.hsf_status.fldesvalid == 0) {
936                 hw_dbg(hw, "Flash descriptor invalid.  "
937                          "SW Sequencing must be used.");
938                 return -E1000_ERR_NVM;
939         }
940
941         /* Clear FCERR and DAEL in hw status by writing 1 */
942         hsfsts.hsf_status.flcerr = 1;
943         hsfsts.hsf_status.dael = 1;
944
945         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
946
947         /* Either we should have a hardware SPI cycle in progress
948          * bit to check against, in order to start a new cycle or
949          * FDONE bit should be changed in the hardware so that it
950          * is 1 after harware reset, which can then be used as an
951          * indication whether a cycle is in progress or has been
952          * completed.
953          */
954
955         if (hsfsts.hsf_status.flcinprog == 0) {
956                 /* There is no cycle running at present,
957                  * so we can start a cycle */
958                 /* Begin by setting Flash Cycle Done. */
959                 hsfsts.hsf_status.flcdone = 1;
960                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
961                 ret_val = 0;
962         } else {
963                 /* otherwise poll for sometime so the current
964                  * cycle has a chance to end before giving up. */
965                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
966                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
967                         if (hsfsts.hsf_status.flcinprog == 0) {
968                                 ret_val = 0;
969                                 break;
970                         }
971                         udelay(1);
972                 }
973                 if (ret_val == 0) {
974                         /* Successful in waiting for previous cycle to timeout,
975                          * now set the Flash Cycle Done. */
976                         hsfsts.hsf_status.flcdone = 1;
977                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
978                 } else {
979                         hw_dbg(hw, "Flash controller busy, cannot get access");
980                 }
981         }
982
983         return ret_val;
984 }
985
986 /**
987  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
988  *  @hw: pointer to the HW structure
989  *  @timeout: maximum time to wait for completion
990  *
991  *  This function starts a flash cycle and waits for its completion.
992  **/
993 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
994 {
995         union ich8_hws_flash_ctrl hsflctl;
996         union ich8_hws_flash_status hsfsts;
997         s32 ret_val = -E1000_ERR_NVM;
998         u32 i = 0;
999
1000         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1001         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1002         hsflctl.hsf_ctrl.flcgo = 1;
1003         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1004
1005         /* wait till FDONE bit is set to 1 */
1006         do {
1007                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1008                 if (hsfsts.hsf_status.flcdone == 1)
1009                         break;
1010                 udelay(1);
1011         } while (i++ < timeout);
1012
1013         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1014                 return 0;
1015
1016         return ret_val;
1017 }
1018
1019 /**
1020  *  e1000_read_flash_word_ich8lan - Read word from flash
1021  *  @hw: pointer to the HW structure
1022  *  @offset: offset to data location
1023  *  @data: pointer to the location for storing the data
1024  *
1025  *  Reads the flash word at offset into data.  Offset is converted
1026  *  to bytes before read.
1027  **/
1028 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1029                                          u16 *data)
1030 {
1031         /* Must convert offset into bytes. */
1032         offset <<= 1;
1033
1034         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1035 }
1036
1037 /**
1038  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1039  *  @hw: pointer to the HW structure
1040  *  @offset: The offset (in bytes) of the byte or word to read.
1041  *  @size: Size of data to read, 1=byte 2=word
1042  *  @data: Pointer to the word to store the value read.
1043  *
1044  *  Reads a byte or word from the NVM using the flash access registers.
1045  **/
1046 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1047                                          u8 size, u16 *data)
1048 {
1049         union ich8_hws_flash_status hsfsts;
1050         union ich8_hws_flash_ctrl hsflctl;
1051         u32 flash_linear_addr;
1052         u32 flash_data = 0;
1053         s32 ret_val = -E1000_ERR_NVM;
1054         u8 count = 0;
1055
1056         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1057                 return -E1000_ERR_NVM;
1058
1059         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1060                             hw->nvm.flash_base_addr;
1061
1062         do {
1063                 udelay(1);
1064                 /* Steps */
1065                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1066                 if (ret_val != 0)
1067                         break;
1068
1069                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1070                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1071                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1072                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1073                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1074
1075                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1076
1077                 ret_val = e1000_flash_cycle_ich8lan(hw,
1078                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1079
1080                 /* Check if FCERR is set to 1, if set to 1, clear it
1081                  * and try the whole sequence a few more times, else
1082                  * read in (shift in) the Flash Data0, the order is
1083                  * least significant byte first msb to lsb */
1084                 if (ret_val == 0) {
1085                         flash_data = er32flash(ICH_FLASH_FDATA0);
1086                         if (size == 1) {
1087                                 *data = (u8)(flash_data & 0x000000FF);
1088                         } else if (size == 2) {
1089                                 *data = (u16)(flash_data & 0x0000FFFF);
1090                         }
1091                         break;
1092                 } else {
1093                         /* If we've gotten here, then things are probably
1094                          * completely hosed, but if the error condition is
1095                          * detected, it won't hurt to give it another try...
1096                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1097                          */
1098                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1099                         if (hsfsts.hsf_status.flcerr == 1) {
1100                                 /* Repeat for some time before giving up. */
1101                                 continue;
1102                         } else if (hsfsts.hsf_status.flcdone == 0) {
1103                                 hw_dbg(hw, "Timeout error - flash cycle "
1104                                          "did not complete.");
1105                                 break;
1106                         }
1107                 }
1108         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1109
1110         return ret_val;
1111 }
1112
1113 /**
1114  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1115  *  @hw: pointer to the HW structure
1116  *  @offset: The offset (in bytes) of the word(s) to write.
1117  *  @words: Size of data to write in words
1118  *  @data: Pointer to the word(s) to write at offset.
1119  *
1120  *  Writes a byte or word to the NVM using the flash access registers.
1121  **/
1122 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1123                                    u16 *data)
1124 {
1125         struct e1000_nvm_info *nvm = &hw->nvm;
1126         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1127         s32 ret_val;
1128         u16 i;
1129
1130         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1131             (words == 0)) {
1132                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1133                 return -E1000_ERR_NVM;
1134         }
1135
1136         ret_val = e1000_acquire_swflag_ich8lan(hw);
1137         if (ret_val)
1138                 return ret_val;
1139
1140         for (i = 0; i < words; i++) {
1141                 dev_spec->shadow_ram[offset+i].modified = 1;
1142                 dev_spec->shadow_ram[offset+i].value = data[i];
1143         }
1144
1145         e1000_release_swflag_ich8lan(hw);
1146
1147         return 0;
1148 }
1149
1150 /**
1151  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1152  *  @hw: pointer to the HW structure
1153  *
1154  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1155  *  which writes the checksum to the shadow ram.  The changes in the shadow
1156  *  ram are then committed to the EEPROM by processing each bank at a time
1157  *  checking for the modified bit and writing only the pending changes.
1158  *  After a succesful commit, the shadow ram is cleared and is ready for
1159  *  future writes.
1160  **/
1161 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1162 {
1163         struct e1000_nvm_info *nvm = &hw->nvm;
1164         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1165         u32 i, act_offset, new_bank_offset, old_bank_offset;
1166         s32 ret_val;
1167         u16 data;
1168
1169         ret_val = e1000e_update_nvm_checksum_generic(hw);
1170         if (ret_val)
1171                 return ret_val;;
1172
1173         if (nvm->type != e1000_nvm_flash_sw)
1174                 return ret_val;;
1175
1176         ret_val = e1000_acquire_swflag_ich8lan(hw);
1177         if (ret_val)
1178                 return ret_val;;
1179
1180         /* We're writing to the opposite bank so if we're on bank 1,
1181          * write to bank 0 etc.  We also need to erase the segment that
1182          * is going to be written */
1183         if (!(er32(EECD) & E1000_EECD_SEC1VAL)) {
1184                 new_bank_offset = nvm->flash_bank_size;
1185                 old_bank_offset = 0;
1186                 e1000_erase_flash_bank_ich8lan(hw, 1);
1187         } else {
1188                 old_bank_offset = nvm->flash_bank_size;
1189                 new_bank_offset = 0;
1190                 e1000_erase_flash_bank_ich8lan(hw, 0);
1191         }
1192
1193         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1194                 /* Determine whether to write the value stored
1195                  * in the other NVM bank or a modified value stored
1196                  * in the shadow RAM */
1197                 if (dev_spec->shadow_ram[i].modified) {
1198                         data = dev_spec->shadow_ram[i].value;
1199                 } else {
1200                         e1000_read_flash_word_ich8lan(hw,
1201                                                       i + old_bank_offset,
1202                                                       &data);
1203                 }
1204
1205                 /* If the word is 0x13, then make sure the signature bits
1206                  * (15:14) are 11b until the commit has completed.
1207                  * This will allow us to write 10b which indicates the
1208                  * signature is valid.  We want to do this after the write
1209                  * has completed so that we don't mark the segment valid
1210                  * while the write is still in progress */
1211                 if (i == E1000_ICH_NVM_SIG_WORD)
1212                         data |= E1000_ICH_NVM_SIG_MASK;
1213
1214                 /* Convert offset to bytes. */
1215                 act_offset = (i + new_bank_offset) << 1;
1216
1217                 udelay(100);
1218                 /* Write the bytes to the new bank. */
1219                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1220                                                                act_offset,
1221                                                                (u8)data);
1222                 if (ret_val)
1223                         break;
1224
1225                 udelay(100);
1226                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1227                                                           act_offset + 1,
1228                                                           (u8)(data >> 8));
1229                 if (ret_val)
1230                         break;
1231         }
1232
1233         /* Don't bother writing the segment valid bits if sector
1234          * programming failed. */
1235         if (ret_val) {
1236                 hw_dbg(hw, "Flash commit failed.\n");
1237                 e1000_release_swflag_ich8lan(hw);
1238                 return ret_val;
1239         }
1240
1241         /* Finally validate the new segment by setting bit 15:14
1242          * to 10b in word 0x13 , this can be done without an
1243          * erase as well since these bits are 11 to start with
1244          * and we need to change bit 14 to 0b */
1245         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1246         e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1247         data &= 0xBFFF;
1248         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1249                                                        act_offset * 2 + 1,
1250                                                        (u8)(data >> 8));
1251         if (ret_val) {
1252                 e1000_release_swflag_ich8lan(hw);
1253                 return ret_val;
1254         }
1255
1256         /* And invalidate the previously valid segment by setting
1257          * its signature word (0x13) high_byte to 0b. This can be
1258          * done without an erase because flash erase sets all bits
1259          * to 1's. We can write 1's to 0's without an erase */
1260         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1261         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1262         if (ret_val) {
1263                 e1000_release_swflag_ich8lan(hw);
1264                 return ret_val;
1265         }
1266
1267         /* Great!  Everything worked, we can now clear the cached entries. */
1268         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1269                 dev_spec->shadow_ram[i].modified = 0;
1270                 dev_spec->shadow_ram[i].value = 0xFFFF;
1271         }
1272
1273         e1000_release_swflag_ich8lan(hw);
1274
1275         /* Reload the EEPROM, or else modifications will not appear
1276          * until after the next adapter reset.
1277          */
1278         e1000e_reload_nvm(hw);
1279         msleep(10);
1280
1281         return ret_val;
1282 }
1283
1284 /**
1285  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1286  *  @hw: pointer to the HW structure
1287  *
1288  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1289  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1290  *  calculated, in which case we need to calculate the checksum and set bit 6.
1291  **/
1292 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1293 {
1294         s32 ret_val;
1295         u16 data;
1296
1297         /* Read 0x19 and check bit 6.  If this bit is 0, the checksum
1298          * needs to be fixed.  This bit is an indication that the NVM
1299          * was prepared by OEM software and did not calculate the
1300          * checksum...a likely scenario.
1301          */
1302         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1303         if (ret_val)
1304                 return ret_val;
1305
1306         if ((data & 0x40) == 0) {
1307                 data |= 0x40;
1308                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1309                 if (ret_val)
1310                         return ret_val;
1311                 ret_val = e1000e_update_nvm_checksum(hw);
1312                 if (ret_val)
1313                         return ret_val;
1314         }
1315
1316         return e1000e_validate_nvm_checksum_generic(hw);
1317 }
1318
1319 /**
1320  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1321  *  @hw: pointer to the HW structure
1322  *  @offset: The offset (in bytes) of the byte/word to read.
1323  *  @size: Size of data to read, 1=byte 2=word
1324  *  @data: The byte(s) to write to the NVM.
1325  *
1326  *  Writes one/two bytes to the NVM using the flash access registers.
1327  **/
1328 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1329                                           u8 size, u16 data)
1330 {
1331         union ich8_hws_flash_status hsfsts;
1332         union ich8_hws_flash_ctrl hsflctl;
1333         u32 flash_linear_addr;
1334         u32 flash_data = 0;
1335         s32 ret_val;
1336         u8 count = 0;
1337
1338         if (size < 1 || size > 2 || data > size * 0xff ||
1339             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1340                 return -E1000_ERR_NVM;
1341
1342         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1343                             hw->nvm.flash_base_addr;
1344
1345         do {
1346                 udelay(1);
1347                 /* Steps */
1348                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1349                 if (ret_val)
1350                         break;
1351
1352                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1353                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1354                 hsflctl.hsf_ctrl.fldbcount = size -1;
1355                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1356                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1357
1358                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1359
1360                 if (size == 1)
1361                         flash_data = (u32)data & 0x00FF;
1362                 else
1363                         flash_data = (u32)data;
1364
1365                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1366
1367                 /* check if FCERR is set to 1 , if set to 1, clear it
1368                  * and try the whole sequence a few more times else done */
1369                 ret_val = e1000_flash_cycle_ich8lan(hw,
1370                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1371                 if (!ret_val)
1372                         break;
1373
1374                 /* If we're here, then things are most likely
1375                  * completely hosed, but if the error condition
1376                  * is detected, it won't hurt to give it another
1377                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1378                  */
1379                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1380                 if (hsfsts.hsf_status.flcerr == 1)
1381                         /* Repeat for some time before giving up. */
1382                         continue;
1383                 if (hsfsts.hsf_status.flcdone == 0) {
1384                         hw_dbg(hw, "Timeout error - flash cycle "
1385                                  "did not complete.");
1386                         break;
1387                 }
1388         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1389
1390         return ret_val;
1391 }
1392
1393 /**
1394  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1395  *  @hw: pointer to the HW structure
1396  *  @offset: The index of the byte to read.
1397  *  @data: The byte to write to the NVM.
1398  *
1399  *  Writes a single byte to the NVM using the flash access registers.
1400  **/
1401 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1402                                           u8 data)
1403 {
1404         u16 word = (u16)data;
1405
1406         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1407 }
1408
1409 /**
1410  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1411  *  @hw: pointer to the HW structure
1412  *  @offset: The offset of the byte to write.
1413  *  @byte: The byte to write to the NVM.
1414  *
1415  *  Writes a single byte to the NVM using the flash access registers.
1416  *  Goes through a retry algorithm before giving up.
1417  **/
1418 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1419                                                 u32 offset, u8 byte)
1420 {
1421         s32 ret_val;
1422         u16 program_retries;
1423
1424         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1425         if (!ret_val)
1426                 return ret_val;
1427
1428         for (program_retries = 0; program_retries < 100; program_retries++) {
1429                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1430                 udelay(100);
1431                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1432                 if (!ret_val)
1433                         break;
1434         }
1435         if (program_retries == 100)
1436                 return -E1000_ERR_NVM;
1437
1438         return 0;
1439 }
1440
1441 /**
1442  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1443  *  @hw: pointer to the HW structure
1444  *  @bank: 0 for first bank, 1 for second bank, etc.
1445  *
1446  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1447  *  bank N is 4096 * N + flash_reg_addr.
1448  **/
1449 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1450 {
1451         struct e1000_nvm_info *nvm = &hw->nvm;
1452         union ich8_hws_flash_status hsfsts;
1453         union ich8_hws_flash_ctrl hsflctl;
1454         u32 flash_linear_addr;
1455         /* bank size is in 16bit words - adjust to bytes */
1456         u32 flash_bank_size = nvm->flash_bank_size * 2;
1457         s32 ret_val;
1458         s32 count = 0;
1459         s32 iteration;
1460         s32 sector_size;
1461         s32 j;
1462
1463         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1464
1465         /* Determine HW Sector size: Read BERASE bits of hw flash status
1466          * register */
1467         /* 00: The Hw sector is 256 bytes, hence we need to erase 16
1468          *     consecutive sectors.  The start index for the nth Hw sector
1469          *     can be calculated as = bank * 4096 + n * 256
1470          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1471          *     The start index for the nth Hw sector can be calculated
1472          *     as = bank * 4096
1473          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1474          *     (ich9 only, otherwise error condition)
1475          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1476          */
1477         switch (hsfsts.hsf_status.berasesz) {
1478         case 0:
1479                 /* Hw sector size 256 */
1480                 sector_size = ICH_FLASH_SEG_SIZE_256;
1481                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1482                 break;
1483         case 1:
1484                 sector_size = ICH_FLASH_SEG_SIZE_4K;
1485                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1486                 break;
1487         case 2:
1488                 if (hw->mac.type == e1000_ich9lan) {
1489                         sector_size = ICH_FLASH_SEG_SIZE_8K;
1490                         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1491                 } else {
1492                         return -E1000_ERR_NVM;
1493                 }
1494                 break;
1495         case 3:
1496                 sector_size = ICH_FLASH_SEG_SIZE_64K;
1497                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1498                 break;
1499         default:
1500                 return -E1000_ERR_NVM;
1501         }
1502
1503         /* Start with the base address, then add the sector offset. */
1504         flash_linear_addr = hw->nvm.flash_base_addr;
1505         flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1506
1507         for (j = 0; j < iteration ; j++) {
1508                 do {
1509                         /* Steps */
1510                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
1511                         if (ret_val)
1512                                 return ret_val;
1513
1514                         /* Write a value 11 (block Erase) in Flash
1515                          * Cycle field in hw flash control */
1516                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1517                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1518                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1519
1520                         /* Write the last 24 bits of an index within the
1521                          * block into Flash Linear address field in Flash
1522                          * Address.
1523                          */
1524                         flash_linear_addr += (j * sector_size);
1525                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1526
1527                         ret_val = e1000_flash_cycle_ich8lan(hw,
1528                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1529                         if (ret_val == 0)
1530                                 break;
1531
1532                         /* Check if FCERR is set to 1.  If 1,
1533                          * clear it and try the whole sequence
1534                          * a few more times else Done */
1535                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1536                         if (hsfsts.hsf_status.flcerr == 1)
1537                                 /* repeat for some time before
1538                                  * giving up */
1539                                 continue;
1540                         else if (hsfsts.hsf_status.flcdone == 0)
1541                                 return ret_val;
1542                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1543         }
1544
1545         return 0;
1546 }
1547
1548 /**
1549  *  e1000_valid_led_default_ich8lan - Set the default LED settings
1550  *  @hw: pointer to the HW structure
1551  *  @data: Pointer to the LED settings
1552  *
1553  *  Reads the LED default settings from the NVM to data.  If the NVM LED
1554  *  settings is all 0's or F's, set the LED default to a valid LED default
1555  *  setting.
1556  **/
1557 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1558 {
1559         s32 ret_val;
1560
1561         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1562         if (ret_val) {
1563                 hw_dbg(hw, "NVM Read Error\n");
1564                 return ret_val;
1565         }
1566
1567         if (*data == ID_LED_RESERVED_0000 ||
1568             *data == ID_LED_RESERVED_FFFF)
1569                 *data = ID_LED_DEFAULT_ICH8LAN;
1570
1571         return 0;
1572 }
1573
1574 /**
1575  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1576  *  @hw: pointer to the HW structure
1577  *
1578  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1579  *  register, so the the bus width is hard coded.
1580  **/
1581 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1582 {
1583         struct e1000_bus_info *bus = &hw->bus;
1584         s32 ret_val;
1585
1586         ret_val = e1000e_get_bus_info_pcie(hw);
1587
1588         /* ICH devices are "PCI Express"-ish.  They have
1589          * a configuration space, but do not contain
1590          * PCI Express Capability registers, so bus width
1591          * must be hardcoded.
1592          */
1593         if (bus->width == e1000_bus_width_unknown)
1594                 bus->width = e1000_bus_width_pcie_x1;
1595
1596         return ret_val;
1597 }
1598
1599 /**
1600  *  e1000_reset_hw_ich8lan - Reset the hardware
1601  *  @hw: pointer to the HW structure
1602  *
1603  *  Does a full reset of the hardware which includes a reset of the PHY and
1604  *  MAC.
1605  **/
1606 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1607 {
1608         u32 ctrl, icr, kab;
1609         s32 ret_val;
1610
1611         /* Prevent the PCI-E bus from sticking if there is no TLP connection
1612          * on the last TLP read/write transaction when MAC is reset.
1613          */
1614         ret_val = e1000e_disable_pcie_master(hw);
1615         if (ret_val) {
1616                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1617         }
1618
1619         hw_dbg(hw, "Masking off all interrupts\n");
1620         ew32(IMC, 0xffffffff);
1621
1622         /* Disable the Transmit and Receive units.  Then delay to allow
1623          * any pending transactions to complete before we hit the MAC
1624          * with the global reset.
1625          */
1626         ew32(RCTL, 0);
1627         ew32(TCTL, E1000_TCTL_PSP);
1628         e1e_flush();
1629
1630         msleep(10);
1631
1632         /* Workaround for ICH8 bit corruption issue in FIFO memory */
1633         if (hw->mac.type == e1000_ich8lan) {
1634                 /* Set Tx and Rx buffer allocation to 8k apiece. */
1635                 ew32(PBA, E1000_PBA_8K);
1636                 /* Set Packet Buffer Size to 16k. */
1637                 ew32(PBS, E1000_PBS_16K);
1638         }
1639
1640         ctrl = er32(CTRL);
1641
1642         if (!e1000_check_reset_block(hw)) {
1643                 /* PHY HW reset requires MAC CORE reset at the same
1644                  * time to make sure the interface between MAC and the
1645                  * external PHY is reset.
1646                  */
1647                 ctrl |= E1000_CTRL_PHY_RST;
1648         }
1649         ret_val = e1000_acquire_swflag_ich8lan(hw);
1650         hw_dbg(hw, "Issuing a global reset to ich8lan");
1651         ew32(CTRL, (ctrl | E1000_CTRL_RST));
1652         msleep(20);
1653
1654         ret_val = e1000e_get_auto_rd_done(hw);
1655         if (ret_val) {
1656                 /*
1657                  * When auto config read does not complete, do not
1658                  * return with an error. This can happen in situations
1659                  * where there is no eeprom and prevents getting link.
1660                  */
1661                 hw_dbg(hw, "Auto Read Done did not complete\n");
1662         }
1663
1664         ew32(IMC, 0xffffffff);
1665         icr = er32(ICR);
1666
1667         kab = er32(KABGTXD);
1668         kab |= E1000_KABGTXD_BGSQLBIAS;
1669         ew32(KABGTXD, kab);
1670
1671         return ret_val;
1672 }
1673
1674 /**
1675  *  e1000_init_hw_ich8lan - Initialize the hardware
1676  *  @hw: pointer to the HW structure
1677  *
1678  *  Prepares the hardware for transmit and receive by doing the following:
1679  *   - initialize hardware bits
1680  *   - initialize LED identification
1681  *   - setup receive address registers
1682  *   - setup flow control
1683  *   - setup transmit discriptors
1684  *   - clear statistics
1685  **/
1686 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1687 {
1688         struct e1000_mac_info *mac = &hw->mac;
1689         u32 ctrl_ext, txdctl, snoop;
1690         s32 ret_val;
1691         u16 i;
1692
1693         e1000_initialize_hw_bits_ich8lan(hw);
1694
1695         /* Initialize identification LED */
1696         ret_val = e1000e_id_led_init(hw);
1697         if (ret_val) {
1698                 hw_dbg(hw, "Error initializing identification LED\n");
1699                 return ret_val;
1700         }
1701
1702         /* Setup the receive address. */
1703         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1704
1705         /* Zero out the Multicast HASH table */
1706         hw_dbg(hw, "Zeroing the MTA\n");
1707         for (i = 0; i < mac->mta_reg_count; i++)
1708                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1709
1710         /* Setup link and flow control */
1711         ret_val = e1000_setup_link_ich8lan(hw);
1712
1713         /* Set the transmit descriptor write-back policy for both queues */
1714         txdctl = er32(TXDCTL);
1715         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1716                  E1000_TXDCTL_FULL_TX_DESC_WB;
1717         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1718                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1719         ew32(TXDCTL, txdctl);
1720         txdctl = er32(TXDCTL1);
1721         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1722                  E1000_TXDCTL_FULL_TX_DESC_WB;
1723         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1724                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1725         ew32(TXDCTL1, txdctl);
1726
1727         /* ICH8 has opposite polarity of no_snoop bits.
1728          * By default, we should use snoop behavior. */
1729         if (mac->type == e1000_ich8lan)
1730                 snoop = PCIE_ICH8_SNOOP_ALL;
1731         else
1732                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1733         e1000e_set_pcie_no_snoop(hw, snoop);
1734
1735         ctrl_ext = er32(CTRL_EXT);
1736         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1737         ew32(CTRL_EXT, ctrl_ext);
1738
1739         /* Clear all of the statistics registers (clear on read).  It is
1740          * important that we do this after we have tried to establish link
1741          * because the symbol error count will increment wildly if there
1742          * is no link.
1743          */
1744         e1000_clear_hw_cntrs_ich8lan(hw);
1745
1746         return 0;
1747 }
1748 /**
1749  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1750  *  @hw: pointer to the HW structure
1751  *
1752  *  Sets/Clears required hardware bits necessary for correctly setting up the
1753  *  hardware for transmit and receive.
1754  **/
1755 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1756 {
1757         u32 reg;
1758
1759         /* Extended Device Control */
1760         reg = er32(CTRL_EXT);
1761         reg |= (1 << 22);
1762         ew32(CTRL_EXT, reg);
1763
1764         /* Transmit Descriptor Control 0 */
1765         reg = er32(TXDCTL);
1766         reg |= (1 << 22);
1767         ew32(TXDCTL, reg);
1768
1769         /* Transmit Descriptor Control 1 */
1770         reg = er32(TXDCTL1);
1771         reg |= (1 << 22);
1772         ew32(TXDCTL1, reg);
1773
1774         /* Transmit Arbitration Control 0 */
1775         reg = er32(TARC0);
1776         if (hw->mac.type == e1000_ich8lan)
1777                 reg |= (1 << 28) | (1 << 29);
1778         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1779         ew32(TARC0, reg);
1780
1781         /* Transmit Arbitration Control 1 */
1782         reg = er32(TARC1);
1783         if (er32(TCTL) & E1000_TCTL_MULR)
1784                 reg &= ~(1 << 28);
1785         else
1786                 reg |= (1 << 28);
1787         reg |= (1 << 24) | (1 << 26) | (1 << 30);
1788         ew32(TARC1, reg);
1789
1790         /* Device Status */
1791         if (hw->mac.type == e1000_ich8lan) {
1792                 reg = er32(STATUS);
1793                 reg &= ~(1 << 31);
1794                 ew32(STATUS, reg);
1795         }
1796 }
1797
1798 /**
1799  *  e1000_setup_link_ich8lan - Setup flow control and link settings
1800  *  @hw: pointer to the HW structure
1801  *
1802  *  Determines which flow control settings to use, then configures flow
1803  *  control.  Calls the appropriate media-specific link configuration
1804  *  function.  Assuming the adapter has a valid link partner, a valid link
1805  *  should be established.  Assumes the hardware has previously been reset
1806  *  and the transmitter and receiver are not enabled.
1807  **/
1808 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1809 {
1810         struct e1000_mac_info *mac = &hw->mac;
1811         s32 ret_val;
1812
1813         if (e1000_check_reset_block(hw))
1814                 return 0;
1815
1816         /* ICH parts do not have a word in the NVM to determine
1817          * the default flow control setting, so we explicitly
1818          * set it to full.
1819          */
1820         if (mac->fc == e1000_fc_default)
1821                 mac->fc = e1000_fc_full;
1822
1823         mac->original_fc = mac->fc;
1824
1825         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc);
1826
1827         /* Continue to configure the copper link. */
1828         ret_val = e1000_setup_copper_link_ich8lan(hw);
1829         if (ret_val)
1830                 return ret_val;
1831
1832         ew32(FCTTV, mac->fc_pause_time);
1833
1834         return e1000e_set_fc_watermarks(hw);
1835 }
1836
1837 /**
1838  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
1839  *  @hw: pointer to the HW structure
1840  *
1841  *  Configures the kumeran interface to the PHY to wait the appropriate time
1842  *  when polling the PHY, then call the generic setup_copper_link to finish
1843  *  configuring the copper link.
1844  **/
1845 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
1846 {
1847         u32 ctrl;
1848         s32 ret_val;
1849         u16 reg_data;
1850
1851         ctrl = er32(CTRL);
1852         ctrl |= E1000_CTRL_SLU;
1853         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1854         ew32(CTRL, ctrl);
1855
1856         /* Set the mac to wait the maximum time between each iteration
1857          * and increase the max iterations when polling the phy;
1858          * this fixes erroneous timeouts at 10Mbps. */
1859         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1860         if (ret_val)
1861                 return ret_val;
1862         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1863         if (ret_val)
1864                 return ret_val;
1865         reg_data |= 0x3F;
1866         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1867         if (ret_val)
1868                 return ret_val;
1869
1870         if (hw->phy.type == e1000_phy_igp_3) {
1871                 ret_val = e1000e_copper_link_setup_igp(hw);
1872                 if (ret_val)
1873                         return ret_val;
1874         }
1875
1876         return e1000e_setup_copper_link(hw);
1877 }
1878
1879 /**
1880  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
1881  *  @hw: pointer to the HW structure
1882  *  @speed: pointer to store current link speed
1883  *  @duplex: pointer to store the current link duplex
1884  *
1885  *  Calls the generic get_speed_and_duplex to retreive the current link
1886  *  information and then calls the Kumeran lock loss workaround for links at
1887  *  gigabit speeds.
1888  **/
1889 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
1890                                           u16 *duplex)
1891 {
1892         s32 ret_val;
1893
1894         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
1895         if (ret_val)
1896                 return ret_val;
1897
1898         if ((hw->mac.type == e1000_ich8lan) &&
1899             (hw->phy.type == e1000_phy_igp_3) &&
1900             (*speed == SPEED_1000)) {
1901                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
1902         }
1903
1904         return ret_val;
1905 }
1906
1907 /**
1908  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
1909  *  @hw: pointer to the HW structure
1910  *
1911  *  Work-around for 82566 Kumeran PCS lock loss:
1912  *  On link status change (i.e. PCI reset, speed change) and link is up and
1913  *  speed is gigabit-
1914  *    0) if workaround is optionally disabled do nothing
1915  *    1) wait 1ms for Kumeran link to come up
1916  *    2) check Kumeran Diagnostic register PCS lock loss bit
1917  *    3) if not set the link is locked (all is good), otherwise...
1918  *    4) reset the PHY
1919  *    5) repeat up to 10 times
1920  *  Note: this is only called for IGP3 copper when speed is 1gb.
1921  **/
1922 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
1923 {
1924         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1925         u32 phy_ctrl;
1926         s32 ret_val;
1927         u16 i, data;
1928         bool link;
1929
1930         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
1931                 return 0;
1932
1933         /* Make sure link is up before proceeding.  If not just return.
1934          * Attempting this while link is negotiating fouled up link
1935          * stability */
1936         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1937         if (!link)
1938                 return 0;
1939
1940         for (i = 0; i < 10; i++) {
1941                 /* read once to clear */
1942                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
1943                 if (ret_val)
1944                         return ret_val;
1945                 /* and again to get new status */
1946                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
1947                 if (ret_val)
1948                         return ret_val;
1949
1950                 /* check for PCS lock */
1951                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
1952                         return 0;
1953
1954                 /* Issue PHY reset */
1955                 e1000_phy_hw_reset(hw);
1956                 mdelay(5);
1957         }
1958         /* Disable GigE link negotiation */
1959         phy_ctrl = er32(PHY_CTRL);
1960         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
1961                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
1962         ew32(PHY_CTRL, phy_ctrl);
1963
1964         /* Call gig speed drop workaround on Giga disable before accessing
1965          * any PHY registers */
1966         e1000e_gig_downshift_workaround_ich8lan(hw);
1967
1968         /* unable to acquire PCS lock */
1969         return -E1000_ERR_PHY;
1970 }
1971
1972 /**
1973  *  e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
1974  *  @hw: pointer to the HW structure
1975  *  @state: boolean value used to set the current Kumaran workaround state
1976  *
1977  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
1978  *  /disabled - FALSE).
1979  **/
1980 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
1981                                                  bool state)
1982 {
1983         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1984
1985         if (hw->mac.type != e1000_ich8lan) {
1986                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
1987                 return;
1988         }
1989
1990         dev_spec->kmrn_lock_loss_workaround_enabled = state;
1991 }
1992
1993 /**
1994  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
1995  *  @hw: pointer to the HW structure
1996  *
1997  *  Workaround for 82566 power-down on D3 entry:
1998  *    1) disable gigabit link
1999  *    2) write VR power-down enable
2000  *    3) read it back
2001  *  Continue if successful, else issue LCD reset and repeat
2002  **/
2003 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2004 {
2005         u32 reg;
2006         u16 data;
2007         u8  retry = 0;
2008
2009         if (hw->phy.type != e1000_phy_igp_3)
2010                 return;
2011
2012         /* Try the workaround twice (if needed) */
2013         do {
2014                 /* Disable link */
2015                 reg = er32(PHY_CTRL);
2016                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2017                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2018                 ew32(PHY_CTRL, reg);
2019
2020                 /* Call gig speed drop workaround on Giga disable before
2021                  * accessing any PHY registers */
2022                 if (hw->mac.type == e1000_ich8lan)
2023                         e1000e_gig_downshift_workaround_ich8lan(hw);
2024
2025                 /* Write VR power-down enable */
2026                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2027                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2028                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2029
2030                 /* Read it back and test */
2031                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2032                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2033                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2034                         break;
2035
2036                 /* Issue PHY reset and repeat at most one more time */
2037                 reg = er32(CTRL);
2038                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2039                 retry++;
2040         } while (retry);
2041 }
2042
2043 /**
2044  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2045  *  @hw: pointer to the HW structure
2046  *
2047  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2048  *  LPLU, Giga disable, MDIC PHY reset):
2049  *    1) Set Kumeran Near-end loopback
2050  *    2) Clear Kumeran Near-end loopback
2051  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2052  **/
2053 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2054 {
2055         s32 ret_val;
2056         u16 reg_data;
2057
2058         if ((hw->mac.type != e1000_ich8lan) ||
2059             (hw->phy.type != e1000_phy_igp_3))
2060                 return;
2061
2062         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2063                                       &reg_data);
2064         if (ret_val)
2065                 return;
2066         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2067         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2068                                        reg_data);
2069         if (ret_val)
2070                 return;
2071         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2072         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2073                                        reg_data);
2074 }
2075
2076 /**
2077  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2078  *  @hw: pointer to the HW structure
2079  *
2080  *  Return the LED back to the default configuration.
2081  **/
2082 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2083 {
2084         if (hw->phy.type == e1000_phy_ife)
2085                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2086
2087         ew32(LEDCTL, hw->mac.ledctl_default);
2088         return 0;
2089 }
2090
2091 /**
2092  *  e1000_led_on_ich8lan - Turn LED's on
2093  *  @hw: pointer to the HW structure
2094  *
2095  *  Turn on the LED's.
2096  **/
2097 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2098 {
2099         if (hw->phy.type == e1000_phy_ife)
2100                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2101                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2102
2103         ew32(LEDCTL, hw->mac.ledctl_mode2);
2104         return 0;
2105 }
2106
2107 /**
2108  *  e1000_led_off_ich8lan - Turn LED's off
2109  *  @hw: pointer to the HW structure
2110  *
2111  *  Turn off the LED's.
2112  **/
2113 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2114 {
2115         if (hw->phy.type == e1000_phy_ife)
2116                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2117                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2118
2119         ew32(LEDCTL, hw->mac.ledctl_mode1);
2120         return 0;
2121 }
2122
2123 /**
2124  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2125  *  @hw: pointer to the HW structure
2126  *
2127  *  Clears hardware counters specific to the silicon family and calls
2128  *  clear_hw_cntrs_generic to clear all general purpose counters.
2129  **/
2130 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2131 {
2132         u32 temp;
2133
2134         e1000e_clear_hw_cntrs_base(hw);
2135
2136         temp = er32(ALGNERRC);
2137         temp = er32(RXERRC);
2138         temp = er32(TNCRS);
2139         temp = er32(CEXTERR);
2140         temp = er32(TSCTC);
2141         temp = er32(TSCTFC);
2142
2143         temp = er32(MGTPRC);
2144         temp = er32(MGTPDC);
2145         temp = er32(MGTPTC);
2146
2147         temp = er32(IAC);
2148         temp = er32(ICRXOC);
2149
2150 }
2151
2152 static struct e1000_mac_operations ich8_mac_ops = {
2153         .mng_mode_enab          = E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
2154         .check_for_link         = e1000e_check_for_copper_link,
2155         .cleanup_led            = e1000_cleanup_led_ich8lan,
2156         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
2157         .get_bus_info           = e1000_get_bus_info_ich8lan,
2158         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
2159         .led_on                 = e1000_led_on_ich8lan,
2160         .led_off                = e1000_led_off_ich8lan,
2161         .mc_addr_list_update    = e1000e_mc_addr_list_update_generic,
2162         .reset_hw               = e1000_reset_hw_ich8lan,
2163         .init_hw                = e1000_init_hw_ich8lan,
2164         .setup_link             = e1000_setup_link_ich8lan,
2165         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2166 };
2167
2168 static struct e1000_phy_operations ich8_phy_ops = {
2169         .acquire_phy            = e1000_acquire_swflag_ich8lan,
2170         .check_reset_block      = e1000_check_reset_block_ich8lan,
2171         .commit_phy             = NULL,
2172         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
2173         .get_cfg_done           = e1000e_get_cfg_done,
2174         .get_cable_length       = e1000e_get_cable_length_igp_2,
2175         .get_phy_info           = e1000_get_phy_info_ich8lan,
2176         .read_phy_reg           = e1000e_read_phy_reg_igp,
2177         .release_phy            = e1000_release_swflag_ich8lan,
2178         .reset_phy              = e1000_phy_hw_reset_ich8lan,
2179         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
2180         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
2181         .write_phy_reg          = e1000e_write_phy_reg_igp,
2182 };
2183
2184 static struct e1000_nvm_operations ich8_nvm_ops = {
2185         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
2186         .read_nvm               = e1000_read_nvm_ich8lan,
2187         .release_nvm            = e1000_release_swflag_ich8lan,
2188         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
2189         .valid_led_default      = e1000_valid_led_default_ich8lan,
2190         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
2191         .write_nvm              = e1000_write_nvm_ich8lan,
2192 };
2193
2194 struct e1000_info e1000_ich8_info = {
2195         .mac                    = e1000_ich8lan,
2196         .flags                  = FLAG_HAS_WOL
2197                                   | FLAG_RX_CSUM_ENABLED
2198                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2199                                   | FLAG_HAS_AMT
2200                                   | FLAG_HAS_FLASH
2201                                   | FLAG_APME_IN_WUC,
2202         .pba                    = 8,
2203         .get_invariants         = e1000_get_invariants_ich8lan,
2204         .mac_ops                = &ich8_mac_ops,
2205         .phy_ops                = &ich8_phy_ops,
2206         .nvm_ops                = &ich8_nvm_ops,
2207 };
2208
2209 struct e1000_info e1000_ich9_info = {
2210         .mac                    = e1000_ich9lan,
2211         .flags                  = FLAG_HAS_JUMBO_FRAMES
2212                                   | FLAG_HAS_WOL
2213                                   | FLAG_RX_CSUM_ENABLED
2214                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2215                                   | FLAG_HAS_AMT
2216                                   | FLAG_HAS_ERT
2217                                   | FLAG_HAS_FLASH
2218                                   | FLAG_APME_IN_WUC,
2219         .pba                    = 10,
2220         .get_invariants         = e1000_get_invariants_ich8lan,
2221         .mac_ops                = &ich8_mac_ops,
2222         .phy_ops                = &ich8_phy_ops,
2223         .nvm_ops                = &ich8_nvm_ops,
2224 };
2225