Merge branch 'upstream-fixes'
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.1.16-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         /* required last entry */
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
106
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *txdr);
117 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rxdr);
119 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
120                                     struct e1000_tx_ring *tx_ring);
121 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
122                                     struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
124
125 /* Local Function Prototypes */
126
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144                                 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176                                       struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179                            int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187                                               struct sk_buff *skb);
188
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
193
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
198
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
203
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
208
209 /* Exported from other modules */
210
211 extern void e1000_check_options(struct e1000_adapter *adapter);
212
213 static struct pci_driver e1000_driver = {
214         .name     = e1000_driver_name,
215         .id_table = e1000_pci_tbl,
216         .probe    = e1000_probe,
217         .remove   = __devexit_p(e1000_remove),
218         /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220         .suspend  = e1000_suspend,
221         .resume   = e1000_resume
222 #endif
223 };
224
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
229
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233
234 /**
235  * e1000_init_module - Driver Registration Routine
236  *
237  * e1000_init_module is the first routine called when the driver is
238  * loaded. All it does is register with the PCI subsystem.
239  **/
240
241 static int __init
242 e1000_init_module(void)
243 {
244         int ret;
245         printk(KERN_INFO "%s - version %s\n",
246                e1000_driver_string, e1000_driver_version);
247
248         printk(KERN_INFO "%s\n", e1000_copyright);
249
250         ret = pci_module_init(&e1000_driver);
251
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 /**
273  * e1000_irq_disable - Mask off interrupt generation on the NIC
274  * @adapter: board private structure
275  **/
276
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280         atomic_inc(&adapter->irq_sem);
281         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282         E1000_WRITE_FLUSH(&adapter->hw);
283         synchronize_irq(adapter->pdev->irq);
284 }
285
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
293 {
294         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296                 E1000_WRITE_FLUSH(&adapter->hw);
297         }
298 }
299
300 static void
301 e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303         struct net_device *netdev = adapter->netdev;
304         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
305         uint16_t old_vid = adapter->mng_vlan_id;
306         if(adapter->vlgrp) {
307                 if(!adapter->vlgrp->vlan_devices[vid]) {
308                         if(adapter->hw.mng_cookie.status &
309                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
310                                 e1000_vlan_rx_add_vid(netdev, vid);
311                                 adapter->mng_vlan_id = vid;
312                         } else
313                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
314                                 
315                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
316                                         (vid != old_vid) && 
317                                         !adapter->vlgrp->vlan_devices[old_vid])
318                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
319                 }
320         }
321 }
322         
323 int
324 e1000_up(struct e1000_adapter *adapter)
325 {
326         struct net_device *netdev = adapter->netdev;
327         int i, err;
328
329         /* hardware has been reset, we need to reload some things */
330
331         /* Reset the PHY if it was previously powered down */
332         if(adapter->hw.media_type == e1000_media_type_copper) {
333                 uint16_t mii_reg;
334                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
335                 if(mii_reg & MII_CR_POWER_DOWN)
336                         e1000_phy_reset(&adapter->hw);
337         }
338
339         e1000_set_multi(netdev);
340
341         e1000_restore_vlan(adapter);
342
343         e1000_configure_tx(adapter);
344         e1000_setup_rctl(adapter);
345         e1000_configure_rx(adapter);
346         for (i = 0; i < adapter->num_queues; i++)
347                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
348
349 #ifdef CONFIG_PCI_MSI
350         if(adapter->hw.mac_type > e1000_82547_rev_2) {
351                 adapter->have_msi = TRUE;
352                 if((err = pci_enable_msi(adapter->pdev))) {
353                         DPRINTK(PROBE, ERR,
354                          "Unable to allocate MSI interrupt Error: %d\n", err);
355                         adapter->have_msi = FALSE;
356                 }
357         }
358 #endif
359         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
360                               SA_SHIRQ | SA_SAMPLE_RANDOM,
361                               netdev->name, netdev))) {
362                 DPRINTK(PROBE, ERR,
363                     "Unable to allocate interrupt Error: %d\n", err);
364                 return err;
365         }
366
367         mod_timer(&adapter->watchdog_timer, jiffies);
368
369 #ifdef CONFIG_E1000_NAPI
370         netif_poll_enable(netdev);
371 #endif
372         e1000_irq_enable(adapter);
373
374         return 0;
375 }
376
377 void
378 e1000_down(struct e1000_adapter *adapter)
379 {
380         struct net_device *netdev = adapter->netdev;
381
382         e1000_irq_disable(adapter);
383 #ifdef CONFIG_E1000_MQ
384         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
385 #endif
386         free_irq(adapter->pdev->irq, netdev);
387 #ifdef CONFIG_PCI_MSI
388         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
389            adapter->have_msi == TRUE)
390                 pci_disable_msi(adapter->pdev);
391 #endif
392         del_timer_sync(&adapter->tx_fifo_stall_timer);
393         del_timer_sync(&adapter->watchdog_timer);
394         del_timer_sync(&adapter->phy_info_timer);
395
396 #ifdef CONFIG_E1000_NAPI
397         netif_poll_disable(netdev);
398 #endif
399         adapter->link_speed = 0;
400         adapter->link_duplex = 0;
401         netif_carrier_off(netdev);
402         netif_stop_queue(netdev);
403
404         e1000_reset(adapter);
405         e1000_clean_all_tx_rings(adapter);
406         e1000_clean_all_rx_rings(adapter);
407
408         /* If WoL is not enabled and management mode is not IAMT
409          * Power down the PHY so no link is implied when interface is down */
410         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
411            adapter->hw.media_type == e1000_media_type_copper &&
412            !e1000_check_mng_mode(&adapter->hw) &&
413            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
414                 uint16_t mii_reg;
415                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
416                 mii_reg |= MII_CR_POWER_DOWN;
417                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
418                 mdelay(1);
419         }
420 }
421
422 void
423 e1000_reset(struct e1000_adapter *adapter)
424 {
425         struct net_device *netdev = adapter->netdev;
426         uint32_t pba, manc;
427         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
428         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
429
430         /* Repartition Pba for greater than 9k mtu
431          * To take effect CTRL.RST is required.
432          */
433
434         switch (adapter->hw.mac_type) {
435         case e1000_82547:
436         case e1000_82547_rev_2:
437                 pba = E1000_PBA_30K;
438                 break;
439         case e1000_82571:
440         case e1000_82572:
441                 pba = E1000_PBA_38K;
442                 break;
443         case e1000_82573:
444                 pba = E1000_PBA_12K;
445                 break;
446         default:
447                 pba = E1000_PBA_48K;
448                 break;
449         }
450
451         if((adapter->hw.mac_type != e1000_82573) &&
452            (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
453                 pba -= 8; /* allocate more FIFO for Tx */
454                 /* send an XOFF when there is enough space in the
455                  * Rx FIFO to hold one extra full size Rx packet 
456                 */
457                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
458                                         ETHERNET_FCS_SIZE + 1;
459                 fc_low_water_mark = fc_high_water_mark + 8;
460         }
461
462
463         if(adapter->hw.mac_type == e1000_82547) {
464                 adapter->tx_fifo_head = 0;
465                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
466                 adapter->tx_fifo_size =
467                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
468                 atomic_set(&adapter->tx_fifo_stall, 0);
469         }
470
471         E1000_WRITE_REG(&adapter->hw, PBA, pba);
472
473         /* flow control settings */
474         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
475                                     fc_high_water_mark;
476         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
477                                    fc_low_water_mark;
478         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
479         adapter->hw.fc_send_xon = 1;
480         adapter->hw.fc = adapter->hw.original_fc;
481
482         /* Allow time for pending master requests to run */
483         e1000_reset_hw(&adapter->hw);
484         if(adapter->hw.mac_type >= e1000_82544)
485                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
486         if(e1000_init_hw(&adapter->hw))
487                 DPRINTK(PROBE, ERR, "Hardware Error\n");
488         e1000_update_mng_vlan(adapter);
489         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
490         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
491
492         e1000_reset_adaptive(&adapter->hw);
493         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
494         if (adapter->en_mng_pt) {
495                 manc = E1000_READ_REG(&adapter->hw, MANC);
496                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
497                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
498         }
499 }
500
501 /**
502  * e1000_probe - Device Initialization Routine
503  * @pdev: PCI device information struct
504  * @ent: entry in e1000_pci_tbl
505  *
506  * Returns 0 on success, negative on failure
507  *
508  * e1000_probe initializes an adapter identified by a pci_dev structure.
509  * The OS initialization, configuring of the adapter private structure,
510  * and a hardware reset occur.
511  **/
512
513 static int __devinit
514 e1000_probe(struct pci_dev *pdev,
515             const struct pci_device_id *ent)
516 {
517         struct net_device *netdev;
518         struct e1000_adapter *adapter;
519         unsigned long mmio_start, mmio_len;
520         uint32_t ctrl_ext;
521         uint32_t swsm;
522
523         static int cards_found = 0;
524         int i, err, pci_using_dac;
525         uint16_t eeprom_data;
526         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
527         if((err = pci_enable_device(pdev)))
528                 return err;
529
530         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
531                 pci_using_dac = 1;
532         } else {
533                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
534                         E1000_ERR("No usable DMA configuration, aborting\n");
535                         return err;
536                 }
537                 pci_using_dac = 0;
538         }
539
540         if((err = pci_request_regions(pdev, e1000_driver_name)))
541                 return err;
542
543         pci_set_master(pdev);
544
545         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
546         if(!netdev) {
547                 err = -ENOMEM;
548                 goto err_alloc_etherdev;
549         }
550
551         SET_MODULE_OWNER(netdev);
552         SET_NETDEV_DEV(netdev, &pdev->dev);
553
554         pci_set_drvdata(pdev, netdev);
555         adapter = netdev_priv(netdev);
556         adapter->netdev = netdev;
557         adapter->pdev = pdev;
558         adapter->hw.back = adapter;
559         adapter->msg_enable = (1 << debug) - 1;
560
561         mmio_start = pci_resource_start(pdev, BAR_0);
562         mmio_len = pci_resource_len(pdev, BAR_0);
563
564         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
565         if(!adapter->hw.hw_addr) {
566                 err = -EIO;
567                 goto err_ioremap;
568         }
569
570         for(i = BAR_1; i <= BAR_5; i++) {
571                 if(pci_resource_len(pdev, i) == 0)
572                         continue;
573                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
574                         adapter->hw.io_base = pci_resource_start(pdev, i);
575                         break;
576                 }
577         }
578
579         netdev->open = &e1000_open;
580         netdev->stop = &e1000_close;
581         netdev->hard_start_xmit = &e1000_xmit_frame;
582         netdev->get_stats = &e1000_get_stats;
583         netdev->set_multicast_list = &e1000_set_multi;
584         netdev->set_mac_address = &e1000_set_mac;
585         netdev->change_mtu = &e1000_change_mtu;
586         netdev->do_ioctl = &e1000_ioctl;
587         e1000_set_ethtool_ops(netdev);
588         netdev->tx_timeout = &e1000_tx_timeout;
589         netdev->watchdog_timeo = 5 * HZ;
590 #ifdef CONFIG_E1000_NAPI
591         netdev->poll = &e1000_clean;
592         netdev->weight = 64;
593 #endif
594         netdev->vlan_rx_register = e1000_vlan_rx_register;
595         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
596         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
597 #ifdef CONFIG_NET_POLL_CONTROLLER
598         netdev->poll_controller = e1000_netpoll;
599 #endif
600         strcpy(netdev->name, pci_name(pdev));
601
602         netdev->mem_start = mmio_start;
603         netdev->mem_end = mmio_start + mmio_len;
604         netdev->base_addr = adapter->hw.io_base;
605
606         adapter->bd_number = cards_found;
607
608         /* setup the private structure */
609
610         if((err = e1000_sw_init(adapter)))
611                 goto err_sw_init;
612
613         if((err = e1000_check_phy_reset_block(&adapter->hw)))
614                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
615
616         if(adapter->hw.mac_type >= e1000_82543) {
617                 netdev->features = NETIF_F_SG |
618                                    NETIF_F_HW_CSUM |
619                                    NETIF_F_HW_VLAN_TX |
620                                    NETIF_F_HW_VLAN_RX |
621                                    NETIF_F_HW_VLAN_FILTER;
622         }
623
624 #ifdef NETIF_F_TSO
625         if((adapter->hw.mac_type >= e1000_82544) &&
626            (adapter->hw.mac_type != e1000_82547))
627                 netdev->features |= NETIF_F_TSO;
628
629 #ifdef NETIF_F_TSO_IPV6
630         if(adapter->hw.mac_type > e1000_82547_rev_2)
631                 netdev->features |= NETIF_F_TSO_IPV6;
632 #endif
633 #endif
634         if(pci_using_dac)
635                 netdev->features |= NETIF_F_HIGHDMA;
636
637         /* hard_start_xmit is safe against parallel locking */
638         netdev->features |= NETIF_F_LLTX; 
639  
640         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
641
642         /* before reading the EEPROM, reset the controller to 
643          * put the device in a known good starting state */
644         
645         e1000_reset_hw(&adapter->hw);
646
647         /* make sure the EEPROM is good */
648
649         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
650                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
651                 err = -EIO;
652                 goto err_eeprom;
653         }
654
655         /* copy the MAC address out of the EEPROM */
656
657         if(e1000_read_mac_addr(&adapter->hw))
658                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
659         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
660         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
661
662         if(!is_valid_ether_addr(netdev->perm_addr)) {
663                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
664                 err = -EIO;
665                 goto err_eeprom;
666         }
667
668         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
669
670         e1000_get_bus_info(&adapter->hw);
671
672         init_timer(&adapter->tx_fifo_stall_timer);
673         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
674         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
675
676         init_timer(&adapter->watchdog_timer);
677         adapter->watchdog_timer.function = &e1000_watchdog;
678         adapter->watchdog_timer.data = (unsigned long) adapter;
679
680         INIT_WORK(&adapter->watchdog_task,
681                 (void (*)(void *))e1000_watchdog_task, adapter);
682
683         init_timer(&adapter->phy_info_timer);
684         adapter->phy_info_timer.function = &e1000_update_phy_info;
685         adapter->phy_info_timer.data = (unsigned long) adapter;
686
687         INIT_WORK(&adapter->tx_timeout_task,
688                 (void (*)(void *))e1000_tx_timeout_task, netdev);
689
690         /* we're going to reset, so assume we have no link for now */
691
692         netif_carrier_off(netdev);
693         netif_stop_queue(netdev);
694
695         e1000_check_options(adapter);
696
697         /* Initial Wake on LAN setting
698          * If APM wake is enabled in the EEPROM,
699          * enable the ACPI Magic Packet filter
700          */
701
702         switch(adapter->hw.mac_type) {
703         case e1000_82542_rev2_0:
704         case e1000_82542_rev2_1:
705         case e1000_82543:
706                 break;
707         case e1000_82544:
708                 e1000_read_eeprom(&adapter->hw,
709                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
710                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
711                 break;
712         case e1000_82546:
713         case e1000_82546_rev_3:
714                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
715                    && (adapter->hw.media_type == e1000_media_type_copper)) {
716                         e1000_read_eeprom(&adapter->hw,
717                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
718                         break;
719                 }
720                 /* Fall Through */
721         default:
722                 e1000_read_eeprom(&adapter->hw,
723                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
724                 break;
725         }
726         if(eeprom_data & eeprom_apme_mask)
727                 adapter->wol |= E1000_WUFC_MAG;
728
729         /* reset the hardware with the new settings */
730         e1000_reset(adapter);
731
732         /* Let firmware know the driver has taken over */
733         switch(adapter->hw.mac_type) {
734         case e1000_82571:
735         case e1000_82572:
736                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
737                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
738                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
739                 break;
740         case e1000_82573:
741                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
742                 E1000_WRITE_REG(&adapter->hw, SWSM,
743                                 swsm | E1000_SWSM_DRV_LOAD);
744                 break;
745         default:
746                 break;
747         }
748
749         strcpy(netdev->name, "eth%d");
750         if((err = register_netdev(netdev)))
751                 goto err_register;
752
753         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
754
755         cards_found++;
756         return 0;
757
758 err_register:
759 err_sw_init:
760 err_eeprom:
761         iounmap(adapter->hw.hw_addr);
762 err_ioremap:
763         free_netdev(netdev);
764 err_alloc_etherdev:
765         pci_release_regions(pdev);
766         return err;
767 }
768
769 /**
770  * e1000_remove - Device Removal Routine
771  * @pdev: PCI device information struct
772  *
773  * e1000_remove is called by the PCI subsystem to alert the driver
774  * that it should release a PCI device.  The could be caused by a
775  * Hot-Plug event, or because the driver is going to be removed from
776  * memory.
777  **/
778
779 static void __devexit
780 e1000_remove(struct pci_dev *pdev)
781 {
782         struct net_device *netdev = pci_get_drvdata(pdev);
783         struct e1000_adapter *adapter = netdev_priv(netdev);
784         uint32_t ctrl_ext;
785         uint32_t manc, swsm;
786 #ifdef CONFIG_E1000_NAPI
787         int i;
788 #endif
789
790         flush_scheduled_work();
791
792         if(adapter->hw.mac_type >= e1000_82540 &&
793            adapter->hw.media_type == e1000_media_type_copper) {
794                 manc = E1000_READ_REG(&adapter->hw, MANC);
795                 if(manc & E1000_MANC_SMBUS_EN) {
796                         manc |= E1000_MANC_ARP_EN;
797                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
798                 }
799         }
800
801         switch(adapter->hw.mac_type) {
802         case e1000_82571:
803         case e1000_82572:
804                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
805                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
806                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
807                 break;
808         case e1000_82573:
809                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
810                 E1000_WRITE_REG(&adapter->hw, SWSM,
811                                 swsm & ~E1000_SWSM_DRV_LOAD);
812                 break;
813
814         default:
815                 break;
816         }
817
818         unregister_netdev(netdev);
819 #ifdef CONFIG_E1000_NAPI
820         for (i = 0; i < adapter->num_queues; i++)
821                 __dev_put(&adapter->polling_netdev[i]);
822 #endif
823
824         if(!e1000_check_phy_reset_block(&adapter->hw))
825                 e1000_phy_hw_reset(&adapter->hw);
826
827         kfree(adapter->tx_ring);
828         kfree(adapter->rx_ring);
829 #ifdef CONFIG_E1000_NAPI
830         kfree(adapter->polling_netdev);
831 #endif
832
833         iounmap(adapter->hw.hw_addr);
834         pci_release_regions(pdev);
835
836 #ifdef CONFIG_E1000_MQ
837         free_percpu(adapter->cpu_netdev);
838         free_percpu(adapter->cpu_tx_ring);
839 #endif
840         free_netdev(netdev);
841
842         pci_disable_device(pdev);
843 }
844
845 /**
846  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
847  * @adapter: board private structure to initialize
848  *
849  * e1000_sw_init initializes the Adapter private data structure.
850  * Fields are initialized based on PCI device information and
851  * OS network device settings (MTU size).
852  **/
853
854 static int __devinit
855 e1000_sw_init(struct e1000_adapter *adapter)
856 {
857         struct e1000_hw *hw = &adapter->hw;
858         struct net_device *netdev = adapter->netdev;
859         struct pci_dev *pdev = adapter->pdev;
860 #ifdef CONFIG_E1000_NAPI
861         int i;
862 #endif
863
864         /* PCI config space info */
865
866         hw->vendor_id = pdev->vendor;
867         hw->device_id = pdev->device;
868         hw->subsystem_vendor_id = pdev->subsystem_vendor;
869         hw->subsystem_id = pdev->subsystem_device;
870
871         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
872
873         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
874
875         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
876         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
877         hw->max_frame_size = netdev->mtu +
878                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
879         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
880
881         /* identify the MAC */
882
883         if(e1000_set_mac_type(hw)) {
884                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
885                 return -EIO;
886         }
887
888         /* initialize eeprom parameters */
889
890         if(e1000_init_eeprom_params(hw)) {
891                 E1000_ERR("EEPROM initialization failed\n");
892                 return -EIO;
893         }
894
895         switch(hw->mac_type) {
896         default:
897                 break;
898         case e1000_82541:
899         case e1000_82547:
900         case e1000_82541_rev_2:
901         case e1000_82547_rev_2:
902                 hw->phy_init_script = 1;
903                 break;
904         }
905
906         e1000_set_media_type(hw);
907
908         hw->wait_autoneg_complete = FALSE;
909         hw->tbi_compatibility_en = TRUE;
910         hw->adaptive_ifs = TRUE;
911
912         /* Copper options */
913
914         if(hw->media_type == e1000_media_type_copper) {
915                 hw->mdix = AUTO_ALL_MODES;
916                 hw->disable_polarity_correction = FALSE;
917                 hw->master_slave = E1000_MASTER_SLAVE;
918         }
919
920 #ifdef CONFIG_E1000_MQ
921         /* Number of supported queues */
922         switch (hw->mac_type) {
923         case e1000_82571:
924         case e1000_82572:
925                 adapter->num_queues = 2;
926                 break;
927         default:
928                 adapter->num_queues = 1;
929                 break;
930         }
931         adapter->num_queues = min(adapter->num_queues, num_online_cpus());
932 #else
933         adapter->num_queues = 1;
934 #endif
935
936         if (e1000_alloc_queues(adapter)) {
937                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
938                 return -ENOMEM;
939         }
940
941 #ifdef CONFIG_E1000_NAPI
942         for (i = 0; i < adapter->num_queues; i++) {
943                 adapter->polling_netdev[i].priv = adapter;
944                 adapter->polling_netdev[i].poll = &e1000_clean;
945                 adapter->polling_netdev[i].weight = 64;
946                 dev_hold(&adapter->polling_netdev[i]);
947                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
948         }
949 #endif
950
951 #ifdef CONFIG_E1000_MQ
952         e1000_setup_queue_mapping(adapter);
953 #endif
954
955         atomic_set(&adapter->irq_sem, 1);
956         spin_lock_init(&adapter->stats_lock);
957
958         return 0;
959 }
960
961 /**
962  * e1000_alloc_queues - Allocate memory for all rings
963  * @adapter: board private structure to initialize
964  *
965  * We allocate one ring per queue at run-time since we don't know the
966  * number of queues at compile-time.  The polling_netdev array is
967  * intended for Multiqueue, but should work fine with a single queue.
968  **/
969
970 static int __devinit
971 e1000_alloc_queues(struct e1000_adapter *adapter)
972 {
973         int size;
974
975         size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
976         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
977         if (!adapter->tx_ring)
978                 return -ENOMEM;
979         memset(adapter->tx_ring, 0, size);
980
981         size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
982         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
983         if (!adapter->rx_ring) {
984                 kfree(adapter->tx_ring);
985                 return -ENOMEM;
986         }
987         memset(adapter->rx_ring, 0, size);
988
989 #ifdef CONFIG_E1000_NAPI
990         size = sizeof(struct net_device) * adapter->num_queues;
991         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
992         if (!adapter->polling_netdev) {
993                 kfree(adapter->tx_ring);
994                 kfree(adapter->rx_ring);
995                 return -ENOMEM;
996         }
997         memset(adapter->polling_netdev, 0, size);
998 #endif
999
1000         return E1000_SUCCESS;
1001 }
1002
1003 #ifdef CONFIG_E1000_MQ
1004 static void __devinit
1005 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1006 {
1007         int i, cpu;
1008
1009         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1010         adapter->rx_sched_call_data.info = adapter->netdev;
1011         cpus_clear(adapter->rx_sched_call_data.cpumask);
1012
1013         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1014         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1015
1016         lock_cpu_hotplug();
1017         i = 0;
1018         for_each_online_cpu(cpu) {
1019                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1020                 /* This is incomplete because we'd like to assign separate
1021                  * physical cpus to these netdev polling structures and
1022                  * avoid saturating a subset of cpus.
1023                  */
1024                 if (i < adapter->num_queues) {
1025                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1026                         adapter->cpu_for_queue[i] = cpu;
1027                 } else
1028                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1029
1030                 i++;
1031         }
1032         unlock_cpu_hotplug();
1033 }
1034 #endif
1035
1036 /**
1037  * e1000_open - Called when a network interface is made active
1038  * @netdev: network interface device structure
1039  *
1040  * Returns 0 on success, negative value on failure
1041  *
1042  * The open entry point is called when a network interface is made
1043  * active by the system (IFF_UP).  At this point all resources needed
1044  * for transmit and receive operations are allocated, the interrupt
1045  * handler is registered with the OS, the watchdog timer is started,
1046  * and the stack is notified that the interface is ready.
1047  **/
1048
1049 static int
1050 e1000_open(struct net_device *netdev)
1051 {
1052         struct e1000_adapter *adapter = netdev_priv(netdev);
1053         int err;
1054
1055         /* allocate transmit descriptors */
1056
1057         if ((err = e1000_setup_all_tx_resources(adapter)))
1058                 goto err_setup_tx;
1059
1060         /* allocate receive descriptors */
1061
1062         if ((err = e1000_setup_all_rx_resources(adapter)))
1063                 goto err_setup_rx;
1064
1065         if((err = e1000_up(adapter)))
1066                 goto err_up;
1067         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1068         if((adapter->hw.mng_cookie.status &
1069                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1070                 e1000_update_mng_vlan(adapter);
1071         }
1072
1073         return E1000_SUCCESS;
1074
1075 err_up:
1076         e1000_free_all_rx_resources(adapter);
1077 err_setup_rx:
1078         e1000_free_all_tx_resources(adapter);
1079 err_setup_tx:
1080         e1000_reset(adapter);
1081
1082         return err;
1083 }
1084
1085 /**
1086  * e1000_close - Disables a network interface
1087  * @netdev: network interface device structure
1088  *
1089  * Returns 0, this is not allowed to fail
1090  *
1091  * The close entry point is called when an interface is de-activated
1092  * by the OS.  The hardware is still under the drivers control, but
1093  * needs to be disabled.  A global MAC reset is issued to stop the
1094  * hardware, and all transmit and receive resources are freed.
1095  **/
1096
1097 static int
1098 e1000_close(struct net_device *netdev)
1099 {
1100         struct e1000_adapter *adapter = netdev_priv(netdev);
1101
1102         e1000_down(adapter);
1103
1104         e1000_free_all_tx_resources(adapter);
1105         e1000_free_all_rx_resources(adapter);
1106
1107         if((adapter->hw.mng_cookie.status &
1108                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1109                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1110         }
1111         return 0;
1112 }
1113
1114 /**
1115  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1116  * @adapter: address of board private structure
1117  * @start: address of beginning of memory
1118  * @len: length of memory
1119  **/
1120 static inline boolean_t
1121 e1000_check_64k_bound(struct e1000_adapter *adapter,
1122                       void *start, unsigned long len)
1123 {
1124         unsigned long begin = (unsigned long) start;
1125         unsigned long end = begin + len;
1126
1127         /* First rev 82545 and 82546 need to not allow any memory
1128          * write location to cross 64k boundary due to errata 23 */
1129         if (adapter->hw.mac_type == e1000_82545 ||
1130             adapter->hw.mac_type == e1000_82546) {
1131                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1132         }
1133
1134         return TRUE;
1135 }
1136
1137 /**
1138  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1139  * @adapter: board private structure
1140  * @txdr:    tx descriptor ring (for a specific queue) to setup
1141  *
1142  * Return 0 on success, negative on failure
1143  **/
1144
1145 static int
1146 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1147                          struct e1000_tx_ring *txdr)
1148 {
1149         struct pci_dev *pdev = adapter->pdev;
1150         int size;
1151
1152         size = sizeof(struct e1000_buffer) * txdr->count;
1153
1154         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1155         if(!txdr->buffer_info) {
1156                 DPRINTK(PROBE, ERR,
1157                 "Unable to allocate memory for the transmit descriptor ring\n");
1158                 return -ENOMEM;
1159         }
1160         memset(txdr->buffer_info, 0, size);
1161         memset(&txdr->previous_buffer_info, 0, sizeof(struct e1000_buffer));
1162
1163         /* round up to nearest 4K */
1164
1165         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1166         E1000_ROUNDUP(txdr->size, 4096);
1167
1168         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1169         if(!txdr->desc) {
1170 setup_tx_desc_die:
1171                 vfree(txdr->buffer_info);
1172                 DPRINTK(PROBE, ERR,
1173                 "Unable to allocate memory for the transmit descriptor ring\n");
1174                 return -ENOMEM;
1175         }
1176
1177         /* Fix for errata 23, can't cross 64kB boundary */
1178         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1179                 void *olddesc = txdr->desc;
1180                 dma_addr_t olddma = txdr->dma;
1181                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1182                                      "at %p\n", txdr->size, txdr->desc);
1183                 /* Try again, without freeing the previous */
1184                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1185                 if(!txdr->desc) {
1186                 /* Failed allocation, critical failure */
1187                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1188                         goto setup_tx_desc_die;
1189                 }
1190
1191                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1192                         /* give up */
1193                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1194                                             txdr->dma);
1195                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1196                         DPRINTK(PROBE, ERR,
1197                                 "Unable to allocate aligned memory "
1198                                 "for the transmit descriptor ring\n");
1199                         vfree(txdr->buffer_info);
1200                         return -ENOMEM;
1201                 } else {
1202                         /* Free old allocation, new allocation was successful */
1203                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1204                 }
1205         }
1206         memset(txdr->desc, 0, txdr->size);
1207
1208         txdr->next_to_use = 0;
1209         txdr->next_to_clean = 0;
1210         spin_lock_init(&txdr->tx_lock);
1211
1212         return 0;
1213 }
1214
1215 /**
1216  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1217  *                                (Descriptors) for all queues
1218  * @adapter: board private structure
1219  *
1220  * If this function returns with an error, then it's possible one or
1221  * more of the rings is populated (while the rest are not).  It is the
1222  * callers duty to clean those orphaned rings.
1223  *
1224  * Return 0 on success, negative on failure
1225  **/
1226
1227 int
1228 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1229 {
1230         int i, err = 0;
1231
1232         for (i = 0; i < adapter->num_queues; i++) {
1233                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1234                 if (err) {
1235                         DPRINTK(PROBE, ERR,
1236                                 "Allocation for Tx Queue %u failed\n", i);
1237                         break;
1238                 }
1239         }
1240
1241         return err;
1242 }
1243
1244 /**
1245  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1246  * @adapter: board private structure
1247  *
1248  * Configure the Tx unit of the MAC after a reset.
1249  **/
1250
1251 static void
1252 e1000_configure_tx(struct e1000_adapter *adapter)
1253 {
1254         uint64_t tdba;
1255         struct e1000_hw *hw = &adapter->hw;
1256         uint32_t tdlen, tctl, tipg, tarc;
1257
1258         /* Setup the HW Tx Head and Tail descriptor pointers */
1259
1260         switch (adapter->num_queues) {
1261         case 2:
1262                 tdba = adapter->tx_ring[1].dma;
1263                 tdlen = adapter->tx_ring[1].count *
1264                         sizeof(struct e1000_tx_desc);
1265                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1266                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1267                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1268                 E1000_WRITE_REG(hw, TDH1, 0);
1269                 E1000_WRITE_REG(hw, TDT1, 0);
1270                 adapter->tx_ring[1].tdh = E1000_TDH1;
1271                 adapter->tx_ring[1].tdt = E1000_TDT1;
1272                 /* Fall Through */
1273         case 1:
1274         default:
1275                 tdba = adapter->tx_ring[0].dma;
1276                 tdlen = adapter->tx_ring[0].count *
1277                         sizeof(struct e1000_tx_desc);
1278                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1279                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1280                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1281                 E1000_WRITE_REG(hw, TDH, 0);
1282                 E1000_WRITE_REG(hw, TDT, 0);
1283                 adapter->tx_ring[0].tdh = E1000_TDH;
1284                 adapter->tx_ring[0].tdt = E1000_TDT;
1285                 break;
1286         }
1287
1288         /* Set the default values for the Tx Inter Packet Gap timer */
1289
1290         switch (hw->mac_type) {
1291         case e1000_82542_rev2_0:
1292         case e1000_82542_rev2_1:
1293                 tipg = DEFAULT_82542_TIPG_IPGT;
1294                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1295                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1296                 break;
1297         default:
1298                 if (hw->media_type == e1000_media_type_fiber ||
1299                     hw->media_type == e1000_media_type_internal_serdes)
1300                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1301                 else
1302                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1303                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1304                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1305         }
1306         E1000_WRITE_REG(hw, TIPG, tipg);
1307
1308         /* Set the Tx Interrupt Delay register */
1309
1310         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1311         if (hw->mac_type >= e1000_82540)
1312                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1313
1314         /* Program the Transmit Control Register */
1315
1316         tctl = E1000_READ_REG(hw, TCTL);
1317
1318         tctl &= ~E1000_TCTL_CT;
1319         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1320                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1321
1322         E1000_WRITE_REG(hw, TCTL, tctl);
1323
1324         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1325                 tarc = E1000_READ_REG(hw, TARC0);
1326                 tarc |= ((1 << 25) | (1 << 21));
1327                 E1000_WRITE_REG(hw, TARC0, tarc);
1328                 tarc = E1000_READ_REG(hw, TARC1);
1329                 tarc |= (1 << 25);
1330                 if (tctl & E1000_TCTL_MULR)
1331                         tarc &= ~(1 << 28);
1332                 else
1333                         tarc |= (1 << 28);
1334                 E1000_WRITE_REG(hw, TARC1, tarc);
1335         }
1336
1337         e1000_config_collision_dist(hw);
1338
1339         /* Setup Transmit Descriptor Settings for eop descriptor */
1340         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1341                 E1000_TXD_CMD_IFCS;
1342
1343         if (hw->mac_type < e1000_82543)
1344                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1345         else
1346                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1347
1348         /* Cache if we're 82544 running in PCI-X because we'll
1349          * need this to apply a workaround later in the send path. */
1350         if (hw->mac_type == e1000_82544 &&
1351             hw->bus_type == e1000_bus_type_pcix)
1352                 adapter->pcix_82544 = 1;
1353 }
1354
1355 /**
1356  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1357  * @adapter: board private structure
1358  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1359  *
1360  * Returns 0 on success, negative on failure
1361  **/
1362
1363 static int
1364 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1365                          struct e1000_rx_ring *rxdr)
1366 {
1367         struct pci_dev *pdev = adapter->pdev;
1368         int size, desc_len;
1369
1370         size = sizeof(struct e1000_buffer) * rxdr->count;
1371         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1372         if (!rxdr->buffer_info) {
1373                 DPRINTK(PROBE, ERR,
1374                 "Unable to allocate memory for the receive descriptor ring\n");
1375                 return -ENOMEM;
1376         }
1377         memset(rxdr->buffer_info, 0, size);
1378
1379         size = sizeof(struct e1000_ps_page) * rxdr->count;
1380         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1381         if(!rxdr->ps_page) {
1382                 vfree(rxdr->buffer_info);
1383                 DPRINTK(PROBE, ERR,
1384                 "Unable to allocate memory for the receive descriptor ring\n");
1385                 return -ENOMEM;
1386         }
1387         memset(rxdr->ps_page, 0, size);
1388
1389         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1390         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1391         if(!rxdr->ps_page_dma) {
1392                 vfree(rxdr->buffer_info);
1393                 kfree(rxdr->ps_page);
1394                 DPRINTK(PROBE, ERR,
1395                 "Unable to allocate memory for the receive descriptor ring\n");
1396                 return -ENOMEM;
1397         }
1398         memset(rxdr->ps_page_dma, 0, size);
1399
1400         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1401                 desc_len = sizeof(struct e1000_rx_desc);
1402         else
1403                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1404
1405         /* Round up to nearest 4K */
1406
1407         rxdr->size = rxdr->count * desc_len;
1408         E1000_ROUNDUP(rxdr->size, 4096);
1409
1410         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1411
1412         if (!rxdr->desc) {
1413                 DPRINTK(PROBE, ERR,
1414                 "Unable to allocate memory for the receive descriptor ring\n");
1415 setup_rx_desc_die:
1416                 vfree(rxdr->buffer_info);
1417                 kfree(rxdr->ps_page);
1418                 kfree(rxdr->ps_page_dma);
1419                 return -ENOMEM;
1420         }
1421
1422         /* Fix for errata 23, can't cross 64kB boundary */
1423         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1424                 void *olddesc = rxdr->desc;
1425                 dma_addr_t olddma = rxdr->dma;
1426                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1427                                      "at %p\n", rxdr->size, rxdr->desc);
1428                 /* Try again, without freeing the previous */
1429                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1430                 /* Failed allocation, critical failure */
1431                 if (!rxdr->desc) {
1432                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1433                         DPRINTK(PROBE, ERR,
1434                                 "Unable to allocate memory "
1435                                 "for the receive descriptor ring\n");
1436                         goto setup_rx_desc_die;
1437                 }
1438
1439                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1440                         /* give up */
1441                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1442                                             rxdr->dma);
1443                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1444                         DPRINTK(PROBE, ERR,
1445                                 "Unable to allocate aligned memory "
1446                                 "for the receive descriptor ring\n");
1447                         goto setup_rx_desc_die;
1448                 } else {
1449                         /* Free old allocation, new allocation was successful */
1450                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1451                 }
1452         }
1453         memset(rxdr->desc, 0, rxdr->size);
1454
1455         rxdr->next_to_clean = 0;
1456         rxdr->next_to_use = 0;
1457
1458         return 0;
1459 }
1460
1461 /**
1462  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1463  *                                (Descriptors) for all queues
1464  * @adapter: board private structure
1465  *
1466  * If this function returns with an error, then it's possible one or
1467  * more of the rings is populated (while the rest are not).  It is the
1468  * callers duty to clean those orphaned rings.
1469  *
1470  * Return 0 on success, negative on failure
1471  **/
1472
1473 int
1474 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1475 {
1476         int i, err = 0;
1477
1478         for (i = 0; i < adapter->num_queues; i++) {
1479                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1480                 if (err) {
1481                         DPRINTK(PROBE, ERR,
1482                                 "Allocation for Rx Queue %u failed\n", i);
1483                         break;
1484                 }
1485         }
1486
1487         return err;
1488 }
1489
1490 /**
1491  * e1000_setup_rctl - configure the receive control registers
1492  * @adapter: Board private structure
1493  **/
1494 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1495                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1496 static void
1497 e1000_setup_rctl(struct e1000_adapter *adapter)
1498 {
1499         uint32_t rctl, rfctl;
1500         uint32_t psrctl = 0;
1501 #ifdef CONFIG_E1000_PACKET_SPLIT
1502         uint32_t pages = 0;
1503 #endif
1504
1505         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1506
1507         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1508
1509         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1510                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1511                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1512
1513         if(adapter->hw.tbi_compatibility_on == 1)
1514                 rctl |= E1000_RCTL_SBP;
1515         else
1516                 rctl &= ~E1000_RCTL_SBP;
1517
1518         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1519                 rctl &= ~E1000_RCTL_LPE;
1520         else
1521                 rctl |= E1000_RCTL_LPE;
1522
1523         /* Setup buffer sizes */
1524         if(adapter->hw.mac_type >= e1000_82571) {
1525                 /* We can now specify buffers in 1K increments.
1526                  * BSIZE and BSEX are ignored in this case. */
1527                 rctl |= adapter->rx_buffer_len << 0x11;
1528         } else {
1529                 rctl &= ~E1000_RCTL_SZ_4096;
1530                 rctl |= E1000_RCTL_BSEX; 
1531                 switch (adapter->rx_buffer_len) {
1532                 case E1000_RXBUFFER_2048:
1533                 default:
1534                         rctl |= E1000_RCTL_SZ_2048;
1535                         rctl &= ~E1000_RCTL_BSEX;
1536                         break;
1537                 case E1000_RXBUFFER_4096:
1538                         rctl |= E1000_RCTL_SZ_4096;
1539                         break;
1540                 case E1000_RXBUFFER_8192:
1541                         rctl |= E1000_RCTL_SZ_8192;
1542                         break;
1543                 case E1000_RXBUFFER_16384:
1544                         rctl |= E1000_RCTL_SZ_16384;
1545                         break;
1546                 }
1547         }
1548
1549 #ifdef CONFIG_E1000_PACKET_SPLIT
1550         /* 82571 and greater support packet-split where the protocol
1551          * header is placed in skb->data and the packet data is
1552          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1553          * In the case of a non-split, skb->data is linearly filled,
1554          * followed by the page buffers.  Therefore, skb->data is
1555          * sized to hold the largest protocol header.
1556          */
1557         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1558         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1559             PAGE_SIZE <= 16384)
1560                 adapter->rx_ps_pages = pages;
1561         else
1562                 adapter->rx_ps_pages = 0;
1563 #endif
1564         if (adapter->rx_ps_pages) {
1565                 /* Configure extra packet-split registers */
1566                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1567                 rfctl |= E1000_RFCTL_EXTEN;
1568                 /* disable IPv6 packet split support */
1569                 rfctl |= E1000_RFCTL_IPV6_DIS;
1570                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1571
1572                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1573                 
1574                 psrctl |= adapter->rx_ps_bsize0 >>
1575                         E1000_PSRCTL_BSIZE0_SHIFT;
1576
1577                 switch (adapter->rx_ps_pages) {
1578                 case 3:
1579                         psrctl |= PAGE_SIZE <<
1580                                 E1000_PSRCTL_BSIZE3_SHIFT;
1581                 case 2:
1582                         psrctl |= PAGE_SIZE <<
1583                                 E1000_PSRCTL_BSIZE2_SHIFT;
1584                 case 1:
1585                         psrctl |= PAGE_SIZE >>
1586                                 E1000_PSRCTL_BSIZE1_SHIFT;
1587                         break;
1588                 }
1589
1590                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1591         }
1592
1593         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1594 }
1595
1596 /**
1597  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1598  * @adapter: board private structure
1599  *
1600  * Configure the Rx unit of the MAC after a reset.
1601  **/
1602
1603 static void
1604 e1000_configure_rx(struct e1000_adapter *adapter)
1605 {
1606         uint64_t rdba;
1607         struct e1000_hw *hw = &adapter->hw;
1608         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1609 #ifdef CONFIG_E1000_MQ
1610         uint32_t reta, mrqc;
1611         int i;
1612 #endif
1613
1614         if (adapter->rx_ps_pages) {
1615                 rdlen = adapter->rx_ring[0].count *
1616                         sizeof(union e1000_rx_desc_packet_split);
1617                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1618                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1619         } else {
1620                 rdlen = adapter->rx_ring[0].count *
1621                         sizeof(struct e1000_rx_desc);
1622                 adapter->clean_rx = e1000_clean_rx_irq;
1623                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1624         }
1625
1626         /* disable receives while setting up the descriptors */
1627         rctl = E1000_READ_REG(hw, RCTL);
1628         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1629
1630         /* set the Receive Delay Timer Register */
1631         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1632
1633         if (hw->mac_type >= e1000_82540) {
1634                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1635                 if(adapter->itr > 1)
1636                         E1000_WRITE_REG(hw, ITR,
1637                                 1000000000 / (adapter->itr * 256));
1638         }
1639
1640         if (hw->mac_type >= e1000_82571) {
1641                 /* Reset delay timers after every interrupt */
1642                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1643                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1644                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1645                 E1000_WRITE_FLUSH(hw);
1646         }
1647
1648         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1649          * the Base and Length of the Rx Descriptor Ring */
1650         switch (adapter->num_queues) {
1651 #ifdef CONFIG_E1000_MQ
1652         case 2:
1653                 rdba = adapter->rx_ring[1].dma;
1654                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1655                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1656                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1657                 E1000_WRITE_REG(hw, RDH1, 0);
1658                 E1000_WRITE_REG(hw, RDT1, 0);
1659                 adapter->rx_ring[1].rdh = E1000_RDH1;
1660                 adapter->rx_ring[1].rdt = E1000_RDT1;
1661                 /* Fall Through */
1662 #endif
1663         case 1:
1664         default:
1665                 rdba = adapter->rx_ring[0].dma;
1666                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1667                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1668                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1669                 E1000_WRITE_REG(hw, RDH, 0);
1670                 E1000_WRITE_REG(hw, RDT, 0);
1671                 adapter->rx_ring[0].rdh = E1000_RDH;
1672                 adapter->rx_ring[0].rdt = E1000_RDT;
1673                 break;
1674         }
1675
1676 #ifdef CONFIG_E1000_MQ
1677         if (adapter->num_queues > 1) {
1678                 uint32_t random[10];
1679
1680                 get_random_bytes(&random[0], 40);
1681
1682                 if (hw->mac_type <= e1000_82572) {
1683                         E1000_WRITE_REG(hw, RSSIR, 0);
1684                         E1000_WRITE_REG(hw, RSSIM, 0);
1685                 }
1686
1687                 switch (adapter->num_queues) {
1688                 case 2:
1689                 default:
1690                         reta = 0x00800080;
1691                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1692                         break;
1693                 }
1694
1695                 /* Fill out redirection table */
1696                 for (i = 0; i < 32; i++)
1697                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1698                 /* Fill out hash function seeds */
1699                 for (i = 0; i < 10; i++)
1700                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1701
1702                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1703                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1704                 E1000_WRITE_REG(hw, MRQC, mrqc);
1705         }
1706
1707         /* Multiqueue and packet checksumming are mutually exclusive. */
1708         if (hw->mac_type >= e1000_82571) {
1709                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1710                 rxcsum |= E1000_RXCSUM_PCSD;
1711                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1712         }
1713
1714 #else
1715
1716         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1717         if (hw->mac_type >= e1000_82543) {
1718                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1719                 if(adapter->rx_csum == TRUE) {
1720                         rxcsum |= E1000_RXCSUM_TUOFL;
1721
1722                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1723                          * Must be used in conjunction with packet-split. */
1724                         if ((hw->mac_type >= e1000_82571) && 
1725                            (adapter->rx_ps_pages)) {
1726                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1727                         }
1728                 } else {
1729                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1730                         /* don't need to clear IPPCSE as it defaults to 0 */
1731                 }
1732                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1733         }
1734 #endif /* CONFIG_E1000_MQ */
1735
1736         if (hw->mac_type == e1000_82573)
1737                 E1000_WRITE_REG(hw, ERT, 0x0100);
1738
1739         /* Enable Receives */
1740         E1000_WRITE_REG(hw, RCTL, rctl);
1741 }
1742
1743 /**
1744  * e1000_free_tx_resources - Free Tx Resources per Queue
1745  * @adapter: board private structure
1746  * @tx_ring: Tx descriptor ring for a specific queue
1747  *
1748  * Free all transmit software resources
1749  **/
1750
1751 static void
1752 e1000_free_tx_resources(struct e1000_adapter *adapter,
1753                         struct e1000_tx_ring *tx_ring)
1754 {
1755         struct pci_dev *pdev = adapter->pdev;
1756
1757         e1000_clean_tx_ring(adapter, tx_ring);
1758
1759         vfree(tx_ring->buffer_info);
1760         tx_ring->buffer_info = NULL;
1761
1762         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1763
1764         tx_ring->desc = NULL;
1765 }
1766
1767 /**
1768  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1769  * @adapter: board private structure
1770  *
1771  * Free all transmit software resources
1772  **/
1773
1774 void
1775 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1776 {
1777         int i;
1778
1779         for (i = 0; i < adapter->num_queues; i++)
1780                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1781 }
1782
1783 static inline void
1784 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1785                         struct e1000_buffer *buffer_info)
1786 {
1787         if(buffer_info->dma) {
1788                 pci_unmap_page(adapter->pdev,
1789                                 buffer_info->dma,
1790                                 buffer_info->length,
1791                                 PCI_DMA_TODEVICE);
1792                 buffer_info->dma = 0;
1793         }
1794         if(buffer_info->skb) {
1795                 dev_kfree_skb_any(buffer_info->skb);
1796                 buffer_info->skb = NULL;
1797         }
1798 }
1799
1800 /**
1801  * e1000_clean_tx_ring - Free Tx Buffers
1802  * @adapter: board private structure
1803  * @tx_ring: ring to be cleaned
1804  **/
1805
1806 static void
1807 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1808                     struct e1000_tx_ring *tx_ring)
1809 {
1810         struct e1000_buffer *buffer_info;
1811         unsigned long size;
1812         unsigned int i;
1813
1814         /* Free all the Tx ring sk_buffs */
1815
1816         if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
1817                 e1000_unmap_and_free_tx_resource(adapter,
1818                                 &tx_ring->previous_buffer_info);
1819         }
1820
1821         for(i = 0; i < tx_ring->count; i++) {
1822                 buffer_info = &tx_ring->buffer_info[i];
1823                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1824         }
1825
1826         size = sizeof(struct e1000_buffer) * tx_ring->count;
1827         memset(tx_ring->buffer_info, 0, size);
1828
1829         /* Zero out the descriptor ring */
1830
1831         memset(tx_ring->desc, 0, tx_ring->size);
1832
1833         tx_ring->next_to_use = 0;
1834         tx_ring->next_to_clean = 0;
1835
1836         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1837         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1838 }
1839
1840 /**
1841  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1842  * @adapter: board private structure
1843  **/
1844
1845 static void
1846 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1847 {
1848         int i;
1849
1850         for (i = 0; i < adapter->num_queues; i++)
1851                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1852 }
1853
1854 /**
1855  * e1000_free_rx_resources - Free Rx Resources
1856  * @adapter: board private structure
1857  * @rx_ring: ring to clean the resources from
1858  *
1859  * Free all receive software resources
1860  **/
1861
1862 static void
1863 e1000_free_rx_resources(struct e1000_adapter *adapter,
1864                         struct e1000_rx_ring *rx_ring)
1865 {
1866         struct pci_dev *pdev = adapter->pdev;
1867
1868         e1000_clean_rx_ring(adapter, rx_ring);
1869
1870         vfree(rx_ring->buffer_info);
1871         rx_ring->buffer_info = NULL;
1872         kfree(rx_ring->ps_page);
1873         rx_ring->ps_page = NULL;
1874         kfree(rx_ring->ps_page_dma);
1875         rx_ring->ps_page_dma = NULL;
1876
1877         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1878
1879         rx_ring->desc = NULL;
1880 }
1881
1882 /**
1883  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1884  * @adapter: board private structure
1885  *
1886  * Free all receive software resources
1887  **/
1888
1889 void
1890 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1891 {
1892         int i;
1893
1894         for (i = 0; i < adapter->num_queues; i++)
1895                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1896 }
1897
1898 /**
1899  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1900  * @adapter: board private structure
1901  * @rx_ring: ring to free buffers from
1902  **/
1903
1904 static void
1905 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1906                     struct e1000_rx_ring *rx_ring)
1907 {
1908         struct e1000_buffer *buffer_info;
1909         struct e1000_ps_page *ps_page;
1910         struct e1000_ps_page_dma *ps_page_dma;
1911         struct pci_dev *pdev = adapter->pdev;
1912         unsigned long size;
1913         unsigned int i, j;
1914
1915         /* Free all the Rx ring sk_buffs */
1916
1917         for(i = 0; i < rx_ring->count; i++) {
1918                 buffer_info = &rx_ring->buffer_info[i];
1919                 if(buffer_info->skb) {
1920                         ps_page = &rx_ring->ps_page[i];
1921                         ps_page_dma = &rx_ring->ps_page_dma[i];
1922                         pci_unmap_single(pdev,
1923                                          buffer_info->dma,
1924                                          buffer_info->length,
1925                                          PCI_DMA_FROMDEVICE);
1926
1927                         dev_kfree_skb(buffer_info->skb);
1928                         buffer_info->skb = NULL;
1929
1930                         for(j = 0; j < adapter->rx_ps_pages; j++) {
1931                                 if(!ps_page->ps_page[j]) break;
1932                                 pci_unmap_single(pdev,
1933                                                  ps_page_dma->ps_page_dma[j],
1934                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1935                                 ps_page_dma->ps_page_dma[j] = 0;
1936                                 put_page(ps_page->ps_page[j]);
1937                                 ps_page->ps_page[j] = NULL;
1938                         }
1939                 }
1940         }
1941
1942         size = sizeof(struct e1000_buffer) * rx_ring->count;
1943         memset(rx_ring->buffer_info, 0, size);
1944         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1945         memset(rx_ring->ps_page, 0, size);
1946         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1947         memset(rx_ring->ps_page_dma, 0, size);
1948
1949         /* Zero out the descriptor ring */
1950
1951         memset(rx_ring->desc, 0, rx_ring->size);
1952
1953         rx_ring->next_to_clean = 0;
1954         rx_ring->next_to_use = 0;
1955
1956         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1957         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1958 }
1959
1960 /**
1961  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1962  * @adapter: board private structure
1963  **/
1964
1965 static void
1966 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1967 {
1968         int i;
1969
1970         for (i = 0; i < adapter->num_queues; i++)
1971                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1972 }
1973
1974 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1975  * and memory write and invalidate disabled for certain operations
1976  */
1977 static void
1978 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1979 {
1980         struct net_device *netdev = adapter->netdev;
1981         uint32_t rctl;
1982
1983         e1000_pci_clear_mwi(&adapter->hw);
1984
1985         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1986         rctl |= E1000_RCTL_RST;
1987         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1988         E1000_WRITE_FLUSH(&adapter->hw);
1989         mdelay(5);
1990
1991         if(netif_running(netdev))
1992                 e1000_clean_all_rx_rings(adapter);
1993 }
1994
1995 static void
1996 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1997 {
1998         struct net_device *netdev = adapter->netdev;
1999         uint32_t rctl;
2000
2001         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2002         rctl &= ~E1000_RCTL_RST;
2003         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2004         E1000_WRITE_FLUSH(&adapter->hw);
2005         mdelay(5);
2006
2007         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2008                 e1000_pci_set_mwi(&adapter->hw);
2009
2010         if(netif_running(netdev)) {
2011                 e1000_configure_rx(adapter);
2012                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2013         }
2014 }
2015
2016 /**
2017  * e1000_set_mac - Change the Ethernet Address of the NIC
2018  * @netdev: network interface device structure
2019  * @p: pointer to an address structure
2020  *
2021  * Returns 0 on success, negative on failure
2022  **/
2023
2024 static int
2025 e1000_set_mac(struct net_device *netdev, void *p)
2026 {
2027         struct e1000_adapter *adapter = netdev_priv(netdev);
2028         struct sockaddr *addr = p;
2029
2030         if(!is_valid_ether_addr(addr->sa_data))
2031                 return -EADDRNOTAVAIL;
2032
2033         /* 82542 2.0 needs to be in reset to write receive address registers */
2034
2035         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2036                 e1000_enter_82542_rst(adapter);
2037
2038         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2039         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2040
2041         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2042
2043         /* With 82571 controllers, LAA may be overwritten (with the default)
2044          * due to controller reset from the other port. */
2045         if (adapter->hw.mac_type == e1000_82571) {
2046                 /* activate the work around */
2047                 adapter->hw.laa_is_present = 1;
2048
2049                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2050                  * between the time RAR[0] gets clobbered  and the time it 
2051                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2052                  * of the RARs and no incoming packets directed to this port
2053                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2054                  * RAR[14] */
2055                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2056                                         E1000_RAR_ENTRIES - 1);
2057         }
2058
2059         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2060                 e1000_leave_82542_rst(adapter);
2061
2062         return 0;
2063 }
2064
2065 /**
2066  * e1000_set_multi - Multicast and Promiscuous mode set
2067  * @netdev: network interface device structure
2068  *
2069  * The set_multi entry point is called whenever the multicast address
2070  * list or the network interface flags are updated.  This routine is
2071  * responsible for configuring the hardware for proper multicast,
2072  * promiscuous mode, and all-multi behavior.
2073  **/
2074
2075 static void
2076 e1000_set_multi(struct net_device *netdev)
2077 {
2078         struct e1000_adapter *adapter = netdev_priv(netdev);
2079         struct e1000_hw *hw = &adapter->hw;
2080         struct dev_mc_list *mc_ptr;
2081         uint32_t rctl;
2082         uint32_t hash_value;
2083         int i, rar_entries = E1000_RAR_ENTRIES;
2084
2085         /* reserve RAR[14] for LAA over-write work-around */
2086         if (adapter->hw.mac_type == e1000_82571)
2087                 rar_entries--;
2088
2089         /* Check for Promiscuous and All Multicast modes */
2090
2091         rctl = E1000_READ_REG(hw, RCTL);
2092
2093         if(netdev->flags & IFF_PROMISC) {
2094                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2095         } else if(netdev->flags & IFF_ALLMULTI) {
2096                 rctl |= E1000_RCTL_MPE;
2097                 rctl &= ~E1000_RCTL_UPE;
2098         } else {
2099                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2100         }
2101
2102         E1000_WRITE_REG(hw, RCTL, rctl);
2103
2104         /* 82542 2.0 needs to be in reset to write receive address registers */
2105
2106         if(hw->mac_type == e1000_82542_rev2_0)
2107                 e1000_enter_82542_rst(adapter);
2108
2109         /* load the first 14 multicast address into the exact filters 1-14
2110          * RAR 0 is used for the station MAC adddress
2111          * if there are not 14 addresses, go ahead and clear the filters
2112          * -- with 82571 controllers only 0-13 entries are filled here
2113          */
2114         mc_ptr = netdev->mc_list;
2115
2116         for(i = 1; i < rar_entries; i++) {
2117                 if (mc_ptr) {
2118                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2119                         mc_ptr = mc_ptr->next;
2120                 } else {
2121                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2122                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2123                 }
2124         }
2125
2126         /* clear the old settings from the multicast hash table */
2127
2128         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2129                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2130
2131         /* load any remaining addresses into the hash table */
2132
2133         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2134                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2135                 e1000_mta_set(hw, hash_value);
2136         }
2137
2138         if(hw->mac_type == e1000_82542_rev2_0)
2139                 e1000_leave_82542_rst(adapter);
2140 }
2141
2142 /* Need to wait a few seconds after link up to get diagnostic information from
2143  * the phy */
2144
2145 static void
2146 e1000_update_phy_info(unsigned long data)
2147 {
2148         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2149         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2150 }
2151
2152 /**
2153  * e1000_82547_tx_fifo_stall - Timer Call-back
2154  * @data: pointer to adapter cast into an unsigned long
2155  **/
2156
2157 static void
2158 e1000_82547_tx_fifo_stall(unsigned long data)
2159 {
2160         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2161         struct net_device *netdev = adapter->netdev;
2162         uint32_t tctl;
2163
2164         if(atomic_read(&adapter->tx_fifo_stall)) {
2165                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2166                     E1000_READ_REG(&adapter->hw, TDH)) &&
2167                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2168                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2169                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2170                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2171                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2172                         E1000_WRITE_REG(&adapter->hw, TCTL,
2173                                         tctl & ~E1000_TCTL_EN);
2174                         E1000_WRITE_REG(&adapter->hw, TDFT,
2175                                         adapter->tx_head_addr);
2176                         E1000_WRITE_REG(&adapter->hw, TDFH,
2177                                         adapter->tx_head_addr);
2178                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2179                                         adapter->tx_head_addr);
2180                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2181                                         adapter->tx_head_addr);
2182                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2183                         E1000_WRITE_FLUSH(&adapter->hw);
2184
2185                         adapter->tx_fifo_head = 0;
2186                         atomic_set(&adapter->tx_fifo_stall, 0);
2187                         netif_wake_queue(netdev);
2188                 } else {
2189                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2190                 }
2191         }
2192 }
2193
2194 /**
2195  * e1000_watchdog - Timer Call-back
2196  * @data: pointer to adapter cast into an unsigned long
2197  **/
2198 static void
2199 e1000_watchdog(unsigned long data)
2200 {
2201         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2202
2203         /* Do the rest outside of interrupt context */
2204         schedule_work(&adapter->watchdog_task);
2205 }
2206
2207 static void
2208 e1000_watchdog_task(struct e1000_adapter *adapter)
2209 {
2210         struct net_device *netdev = adapter->netdev;
2211         struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
2212         uint32_t link;
2213
2214         e1000_check_for_link(&adapter->hw);
2215         if (adapter->hw.mac_type == e1000_82573) {
2216                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2217                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2218                         e1000_update_mng_vlan(adapter);
2219         }       
2220
2221         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2222            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2223                 link = !adapter->hw.serdes_link_down;
2224         else
2225                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2226
2227         if(link) {
2228                 if(!netif_carrier_ok(netdev)) {
2229                         e1000_get_speed_and_duplex(&adapter->hw,
2230                                                    &adapter->link_speed,
2231                                                    &adapter->link_duplex);
2232
2233                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2234                                adapter->link_speed,
2235                                adapter->link_duplex == FULL_DUPLEX ?
2236                                "Full Duplex" : "Half Duplex");
2237
2238                         netif_carrier_on(netdev);
2239                         netif_wake_queue(netdev);
2240                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2241                         adapter->smartspeed = 0;
2242                 }
2243         } else {
2244                 if(netif_carrier_ok(netdev)) {
2245                         adapter->link_speed = 0;
2246                         adapter->link_duplex = 0;
2247                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2248                         netif_carrier_off(netdev);
2249                         netif_stop_queue(netdev);
2250                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2251                 }
2252
2253                 e1000_smartspeed(adapter);
2254         }
2255
2256         e1000_update_stats(adapter);
2257
2258         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2259         adapter->tpt_old = adapter->stats.tpt;
2260         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2261         adapter->colc_old = adapter->stats.colc;
2262
2263         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2264         adapter->gorcl_old = adapter->stats.gorcl;
2265         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2266         adapter->gotcl_old = adapter->stats.gotcl;
2267
2268         e1000_update_adaptive(&adapter->hw);
2269
2270         if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2271                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2272                         /* We've lost link, so the controller stops DMA,
2273                          * but we've got queued Tx work that's never going
2274                          * to get done, so reset controller to flush Tx.
2275                          * (Do the reset outside of interrupt context). */
2276                         schedule_work(&adapter->tx_timeout_task);
2277                 }
2278         }
2279
2280         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2281         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2282                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2283                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2284                  * else is between 2000-8000. */
2285                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2286                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2287                         adapter->gotcl - adapter->gorcl :
2288                         adapter->gorcl - adapter->gotcl) / 10000;
2289                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2290                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2291         }
2292
2293         /* Cause software interrupt to ensure rx ring is cleaned */
2294         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2295
2296         /* Force detection of hung controller every watchdog period */
2297         adapter->detect_tx_hung = TRUE;
2298
2299         /* With 82571 controllers, LAA may be overwritten due to controller 
2300          * reset from the other port. Set the appropriate LAA in RAR[0] */
2301         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2302                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2303
2304         /* Reset the timer */
2305         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2306 }
2307
2308 #define E1000_TX_FLAGS_CSUM             0x00000001
2309 #define E1000_TX_FLAGS_VLAN             0x00000002
2310 #define E1000_TX_FLAGS_TSO              0x00000004
2311 #define E1000_TX_FLAGS_IPV4             0x00000008
2312 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2313 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2314
2315 static inline int
2316 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2317           struct sk_buff *skb)
2318 {
2319 #ifdef NETIF_F_TSO
2320         struct e1000_context_desc *context_desc;
2321         unsigned int i;
2322         uint32_t cmd_length = 0;
2323         uint16_t ipcse = 0, tucse, mss;
2324         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2325         int err;
2326
2327         if(skb_shinfo(skb)->tso_size) {
2328                 if (skb_header_cloned(skb)) {
2329                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2330                         if (err)
2331                                 return err;
2332                 }
2333
2334                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2335                 mss = skb_shinfo(skb)->tso_size;
2336                 if(skb->protocol == ntohs(ETH_P_IP)) {
2337                         skb->nh.iph->tot_len = 0;
2338                         skb->nh.iph->check = 0;
2339                         skb->h.th->check =
2340                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2341                                                    skb->nh.iph->daddr,
2342                                                    0,
2343                                                    IPPROTO_TCP,
2344                                                    0);
2345                         cmd_length = E1000_TXD_CMD_IP;
2346                         ipcse = skb->h.raw - skb->data - 1;
2347 #ifdef NETIF_F_TSO_IPV6
2348                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2349                         skb->nh.ipv6h->payload_len = 0;
2350                         skb->h.th->check =
2351                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2352                                                  &skb->nh.ipv6h->daddr,
2353                                                  0,
2354                                                  IPPROTO_TCP,
2355                                                  0);
2356                         ipcse = 0;
2357 #endif
2358                 }
2359                 ipcss = skb->nh.raw - skb->data;
2360                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2361                 tucss = skb->h.raw - skb->data;
2362                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2363                 tucse = 0;
2364
2365                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2366                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2367
2368                 i = tx_ring->next_to_use;
2369                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2370
2371                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2372                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2373                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2374                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2375                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2376                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2377                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2378                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2379                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2380
2381                 if (++i == tx_ring->count) i = 0;
2382                 tx_ring->next_to_use = i;
2383
2384                 return 1;
2385         }
2386 #endif
2387
2388         return 0;
2389 }
2390
2391 static inline boolean_t
2392 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2393               struct sk_buff *skb)
2394 {
2395         struct e1000_context_desc *context_desc;
2396         unsigned int i;
2397         uint8_t css;
2398
2399         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2400                 css = skb->h.raw - skb->data;
2401
2402                 i = tx_ring->next_to_use;
2403                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2404
2405                 context_desc->upper_setup.tcp_fields.tucss = css;
2406                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2407                 context_desc->upper_setup.tcp_fields.tucse = 0;
2408                 context_desc->tcp_seg_setup.data = 0;
2409                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2410
2411                 if (unlikely(++i == tx_ring->count)) i = 0;
2412                 tx_ring->next_to_use = i;
2413
2414                 return TRUE;
2415         }
2416
2417         return FALSE;
2418 }
2419
2420 #define E1000_MAX_TXD_PWR       12
2421 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2422
2423 static inline int
2424 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2425              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2426              unsigned int nr_frags, unsigned int mss)
2427 {
2428         struct e1000_buffer *buffer_info;
2429         unsigned int len = skb->len;
2430         unsigned int offset = 0, size, count = 0, i;
2431         unsigned int f;
2432         len -= skb->data_len;
2433
2434         i = tx_ring->next_to_use;
2435
2436         while(len) {
2437                 buffer_info = &tx_ring->buffer_info[i];
2438                 size = min(len, max_per_txd);
2439 #ifdef NETIF_F_TSO
2440                 /* Workaround for premature desc write-backs
2441                  * in TSO mode.  Append 4-byte sentinel desc */
2442                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2443                         size -= 4;
2444 #endif
2445                 /* work-around for errata 10 and it applies
2446                  * to all controllers in PCI-X mode
2447                  * The fix is to make sure that the first descriptor of a
2448                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2449                  */
2450                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2451                                 (size > 2015) && count == 0))
2452                         size = 2015;
2453                                                                                 
2454                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2455                  * terminating buffers within evenly-aligned dwords. */
2456                 if(unlikely(adapter->pcix_82544 &&
2457                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2458                    size > 4))
2459                         size -= 4;
2460
2461                 buffer_info->length = size;
2462                 buffer_info->dma =
2463                         pci_map_single(adapter->pdev,
2464                                 skb->data + offset,
2465                                 size,
2466                                 PCI_DMA_TODEVICE);
2467                 buffer_info->time_stamp = jiffies;
2468
2469                 len -= size;
2470                 offset += size;
2471                 count++;
2472                 if(unlikely(++i == tx_ring->count)) i = 0;
2473         }
2474
2475         for(f = 0; f < nr_frags; f++) {
2476                 struct skb_frag_struct *frag;
2477
2478                 frag = &skb_shinfo(skb)->frags[f];
2479                 len = frag->size;
2480                 offset = frag->page_offset;
2481
2482                 while(len) {
2483                         buffer_info = &tx_ring->buffer_info[i];
2484                         size = min(len, max_per_txd);
2485 #ifdef NETIF_F_TSO
2486                         /* Workaround for premature desc write-backs
2487                          * in TSO mode.  Append 4-byte sentinel desc */
2488                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2489                                 size -= 4;
2490 #endif
2491                         /* Workaround for potential 82544 hang in PCI-X.
2492                          * Avoid terminating buffers within evenly-aligned
2493                          * dwords. */
2494                         if(unlikely(adapter->pcix_82544 &&
2495                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2496                            size > 4))
2497                                 size -= 4;
2498
2499                         buffer_info->length = size;
2500                         buffer_info->dma =
2501                                 pci_map_page(adapter->pdev,
2502                                         frag->page,
2503                                         offset,
2504                                         size,
2505                                         PCI_DMA_TODEVICE);
2506                         buffer_info->time_stamp = jiffies;
2507
2508                         len -= size;
2509                         offset += size;
2510                         count++;
2511                         if(unlikely(++i == tx_ring->count)) i = 0;
2512                 }
2513         }
2514
2515         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2516         tx_ring->buffer_info[i].skb = skb;
2517         tx_ring->buffer_info[first].next_to_watch = i;
2518
2519         return count;
2520 }
2521
2522 static inline void
2523 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2524                int tx_flags, int count)
2525 {
2526         struct e1000_tx_desc *tx_desc = NULL;
2527         struct e1000_buffer *buffer_info;
2528         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2529         unsigned int i;
2530
2531         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2532                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2533                              E1000_TXD_CMD_TSE;
2534                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2535
2536                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2537                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2538         }
2539
2540         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2541                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2542                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2543         }
2544
2545         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2546                 txd_lower |= E1000_TXD_CMD_VLE;
2547                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2548         }
2549
2550         i = tx_ring->next_to_use;
2551
2552         while(count--) {
2553                 buffer_info = &tx_ring->buffer_info[i];
2554                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2555                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2556                 tx_desc->lower.data =
2557                         cpu_to_le32(txd_lower | buffer_info->length);
2558                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2559                 if(unlikely(++i == tx_ring->count)) i = 0;
2560         }
2561
2562         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2563
2564         /* Force memory writes to complete before letting h/w
2565          * know there are new descriptors to fetch.  (Only
2566          * applicable for weak-ordered memory model archs,
2567          * such as IA-64). */
2568         wmb();
2569
2570         tx_ring->next_to_use = i;
2571         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2572 }
2573
2574 /**
2575  * 82547 workaround to avoid controller hang in half-duplex environment.
2576  * The workaround is to avoid queuing a large packet that would span
2577  * the internal Tx FIFO ring boundary by notifying the stack to resend
2578  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2579  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2580  * to the beginning of the Tx FIFO.
2581  **/
2582
2583 #define E1000_FIFO_HDR                  0x10
2584 #define E1000_82547_PAD_LEN             0x3E0
2585
2586 static inline int
2587 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2588 {
2589         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2590         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2591
2592         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2593
2594         if(adapter->link_duplex != HALF_DUPLEX)
2595                 goto no_fifo_stall_required;
2596
2597         if(atomic_read(&adapter->tx_fifo_stall))
2598                 return 1;
2599
2600         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2601                 atomic_set(&adapter->tx_fifo_stall, 1);
2602                 return 1;
2603         }
2604
2605 no_fifo_stall_required:
2606         adapter->tx_fifo_head += skb_fifo_len;
2607         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2608                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2609         return 0;
2610 }
2611
2612 #define MINIMUM_DHCP_PACKET_SIZE 282
2613 static inline int
2614 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2615 {
2616         struct e1000_hw *hw =  &adapter->hw;
2617         uint16_t length, offset;
2618         if(vlan_tx_tag_present(skb)) {
2619                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2620                         ( adapter->hw.mng_cookie.status &
2621                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2622                         return 0;
2623         }
2624         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2625                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2626                 if((htons(ETH_P_IP) == eth->h_proto)) {
2627                         const struct iphdr *ip = 
2628                                 (struct iphdr *)((uint8_t *)skb->data+14);
2629                         if(IPPROTO_UDP == ip->protocol) {
2630                                 struct udphdr *udp = 
2631                                         (struct udphdr *)((uint8_t *)ip + 
2632                                                 (ip->ihl << 2));
2633                                 if(ntohs(udp->dest) == 67) {
2634                                         offset = (uint8_t *)udp + 8 - skb->data;
2635                                         length = skb->len - offset;
2636
2637                                         return e1000_mng_write_dhcp_info(hw,
2638                                                         (uint8_t *)udp + 8, 
2639                                                         length);
2640                                 }
2641                         }
2642                 }
2643         }
2644         return 0;
2645 }
2646
2647 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2648 static int
2649 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2650 {
2651         struct e1000_adapter *adapter = netdev_priv(netdev);
2652         struct e1000_tx_ring *tx_ring;
2653         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2654         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2655         unsigned int tx_flags = 0;
2656         unsigned int len = skb->len;
2657         unsigned long flags;
2658         unsigned int nr_frags = 0;
2659         unsigned int mss = 0;
2660         int count = 0;
2661         int tso;
2662         unsigned int f;
2663         len -= skb->data_len;
2664
2665 #ifdef CONFIG_E1000_MQ
2666         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2667 #else
2668         tx_ring = adapter->tx_ring;
2669 #endif
2670
2671         if (unlikely(skb->len <= 0)) {
2672                 dev_kfree_skb_any(skb);
2673                 return NETDEV_TX_OK;
2674         }
2675
2676 #ifdef NETIF_F_TSO
2677         mss = skb_shinfo(skb)->tso_size;
2678         /* The controller does a simple calculation to 
2679          * make sure there is enough room in the FIFO before
2680          * initiating the DMA for each buffer.  The calc is:
2681          * 4 = ceil(buffer len/mss).  To make sure we don't
2682          * overrun the FIFO, adjust the max buffer len if mss
2683          * drops. */
2684         if(mss) {
2685                 max_per_txd = min(mss << 2, max_per_txd);
2686                 max_txd_pwr = fls(max_per_txd) - 1;
2687         }
2688
2689         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2690                 count++;
2691         count++;
2692 #else
2693         if(skb->ip_summed == CHECKSUM_HW)
2694                 count++;
2695 #endif
2696         count += TXD_USE_COUNT(len, max_txd_pwr);
2697
2698         if(adapter->pcix_82544)
2699                 count++;
2700
2701         /* work-around for errata 10 and it applies to all controllers 
2702          * in PCI-X mode, so add one more descriptor to the count
2703          */
2704         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2705                         (len > 2015)))
2706                 count++;
2707
2708         nr_frags = skb_shinfo(skb)->nr_frags;
2709         for(f = 0; f < nr_frags; f++)
2710                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2711                                        max_txd_pwr);
2712         if(adapter->pcix_82544)
2713                 count += nr_frags;
2714
2715 #ifdef NETIF_F_TSO
2716         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2717          * points to just header, pull a few bytes of payload from 
2718          * frags into skb->data */
2719         if (skb_shinfo(skb)->tso_size) {
2720                 uint8_t hdr_len;
2721                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2722                 if (skb->data_len && (hdr_len < (skb->len - skb->data_len)) && 
2723                         (adapter->hw.mac_type == e1000_82571 ||
2724                         adapter->hw.mac_type == e1000_82572)) {
2725                         unsigned int pull_size;
2726                         pull_size = min((unsigned int)4, skb->data_len);
2727                         if (!__pskb_pull_tail(skb, pull_size)) {
2728                                 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2729                                 dev_kfree_skb_any(skb);
2730                                 return -EFAULT;
2731                         }
2732                 }
2733         }
2734 #endif
2735
2736         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2737                 e1000_transfer_dhcp_info(adapter, skb);
2738
2739         local_irq_save(flags);
2740         if (!spin_trylock(&tx_ring->tx_lock)) {
2741                 /* Collision - tell upper layer to requeue */
2742                 local_irq_restore(flags);
2743                 return NETDEV_TX_LOCKED;
2744         }
2745
2746         /* need: count + 2 desc gap to keep tail from touching
2747          * head, otherwise try next time */
2748         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2749                 netif_stop_queue(netdev);
2750                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2751                 return NETDEV_TX_BUSY;
2752         }
2753
2754         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2755                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2756                         netif_stop_queue(netdev);
2757                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2758                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2759                         return NETDEV_TX_BUSY;
2760                 }
2761         }
2762
2763         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2764                 tx_flags |= E1000_TX_FLAGS_VLAN;
2765                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2766         }
2767
2768         first = tx_ring->next_to_use;
2769         
2770         tso = e1000_tso(adapter, tx_ring, skb);
2771         if (tso < 0) {
2772                 dev_kfree_skb_any(skb);
2773                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2774                 return NETDEV_TX_OK;
2775         }
2776
2777         if (likely(tso))
2778                 tx_flags |= E1000_TX_FLAGS_TSO;
2779         else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2780                 tx_flags |= E1000_TX_FLAGS_CSUM;
2781
2782         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2783          * 82571 hardware supports TSO capabilities for IPv6 as well...
2784          * no longer assume, we must. */
2785         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2786                 tx_flags |= E1000_TX_FLAGS_IPV4;
2787
2788         e1000_tx_queue(adapter, tx_ring, tx_flags,
2789                        e1000_tx_map(adapter, tx_ring, skb, first,
2790                                     max_per_txd, nr_frags, mss));
2791
2792         netdev->trans_start = jiffies;
2793
2794         /* Make sure there is space in the ring for the next send. */
2795         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2796                 netif_stop_queue(netdev);
2797
2798         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2799         return NETDEV_TX_OK;
2800 }
2801
2802 /**
2803  * e1000_tx_timeout - Respond to a Tx Hang
2804  * @netdev: network interface device structure
2805  **/
2806
2807 static void
2808 e1000_tx_timeout(struct net_device *netdev)
2809 {
2810         struct e1000_adapter *adapter = netdev_priv(netdev);
2811
2812         /* Do the reset outside of interrupt context */
2813         schedule_work(&adapter->tx_timeout_task);
2814 }
2815
2816 static void
2817 e1000_tx_timeout_task(struct net_device *netdev)
2818 {
2819         struct e1000_adapter *adapter = netdev_priv(netdev);
2820
2821         e1000_down(adapter);
2822         e1000_up(adapter);
2823 }
2824
2825 /**
2826  * e1000_get_stats - Get System Network Statistics
2827  * @netdev: network interface device structure
2828  *
2829  * Returns the address of the device statistics structure.
2830  * The statistics are actually updated from the timer callback.
2831  **/
2832
2833 static struct net_device_stats *
2834 e1000_get_stats(struct net_device *netdev)
2835 {
2836         struct e1000_adapter *adapter = netdev_priv(netdev);
2837
2838         e1000_update_stats(adapter);
2839         return &adapter->net_stats;
2840 }
2841
2842 /**
2843  * e1000_change_mtu - Change the Maximum Transfer Unit
2844  * @netdev: network interface device structure
2845  * @new_mtu: new value for maximum frame size
2846  *
2847  * Returns 0 on success, negative on failure
2848  **/
2849
2850 static int
2851 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2852 {
2853         struct e1000_adapter *adapter = netdev_priv(netdev);
2854         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2855
2856         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2857                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2858                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2859                         return -EINVAL;
2860         }
2861
2862 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2863         /* might want this to be bigger enum check... */
2864         /* 82571 controllers limit jumbo frame size to 10500 bytes */
2865         if ((adapter->hw.mac_type == e1000_82571 || 
2866              adapter->hw.mac_type == e1000_82572) &&
2867             max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2868                 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2869                                     "on 82571 and 82572 controllers.\n");
2870                 return -EINVAL;
2871         }
2872
2873         if(adapter->hw.mac_type == e1000_82573 &&
2874             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2875                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2876                                     "on 82573\n");
2877                 return -EINVAL;
2878         }
2879
2880         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2881                 adapter->rx_buffer_len = max_frame;
2882                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2883         } else {
2884                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2885                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2886                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2887                                             "on 82542\n");
2888                         return -EINVAL;
2889
2890                 } else {
2891                         if(max_frame <= E1000_RXBUFFER_2048) {
2892                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2893                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2894                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2895                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2896                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2897                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2898                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2899                         }
2900                 }
2901         }
2902
2903         netdev->mtu = new_mtu;
2904
2905         if(netif_running(netdev)) {
2906                 e1000_down(adapter);
2907                 e1000_up(adapter);
2908         }
2909
2910         adapter->hw.max_frame_size = max_frame;
2911
2912         return 0;
2913 }
2914
2915 /**
2916  * e1000_update_stats - Update the board statistics counters
2917  * @adapter: board private structure
2918  **/
2919
2920 void
2921 e1000_update_stats(struct e1000_adapter *adapter)
2922 {
2923         struct e1000_hw *hw = &adapter->hw;
2924         unsigned long flags;
2925         uint16_t phy_tmp;
2926
2927 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2928
2929         spin_lock_irqsave(&adapter->stats_lock, flags);
2930
2931         /* these counters are modified from e1000_adjust_tbi_stats,
2932          * called from the interrupt context, so they must only
2933          * be written while holding adapter->stats_lock
2934          */
2935
2936         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2937         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2938         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2939         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2940         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2941         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2942         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2943         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2944         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2945         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2946         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2947         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2948         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2949
2950         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2951         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2952         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2953         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2954         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2955         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2956         adapter->stats.dc += E1000_READ_REG(hw, DC);
2957         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2958         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2959         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2960         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2961         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2962         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2963         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2964         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2965         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2966         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2967         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2968         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2969         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2970         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2971         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2972         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2973         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2974         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2975         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2976         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2977         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2978         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2979         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2980         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2981         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2982         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2983         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2984
2985         /* used for adaptive IFS */
2986
2987         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2988         adapter->stats.tpt += hw->tx_packet_delta;
2989         hw->collision_delta = E1000_READ_REG(hw, COLC);
2990         adapter->stats.colc += hw->collision_delta;
2991
2992         if(hw->mac_type >= e1000_82543) {
2993                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2994                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2995                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2996                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2997                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2998                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2999         }
3000         if(hw->mac_type > e1000_82547_rev_2) {
3001                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3002                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3003                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3004                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3005                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3006                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3007                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3008                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3009                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3010         }
3011
3012         /* Fill out the OS statistics structure */
3013
3014         adapter->net_stats.rx_packets = adapter->stats.gprc;
3015         adapter->net_stats.tx_packets = adapter->stats.gptc;
3016         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3017         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3018         adapter->net_stats.multicast = adapter->stats.mprc;
3019         adapter->net_stats.collisions = adapter->stats.colc;
3020
3021         /* Rx Errors */
3022
3023         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3024                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3025                 adapter->stats.rlec + adapter->stats.mpc + 
3026                 adapter->stats.cexterr;
3027         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3028         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3029         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3030         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3031         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3032
3033         /* Tx Errors */
3034
3035         adapter->net_stats.tx_errors = adapter->stats.ecol +
3036                                        adapter->stats.latecol;
3037         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3038         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3039         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3040
3041         /* Tx Dropped needs to be maintained elsewhere */
3042
3043         /* Phy Stats */
3044
3045         if(hw->media_type == e1000_media_type_copper) {
3046                 if((adapter->link_speed == SPEED_1000) &&
3047                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3048                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3049                         adapter->phy_stats.idle_errors += phy_tmp;
3050                 }
3051
3052                 if((hw->mac_type <= e1000_82546) &&
3053                    (hw->phy_type == e1000_phy_m88) &&
3054                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3055                         adapter->phy_stats.receive_errors += phy_tmp;
3056         }
3057
3058         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3059 }
3060
3061 #ifdef CONFIG_E1000_MQ
3062 void
3063 e1000_rx_schedule(void *data)
3064 {
3065         struct net_device *poll_dev, *netdev = data;
3066         struct e1000_adapter *adapter = netdev->priv;
3067         int this_cpu = get_cpu();
3068
3069         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3070         if (poll_dev == NULL) {
3071                 put_cpu();
3072                 return;
3073         }
3074
3075         if (likely(netif_rx_schedule_prep(poll_dev)))
3076                 __netif_rx_schedule(poll_dev);
3077         else
3078                 e1000_irq_enable(adapter);
3079
3080         put_cpu();
3081 }
3082 #endif
3083
3084 /**
3085  * e1000_intr - Interrupt Handler
3086  * @irq: interrupt number
3087  * @data: pointer to a network interface device structure
3088  * @pt_regs: CPU registers structure
3089  **/
3090
3091 static irqreturn_t
3092 e1000_intr(int irq, void *data, struct pt_regs *regs)
3093 {
3094         struct net_device *netdev = data;
3095         struct e1000_adapter *adapter = netdev_priv(netdev);
3096         struct e1000_hw *hw = &adapter->hw;
3097         uint32_t icr = E1000_READ_REG(hw, ICR);
3098 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3099         int i;
3100 #endif
3101
3102         if(unlikely(!icr))
3103                 return IRQ_NONE;  /* Not our interrupt */
3104
3105         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3106                 hw->get_link_status = 1;
3107                 mod_timer(&adapter->watchdog_timer, jiffies);
3108         }
3109
3110 #ifdef CONFIG_E1000_NAPI
3111         atomic_inc(&adapter->irq_sem);
3112         E1000_WRITE_REG(hw, IMC, ~0);
3113         E1000_WRITE_FLUSH(hw);
3114 #ifdef CONFIG_E1000_MQ
3115         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3116                 cpu_set(adapter->cpu_for_queue[0],
3117                         adapter->rx_sched_call_data.cpumask);
3118                 for (i = 1; i < adapter->num_queues; i++) {
3119                         cpu_set(adapter->cpu_for_queue[i],
3120                                 adapter->rx_sched_call_data.cpumask);
3121                         atomic_inc(&adapter->irq_sem);
3122                 }
3123                 atomic_set(&adapter->rx_sched_call_data.count, i);
3124                 smp_call_async_mask(&adapter->rx_sched_call_data);
3125         } else {
3126                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3127         }
3128 #else /* if !CONFIG_E1000_MQ */
3129         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3130                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3131         else
3132                 e1000_irq_enable(adapter);
3133 #endif /* CONFIG_E1000_MQ */
3134
3135 #else /* if !CONFIG_E1000_NAPI */
3136         /* Writing IMC and IMS is needed for 82547.
3137            Due to Hub Link bus being occupied, an interrupt
3138            de-assertion message is not able to be sent.
3139            When an interrupt assertion message is generated later,
3140            two messages are re-ordered and sent out.
3141            That causes APIC to think 82547 is in de-assertion
3142            state, while 82547 is in assertion state, resulting
3143            in dead lock. Writing IMC forces 82547 into
3144            de-assertion state.
3145         */
3146         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3147                 atomic_inc(&adapter->irq_sem);
3148                 E1000_WRITE_REG(hw, IMC, ~0);
3149         }
3150
3151         for(i = 0; i < E1000_MAX_INTR; i++)
3152                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3153                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3154                         break;
3155
3156         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3157                 e1000_irq_enable(adapter);
3158
3159 #endif /* CONFIG_E1000_NAPI */
3160
3161         return IRQ_HANDLED;
3162 }
3163
3164 #ifdef CONFIG_E1000_NAPI
3165 /**
3166  * e1000_clean - NAPI Rx polling callback
3167  * @adapter: board private structure
3168  **/
3169
3170 static int
3171 e1000_clean(struct net_device *poll_dev, int *budget)
3172 {
3173         struct e1000_adapter *adapter;
3174         int work_to_do = min(*budget, poll_dev->quota);
3175         int tx_cleaned, i = 0, work_done = 0;
3176
3177         /* Must NOT use netdev_priv macro here. */
3178         adapter = poll_dev->priv;
3179
3180         /* Keep link state information with original netdev */
3181         if (!netif_carrier_ok(adapter->netdev))
3182                 goto quit_polling;
3183
3184         while (poll_dev != &adapter->polling_netdev[i]) {
3185                 i++;
3186                 if (unlikely(i == adapter->num_queues))
3187                         BUG();
3188         }
3189
3190         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3191         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3192                           &work_done, work_to_do);
3193
3194         *budget -= work_done;
3195         poll_dev->quota -= work_done;
3196         
3197         /* If no Tx and not enough Rx work done, exit the polling mode */
3198         if((!tx_cleaned && (work_done == 0)) ||
3199            !netif_running(adapter->netdev)) {
3200 quit_polling:
3201                 netif_rx_complete(poll_dev);
3202                 e1000_irq_enable(adapter);
3203                 return 0;
3204         }
3205
3206         return 1;
3207 }
3208
3209 #endif
3210 /**
3211  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3212  * @adapter: board private structure
3213  **/
3214
3215 static boolean_t
3216 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3217                    struct e1000_tx_ring *tx_ring)
3218 {
3219         struct net_device *netdev = adapter->netdev;
3220         struct e1000_tx_desc *tx_desc, *eop_desc;
3221         struct e1000_buffer *buffer_info;
3222         unsigned int i, eop;
3223         boolean_t cleaned = FALSE;
3224
3225         i = tx_ring->next_to_clean;
3226         eop = tx_ring->buffer_info[i].next_to_watch;
3227         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3228
3229         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3230                 /* Premature writeback of Tx descriptors clear (free buffers
3231                  * and unmap pci_mapping) previous_buffer_info */
3232                 if (likely(tx_ring->previous_buffer_info.skb != NULL)) {
3233                         e1000_unmap_and_free_tx_resource(adapter,
3234                                         &tx_ring->previous_buffer_info);
3235                 }
3236
3237                 for(cleaned = FALSE; !cleaned; ) {
3238                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3239                         buffer_info = &tx_ring->buffer_info[i];
3240                         cleaned = (i == eop);
3241
3242 #ifdef NETIF_F_TSO
3243                         if (!(netdev->features & NETIF_F_TSO)) {
3244 #endif
3245                                 e1000_unmap_and_free_tx_resource(adapter,
3246                                                                  buffer_info);
3247 #ifdef NETIF_F_TSO
3248                         } else {
3249                                 if (cleaned) {
3250                                         memcpy(&tx_ring->previous_buffer_info,
3251                                                buffer_info,
3252                                                sizeof(struct e1000_buffer));
3253                                         memset(buffer_info, 0,
3254                                                sizeof(struct e1000_buffer));
3255                                 } else {
3256                                         e1000_unmap_and_free_tx_resource(
3257                                             adapter, buffer_info);
3258                                 }
3259                         }
3260 #endif
3261
3262                         tx_desc->buffer_addr = 0;
3263                         tx_desc->lower.data = 0;
3264                         tx_desc->upper.data = 0;
3265
3266                         if(unlikely(++i == tx_ring->count)) i = 0;
3267                 }
3268
3269                 tx_ring->pkt++;
3270                 
3271                 eop = tx_ring->buffer_info[i].next_to_watch;
3272                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3273         }
3274
3275         tx_ring->next_to_clean = i;
3276
3277         spin_lock(&tx_ring->tx_lock);
3278
3279         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3280                     netif_carrier_ok(netdev)))
3281                 netif_wake_queue(netdev);
3282
3283         spin_unlock(&tx_ring->tx_lock);
3284
3285         if (adapter->detect_tx_hung) {
3286                 /* Detect a transmit hang in hardware, this serializes the
3287                  * check with the clearing of time_stamp and movement of i */
3288                 adapter->detect_tx_hung = FALSE;
3289                 if (tx_ring->buffer_info[i].dma &&
3290                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3291                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3292                         E1000_STATUS_TXOFF)) {
3293
3294                         /* detected Tx unit hang */
3295                         i = tx_ring->next_to_clean;
3296                         eop = tx_ring->buffer_info[i].next_to_watch;
3297                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3298                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3299                                         "  TDH                  <%x>\n"
3300                                         "  TDT                  <%x>\n"
3301                                         "  next_to_use          <%x>\n"
3302                                         "  next_to_clean        <%x>\n"
3303                                         "buffer_info[next_to_clean]\n"
3304                                         "  dma                  <%llx>\n"
3305                                         "  time_stamp           <%lx>\n"
3306                                         "  next_to_watch        <%x>\n"
3307                                         "  jiffies              <%lx>\n"
3308                                         "  next_to_watch.status <%x>\n",
3309                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3310                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3311                                 tx_ring->next_to_use,
3312                                 i,
3313                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3314                                 tx_ring->buffer_info[i].time_stamp,
3315                                 eop,
3316                                 jiffies,
3317                                 eop_desc->upper.fields.status);
3318                         netif_stop_queue(netdev);
3319                 }
3320         }
3321 #ifdef NETIF_F_TSO
3322         if (unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3323             time_after(jiffies, tx_ring->previous_buffer_info.time_stamp + HZ)))
3324                 e1000_unmap_and_free_tx_resource(
3325                     adapter, &tx_ring->previous_buffer_info);
3326 #endif
3327         return cleaned;
3328 }
3329
3330 /**
3331  * e1000_rx_checksum - Receive Checksum Offload for 82543
3332  * @adapter:     board private structure
3333  * @status_err:  receive descriptor status and error fields
3334  * @csum:        receive descriptor csum field
3335  * @sk_buff:     socket buffer with received data
3336  **/
3337
3338 static inline void
3339 e1000_rx_checksum(struct e1000_adapter *adapter,
3340                   uint32_t status_err, uint32_t csum,
3341                   struct sk_buff *skb)
3342 {
3343         uint16_t status = (uint16_t)status_err;
3344         uint8_t errors = (uint8_t)(status_err >> 24);
3345         skb->ip_summed = CHECKSUM_NONE;
3346
3347         /* 82543 or newer only */
3348         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3349         /* Ignore Checksum bit is set */
3350         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3351         /* TCP/UDP checksum error bit is set */
3352         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3353                 /* let the stack verify checksum errors */
3354                 adapter->hw_csum_err++;
3355                 return;
3356         }
3357         /* TCP/UDP Checksum has not been calculated */
3358         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3359                 if(!(status & E1000_RXD_STAT_TCPCS))
3360                         return;
3361         } else {
3362                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3363                         return;
3364         }
3365         /* It must be a TCP or UDP packet with a valid checksum */
3366         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3367                 /* TCP checksum is good */
3368                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3369         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3370                 /* IP fragment with UDP payload */
3371                 /* Hardware complements the payload checksum, so we undo it
3372                  * and then put the value in host order for further stack use.
3373                  */
3374                 csum = ntohl(csum ^ 0xFFFF);
3375                 skb->csum = csum;
3376                 skb->ip_summed = CHECKSUM_HW;
3377         }
3378         adapter->hw_csum_good++;
3379 }
3380
3381 /**
3382  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3383  * @adapter: board private structure
3384  **/
3385
3386 static boolean_t
3387 #ifdef CONFIG_E1000_NAPI
3388 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3389                    struct e1000_rx_ring *rx_ring,
3390                    int *work_done, int work_to_do)
3391 #else
3392 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3393                    struct e1000_rx_ring *rx_ring)
3394 #endif
3395 {
3396         struct net_device *netdev = adapter->netdev;
3397         struct pci_dev *pdev = adapter->pdev;
3398         struct e1000_rx_desc *rx_desc;
3399         struct e1000_buffer *buffer_info;
3400         struct sk_buff *skb;
3401         unsigned long flags;
3402         uint32_t length;
3403         uint8_t last_byte;
3404         unsigned int i;
3405         boolean_t cleaned = FALSE;
3406
3407         i = rx_ring->next_to_clean;
3408         rx_desc = E1000_RX_DESC(*rx_ring, i);
3409
3410         while(rx_desc->status & E1000_RXD_STAT_DD) {
3411                 buffer_info = &rx_ring->buffer_info[i];
3412 #ifdef CONFIG_E1000_NAPI
3413                 if(*work_done >= work_to_do)
3414                         break;
3415                 (*work_done)++;
3416 #endif
3417                 cleaned = TRUE;
3418
3419                 pci_unmap_single(pdev,
3420                                  buffer_info->dma,
3421                                  buffer_info->length,
3422                                  PCI_DMA_FROMDEVICE);
3423
3424                 skb = buffer_info->skb;
3425                 length = le16_to_cpu(rx_desc->length);
3426
3427                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3428                         /* All receives must fit into a single buffer */
3429                         E1000_DBG("%s: Receive packet consumed multiple"
3430                                   " buffers\n", netdev->name);
3431                         dev_kfree_skb_irq(skb);
3432                         goto next_desc;
3433                 }
3434
3435                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3436                         last_byte = *(skb->data + length - 1);
3437                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3438                                       rx_desc->errors, length, last_byte)) {
3439                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3440                                 e1000_tbi_adjust_stats(&adapter->hw,
3441                                                        &adapter->stats,
3442                                                        length, skb->data);
3443                                 spin_unlock_irqrestore(&adapter->stats_lock,
3444                                                        flags);
3445                                 length--;
3446                         } else {
3447                                 dev_kfree_skb_irq(skb);
3448                                 goto next_desc;
3449                         }
3450                 }
3451
3452                 /* Good Receive */
3453                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3454
3455                 /* Receive Checksum Offload */
3456                 e1000_rx_checksum(adapter,
3457                                   (uint32_t)(rx_desc->status) |
3458                                   ((uint32_t)(rx_desc->errors) << 24),
3459                                   rx_desc->csum, skb);
3460                 skb->protocol = eth_type_trans(skb, netdev);
3461 #ifdef CONFIG_E1000_NAPI
3462                 if(unlikely(adapter->vlgrp &&
3463                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3464                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3465                                                  le16_to_cpu(rx_desc->special) &
3466                                                  E1000_RXD_SPC_VLAN_MASK);
3467                 } else {
3468                         netif_receive_skb(skb);
3469                 }
3470 #else /* CONFIG_E1000_NAPI */
3471                 if(unlikely(adapter->vlgrp &&
3472                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3473                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3474                                         le16_to_cpu(rx_desc->special) &
3475                                         E1000_RXD_SPC_VLAN_MASK);
3476                 } else {
3477                         netif_rx(skb);
3478                 }
3479 #endif /* CONFIG_E1000_NAPI */
3480                 netdev->last_rx = jiffies;
3481                 rx_ring->pkt++;
3482
3483 next_desc:
3484                 rx_desc->status = 0;
3485                 buffer_info->skb = NULL;
3486                 if(unlikely(++i == rx_ring->count)) i = 0;
3487
3488                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3489         }
3490         rx_ring->next_to_clean = i;
3491         adapter->alloc_rx_buf(adapter, rx_ring);
3492
3493         return cleaned;
3494 }
3495
3496 /**
3497  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3498  * @adapter: board private structure
3499  **/
3500
3501 static boolean_t
3502 #ifdef CONFIG_E1000_NAPI
3503 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3504                       struct e1000_rx_ring *rx_ring,
3505                       int *work_done, int work_to_do)
3506 #else
3507 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3508                       struct e1000_rx_ring *rx_ring)
3509 #endif
3510 {
3511         union e1000_rx_desc_packet_split *rx_desc;
3512         struct net_device *netdev = adapter->netdev;
3513         struct pci_dev *pdev = adapter->pdev;
3514         struct e1000_buffer *buffer_info;
3515         struct e1000_ps_page *ps_page;
3516         struct e1000_ps_page_dma *ps_page_dma;
3517         struct sk_buff *skb;
3518         unsigned int i, j;
3519         uint32_t length, staterr;
3520         boolean_t cleaned = FALSE;
3521
3522         i = rx_ring->next_to_clean;
3523         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3524         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3525
3526         while(staterr & E1000_RXD_STAT_DD) {
3527                 buffer_info = &rx_ring->buffer_info[i];
3528                 ps_page = &rx_ring->ps_page[i];
3529                 ps_page_dma = &rx_ring->ps_page_dma[i];
3530 #ifdef CONFIG_E1000_NAPI
3531                 if(unlikely(*work_done >= work_to_do))
3532                         break;
3533                 (*work_done)++;
3534 #endif
3535                 cleaned = TRUE;
3536                 pci_unmap_single(pdev, buffer_info->dma,
3537                                  buffer_info->length,
3538                                  PCI_DMA_FROMDEVICE);
3539
3540                 skb = buffer_info->skb;
3541
3542                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3543                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3544                                   " the full packet\n", netdev->name);
3545                         dev_kfree_skb_irq(skb);
3546                         goto next_desc;
3547                 }
3548
3549                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3550                         dev_kfree_skb_irq(skb);
3551                         goto next_desc;
3552                 }
3553
3554                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3555
3556                 if(unlikely(!length)) {
3557                         E1000_DBG("%s: Last part of the packet spanning"
3558                                   " multiple descriptors\n", netdev->name);
3559                         dev_kfree_skb_irq(skb);
3560                         goto next_desc;
3561                 }
3562
3563                 /* Good Receive */
3564                 skb_put(skb, length);
3565
3566                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3567                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3568                                 break;
3569
3570                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3571                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3572                         ps_page_dma->ps_page_dma[j] = 0;
3573                         skb_shinfo(skb)->frags[j].page =
3574                                 ps_page->ps_page[j];
3575                         ps_page->ps_page[j] = NULL;
3576                         skb_shinfo(skb)->frags[j].page_offset = 0;
3577                         skb_shinfo(skb)->frags[j].size = length;
3578                         skb_shinfo(skb)->nr_frags++;
3579                         skb->len += length;
3580                         skb->data_len += length;
3581                 }
3582
3583                 e1000_rx_checksum(adapter, staterr,
3584                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3585                 skb->protocol = eth_type_trans(skb, netdev);
3586
3587                 if(likely(rx_desc->wb.upper.header_status &
3588                           E1000_RXDPS_HDRSTAT_HDRSP)) {
3589                         adapter->rx_hdr_split++;
3590 #ifdef HAVE_RX_ZERO_COPY
3591                         skb_shinfo(skb)->zero_copy = TRUE;
3592 #endif
3593                 }
3594 #ifdef CONFIG_E1000_NAPI
3595                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3596                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3597                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3598                                 E1000_RXD_SPC_VLAN_MASK);
3599                 } else {
3600                         netif_receive_skb(skb);
3601                 }
3602 #else /* CONFIG_E1000_NAPI */
3603                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3604                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3605                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3606                                 E1000_RXD_SPC_VLAN_MASK);
3607                 } else {
3608                         netif_rx(skb);
3609                 }
3610 #endif /* CONFIG_E1000_NAPI */
3611                 netdev->last_rx = jiffies;
3612                 rx_ring->pkt++;
3613
3614 next_desc:
3615                 rx_desc->wb.middle.status_error &= ~0xFF;
3616                 buffer_info->skb = NULL;
3617                 if(unlikely(++i == rx_ring->count)) i = 0;
3618
3619                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3620                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3621         }
3622         rx_ring->next_to_clean = i;
3623         adapter->alloc_rx_buf(adapter, rx_ring);
3624
3625         return cleaned;
3626 }
3627
3628 /**
3629  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3630  * @adapter: address of board private structure
3631  **/
3632
3633 static void
3634 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3635                        struct e1000_rx_ring *rx_ring)
3636 {
3637         struct net_device *netdev = adapter->netdev;
3638         struct pci_dev *pdev = adapter->pdev;
3639         struct e1000_rx_desc *rx_desc;
3640         struct e1000_buffer *buffer_info;
3641         struct sk_buff *skb;
3642         unsigned int i;
3643         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3644
3645         i = rx_ring->next_to_use;
3646         buffer_info = &rx_ring->buffer_info[i];
3647
3648         while(!buffer_info->skb) {
3649                 skb = dev_alloc_skb(bufsz);
3650
3651                 if(unlikely(!skb)) {
3652                         /* Better luck next round */
3653                         break;
3654                 }
3655
3656                 /* Fix for errata 23, can't cross 64kB boundary */
3657                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3658                         struct sk_buff *oldskb = skb;
3659                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3660                                              "at %p\n", bufsz, skb->data);
3661                         /* Try again, without freeing the previous */
3662                         skb = dev_alloc_skb(bufsz);
3663                         /* Failed allocation, critical failure */
3664                         if (!skb) {
3665                                 dev_kfree_skb(oldskb);
3666                                 break;
3667                         }
3668
3669                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3670                                 /* give up */
3671                                 dev_kfree_skb(skb);
3672                                 dev_kfree_skb(oldskb);
3673                                 break; /* while !buffer_info->skb */
3674                         } else {
3675                                 /* Use new allocation */
3676                                 dev_kfree_skb(oldskb);
3677                         }
3678                 }
3679                 /* Make buffer alignment 2 beyond a 16 byte boundary
3680                  * this will result in a 16 byte aligned IP header after
3681                  * the 14 byte MAC header is removed
3682                  */
3683                 skb_reserve(skb, NET_IP_ALIGN);
3684
3685                 skb->dev = netdev;
3686
3687                 buffer_info->skb = skb;
3688                 buffer_info->length = adapter->rx_buffer_len;
3689                 buffer_info->dma = pci_map_single(pdev,
3690                                                   skb->data,
3691                                                   adapter->rx_buffer_len,
3692                                                   PCI_DMA_FROMDEVICE);
3693
3694                 /* Fix for errata 23, can't cross 64kB boundary */
3695                 if (!e1000_check_64k_bound(adapter,
3696                                         (void *)(unsigned long)buffer_info->dma,
3697                                         adapter->rx_buffer_len)) {
3698                         DPRINTK(RX_ERR, ERR,
3699                                 "dma align check failed: %u bytes at %p\n",
3700                                 adapter->rx_buffer_len,
3701                                 (void *)(unsigned long)buffer_info->dma);
3702                         dev_kfree_skb(skb);
3703                         buffer_info->skb = NULL;
3704
3705                         pci_unmap_single(pdev, buffer_info->dma,
3706                                          adapter->rx_buffer_len,
3707                                          PCI_DMA_FROMDEVICE);
3708
3709                         break; /* while !buffer_info->skb */
3710                 }
3711                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3712                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3713
3714                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3715                         /* Force memory writes to complete before letting h/w
3716                          * know there are new descriptors to fetch.  (Only
3717                          * applicable for weak-ordered memory model archs,
3718                          * such as IA-64). */
3719                         wmb();
3720                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3721                 }
3722
3723                 if(unlikely(++i == rx_ring->count)) i = 0;
3724                 buffer_info = &rx_ring->buffer_info[i];
3725         }
3726
3727         rx_ring->next_to_use = i;
3728 }
3729
3730 /**
3731  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3732  * @adapter: address of board private structure
3733  **/
3734
3735 static void
3736 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3737                           struct e1000_rx_ring *rx_ring)
3738 {
3739         struct net_device *netdev = adapter->netdev;
3740         struct pci_dev *pdev = adapter->pdev;
3741         union e1000_rx_desc_packet_split *rx_desc;
3742         struct e1000_buffer *buffer_info;
3743         struct e1000_ps_page *ps_page;
3744         struct e1000_ps_page_dma *ps_page_dma;
3745         struct sk_buff *skb;
3746         unsigned int i, j;
3747
3748         i = rx_ring->next_to_use;
3749         buffer_info = &rx_ring->buffer_info[i];
3750         ps_page = &rx_ring->ps_page[i];
3751         ps_page_dma = &rx_ring->ps_page_dma[i];
3752
3753         while(!buffer_info->skb) {
3754                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3755
3756                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3757                         if (j < adapter->rx_ps_pages) {
3758                                 if (likely(!ps_page->ps_page[j])) {
3759                                         ps_page->ps_page[j] =
3760                                                 alloc_page(GFP_ATOMIC);
3761                                         if (unlikely(!ps_page->ps_page[j]))
3762                                                 goto no_buffers;
3763                                         ps_page_dma->ps_page_dma[j] =
3764                                                 pci_map_page(pdev,
3765                                                             ps_page->ps_page[j],
3766                                                             0, PAGE_SIZE,
3767                                                             PCI_DMA_FROMDEVICE);
3768                                 }
3769                                 /* Refresh the desc even if buffer_addrs didn't
3770                                  * change because each write-back erases 
3771                                  * this info.
3772                                  */
3773                                 rx_desc->read.buffer_addr[j+1] =
3774                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3775                         } else
3776                                 rx_desc->read.buffer_addr[j+1] = ~0;
3777                 }
3778
3779                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3780
3781                 if(unlikely(!skb))
3782                         break;
3783
3784                 /* Make buffer alignment 2 beyond a 16 byte boundary
3785                  * this will result in a 16 byte aligned IP header after
3786                  * the 14 byte MAC header is removed
3787                  */
3788                 skb_reserve(skb, NET_IP_ALIGN);
3789
3790                 skb->dev = netdev;
3791
3792                 buffer_info->skb = skb;
3793                 buffer_info->length = adapter->rx_ps_bsize0;
3794                 buffer_info->dma = pci_map_single(pdev, skb->data,
3795                                                   adapter->rx_ps_bsize0,
3796                                                   PCI_DMA_FROMDEVICE);
3797
3798                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3799
3800                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3801                         /* Force memory writes to complete before letting h/w
3802                          * know there are new descriptors to fetch.  (Only
3803                          * applicable for weak-ordered memory model archs,
3804                          * such as IA-64). */
3805                         wmb();
3806                         /* Hardware increments by 16 bytes, but packet split
3807                          * descriptors are 32 bytes...so we increment tail
3808                          * twice as much.
3809                          */
3810                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3811                 }
3812
3813                 if(unlikely(++i == rx_ring->count)) i = 0;
3814                 buffer_info = &rx_ring->buffer_info[i];
3815                 ps_page = &rx_ring->ps_page[i];
3816                 ps_page_dma = &rx_ring->ps_page_dma[i];
3817         }
3818
3819 no_buffers:
3820         rx_ring->next_to_use = i;
3821 }
3822
3823 /**
3824  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3825  * @adapter:
3826  **/
3827
3828 static void
3829 e1000_smartspeed(struct e1000_adapter *adapter)
3830 {
3831         uint16_t phy_status;
3832         uint16_t phy_ctrl;
3833
3834         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3835            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3836                 return;
3837
3838         if(adapter->smartspeed == 0) {
3839                 /* If Master/Slave config fault is asserted twice,
3840                  * we assume back-to-back */
3841                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3842                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3843                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3844                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3845                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3846                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3847                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3848                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3849                                             phy_ctrl);
3850                         adapter->smartspeed++;
3851                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3852                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3853                                                &phy_ctrl)) {
3854                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3855                                              MII_CR_RESTART_AUTO_NEG);
3856                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3857                                                     phy_ctrl);
3858                         }
3859                 }
3860                 return;
3861         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3862                 /* If still no link, perhaps using 2/3 pair cable */
3863                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3864                 phy_ctrl |= CR_1000T_MS_ENABLE;
3865                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3866                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3867                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3868                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3869                                      MII_CR_RESTART_AUTO_NEG);
3870                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3871                 }
3872         }
3873         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3874         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3875                 adapter->smartspeed = 0;
3876 }
3877
3878 /**
3879  * e1000_ioctl -
3880  * @netdev:
3881  * @ifreq:
3882  * @cmd:
3883  **/
3884
3885 static int
3886 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3887 {
3888         switch (cmd) {
3889         case SIOCGMIIPHY:
3890         case SIOCGMIIREG:
3891         case SIOCSMIIREG:
3892                 return e1000_mii_ioctl(netdev, ifr, cmd);
3893         default:
3894                 return -EOPNOTSUPP;
3895         }
3896 }
3897
3898 /**
3899  * e1000_mii_ioctl -
3900  * @netdev:
3901  * @ifreq:
3902  * @cmd:
3903  **/
3904
3905 static int
3906 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3907 {
3908         struct e1000_adapter *adapter = netdev_priv(netdev);
3909         struct mii_ioctl_data *data = if_mii(ifr);
3910         int retval;
3911         uint16_t mii_reg;
3912         uint16_t spddplx;
3913         unsigned long flags;
3914
3915         if(adapter->hw.media_type != e1000_media_type_copper)
3916                 return -EOPNOTSUPP;
3917
3918         switch (cmd) {
3919         case SIOCGMIIPHY:
3920                 data->phy_id = adapter->hw.phy_addr;
3921                 break;
3922         case SIOCGMIIREG:
3923                 if(!capable(CAP_NET_ADMIN))
3924                         return -EPERM;
3925                 spin_lock_irqsave(&adapter->stats_lock, flags);
3926                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3927                                    &data->val_out)) {
3928                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3929                         return -EIO;
3930                 }
3931                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3932                 break;
3933         case SIOCSMIIREG:
3934                 if(!capable(CAP_NET_ADMIN))
3935                         return -EPERM;
3936                 if(data->reg_num & ~(0x1F))
3937                         return -EFAULT;
3938                 mii_reg = data->val_in;
3939                 spin_lock_irqsave(&adapter->stats_lock, flags);
3940                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3941                                         mii_reg)) {
3942                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3943                         return -EIO;
3944                 }
3945                 if(adapter->hw.phy_type == e1000_phy_m88) {
3946                         switch (data->reg_num) {
3947                         case PHY_CTRL:
3948                                 if(mii_reg & MII_CR_POWER_DOWN)
3949                                         break;
3950                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3951                                         adapter->hw.autoneg = 1;
3952                                         adapter->hw.autoneg_advertised = 0x2F;
3953                                 } else {
3954                                         if (mii_reg & 0x40)
3955                                                 spddplx = SPEED_1000;
3956                                         else if (mii_reg & 0x2000)
3957                                                 spddplx = SPEED_100;
3958                                         else
3959                                                 spddplx = SPEED_10;
3960                                         spddplx += (mii_reg & 0x100)
3961                                                    ? FULL_DUPLEX :
3962                                                    HALF_DUPLEX;
3963                                         retval = e1000_set_spd_dplx(adapter,
3964                                                                     spddplx);
3965                                         if(retval) {
3966                                                 spin_unlock_irqrestore(
3967                                                         &adapter->stats_lock, 
3968                                                         flags);
3969                                                 return retval;
3970                                         }
3971                                 }
3972                                 if(netif_running(adapter->netdev)) {
3973                                         e1000_down(adapter);
3974                                         e1000_up(adapter);
3975                                 } else
3976                                         e1000_reset(adapter);
3977                                 break;
3978                         case M88E1000_PHY_SPEC_CTRL:
3979                         case M88E1000_EXT_PHY_SPEC_CTRL:
3980                                 if(e1000_phy_reset(&adapter->hw)) {
3981                                         spin_unlock_irqrestore(
3982                                                 &adapter->stats_lock, flags);
3983                                         return -EIO;
3984                                 }
3985                                 break;
3986                         }
3987                 } else {
3988                         switch (data->reg_num) {
3989                         case PHY_CTRL:
3990                                 if(mii_reg & MII_CR_POWER_DOWN)
3991                                         break;
3992                                 if(netif_running(adapter->netdev)) {
3993                                         e1000_down(adapter);
3994                                         e1000_up(adapter);
3995                                 } else
3996                                         e1000_reset(adapter);
3997                                 break;
3998                         }
3999                 }
4000                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4001                 break;
4002         default:
4003                 return -EOPNOTSUPP;
4004         }
4005         return E1000_SUCCESS;
4006 }
4007
4008 void
4009 e1000_pci_set_mwi(struct e1000_hw *hw)
4010 {
4011         struct e1000_adapter *adapter = hw->back;
4012         int ret_val = pci_set_mwi(adapter->pdev);
4013
4014         if(ret_val)
4015                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4016 }
4017
4018 void
4019 e1000_pci_clear_mwi(struct e1000_hw *hw)
4020 {
4021         struct e1000_adapter *adapter = hw->back;
4022
4023         pci_clear_mwi(adapter->pdev);
4024 }
4025
4026 void
4027 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4028 {
4029         struct e1000_adapter *adapter = hw->back;
4030
4031         pci_read_config_word(adapter->pdev, reg, value);
4032 }
4033
4034 void
4035 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4036 {
4037         struct e1000_adapter *adapter = hw->back;
4038
4039         pci_write_config_word(adapter->pdev, reg, *value);
4040 }
4041
4042 uint32_t
4043 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4044 {
4045         return inl(port);
4046 }
4047
4048 void
4049 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4050 {
4051         outl(value, port);
4052 }
4053
4054 static void
4055 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4056 {
4057         struct e1000_adapter *adapter = netdev_priv(netdev);
4058         uint32_t ctrl, rctl;
4059
4060         e1000_irq_disable(adapter);
4061         adapter->vlgrp = grp;
4062
4063         if(grp) {
4064                 /* enable VLAN tag insert/strip */
4065                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4066                 ctrl |= E1000_CTRL_VME;
4067                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4068
4069                 /* enable VLAN receive filtering */
4070                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4071                 rctl |= E1000_RCTL_VFE;
4072                 rctl &= ~E1000_RCTL_CFIEN;
4073                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4074                 e1000_update_mng_vlan(adapter);
4075         } else {
4076                 /* disable VLAN tag insert/strip */
4077                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4078                 ctrl &= ~E1000_CTRL_VME;
4079                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4080
4081                 /* disable VLAN filtering */
4082                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4083                 rctl &= ~E1000_RCTL_VFE;
4084                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4085                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4086                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4087                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4088                 }
4089         }
4090
4091         e1000_irq_enable(adapter);
4092 }
4093
4094 static void
4095 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4096 {
4097         struct e1000_adapter *adapter = netdev_priv(netdev);
4098         uint32_t vfta, index;
4099         if((adapter->hw.mng_cookie.status &
4100                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4101                 (vid == adapter->mng_vlan_id))
4102                 return;
4103         /* add VID to filter table */
4104         index = (vid >> 5) & 0x7F;
4105         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4106         vfta |= (1 << (vid & 0x1F));
4107         e1000_write_vfta(&adapter->hw, index, vfta);
4108 }
4109
4110 static void
4111 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4112 {
4113         struct e1000_adapter *adapter = netdev_priv(netdev);
4114         uint32_t vfta, index;
4115
4116         e1000_irq_disable(adapter);
4117
4118         if(adapter->vlgrp)
4119                 adapter->vlgrp->vlan_devices[vid] = NULL;
4120
4121         e1000_irq_enable(adapter);
4122
4123         if((adapter->hw.mng_cookie.status &
4124                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4125                 (vid == adapter->mng_vlan_id))
4126                 return;
4127         /* remove VID from filter table */
4128         index = (vid >> 5) & 0x7F;
4129         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4130         vfta &= ~(1 << (vid & 0x1F));
4131         e1000_write_vfta(&adapter->hw, index, vfta);
4132 }
4133
4134 static void
4135 e1000_restore_vlan(struct e1000_adapter *adapter)
4136 {
4137         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4138
4139         if(adapter->vlgrp) {
4140                 uint16_t vid;
4141                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4142                         if(!adapter->vlgrp->vlan_devices[vid])
4143                                 continue;
4144                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4145                 }
4146         }
4147 }
4148
4149 int
4150 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4151 {
4152         adapter->hw.autoneg = 0;
4153
4154         /* Fiber NICs only allow 1000 gbps Full duplex */
4155         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4156                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4157                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4158                 return -EINVAL;
4159         }
4160
4161         switch(spddplx) {
4162         case SPEED_10 + DUPLEX_HALF:
4163                 adapter->hw.forced_speed_duplex = e1000_10_half;
4164                 break;
4165         case SPEED_10 + DUPLEX_FULL:
4166                 adapter->hw.forced_speed_duplex = e1000_10_full;
4167                 break;
4168         case SPEED_100 + DUPLEX_HALF:
4169                 adapter->hw.forced_speed_duplex = e1000_100_half;
4170                 break;
4171         case SPEED_100 + DUPLEX_FULL:
4172                 adapter->hw.forced_speed_duplex = e1000_100_full;
4173                 break;
4174         case SPEED_1000 + DUPLEX_FULL:
4175                 adapter->hw.autoneg = 1;
4176                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4177                 break;
4178         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4179         default:
4180                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4181                 return -EINVAL;
4182         }
4183         return 0;
4184 }
4185
4186 #ifdef CONFIG_PM
4187 static int
4188 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4189 {
4190         struct net_device *netdev = pci_get_drvdata(pdev);
4191         struct e1000_adapter *adapter = netdev_priv(netdev);
4192         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
4193         uint32_t wufc = adapter->wol;
4194
4195         netif_device_detach(netdev);
4196
4197         if(netif_running(netdev))
4198                 e1000_down(adapter);
4199
4200         status = E1000_READ_REG(&adapter->hw, STATUS);
4201         if(status & E1000_STATUS_LU)
4202                 wufc &= ~E1000_WUFC_LNKC;
4203
4204         if(wufc) {
4205                 e1000_setup_rctl(adapter);
4206                 e1000_set_multi(netdev);
4207
4208                 /* turn on all-multi mode if wake on multicast is enabled */
4209                 if(adapter->wol & E1000_WUFC_MC) {
4210                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4211                         rctl |= E1000_RCTL_MPE;
4212                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4213                 }
4214
4215                 if(adapter->hw.mac_type >= e1000_82540) {
4216                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4217                         /* advertise wake from D3Cold */
4218                         #define E1000_CTRL_ADVD3WUC 0x00100000
4219                         /* phy power management enable */
4220                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4221                         ctrl |= E1000_CTRL_ADVD3WUC |
4222                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4223                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4224                 }
4225
4226                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4227                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4228                         /* keep the laser running in D3 */
4229                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4230                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4231                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4232                 }
4233
4234                 /* Allow time for pending master requests to run */
4235                 e1000_disable_pciex_master(&adapter->hw);
4236
4237                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4238                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4239                 pci_enable_wake(pdev, 3, 1);
4240                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4241         } else {
4242                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4243                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4244                 pci_enable_wake(pdev, 3, 0);
4245                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4246         }
4247
4248         pci_save_state(pdev);
4249
4250         if(adapter->hw.mac_type >= e1000_82540 &&
4251            adapter->hw.media_type == e1000_media_type_copper) {
4252                 manc = E1000_READ_REG(&adapter->hw, MANC);
4253                 if(manc & E1000_MANC_SMBUS_EN) {
4254                         manc |= E1000_MANC_ARP_EN;
4255                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4256                         pci_enable_wake(pdev, 3, 1);
4257                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4258                 }
4259         }
4260
4261         switch(adapter->hw.mac_type) {
4262         case e1000_82571:
4263         case e1000_82572:
4264                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4265                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4266                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4267                 break;
4268         case e1000_82573:
4269                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4270                 E1000_WRITE_REG(&adapter->hw, SWSM,
4271                                 swsm & ~E1000_SWSM_DRV_LOAD);
4272                 break;
4273         default:
4274                 break;
4275         }
4276
4277         pci_disable_device(pdev);
4278         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4279
4280         return 0;
4281 }
4282
4283 static int
4284 e1000_resume(struct pci_dev *pdev)
4285 {
4286         struct net_device *netdev = pci_get_drvdata(pdev);
4287         struct e1000_adapter *adapter = netdev_priv(netdev);
4288         uint32_t manc, ret_val, swsm;
4289         uint32_t ctrl_ext;
4290
4291         pci_set_power_state(pdev, PCI_D0);
4292         pci_restore_state(pdev);
4293         ret_val = pci_enable_device(pdev);
4294         pci_set_master(pdev);
4295
4296         pci_enable_wake(pdev, PCI_D3hot, 0);
4297         pci_enable_wake(pdev, PCI_D3cold, 0);
4298
4299         e1000_reset(adapter);
4300         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4301
4302         if(netif_running(netdev))
4303                 e1000_up(adapter);
4304
4305         netif_device_attach(netdev);
4306
4307         if(adapter->hw.mac_type >= e1000_82540 &&
4308            adapter->hw.media_type == e1000_media_type_copper) {
4309                 manc = E1000_READ_REG(&adapter->hw, MANC);
4310                 manc &= ~(E1000_MANC_ARP_EN);
4311                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4312         }
4313
4314         switch(adapter->hw.mac_type) {
4315         case e1000_82571:
4316         case e1000_82572:
4317                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4318                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4319                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4320                 break;
4321         case e1000_82573:
4322                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4323                 E1000_WRITE_REG(&adapter->hw, SWSM,
4324                                 swsm | E1000_SWSM_DRV_LOAD);
4325                 break;
4326         default:
4327                 break;
4328         }
4329
4330         return 0;
4331 }
4332 #endif
4333 #ifdef CONFIG_NET_POLL_CONTROLLER
4334 /*
4335  * Polling 'interrupt' - used by things like netconsole to send skbs
4336  * without having to re-enable interrupts. It's not called while
4337  * the interrupt routine is executing.
4338  */
4339 static void
4340 e1000_netpoll(struct net_device *netdev)
4341 {
4342         struct e1000_adapter *adapter = netdev_priv(netdev);
4343         disable_irq(adapter->pdev->irq);
4344         e1000_intr(adapter->pdev->irq, netdev, NULL);
4345         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4346         enable_irq(adapter->pdev->irq);
4347 }
4348 #endif
4349
4350 /* e1000_main.c */