1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
43 #ifdef CONFIG_IPW2200_DEBUG
49 #ifdef CONFIG_IPW2200_MONITOR
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
61 #ifdef CONFIG_IPW2200_RADIOTAP
67 #ifdef CONFIG_IPW2200_QOS
73 #define IPW2200_VERSION "1.2.0" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
87 static int channel = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
224 out += snprintf(buf + out, count - out, "%c", c);
228 out += snprintf(buf + out, count - out, " ");
234 static void printk_buf(int level, const u8 * data, u32 len)
238 if (!(ipw_debug_level & level))
242 snprint_line(line, sizeof(line), &data[ofs],
244 printk(KERN_DEBUG "%s\n", line);
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
263 len -= min_t(size_t, len, 16U);
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
571 case IPW_FW_ERROR_OK:
573 case IPW_FW_ERROR_FAIL:
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
593 case IPW_FW_ERROR_DINO_ERROR:
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
747 priv->table2_addr + (ord << 3) +
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
923 if (priv->config & CFG_NO_LED)
926 if (priv->status & STATUS_RF_KILL_MASK)
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
954 void ipw_led_activity_on(struct ipw_priv *priv)
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
963 static void ipw_led_activity_off(struct ipw_priv *priv)
968 if (priv->config & CFG_NO_LED)
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1159 char *p = (char *)buf;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 if (p[0] == 'x' || p[0] == 'X')
1166 val = simple_strtoul(p, &p, 16);
1168 val = simple_strtoul(p, &p, 10);
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 IPW_ERROR("Memory allocation for firmware error log "
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 struct ipw_event log[log_len];
1239 ipw_capture_event_log(priv, log_len, log);
1241 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242 for (i = 0; i < log_len; i++)
1243 len += snprintf(buf + len, PAGE_SIZE - len,
1245 log[i].time, log[i].event, log[i].data);
1246 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1252 static ssize_t show_error(struct device *d,
1253 struct device_attribute *attr, char *buf)
1255 struct ipw_priv *priv = dev_get_drvdata(d);
1259 len += snprintf(buf + len, PAGE_SIZE - len,
1260 "%08lX%08X%08X%08X",
1261 priv->error->jiffies,
1262 priv->error->status,
1263 priv->error->config, priv->error->elem_len);
1264 for (i = 0; i < priv->error->elem_len; i++)
1265 len += snprintf(buf + len, PAGE_SIZE - len,
1266 "\n%08X%08X%08X%08X%08X%08X%08X",
1267 priv->error->elem[i].time,
1268 priv->error->elem[i].desc,
1269 priv->error->elem[i].blink1,
1270 priv->error->elem[i].blink2,
1271 priv->error->elem[i].link1,
1272 priv->error->elem[i].link2,
1273 priv->error->elem[i].data);
1275 len += snprintf(buf + len, PAGE_SIZE - len,
1276 "\n%08X", priv->error->log_len);
1277 for (i = 0; i < priv->error->log_len; i++)
1278 len += snprintf(buf + len, PAGE_SIZE - len,
1280 priv->error->log[i].time,
1281 priv->error->log[i].event,
1282 priv->error->log[i].data);
1283 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1287 static ssize_t clear_error(struct device *d,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count)
1291 struct ipw_priv *priv = dev_get_drvdata(d);
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1300 static ssize_t show_cmd_log(struct device *d,
1301 struct device_attribute *attr, char *buf)
1303 struct ipw_priv *priv = dev_get_drvdata(d);
1307 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309 i = (i + 1) % priv->cmdlog_len) {
1311 snprintf(buf + len, PAGE_SIZE - len,
1312 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314 priv->cmdlog[i].cmd.len);
1316 snprintk_buf(buf + len, PAGE_SIZE - len,
1317 (u8 *) priv->cmdlog[i].cmd.param,
1318 priv->cmdlog[i].cmd.len);
1319 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331 struct device_attribute *attr,
1332 const char *buf, size_t count)
1334 struct ipw_priv *priv = dev_get_drvdata(d);
1345 if (netif_running(priv->prom_net_dev)) {
1346 IPW_WARNING("Interface is up. Cannot unregister.\n");
1350 ipw_prom_free(priv);
1358 rc = ipw_prom_alloc(priv);
1368 IPW_ERROR("Failed to register promiscuous network "
1369 "device (error %d).\n", rc);
1375 static ssize_t show_rtap_iface(struct device *d,
1376 struct device_attribute *attr,
1379 struct ipw_priv *priv = dev_get_drvdata(d);
1381 return sprintf(buf, "%s", priv->prom_net_dev->name);
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1393 static ssize_t store_rtap_filter(struct device *d,
1394 struct device_attribute *attr,
1395 const char *buf, size_t count)
1397 struct ipw_priv *priv = dev_get_drvdata(d);
1399 if (!priv->prom_priv) {
1400 IPW_ERROR("Attempting to set filter without "
1401 "rtap_iface enabled.\n");
1405 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1407 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408 BIT_ARG16(priv->prom_priv->filter));
1413 static ssize_t show_rtap_filter(struct device *d,
1414 struct device_attribute *attr,
1417 struct ipw_priv *priv = dev_get_drvdata(d);
1418 return sprintf(buf, "0x%04X",
1419 priv->prom_priv ? priv->prom_priv->filter : 0);
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434 const char *buf, size_t count)
1436 struct ipw_priv *priv = dev_get_drvdata(d);
1437 struct net_device *dev = priv->net_dev;
1438 char buffer[] = "00000000";
1440 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1444 IPW_DEBUG_INFO("enter\n");
1446 strncpy(buffer, buf, len);
1449 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1451 if (p[0] == 'x' || p[0] == 'X')
1453 val = simple_strtoul(p, &p, 16);
1455 val = simple_strtoul(p, &p, 10);
1457 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1459 priv->ieee->scan_age = val;
1460 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1463 IPW_DEBUG_INFO("exit\n");
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1472 struct ipw_priv *priv = dev_get_drvdata(d);
1473 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477 const char *buf, size_t count)
1479 struct ipw_priv *priv = dev_get_drvdata(d);
1481 IPW_DEBUG_INFO("enter\n");
1487 IPW_DEBUG_LED("Disabling LED control.\n");
1488 priv->config |= CFG_NO_LED;
1489 ipw_led_shutdown(priv);
1491 IPW_DEBUG_LED("Enabling LED control.\n");
1492 priv->config &= ~CFG_NO_LED;
1496 IPW_DEBUG_INFO("exit\n");
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1502 static ssize_t show_status(struct device *d,
1503 struct device_attribute *attr, char *buf)
1505 struct ipw_priv *p = d->driver_data;
1506 return sprintf(buf, "0x%08x\n", (int)p->status);
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1514 struct ipw_priv *p = d->driver_data;
1515 return sprintf(buf, "0x%08x\n", (int)p->config);
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1520 static ssize_t show_nic_type(struct device *d,
1521 struct device_attribute *attr, char *buf)
1523 struct ipw_priv *priv = d->driver_data;
1524 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1529 static ssize_t show_ucode_version(struct device *d,
1530 struct device_attribute *attr, char *buf)
1532 u32 len = sizeof(u32), tmp = 0;
1533 struct ipw_priv *p = d->driver_data;
1535 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1538 return sprintf(buf, "0x%08x\n", tmp);
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1546 u32 len = sizeof(u32), tmp = 0;
1547 struct ipw_priv *p = d->driver_data;
1549 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1552 return sprintf(buf, "0x%08x\n", tmp);
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1558 * Add a device attribute to view/control the delay between eeprom
1561 static ssize_t show_eeprom_delay(struct device *d,
1562 struct device_attribute *attr, char *buf)
1564 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565 return sprintf(buf, "%i\n", n);
1567 static ssize_t store_eeprom_delay(struct device *d,
1568 struct device_attribute *attr,
1569 const char *buf, size_t count)
1571 struct ipw_priv *p = d->driver_data;
1572 sscanf(buf, "%i", &p->eeprom_delay);
1573 return strnlen(buf, count);
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577 show_eeprom_delay, store_eeprom_delay);
1579 static ssize_t show_command_event_reg(struct device *d,
1580 struct device_attribute *attr, char *buf)
1583 struct ipw_priv *p = d->driver_data;
1585 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586 return sprintf(buf, "0x%08x\n", reg);
1588 static ssize_t store_command_event_reg(struct device *d,
1589 struct device_attribute *attr,
1590 const char *buf, size_t count)
1593 struct ipw_priv *p = d->driver_data;
1595 sscanf(buf, "%x", ®);
1596 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597 return strnlen(buf, count);
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601 show_command_event_reg, store_command_event_reg);
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604 struct device_attribute *attr, char *buf)
1607 struct ipw_priv *p = d->driver_data;
1609 reg = ipw_read_reg32(p, 0x301100);
1610 return sprintf(buf, "0x%08x\n", reg);
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613 struct device_attribute *attr,
1614 const char *buf, size_t count)
1617 struct ipw_priv *p = d->driver_data;
1619 sscanf(buf, "%x", ®);
1620 ipw_write_reg32(p, 0x301100, reg);
1621 return strnlen(buf, count);
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625 show_mem_gpio_reg, store_mem_gpio_reg);
1627 static ssize_t show_indirect_dword(struct device *d,
1628 struct device_attribute *attr, char *buf)
1631 struct ipw_priv *priv = d->driver_data;
1633 if (priv->status & STATUS_INDIRECT_DWORD)
1634 reg = ipw_read_reg32(priv, priv->indirect_dword);
1638 return sprintf(buf, "0x%08x\n", reg);
1640 static ssize_t store_indirect_dword(struct device *d,
1641 struct device_attribute *attr,
1642 const char *buf, size_t count)
1644 struct ipw_priv *priv = d->driver_data;
1646 sscanf(buf, "%x", &priv->indirect_dword);
1647 priv->status |= STATUS_INDIRECT_DWORD;
1648 return strnlen(buf, count);
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652 show_indirect_dword, store_indirect_dword);
1654 static ssize_t show_indirect_byte(struct device *d,
1655 struct device_attribute *attr, char *buf)
1658 struct ipw_priv *priv = d->driver_data;
1660 if (priv->status & STATUS_INDIRECT_BYTE)
1661 reg = ipw_read_reg8(priv, priv->indirect_byte);
1665 return sprintf(buf, "0x%02x\n", reg);
1667 static ssize_t store_indirect_byte(struct device *d,
1668 struct device_attribute *attr,
1669 const char *buf, size_t count)
1671 struct ipw_priv *priv = d->driver_data;
1673 sscanf(buf, "%x", &priv->indirect_byte);
1674 priv->status |= STATUS_INDIRECT_BYTE;
1675 return strnlen(buf, count);
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679 show_indirect_byte, store_indirect_byte);
1681 static ssize_t show_direct_dword(struct device *d,
1682 struct device_attribute *attr, char *buf)
1685 struct ipw_priv *priv = d->driver_data;
1687 if (priv->status & STATUS_DIRECT_DWORD)
1688 reg = ipw_read32(priv, priv->direct_dword);
1692 return sprintf(buf, "0x%08x\n", reg);
1694 static ssize_t store_direct_dword(struct device *d,
1695 struct device_attribute *attr,
1696 const char *buf, size_t count)
1698 struct ipw_priv *priv = d->driver_data;
1700 sscanf(buf, "%x", &priv->direct_dword);
1701 priv->status |= STATUS_DIRECT_DWORD;
1702 return strnlen(buf, count);
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706 show_direct_dword, store_direct_dword);
1708 static int rf_kill_active(struct ipw_priv *priv)
1710 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711 priv->status |= STATUS_RF_KILL_HW;
1713 priv->status &= ~STATUS_RF_KILL_HW;
1715 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1721 /* 0 - RF kill not enabled
1722 1 - SW based RF kill active (sysfs)
1723 2 - HW based RF kill active
1724 3 - Both HW and SW baed RF kill active */
1725 struct ipw_priv *priv = d->driver_data;
1726 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727 (rf_kill_active(priv) ? 0x2 : 0x0);
1728 return sprintf(buf, "%i\n", val);
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1733 if ((disable_radio ? 1 : 0) ==
1734 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1737 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1738 disable_radio ? "OFF" : "ON");
1740 if (disable_radio) {
1741 priv->status |= STATUS_RF_KILL_SW;
1743 if (priv->workqueue)
1744 cancel_delayed_work(&priv->request_scan);
1745 queue_work(priv->workqueue, &priv->down);
1747 priv->status &= ~STATUS_RF_KILL_SW;
1748 if (rf_kill_active(priv)) {
1749 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750 "disabled by HW switch\n");
1751 /* Make sure the RF_KILL check timer is running */
1752 cancel_delayed_work(&priv->rf_kill);
1753 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1756 queue_work(priv->workqueue, &priv->up);
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763 const char *buf, size_t count)
1765 struct ipw_priv *priv = d->driver_data;
1767 ipw_radio_kill_sw(priv, buf[0] == '1');
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1777 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778 int pos = 0, len = 0;
1779 if (priv->config & CFG_SPEED_SCAN) {
1780 while (priv->speed_scan[pos] != 0)
1781 len += sprintf(&buf[len], "%d ",
1782 priv->speed_scan[pos++]);
1783 return len + sprintf(&buf[len], "\n");
1786 return sprintf(buf, "0\n");
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790 const char *buf, size_t count)
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int channel, pos = 0;
1794 const char *p = buf;
1796 /* list of space separated channels to scan, optionally ending with 0 */
1797 while ((channel = simple_strtol(p, NULL, 0))) {
1798 if (pos == MAX_SPEED_SCAN - 1) {
1799 priv->speed_scan[pos] = 0;
1803 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804 priv->speed_scan[pos++] = channel;
1806 IPW_WARNING("Skipping invalid channel request: %d\n",
1811 while (*p == ' ' || *p == '\t')
1816 priv->config &= ~CFG_SPEED_SCAN;
1818 priv->speed_scan_pos = 0;
1819 priv->config |= CFG_SPEED_SCAN;
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1831 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836 const char *buf, size_t count)
1838 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1840 priv->config |= CFG_NET_STATS;
1842 priv->config &= ~CFG_NET_STATS;
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848 show_net_stats, store_net_stats);
1850 static ssize_t show_channels(struct device *d,
1851 struct device_attribute *attr,
1854 struct ipw_priv *priv = dev_get_drvdata(d);
1855 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1858 len = sprintf(&buf[len],
1859 "Displaying %d channels in 2.4Ghz band "
1860 "(802.11bg):\n", geo->bg_channels);
1862 for (i = 0; i < geo->bg_channels; i++) {
1863 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1865 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1866 " (radar spectrum)" : "",
1867 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1868 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1870 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1871 "passive only" : "active/passive",
1872 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1876 len += sprintf(&buf[len],
1877 "Displaying %d channels in 5.2Ghz band "
1878 "(802.11a):\n", geo->a_channels);
1879 for (i = 0; i < geo->a_channels; i++) {
1880 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1882 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1883 " (radar spectrum)" : "",
1884 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1885 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1887 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1888 "passive only" : "active/passive");
1894 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1896 static void notify_wx_assoc_event(struct ipw_priv *priv)
1898 union iwreq_data wrqu;
1899 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1900 if (priv->status & STATUS_ASSOCIATED)
1901 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1903 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1904 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1907 static void ipw_irq_tasklet(struct ipw_priv *priv)
1909 u32 inta, inta_mask, handled = 0;
1910 unsigned long flags;
1913 spin_lock_irqsave(&priv->irq_lock, flags);
1915 inta = ipw_read32(priv, IPW_INTA_RW);
1916 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1917 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1919 /* Add any cached INTA values that need to be handled */
1920 inta |= priv->isr_inta;
1922 spin_unlock_irqrestore(&priv->irq_lock, flags);
1924 spin_lock_irqsave(&priv->lock, flags);
1926 /* handle all the justifications for the interrupt */
1927 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1929 handled |= IPW_INTA_BIT_RX_TRANSFER;
1932 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1933 IPW_DEBUG_HC("Command completed.\n");
1934 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1935 priv->status &= ~STATUS_HCMD_ACTIVE;
1936 wake_up_interruptible(&priv->wait_command_queue);
1937 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1940 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1941 IPW_DEBUG_TX("TX_QUEUE_1\n");
1942 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1943 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1946 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1947 IPW_DEBUG_TX("TX_QUEUE_2\n");
1948 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1949 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1952 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1953 IPW_DEBUG_TX("TX_QUEUE_3\n");
1954 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1955 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1958 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1959 IPW_DEBUG_TX("TX_QUEUE_4\n");
1960 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1961 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1964 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1965 IPW_WARNING("STATUS_CHANGE\n");
1966 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1969 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1970 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1971 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1974 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1975 IPW_WARNING("HOST_CMD_DONE\n");
1976 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1979 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1980 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1981 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1984 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1985 IPW_WARNING("PHY_OFF_DONE\n");
1986 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1989 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1990 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1991 priv->status |= STATUS_RF_KILL_HW;
1992 wake_up_interruptible(&priv->wait_command_queue);
1993 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1994 cancel_delayed_work(&priv->request_scan);
1995 schedule_work(&priv->link_down);
1996 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1997 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2000 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2001 IPW_WARNING("Firmware error detected. Restarting.\n");
2003 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2004 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2005 struct ipw_fw_error *error =
2006 ipw_alloc_error_log(priv);
2007 ipw_dump_error_log(priv, error);
2011 priv->error = ipw_alloc_error_log(priv);
2013 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2015 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2017 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2018 ipw_dump_error_log(priv, priv->error);
2021 /* XXX: If hardware encryption is for WPA/WPA2,
2022 * we have to notify the supplicant. */
2023 if (priv->ieee->sec.encrypt) {
2024 priv->status &= ~STATUS_ASSOCIATED;
2025 notify_wx_assoc_event(priv);
2028 /* Keep the restart process from trying to send host
2029 * commands by clearing the INIT status bit */
2030 priv->status &= ~STATUS_INIT;
2032 /* Cancel currently queued command. */
2033 priv->status &= ~STATUS_HCMD_ACTIVE;
2034 wake_up_interruptible(&priv->wait_command_queue);
2036 queue_work(priv->workqueue, &priv->adapter_restart);
2037 handled |= IPW_INTA_BIT_FATAL_ERROR;
2040 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2041 IPW_ERROR("Parity error\n");
2042 handled |= IPW_INTA_BIT_PARITY_ERROR;
2045 if (handled != inta) {
2046 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2049 spin_unlock_irqrestore(&priv->lock, flags);
2051 /* enable all interrupts */
2052 ipw_enable_interrupts(priv);
2055 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2056 static char *get_cmd_string(u8 cmd)
2059 IPW_CMD(HOST_COMPLETE);
2060 IPW_CMD(POWER_DOWN);
2061 IPW_CMD(SYSTEM_CONFIG);
2062 IPW_CMD(MULTICAST_ADDRESS);
2064 IPW_CMD(ADAPTER_ADDRESS);
2066 IPW_CMD(RTS_THRESHOLD);
2067 IPW_CMD(FRAG_THRESHOLD);
2068 IPW_CMD(POWER_MODE);
2070 IPW_CMD(TGI_TX_KEY);
2071 IPW_CMD(SCAN_REQUEST);
2072 IPW_CMD(SCAN_REQUEST_EXT);
2074 IPW_CMD(SUPPORTED_RATES);
2075 IPW_CMD(SCAN_ABORT);
2077 IPW_CMD(QOS_PARAMETERS);
2078 IPW_CMD(DINO_CONFIG);
2079 IPW_CMD(RSN_CAPABILITIES);
2081 IPW_CMD(CARD_DISABLE);
2082 IPW_CMD(SEED_NUMBER);
2084 IPW_CMD(COUNTRY_INFO);
2085 IPW_CMD(AIRONET_INFO);
2086 IPW_CMD(AP_TX_POWER);
2088 IPW_CMD(CCX_VER_INFO);
2089 IPW_CMD(SET_CALIBRATION);
2090 IPW_CMD(SENSITIVITY_CALIB);
2091 IPW_CMD(RETRY_LIMIT);
2092 IPW_CMD(IPW_PRE_POWER_DOWN);
2093 IPW_CMD(VAP_BEACON_TEMPLATE);
2094 IPW_CMD(VAP_DTIM_PERIOD);
2095 IPW_CMD(EXT_SUPPORTED_RATES);
2096 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2097 IPW_CMD(VAP_QUIET_INTERVALS);
2098 IPW_CMD(VAP_CHANNEL_SWITCH);
2099 IPW_CMD(VAP_MANDATORY_CHANNELS);
2100 IPW_CMD(VAP_CELL_PWR_LIMIT);
2101 IPW_CMD(VAP_CF_PARAM_SET);
2102 IPW_CMD(VAP_SET_BEACONING_STATE);
2103 IPW_CMD(MEASUREMENT);
2104 IPW_CMD(POWER_CAPABILITY);
2105 IPW_CMD(SUPPORTED_CHANNELS);
2106 IPW_CMD(TPC_REPORT);
2108 IPW_CMD(PRODUCTION_COMMAND);
2114 #define HOST_COMPLETE_TIMEOUT HZ
2116 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2119 unsigned long flags;
2121 spin_lock_irqsave(&priv->lock, flags);
2122 if (priv->status & STATUS_HCMD_ACTIVE) {
2123 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2124 get_cmd_string(cmd->cmd));
2125 spin_unlock_irqrestore(&priv->lock, flags);
2129 priv->status |= STATUS_HCMD_ACTIVE;
2132 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2133 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2134 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2135 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2137 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2140 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2141 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2144 #ifndef DEBUG_CMD_WEP_KEY
2145 if (cmd->cmd == IPW_CMD_WEP_KEY)
2146 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2149 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2151 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2153 priv->status &= ~STATUS_HCMD_ACTIVE;
2154 IPW_ERROR("Failed to send %s: Reason %d\n",
2155 get_cmd_string(cmd->cmd), rc);
2156 spin_unlock_irqrestore(&priv->lock, flags);
2159 spin_unlock_irqrestore(&priv->lock, flags);
2161 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2163 status & STATUS_HCMD_ACTIVE),
2164 HOST_COMPLETE_TIMEOUT);
2166 spin_lock_irqsave(&priv->lock, flags);
2167 if (priv->status & STATUS_HCMD_ACTIVE) {
2168 IPW_ERROR("Failed to send %s: Command timed out.\n",
2169 get_cmd_string(cmd->cmd));
2170 priv->status &= ~STATUS_HCMD_ACTIVE;
2171 spin_unlock_irqrestore(&priv->lock, flags);
2175 spin_unlock_irqrestore(&priv->lock, flags);
2179 if (priv->status & STATUS_RF_KILL_HW) {
2180 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2181 get_cmd_string(cmd->cmd));
2188 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2189 priv->cmdlog_pos %= priv->cmdlog_len;
2194 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2196 struct host_cmd cmd = {
2200 return __ipw_send_cmd(priv, &cmd);
2203 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2206 struct host_cmd cmd = {
2212 return __ipw_send_cmd(priv, &cmd);
2215 static int ipw_send_host_complete(struct ipw_priv *priv)
2218 IPW_ERROR("Invalid args\n");
2222 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2225 static int ipw_send_system_config(struct ipw_priv *priv)
2227 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2228 sizeof(priv->sys_config),
2232 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2234 if (!priv || !ssid) {
2235 IPW_ERROR("Invalid args\n");
2239 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2243 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2245 if (!priv || !mac) {
2246 IPW_ERROR("Invalid args\n");
2250 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2251 priv->net_dev->name, MAC_ARG(mac));
2253 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2257 * NOTE: This must be executed from our workqueue as it results in udelay
2258 * being called which may corrupt the keyboard if executed on default
2261 static void ipw_adapter_restart(void *adapter)
2263 struct ipw_priv *priv = adapter;
2265 if (priv->status & STATUS_RF_KILL_MASK)
2270 if (priv->assoc_network &&
2271 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2272 ipw_remove_current_network(priv);
2275 IPW_ERROR("Failed to up device\n");
2280 static void ipw_bg_adapter_restart(struct work_struct *work)
2282 struct ipw_priv *priv =
2283 container_of(work, struct ipw_priv, adapter_restart);
2284 mutex_lock(&priv->mutex);
2285 ipw_adapter_restart(priv);
2286 mutex_unlock(&priv->mutex);
2289 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2291 static void ipw_scan_check(void *data)
2293 struct ipw_priv *priv = data;
2294 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2295 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2296 "adapter after (%dms).\n",
2297 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2298 queue_work(priv->workqueue, &priv->adapter_restart);
2302 static void ipw_bg_scan_check(struct work_struct *work)
2304 struct ipw_priv *priv =
2305 container_of(work, struct ipw_priv, scan_check.work);
2306 mutex_lock(&priv->mutex);
2307 ipw_scan_check(priv);
2308 mutex_unlock(&priv->mutex);
2311 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2312 struct ipw_scan_request_ext *request)
2314 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2315 sizeof(*request), request);
2318 static int ipw_send_scan_abort(struct ipw_priv *priv)
2321 IPW_ERROR("Invalid args\n");
2325 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2328 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2330 struct ipw_sensitivity_calib calib = {
2331 .beacon_rssi_raw = cpu_to_le16(sens),
2334 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2338 static int ipw_send_associate(struct ipw_priv *priv,
2339 struct ipw_associate *associate)
2341 struct ipw_associate tmp_associate;
2343 if (!priv || !associate) {
2344 IPW_ERROR("Invalid args\n");
2348 memcpy(&tmp_associate, associate, sizeof(*associate));
2349 tmp_associate.policy_support =
2350 cpu_to_le16(tmp_associate.policy_support);
2351 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2352 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2353 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2354 tmp_associate.listen_interval =
2355 cpu_to_le16(tmp_associate.listen_interval);
2356 tmp_associate.beacon_interval =
2357 cpu_to_le16(tmp_associate.beacon_interval);
2358 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2360 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365 struct ipw_supported_rates *rates)
2367 if (!priv || !rates) {
2368 IPW_ERROR("Invalid args\n");
2372 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2381 IPW_ERROR("Invalid args\n");
2385 get_random_bytes(&val, sizeof(val));
2387 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2393 IPW_ERROR("Invalid args\n");
2397 phy_off = cpu_to_le32(phy_off);
2398 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2402 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2404 if (!priv || !power) {
2405 IPW_ERROR("Invalid args\n");
2409 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2412 static int ipw_set_tx_power(struct ipw_priv *priv)
2414 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2415 struct ipw_tx_power tx_power;
2419 memset(&tx_power, 0, sizeof(tx_power));
2421 /* configure device for 'G' band */
2422 tx_power.ieee_mode = IPW_G_MODE;
2423 tx_power.num_channels = geo->bg_channels;
2424 for (i = 0; i < geo->bg_channels; i++) {
2425 max_power = geo->bg[i].max_power;
2426 tx_power.channels_tx_power[i].channel_number =
2428 tx_power.channels_tx_power[i].tx_power = max_power ?
2429 min(max_power, priv->tx_power) : priv->tx_power;
2431 if (ipw_send_tx_power(priv, &tx_power))
2434 /* configure device to also handle 'B' band */
2435 tx_power.ieee_mode = IPW_B_MODE;
2436 if (ipw_send_tx_power(priv, &tx_power))
2439 /* configure device to also handle 'A' band */
2440 if (priv->ieee->abg_true) {
2441 tx_power.ieee_mode = IPW_A_MODE;
2442 tx_power.num_channels = geo->a_channels;
2443 for (i = 0; i < tx_power.num_channels; i++) {
2444 max_power = geo->a[i].max_power;
2445 tx_power.channels_tx_power[i].channel_number =
2447 tx_power.channels_tx_power[i].tx_power = max_power ?
2448 min(max_power, priv->tx_power) : priv->tx_power;
2450 if (ipw_send_tx_power(priv, &tx_power))
2456 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2458 struct ipw_rts_threshold rts_threshold = {
2459 .rts_threshold = cpu_to_le16(rts),
2463 IPW_ERROR("Invalid args\n");
2467 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2468 sizeof(rts_threshold), &rts_threshold);
2471 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2473 struct ipw_frag_threshold frag_threshold = {
2474 .frag_threshold = cpu_to_le16(frag),
2478 IPW_ERROR("Invalid args\n");
2482 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2483 sizeof(frag_threshold), &frag_threshold);
2486 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2491 IPW_ERROR("Invalid args\n");
2495 /* If on battery, set to 3, if AC set to CAM, else user
2498 case IPW_POWER_BATTERY:
2499 param = IPW_POWER_INDEX_3;
2502 param = IPW_POWER_MODE_CAM;
2509 param = cpu_to_le32(mode);
2510 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2514 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2516 struct ipw_retry_limit retry_limit = {
2517 .short_retry_limit = slimit,
2518 .long_retry_limit = llimit
2522 IPW_ERROR("Invalid args\n");
2526 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2531 * The IPW device contains a Microwire compatible EEPROM that stores
2532 * various data like the MAC address. Usually the firmware has exclusive
2533 * access to the eeprom, but during device initialization (before the
2534 * device driver has sent the HostComplete command to the firmware) the
2535 * device driver has read access to the EEPROM by way of indirect addressing
2536 * through a couple of memory mapped registers.
2538 * The following is a simplified implementation for pulling data out of the
2539 * the eeprom, along with some helper functions to find information in
2540 * the per device private data's copy of the eeprom.
2542 * NOTE: To better understand how these functions work (i.e what is a chip
2543 * select and why do have to keep driving the eeprom clock?), read
2544 * just about any data sheet for a Microwire compatible EEPROM.
2547 /* write a 32 bit value into the indirect accessor register */
2548 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2550 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2552 /* the eeprom requires some time to complete the operation */
2553 udelay(p->eeprom_delay);
2558 /* perform a chip select operation */
2559 static void eeprom_cs(struct ipw_priv *priv)
2561 eeprom_write_reg(priv, 0);
2562 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2567 /* perform a chip select operation */
2568 static void eeprom_disable_cs(struct ipw_priv *priv)
2570 eeprom_write_reg(priv, EEPROM_BIT_CS);
2571 eeprom_write_reg(priv, 0);
2572 eeprom_write_reg(priv, EEPROM_BIT_SK);
2575 /* push a single bit down to the eeprom */
2576 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2578 int d = (bit ? EEPROM_BIT_DI : 0);
2579 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2580 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583 /* push an opcode followed by an address down to the eeprom */
2584 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2589 eeprom_write_bit(priv, 1);
2590 eeprom_write_bit(priv, op & 2);
2591 eeprom_write_bit(priv, op & 1);
2592 for (i = 7; i >= 0; i--) {
2593 eeprom_write_bit(priv, addr & (1 << i));
2597 /* pull 16 bits off the eeprom, one bit at a time */
2598 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2603 /* Send READ Opcode */
2604 eeprom_op(priv, EEPROM_CMD_READ, addr);
2606 /* Send dummy bit */
2607 eeprom_write_reg(priv, EEPROM_BIT_CS);
2609 /* Read the byte off the eeprom one bit at a time */
2610 for (i = 0; i < 16; i++) {
2612 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2615 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618 /* Send another dummy bit */
2619 eeprom_write_reg(priv, 0);
2620 eeprom_disable_cs(priv);
2625 /* helper function for pulling the mac address out of the private */
2626 /* data's copy of the eeprom data */
2627 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2629 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2633 * Either the device driver (i.e. the host) or the firmware can
2634 * load eeprom data into the designated region in SRAM. If neither
2635 * happens then the FW will shutdown with a fatal error.
2637 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2638 * bit needs region of shared SRAM needs to be non-zero.
2640 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643 u16 *eeprom = (u16 *) priv->eeprom;
2645 IPW_DEBUG_TRACE(">>\n");
2647 /* read entire contents of eeprom into private buffer */
2648 for (i = 0; i < 128; i++)
2649 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2652 If the data looks correct, then copy it to our private
2653 copy. Otherwise let the firmware know to perform the operation
2656 if (priv->eeprom[EEPROM_VERSION] != 0) {
2657 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2659 /* write the eeprom data to sram */
2660 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2661 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2663 /* Do not load eeprom data on fatal error or suspend */
2664 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2666 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2668 /* Load eeprom data on fatal error or suspend */
2669 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672 IPW_DEBUG_TRACE("<<\n");
2675 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2680 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2682 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2687 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2688 CB_NUMBER_OF_ELEMENTS_SMALL *
2689 sizeof(struct command_block));
2692 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2693 { /* start dma engine but no transfers yet */
2695 IPW_DEBUG_FW(">> : \n");
2698 ipw_fw_dma_reset_command_blocks(priv);
2700 /* Write CB base address */
2701 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2703 IPW_DEBUG_FW("<< : \n");
2707 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 IPW_DEBUG_FW(">> :\n");
2713 /* set the Stop and Abort bit */
2714 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2715 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2716 priv->sram_desc.last_cb_index = 0;
2718 IPW_DEBUG_FW("<< \n");
2721 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2722 struct command_block *cb)
2725 IPW_SHARED_SRAM_DMA_CONTROL +
2726 (sizeof(struct command_block) * index);
2727 IPW_DEBUG_FW(">> :\n");
2729 ipw_write_indirect(priv, address, (u8 *) cb,
2730 (int)sizeof(struct command_block));
2732 IPW_DEBUG_FW("<< :\n");
2737 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2742 IPW_DEBUG_FW(">> :\n");
2744 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2745 ipw_fw_dma_write_command_block(priv, index,
2746 &priv->sram_desc.cb_list[index]);
2748 /* Enable the DMA in the CSR register */
2749 ipw_clear_bit(priv, IPW_RESET_REG,
2750 IPW_RESET_REG_MASTER_DISABLED |
2751 IPW_RESET_REG_STOP_MASTER);
2753 /* Set the Start bit. */
2754 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2755 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2757 IPW_DEBUG_FW("<< :\n");
2761 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764 u32 register_value = 0;
2765 u32 cb_fields_address = 0;
2767 IPW_DEBUG_FW(">> :\n");
2768 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2769 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2771 /* Read the DMA Controlor register */
2772 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2773 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2775 /* Print the CB values */
2776 cb_fields_address = address;
2777 register_value = ipw_read_reg32(priv, cb_fields_address);
2778 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2780 cb_fields_address += sizeof(u32);
2781 register_value = ipw_read_reg32(priv, cb_fields_address);
2782 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2784 cb_fields_address += sizeof(u32);
2785 register_value = ipw_read_reg32(priv, cb_fields_address);
2786 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 cb_fields_address += sizeof(u32);
2790 register_value = ipw_read_reg32(priv, cb_fields_address);
2791 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2793 IPW_DEBUG_FW(">> :\n");
2796 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2798 u32 current_cb_address = 0;
2799 u32 current_cb_index = 0;
2801 IPW_DEBUG_FW("<< :\n");
2802 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2804 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2805 sizeof(struct command_block);
2807 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2808 current_cb_index, current_cb_address);
2810 IPW_DEBUG_FW(">> :\n");
2811 return current_cb_index;
2815 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2819 int interrupt_enabled, int is_last)
2822 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2823 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2825 struct command_block *cb;
2826 u32 last_cb_element = 0;
2828 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2829 src_address, dest_address, length);
2831 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 last_cb_element = priv->sram_desc.last_cb_index;
2835 cb = &priv->sram_desc.cb_list[last_cb_element];
2836 priv->sram_desc.last_cb_index++;
2838 /* Calculate the new CB control word */
2839 if (interrupt_enabled)
2840 control |= CB_INT_ENABLED;
2843 control |= CB_LAST_VALID;
2847 /* Calculate the CB Element's checksum value */
2848 cb->status = control ^ src_address ^ dest_address;
2850 /* Copy the Source and Destination addresses */
2851 cb->dest_addr = dest_address;
2852 cb->source_addr = src_address;
2854 /* Copy the Control Word last */
2855 cb->control = control;
2860 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2861 u32 src_phys, u32 dest_address, u32 length)
2863 u32 bytes_left = length;
2865 u32 dest_offset = 0;
2867 IPW_DEBUG_FW(">> \n");
2868 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2869 src_phys, dest_address, length);
2870 while (bytes_left > CB_MAX_LENGTH) {
2871 status = ipw_fw_dma_add_command_block(priv,
2872 src_phys + src_offset,
2875 CB_MAX_LENGTH, 0, 0);
2877 IPW_DEBUG_FW_INFO(": Failed\n");
2880 IPW_DEBUG_FW_INFO(": Added new cb\n");
2882 src_offset += CB_MAX_LENGTH;
2883 dest_offset += CB_MAX_LENGTH;
2884 bytes_left -= CB_MAX_LENGTH;
2887 /* add the buffer tail */
2888 if (bytes_left > 0) {
2890 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2891 dest_address + dest_offset,
2894 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2898 (": Adding new cb - the buffer tail\n");
2901 IPW_DEBUG_FW("<< \n");
2905 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2907 u32 current_index = 0, previous_index;
2910 IPW_DEBUG_FW(">> : \n");
2912 current_index = ipw_fw_dma_command_block_index(priv);
2913 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2914 (int)priv->sram_desc.last_cb_index);
2916 while (current_index < priv->sram_desc.last_cb_index) {
2918 previous_index = current_index;
2919 current_index = ipw_fw_dma_command_block_index(priv);
2921 if (previous_index < current_index) {
2925 if (++watchdog > 400) {
2926 IPW_DEBUG_FW_INFO("Timeout\n");
2927 ipw_fw_dma_dump_command_block(priv);
2928 ipw_fw_dma_abort(priv);
2933 ipw_fw_dma_abort(priv);
2935 /*Disable the DMA in the CSR register */
2936 ipw_set_bit(priv, IPW_RESET_REG,
2937 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2939 IPW_DEBUG_FW("<< dmaWaitSync \n");
2943 static void ipw_remove_current_network(struct ipw_priv *priv)
2945 struct list_head *element, *safe;
2946 struct ieee80211_network *network = NULL;
2947 unsigned long flags;
2949 spin_lock_irqsave(&priv->ieee->lock, flags);
2950 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2951 network = list_entry(element, struct ieee80211_network, list);
2952 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2954 list_add_tail(&network->list,
2955 &priv->ieee->network_free_list);
2958 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2962 * Check that card is still alive.
2963 * Reads debug register from domain0.
2964 * If card is present, pre-defined value should
2968 * @return 1 if card is present, 0 otherwise
2970 static inline int ipw_alive(struct ipw_priv *priv)
2972 return ipw_read32(priv, 0x90) == 0xd55555d5;
2975 /* timeout in msec, attempted in 10-msec quanta */
2976 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2982 if ((ipw_read32(priv, addr) & mask) == mask)
2986 } while (i < timeout);
2991 /* These functions load the firmware and micro code for the operation of
2992 * the ipw hardware. It assumes the buffer has all the bits for the
2993 * image and the caller is handling the memory allocation and clean up.
2996 static int ipw_stop_master(struct ipw_priv *priv)
3000 IPW_DEBUG_TRACE(">> \n");
3001 /* stop master. typical delay - 0 */
3002 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3004 /* timeout is in msec, polled in 10-msec quanta */
3005 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3006 IPW_RESET_REG_MASTER_DISABLED, 100);
3008 IPW_ERROR("wait for stop master failed after 100ms\n");
3012 IPW_DEBUG_INFO("stop master %dms\n", rc);
3017 static void ipw_arc_release(struct ipw_priv *priv)
3019 IPW_DEBUG_TRACE(">> \n");
3022 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3024 /* no one knows timing, for safety add some delay */
3033 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3035 int rc = 0, i, addr;
3039 image = (u16 *) data;
3041 IPW_DEBUG_TRACE(">> \n");
3043 rc = ipw_stop_master(priv);
3048 for (addr = IPW_SHARED_LOWER_BOUND;
3049 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3050 ipw_write32(priv, addr, 0);
3053 /* no ucode (yet) */
3054 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3055 /* destroy DMA queues */
3056 /* reset sequence */
3058 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3059 ipw_arc_release(priv);
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3064 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 /* enable ucode store */
3071 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3072 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3078 * Do NOT set indirect address register once and then
3079 * store data to indirect data register in the loop.
3080 * It seems very reasonable, but in this case DINO do not
3081 * accept ucode. It is essential to set address each time.
3083 /* load new ipw uCode */
3084 for (i = 0; i < len / 2; i++)
3085 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3086 cpu_to_le16(image[i]));
3089 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3090 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3092 /* this is where the igx / win driver deveates from the VAP driver. */
3094 /* wait for alive response */
3095 for (i = 0; i < 100; i++) {
3096 /* poll for incoming data */
3097 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3098 if (cr & DINO_RXFIFO_DATA)
3103 if (cr & DINO_RXFIFO_DATA) {
3104 /* alive_command_responce size is NOT multiple of 4 */
3105 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3107 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3108 response_buffer[i] =
3109 le32_to_cpu(ipw_read_reg32(priv,
3110 IPW_BASEBAND_RX_FIFO_READ));
3111 memcpy(&priv->dino_alive, response_buffer,
3112 sizeof(priv->dino_alive));
3113 if (priv->dino_alive.alive_command == 1
3114 && priv->dino_alive.ucode_valid == 1) {
3117 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3118 "of %02d/%02d/%02d %02d:%02d\n",
3119 priv->dino_alive.software_revision,
3120 priv->dino_alive.software_revision,
3121 priv->dino_alive.device_identifier,
3122 priv->dino_alive.device_identifier,
3123 priv->dino_alive.time_stamp[0],
3124 priv->dino_alive.time_stamp[1],
3125 priv->dino_alive.time_stamp[2],
3126 priv->dino_alive.time_stamp[3],
3127 priv->dino_alive.time_stamp[4]);
3129 IPW_DEBUG_INFO("Microcode is not alive\n");
3133 IPW_DEBUG_INFO("No alive response from DINO\n");
3137 /* disable DINO, otherwise for some reason
3138 firmware have problem getting alive resp. */
3139 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 struct fw_chunk *chunk;
3149 dma_addr_t shared_phys;
3152 IPW_DEBUG_TRACE("<< : \n");
3153 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3158 memmove(shared_virt, data, len);
3161 rc = ipw_fw_dma_enable(priv);
3163 if (priv->sram_desc.last_cb_index > 0) {
3164 /* the DMA is already ready this would be a bug. */
3170 chunk = (struct fw_chunk *)(data + offset);
3171 offset += sizeof(struct fw_chunk);
3172 /* build DMA packet and queue up for sending */
3173 /* dma to chunk->address, the chunk->length bytes from data +
3176 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3177 le32_to_cpu(chunk->address),
3178 le32_to_cpu(chunk->length));
3180 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3184 offset += le32_to_cpu(chunk->length);
3185 } while (offset < len);
3187 /* Run the DMA and wait for the answer */
3188 rc = ipw_fw_dma_kick(priv);
3190 IPW_ERROR("dmaKick Failed\n");
3194 rc = ipw_fw_dma_wait(priv);
3196 IPW_ERROR("dmaWaitSync Failed\n");
3200 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3205 static int ipw_stop_nic(struct ipw_priv *priv)
3210 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3212 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3213 IPW_RESET_REG_MASTER_DISABLED, 500);
3215 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3219 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3224 static void ipw_start_nic(struct ipw_priv *priv)
3226 IPW_DEBUG_TRACE(">>\n");
3228 /* prvHwStartNic release ARC */
3229 ipw_clear_bit(priv, IPW_RESET_REG,
3230 IPW_RESET_REG_MASTER_DISABLED |
3231 IPW_RESET_REG_STOP_MASTER |
3232 CBD_RESET_REG_PRINCETON_RESET);
3234 /* enable power management */
3235 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3236 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3238 IPW_DEBUG_TRACE("<<\n");
3241 static int ipw_init_nic(struct ipw_priv *priv)
3245 IPW_DEBUG_TRACE(">>\n");
3248 /* set "initialization complete" bit to move adapter to D0 state */
3249 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3251 /* low-level PLL activation */
3252 ipw_write32(priv, IPW_READ_INT_REGISTER,
3253 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3255 /* wait for clock stabilization */
3256 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3257 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3259 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3261 /* assert SW reset */
3262 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266 /* set "initialization complete" bit to move adapter to D0 state */
3267 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3269 IPW_DEBUG_TRACE(">>\n");
3273 /* Call this function from process context, it will sleep in request_firmware.
3274 * Probe is an ok place to call this from.
3276 static int ipw_reset_nic(struct ipw_priv *priv)
3279 unsigned long flags;
3281 IPW_DEBUG_TRACE(">>\n");
3283 rc = ipw_init_nic(priv);
3285 spin_lock_irqsave(&priv->lock, flags);
3286 /* Clear the 'host command active' bit... */
3287 priv->status &= ~STATUS_HCMD_ACTIVE;
3288 wake_up_interruptible(&priv->wait_command_queue);
3289 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3290 wake_up_interruptible(&priv->wait_state);
3291 spin_unlock_irqrestore(&priv->lock, flags);
3293 IPW_DEBUG_TRACE("<<\n");
3306 static int ipw_get_fw(struct ipw_priv *priv,
3307 const struct firmware **raw, const char *name)
3312 /* ask firmware_class module to get the boot firmware off disk */
3313 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3315 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3319 if ((*raw)->size < sizeof(*fw)) {
3320 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3324 fw = (void *)(*raw)->data;
3326 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3327 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3328 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3329 name, (*raw)->size);
3333 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3335 le32_to_cpu(fw->ver) >> 16,
3336 le32_to_cpu(fw->ver) & 0xff,
3337 (*raw)->size - sizeof(*fw));
3341 #define IPW_RX_BUF_SIZE (3000)
3343 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3344 struct ipw_rx_queue *rxq)
3346 unsigned long flags;
3349 spin_lock_irqsave(&rxq->lock, flags);
3351 INIT_LIST_HEAD(&rxq->rx_free);
3352 INIT_LIST_HEAD(&rxq->rx_used);
3354 /* Fill the rx_used queue with _all_ of the Rx buffers */
3355 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3356 /* In the reset function, these buffers may have been allocated
3357 * to an SKB, so we need to unmap and free potential storage */
3358 if (rxq->pool[i].skb != NULL) {
3359 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3360 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3361 dev_kfree_skb(rxq->pool[i].skb);
3362 rxq->pool[i].skb = NULL;
3364 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367 /* Set us so that we have processed and used all buffers, but have
3368 * not restocked the Rx queue with fresh buffers */
3369 rxq->read = rxq->write = 0;
3370 rxq->processed = RX_QUEUE_SIZE - 1;
3371 rxq->free_count = 0;
3372 spin_unlock_irqrestore(&rxq->lock, flags);
3376 static int fw_loaded = 0;
3377 static const struct firmware *raw = NULL;
3379 static void free_firmware(void)
3382 release_firmware(raw);
3388 #define free_firmware() do {} while (0)
3391 static int ipw_load(struct ipw_priv *priv)
3394 const struct firmware *raw = NULL;
3397 u8 *boot_img, *ucode_img, *fw_img;
3399 int rc = 0, retries = 3;
3401 switch (priv->ieee->iw_mode) {
3403 name = "ipw2200-ibss.fw";
3405 #ifdef CONFIG_IPW2200_MONITOR
3406 case IW_MODE_MONITOR:
3407 name = "ipw2200-sniffer.fw";
3411 name = "ipw2200-bss.fw";
3423 rc = ipw_get_fw(priv, &raw, name);
3430 fw = (void *)raw->data;
3431 boot_img = &fw->data[0];
3432 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3433 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3434 le32_to_cpu(fw->ucode_size)];
3440 priv->rxq = ipw_rx_queue_alloc(priv);
3442 ipw_rx_queue_reset(priv, priv->rxq);
3444 IPW_ERROR("Unable to initialize Rx queue\n");
3449 /* Ensure interrupts are disabled */
3450 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3451 priv->status &= ~STATUS_INT_ENABLED;
3453 /* ack pending interrupts */
3454 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3458 rc = ipw_reset_nic(priv);
3460 IPW_ERROR("Unable to reset NIC\n");
3464 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3465 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467 /* DMA the initial boot firmware into the device */
3468 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3474 /* kick start the device */
3475 ipw_start_nic(priv);
3477 /* wait for the device to finish its initial startup sequence */
3478 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3479 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 IPW_ERROR("device failed to boot initial fw image\n");
3484 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486 /* ack fw init done interrupt */
3487 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489 /* DMA the ucode into the device */
3490 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 IPW_ERROR("Unable to load ucode: %d\n", rc);
3499 /* DMA bss firmware into the device */
3500 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 IPW_ERROR("Unable to load firmware: %d\n", rc);
3509 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511 rc = ipw_queue_reset(priv);
3513 IPW_ERROR("Unable to initialize queues\n");
3517 /* Ensure interrupts are disabled */
3518 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519 /* ack pending interrupts */
3520 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522 /* kick start the device */
3523 ipw_start_nic(priv);
3525 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 IPW_WARNING("Parity error. Retrying init.\n");
3532 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3537 /* wait for the device */
3538 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3539 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 IPW_ERROR("device failed to start within 500ms\n");
3544 IPW_DEBUG_INFO("device response after %dms\n", rc);
3546 /* ack fw init done interrupt */
3547 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549 /* read eeprom data and initialize the eeprom region of sram */
3550 priv->eeprom_delay = 1;
3551 ipw_eeprom_init_sram(priv);
3553 /* enable interrupts */
3554 ipw_enable_interrupts(priv);
3556 /* Ensure our queue has valid packets */
3557 ipw_rx_queue_replenish(priv);
3559 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561 /* ack pending interrupts */
3562 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3565 release_firmware(raw);
3571 ipw_rx_queue_free(priv, priv->rxq);
3574 ipw_tx_queue_free(priv);
3576 release_firmware(raw);
3588 * Theory of operation
3590 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3591 * 2 empty entries always kept in the buffer to protect from overflow.
3593 * For Tx queue, there are low mark and high mark limits. If, after queuing
3594 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3595 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3598 * The IPW operates with six queues, one receive queue in the device's
3599 * sram, one transmit queue for sending commands to the device firmware,
3600 * and four transmit queues for data.
3602 * The four transmit queues allow for performing quality of service (qos)
3603 * transmissions as per the 802.11 protocol. Currently Linux does not
3604 * provide a mechanism to the user for utilizing prioritized queues, so
3605 * we only utilize the first data transmit queue (queue1).
3609 * Driver allocates buffers of this size for Rx
3612 static inline int ipw_queue_space(const struct clx2_queue *q)
3614 int s = q->last_used - q->first_empty;
3617 s -= 2; /* keep some reserve to not confuse empty and full situations */
3623 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3625 return (++index == n_bd) ? 0 : index;
3629 * Initialize common DMA queue structure
3631 * @param q queue to init
3632 * @param count Number of BD's to allocate. Should be power of 2
3633 * @param read_register Address for 'read' register
3634 * (not offset within BAR, full address)
3635 * @param write_register Address for 'write' register
3636 * (not offset within BAR, full address)
3637 * @param base_register Address for 'base' register
3638 * (not offset within BAR, full address)
3639 * @param size Address for 'size' register
3640 * (not offset within BAR, full address)
3642 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3643 int count, u32 read, u32 write, u32 base, u32 size)
3647 q->low_mark = q->n_bd / 4;
3648 if (q->low_mark < 4)
3651 q->high_mark = q->n_bd / 8;
3652 if (q->high_mark < 2)
3655 q->first_empty = q->last_used = 0;
3659 ipw_write32(priv, base, q->dma_addr);
3660 ipw_write32(priv, size, count);
3661 ipw_write32(priv, read, 0);
3662 ipw_write32(priv, write, 0);
3664 _ipw_read32(priv, 0x90);
3667 static int ipw_queue_tx_init(struct ipw_priv *priv,
3668 struct clx2_tx_queue *q,
3669 int count, u32 read, u32 write, u32 base, u32 size)
3671 struct pci_dev *dev = priv->pci_dev;
3673 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3675 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3680 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3682 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3683 sizeof(q->bd[0]) * count);
3689 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3694 * Free one TFD, those at index [txq->q.last_used].
3695 * Do NOT advance any indexes
3700 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3701 struct clx2_tx_queue *txq)
3703 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3704 struct pci_dev *dev = priv->pci_dev;
3708 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3709 /* nothing to cleanup after for host commands */
3713 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3714 IPW_ERROR("Too many chunks: %i\n",
3715 le32_to_cpu(bd->u.data.num_chunks));
3716 /** @todo issue fatal error, it is quite serious situation */
3720 /* unmap chunks if any */
3721 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3722 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3723 le16_to_cpu(bd->u.data.chunk_len[i]),
3725 if (txq->txb[txq->q.last_used]) {
3726 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3727 txq->txb[txq->q.last_used] = NULL;
3733 * Deallocate DMA queue.
3735 * Empty queue by removing and destroying all BD's.
3741 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3743 struct clx2_queue *q = &txq->q;
3744 struct pci_dev *dev = priv->pci_dev;
3749 /* first, empty all BD's */
3750 for (; q->first_empty != q->last_used;
3751 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3752 ipw_queue_tx_free_tfd(priv, txq);
3755 /* free buffers belonging to queue itself */
3756 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3760 /* 0 fill whole structure */
3761 memset(txq, 0, sizeof(*txq));
3765 * Destroy all DMA queues and structures
3769 static void ipw_tx_queue_free(struct ipw_priv *priv)
3772 ipw_queue_tx_free(priv, &priv->txq_cmd);
3775 ipw_queue_tx_free(priv, &priv->txq[0]);
3776 ipw_queue_tx_free(priv, &priv->txq[1]);
3777 ipw_queue_tx_free(priv, &priv->txq[2]);
3778 ipw_queue_tx_free(priv, &priv->txq[3]);
3781 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3783 /* First 3 bytes are manufacturer */
3784 bssid[0] = priv->mac_addr[0];
3785 bssid[1] = priv->mac_addr[1];
3786 bssid[2] = priv->mac_addr[2];
3788 /* Last bytes are random */
3789 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3791 bssid[0] &= 0xfe; /* clear multicast bit */
3792 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3795 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3797 struct ipw_station_entry entry;
3800 for (i = 0; i < priv->num_stations; i++) {
3801 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3802 /* Another node is active in network */
3803 priv->missed_adhoc_beacons = 0;
3804 if (!(priv->config & CFG_STATIC_CHANNEL))
3805 /* when other nodes drop out, we drop out */
3806 priv->config &= ~CFG_ADHOC_PERSIST;
3812 if (i == MAX_STATIONS)
3813 return IPW_INVALID_STATION;
3815 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3818 entry.support_mode = 0;
3819 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3820 memcpy(priv->stations[i], bssid, ETH_ALEN);
3821 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3822 &entry, sizeof(entry));
3823 priv->num_stations++;
3828 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3832 for (i = 0; i < priv->num_stations; i++)
3833 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3836 return IPW_INVALID_STATION;
3839 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3843 if (priv->status & STATUS_ASSOCIATING) {
3844 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3845 queue_work(priv->workqueue, &priv->disassociate);
3849 if (!(priv->status & STATUS_ASSOCIATED)) {
3850 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3854 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3856 MAC_ARG(priv->assoc_request.bssid),
3857 priv->assoc_request.channel);
3859 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3860 priv->status |= STATUS_DISASSOCIATING;
3863 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3865 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3867 err = ipw_send_associate(priv, &priv->assoc_request);
3869 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3876 static int ipw_disassociate(void *data)
3878 struct ipw_priv *priv = data;
3879 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3881 ipw_send_disassociate(data, 0);
3885 static void ipw_bg_disassociate(struct work_struct *work)
3887 struct ipw_priv *priv =
3888 container_of(work, struct ipw_priv, disassociate);
3889 mutex_lock(&priv->mutex);
3890 ipw_disassociate(priv);
3891 mutex_unlock(&priv->mutex);
3894 static void ipw_system_config(struct work_struct *work)
3896 struct ipw_priv *priv =
3897 container_of(work, struct ipw_priv, system_config);
3899 #ifdef CONFIG_IPW2200_PROMISCUOUS
3900 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3901 priv->sys_config.accept_all_data_frames = 1;
3902 priv->sys_config.accept_non_directed_frames = 1;
3903 priv->sys_config.accept_all_mgmt_bcpr = 1;
3904 priv->sys_config.accept_all_mgmt_frames = 1;
3908 ipw_send_system_config(priv);
3911 struct ipw_status_code {
3916 static const struct ipw_status_code ipw_status_codes[] = {
3917 {0x00, "Successful"},
3918 {0x01, "Unspecified failure"},
3919 {0x0A, "Cannot support all requested capabilities in the "
3920 "Capability information field"},
3921 {0x0B, "Reassociation denied due to inability to confirm that "
3922 "association exists"},
3923 {0x0C, "Association denied due to reason outside the scope of this "
3926 "Responding station does not support the specified authentication "
3929 "Received an Authentication frame with authentication sequence "
3930 "transaction sequence number out of expected sequence"},
3931 {0x0F, "Authentication rejected because of challenge failure"},
3932 {0x10, "Authentication rejected due to timeout waiting for next "
3933 "frame in sequence"},
3934 {0x11, "Association denied because AP is unable to handle additional "
3935 "associated stations"},
3937 "Association denied due to requesting station not supporting all "
3938 "of the datarates in the BSSBasicServiceSet Parameter"},
3940 "Association denied due to requesting station not supporting "
3941 "short preamble operation"},
3943 "Association denied due to requesting station not supporting "
3946 "Association denied due to requesting station not supporting "
3949 "Association denied due to requesting station not supporting "
3950 "short slot operation"},
3952 "Association denied due to requesting station not supporting "
3953 "DSSS-OFDM operation"},
3954 {0x28, "Invalid Information Element"},
3955 {0x29, "Group Cipher is not valid"},
3956 {0x2A, "Pairwise Cipher is not valid"},
3957 {0x2B, "AKMP is not valid"},
3958 {0x2C, "Unsupported RSN IE version"},
3959 {0x2D, "Invalid RSN IE Capabilities"},
3960 {0x2E, "Cipher suite is rejected per security policy"},
3963 static const char *ipw_get_status_code(u16 status)
3966 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3967 if (ipw_status_codes[i].status == (status & 0xff))
3968 return ipw_status_codes[i].reason;
3969 return "Unknown status value.";
3972 static void inline average_init(struct average *avg)
3974 memset(avg, 0, sizeof(*avg));
3977 #define DEPTH_RSSI 8
3978 #define DEPTH_NOISE 16
3979 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3981 return ((depth-1)*prev_avg + val)/depth;
3984 static void average_add(struct average *avg, s16 val)
3986 avg->sum -= avg->entries[avg->pos];
3988 avg->entries[avg->pos++] = val;
3989 if (unlikely(avg->pos == AVG_ENTRIES)) {
3995 static s16 average_value(struct average *avg)
3997 if (!unlikely(avg->init)) {
3999 return avg->sum / avg->pos;
4003 return avg->sum / AVG_ENTRIES;
4006 static void ipw_reset_stats(struct ipw_priv *priv)
4008 u32 len = sizeof(u32);
4012 average_init(&priv->average_missed_beacons);
4013 priv->exp_avg_rssi = -60;
4014 priv->exp_avg_noise = -85 + 0x100;
4016 priv->last_rate = 0;
4017 priv->last_missed_beacons = 0;
4018 priv->last_rx_packets = 0;
4019 priv->last_tx_packets = 0;
4020 priv->last_tx_failures = 0;
4022 /* Firmware managed, reset only when NIC is restarted, so we have to
4023 * normalize on the current value */
4024 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4025 &priv->last_rx_err, &len);
4026 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4027 &priv->last_tx_failures, &len);
4029 /* Driver managed, reset with each association */
4030 priv->missed_adhoc_beacons = 0;
4031 priv->missed_beacons = 0;
4032 priv->tx_packets = 0;
4033 priv->rx_packets = 0;
4037 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4040 u32 mask = priv->rates_mask;
4041 /* If currently associated in B mode, restrict the maximum
4042 * rate match to B rates */
4043 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4044 mask &= IEEE80211_CCK_RATES_MASK;
4046 /* TODO: Verify that the rate is supported by the current rates
4049 while (i && !(mask & i))
4052 case IEEE80211_CCK_RATE_1MB_MASK:
4054 case IEEE80211_CCK_RATE_2MB_MASK:
4056 case IEEE80211_CCK_RATE_5MB_MASK:
4058 case IEEE80211_OFDM_RATE_6MB_MASK:
4060 case IEEE80211_OFDM_RATE_9MB_MASK:
4062 case IEEE80211_CCK_RATE_11MB_MASK:
4064 case IEEE80211_OFDM_RATE_12MB_MASK:
4066 case IEEE80211_OFDM_RATE_18MB_MASK:
4068 case IEEE80211_OFDM_RATE_24MB_MASK:
4070 case IEEE80211_OFDM_RATE_36MB_MASK:
4072 case IEEE80211_OFDM_RATE_48MB_MASK:
4074 case IEEE80211_OFDM_RATE_54MB_MASK:
4078 if (priv->ieee->mode == IEEE_B)
4084 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4086 u32 rate, len = sizeof(rate);
4089 if (!(priv->status & STATUS_ASSOCIATED))
4092 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4093 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4096 IPW_DEBUG_INFO("failed querying ordinals.\n");
4100 return ipw_get_max_rate(priv);
4103 case IPW_TX_RATE_1MB:
4105 case IPW_TX_RATE_2MB:
4107 case IPW_TX_RATE_5MB:
4109 case IPW_TX_RATE_6MB:
4111 case IPW_TX_RATE_9MB:
4113 case IPW_TX_RATE_11MB:
4115 case IPW_TX_RATE_12MB:
4117 case IPW_TX_RATE_18MB:
4119 case IPW_TX_RATE_24MB:
4121 case IPW_TX_RATE_36MB:
4123 case IPW_TX_RATE_48MB:
4125 case IPW_TX_RATE_54MB:
4132 #define IPW_STATS_INTERVAL (2 * HZ)
4133 static void ipw_gather_stats(struct ipw_priv *priv)
4135 u32 rx_err, rx_err_delta, rx_packets_delta;
4136 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4137 u32 missed_beacons_percent, missed_beacons_delta;
4139 u32 len = sizeof(u32);
4141 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4145 if (!(priv->status & STATUS_ASSOCIATED)) {
4150 /* Update the statistics */
4151 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4152 &priv->missed_beacons, &len);
4153 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4154 priv->last_missed_beacons = priv->missed_beacons;
4155 if (priv->assoc_request.beacon_interval) {
4156 missed_beacons_percent = missed_beacons_delta *
4157 (HZ * priv->assoc_request.beacon_interval) /
4158 (IPW_STATS_INTERVAL * 10);
4160 missed_beacons_percent = 0;
4162 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4164 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4165 rx_err_delta = rx_err - priv->last_rx_err;
4166 priv->last_rx_err = rx_err;
4168 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4169 tx_failures_delta = tx_failures - priv->last_tx_failures;
4170 priv->last_tx_failures = tx_failures;
4172 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4173 priv->last_rx_packets = priv->rx_packets;
4175 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4176 priv->last_tx_packets = priv->tx_packets;
4178 /* Calculate quality based on the following:
4180 * Missed beacon: 100% = 0, 0% = 70% missed
4181 * Rate: 60% = 1Mbs, 100% = Max
4182 * Rx and Tx errors represent a straight % of total Rx/Tx
4183 * RSSI: 100% = > -50, 0% = < -80
4184 * Rx errors: 100% = 0, 0% = 50% missed
4186 * The lowest computed quality is used.
4189 #define BEACON_THRESHOLD 5
4190 beacon_quality = 100 - missed_beacons_percent;
4191 if (beacon_quality < BEACON_THRESHOLD)
4194 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4195 (100 - BEACON_THRESHOLD);
4196 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4197 beacon_quality, missed_beacons_percent);
4199 priv->last_rate = ipw_get_current_rate(priv);
4200 max_rate = ipw_get_max_rate(priv);
4201 rate_quality = priv->last_rate * 40 / max_rate + 60;
4202 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4203 rate_quality, priv->last_rate / 1000000);
4205 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4206 rx_quality = 100 - (rx_err_delta * 100) /
4207 (rx_packets_delta + rx_err_delta);
4210 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4211 rx_quality, rx_err_delta, rx_packets_delta);
4213 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4214 tx_quality = 100 - (tx_failures_delta * 100) /
4215 (tx_packets_delta + tx_failures_delta);
4218 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4219 tx_quality, tx_failures_delta, tx_packets_delta);
4221 rssi = priv->exp_avg_rssi;
4224 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4225 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4226 (priv->ieee->perfect_rssi - rssi) *
4227 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4228 62 * (priv->ieee->perfect_rssi - rssi))) /
4229 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4231 if (signal_quality > 100)
4232 signal_quality = 100;
4233 else if (signal_quality < 1)
4236 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4237 signal_quality, rssi);
4239 quality = min(beacon_quality,
4241 min(tx_quality, min(rx_quality, signal_quality))));
4242 if (quality == beacon_quality)
4243 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4245 if (quality == rate_quality)
4246 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4248 if (quality == tx_quality)
4249 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4251 if (quality == rx_quality)
4252 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4254 if (quality == signal_quality)
4255 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4258 priv->quality = quality;
4260 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4261 IPW_STATS_INTERVAL);
4264 static void ipw_bg_gather_stats(struct work_struct *work)
4266 struct ipw_priv *priv =
4267 container_of(work, struct ipw_priv, gather_stats.work);
4268 mutex_lock(&priv->mutex);
4269 ipw_gather_stats(priv);
4270 mutex_unlock(&priv->mutex);
4273 /* Missed beacon behavior:
4274 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4275 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4276 * Above disassociate threshold, give up and stop scanning.
4277 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4278 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4281 priv->notif_missed_beacons = missed_count;
4283 if (missed_count > priv->disassociate_threshold &&
4284 priv->status & STATUS_ASSOCIATED) {
4285 /* If associated and we've hit the missed
4286 * beacon threshold, disassociate, turn
4287 * off roaming, and abort any active scans */
4288 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4289 IPW_DL_STATE | IPW_DL_ASSOC,
4290 "Missed beacon: %d - disassociate\n", missed_count);
4291 priv->status &= ~STATUS_ROAMING;
4292 if (priv->status & STATUS_SCANNING) {
4293 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4295 "Aborting scan with missed beacon.\n");
4296 queue_work(priv->workqueue, &priv->abort_scan);
4299 queue_work(priv->workqueue, &priv->disassociate);
4303 if (priv->status & STATUS_ROAMING) {
4304 /* If we are currently roaming, then just
4305 * print a debug statement... */
4306 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4307 "Missed beacon: %d - roam in progress\n",
4313 (missed_count > priv->roaming_threshold &&
4314 missed_count <= priv->disassociate_threshold)) {
4315 /* If we are not already roaming, set the ROAM
4316 * bit in the status and kick off a scan.
4317 * This can happen several times before we reach
4318 * disassociate_threshold. */
4319 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4320 "Missed beacon: %d - initiate "
4321 "roaming\n", missed_count);
4322 if (!(priv->status & STATUS_ROAMING)) {
4323 priv->status |= STATUS_ROAMING;
4324 if (!(priv->status & STATUS_SCANNING))
4325 queue_delayed_work(priv->workqueue,
4326 &priv->request_scan, 0);
4331 if (priv->status & STATUS_SCANNING) {
4332 /* Stop scan to keep fw from getting
4333 * stuck (only if we aren't roaming --
4334 * otherwise we'll never scan more than 2 or 3
4336 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4337 "Aborting scan with missed beacon.\n");
4338 queue_work(priv->workqueue, &priv->abort_scan);
4341 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4345 * Handle host notification packet.
4346 * Called from interrupt routine
4348 static void ipw_rx_notification(struct ipw_priv *priv,
4349 struct ipw_rx_notification *notif)
4351 notif->size = le16_to_cpu(notif->size);
4353 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4355 switch (notif->subtype) {
4356 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4357 struct notif_association *assoc = ¬if->u.assoc;
4359 switch (assoc->state) {
4360 case CMAS_ASSOCIATED:{
4361 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4363 "associated: '%s' " MAC_FMT
4365 escape_essid(priv->essid,
4367 MAC_ARG(priv->bssid));
4369 switch (priv->ieee->iw_mode) {
4371 memcpy(priv->ieee->bssid,
4372 priv->bssid, ETH_ALEN);
4376 memcpy(priv->ieee->bssid,
4377 priv->bssid, ETH_ALEN);
4379 /* clear out the station table */
4380 priv->num_stations = 0;
4383 ("queueing adhoc check\n");
4384 queue_delayed_work(priv->
4394 priv->status &= ~STATUS_ASSOCIATING;
4395 priv->status |= STATUS_ASSOCIATED;
4396 queue_work(priv->workqueue,
4397 &priv->system_config);
4399 #ifdef CONFIG_IPW2200_QOS
4400 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4401 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4402 if ((priv->status & STATUS_AUTH) &&
4403 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4404 == IEEE80211_STYPE_ASSOC_RESP)) {
4407 ieee80211_assoc_response)
4409 && (notif->size <= 2314)) {
4422 ieee80211_rx_mgt(priv->
4427 ¬if->u.raw, &stats);
4432 schedule_work(&priv->link_up);
4437 case CMAS_AUTHENTICATED:{
4439 status & (STATUS_ASSOCIATED |
4441 struct notif_authenticate *auth
4443 IPW_DEBUG(IPW_DL_NOTIF |
4446 "deauthenticated: '%s' "
4448 ": (0x%04X) - %s \n",
4453 MAC_ARG(priv->bssid),
4454 ntohs(auth->status),
4460 ~(STATUS_ASSOCIATING |
4464 schedule_work(&priv->link_down);
4468 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4470 "authenticated: '%s' " MAC_FMT
4472 escape_essid(priv->essid,
4474 MAC_ARG(priv->bssid));
4479 if (priv->status & STATUS_AUTH) {
4481 ieee80211_assoc_response
4485 ieee80211_assoc_response
4487 IPW_DEBUG(IPW_DL_NOTIF |
4490 "association failed (0x%04X): %s\n",
4491 ntohs(resp->status),
4497 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4499 "disassociated: '%s' " MAC_FMT
4501 escape_essid(priv->essid,
4503 MAC_ARG(priv->bssid));
4506 ~(STATUS_DISASSOCIATING |
4507 STATUS_ASSOCIATING |
4508 STATUS_ASSOCIATED | STATUS_AUTH);
4509 if (priv->assoc_network
4510 && (priv->assoc_network->
4512 WLAN_CAPABILITY_IBSS))
4513 ipw_remove_current_network
4516 schedule_work(&priv->link_down);
4521 case CMAS_RX_ASSOC_RESP:
4525 IPW_ERROR("assoc: unknown (%d)\n",
4533 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4534 struct notif_authenticate *auth = ¬if->u.auth;
4535 switch (auth->state) {
4536 case CMAS_AUTHENTICATED:
4537 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4538 "authenticated: '%s' " MAC_FMT " \n",
4539 escape_essid(priv->essid,
4541 MAC_ARG(priv->bssid));
4542 priv->status |= STATUS_AUTH;
4546 if (priv->status & STATUS_AUTH) {
4547 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549 "authentication failed (0x%04X): %s\n",
4550 ntohs(auth->status),
4551 ipw_get_status_code(ntohs
4555 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557 "deauthenticated: '%s' " MAC_FMT "\n",
4558 escape_essid(priv->essid,
4560 MAC_ARG(priv->bssid));
4562 priv->status &= ~(STATUS_ASSOCIATING |
4566 schedule_work(&priv->link_down);
4569 case CMAS_TX_AUTH_SEQ_1:
4570 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4573 case CMAS_RX_AUTH_SEQ_2:
4574 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4575 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4577 case CMAS_AUTH_SEQ_1_PASS:
4578 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4579 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4581 case CMAS_AUTH_SEQ_1_FAIL:
4582 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4583 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4585 case CMAS_TX_AUTH_SEQ_3:
4586 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4589 case CMAS_RX_AUTH_SEQ_4:
4590 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4591 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4593 case CMAS_AUTH_SEQ_2_PASS:
4594 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4597 case CMAS_AUTH_SEQ_2_FAIL:
4598 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4599 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4602 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4603 IPW_DL_ASSOC, "TX_ASSOC\n");
4605 case CMAS_RX_ASSOC_RESP:
4606 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4610 case CMAS_ASSOCIATED:
4611 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612 IPW_DL_ASSOC, "ASSOCIATED\n");
4615 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4622 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4623 struct notif_channel_result *x =
4624 ¬if->u.channel_result;
4626 if (notif->size == sizeof(*x)) {
4627 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4630 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4631 "(should be %zd)\n",
4632 notif->size, sizeof(*x));
4637 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4638 struct notif_scan_complete *x = ¬if->u.scan_complete;
4639 if (notif->size == sizeof(*x)) {
4641 ("Scan completed: type %d, %d channels, "
4642 "%d status\n", x->scan_type,
4643 x->num_channels, x->status);
4645 IPW_ERROR("Scan completed of wrong size %d "
4646 "(should be %zd)\n",
4647 notif->size, sizeof(*x));
4651 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4653 wake_up_interruptible(&priv->wait_state);
4654 cancel_delayed_work(&priv->scan_check);
4656 if (priv->status & STATUS_EXIT_PENDING)
4659 priv->ieee->scans++;
4661 #ifdef CONFIG_IPW2200_MONITOR
4662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4663 priv->status |= STATUS_SCAN_FORCED;
4664 queue_delayed_work(priv->workqueue,
4665 &priv->request_scan, 0);
4668 priv->status &= ~STATUS_SCAN_FORCED;
4669 #endif /* CONFIG_IPW2200_MONITOR */
4671 if (!(priv->status & (STATUS_ASSOCIATED |
4672 STATUS_ASSOCIATING |
4674 STATUS_DISASSOCIATING)))
4675 queue_work(priv->workqueue, &priv->associate);
4676 else if (priv->status & STATUS_ROAMING) {
4677 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4678 /* If a scan completed and we are in roam mode, then
4679 * the scan that completed was the one requested as a
4680 * result of entering roam... so, schedule the
4682 queue_work(priv->workqueue,
4685 /* Don't schedule if we aborted the scan */
4686 priv->status &= ~STATUS_ROAMING;
4687 } else if (priv->status & STATUS_SCAN_PENDING)
4688 queue_delayed_work(priv->workqueue,
4689 &priv->request_scan, 0);
4690 else if (priv->config & CFG_BACKGROUND_SCAN
4691 && priv->status & STATUS_ASSOCIATED)
4692 queue_delayed_work(priv->workqueue,
4693 &priv->request_scan, HZ);
4695 /* Send an empty event to user space.
4696 * We don't send the received data on the event because
4697 * it would require us to do complex transcoding, and
4698 * we want to minimise the work done in the irq handler
4699 * Use a request to extract the data.
4700 * Also, we generate this even for any scan, regardless
4701 * on how the scan was initiated. User space can just
4702 * sync on periodic scan to get fresh data...
4704 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4705 union iwreq_data wrqu;
4707 wrqu.data.length = 0;
4708 wrqu.data.flags = 0;
4709 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4715 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4716 struct notif_frag_length *x = ¬if->u.frag_len;
4718 if (notif->size == sizeof(*x))
4719 IPW_ERROR("Frag length: %d\n",
4720 le16_to_cpu(x->frag_length));
4722 IPW_ERROR("Frag length of wrong size %d "
4723 "(should be %zd)\n",
4724 notif->size, sizeof(*x));
4728 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4729 struct notif_link_deterioration *x =
4730 ¬if->u.link_deterioration;
4732 if (notif->size == sizeof(*x)) {
4733 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4734 "link deterioration: type %d, cnt %d\n",
4735 x->silence_notification_type,
4737 memcpy(&priv->last_link_deterioration, x,
4740 IPW_ERROR("Link Deterioration of wrong size %d "
4741 "(should be %zd)\n",
4742 notif->size, sizeof(*x));
4747 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4748 IPW_ERROR("Dino config\n");
4750 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4751 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4756 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4757 struct notif_beacon_state *x = ¬if->u.beacon_state;
4758 if (notif->size != sizeof(*x)) {
4760 ("Beacon state of wrong size %d (should "
4761 "be %zd)\n", notif->size, sizeof(*x));
4765 if (le32_to_cpu(x->state) ==
4766 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4767 ipw_handle_missed_beacon(priv,
4774 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4775 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4776 if (notif->size == sizeof(*x)) {
4777 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4778 "0x%02x station %d\n",
4779 x->key_state, x->security_type,
4785 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4786 notif->size, sizeof(*x));
4790 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4791 struct notif_calibration *x = ¬if->u.calibration;
4793 if (notif->size == sizeof(*x)) {
4794 memcpy(&priv->calib, x, sizeof(*x));
4795 IPW_DEBUG_INFO("TODO: Calibration\n");
4800 ("Calibration of wrong size %d (should be %zd)\n",
4801 notif->size, sizeof(*x));
4805 case HOST_NOTIFICATION_NOISE_STATS:{
4806 if (notif->size == sizeof(u32)) {
4807 priv->exp_avg_noise =
4808 exponential_average(priv->exp_avg_noise,
4809 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4815 ("Noise stat is wrong size %d (should be %zd)\n",
4816 notif->size, sizeof(u32));
4821 IPW_DEBUG_NOTIF("Unknown notification: "
4822 "subtype=%d,flags=0x%2x,size=%d\n",
4823 notif->subtype, notif->flags, notif->size);
4828 * Destroys all DMA structures and initialise them again
4831 * @return error code
4833 static int ipw_queue_reset(struct ipw_priv *priv)
4836 /** @todo customize queue sizes */
4837 int nTx = 64, nTxCmd = 8;
4838 ipw_tx_queue_free(priv);
4840 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4841 IPW_TX_CMD_QUEUE_READ_INDEX,
4842 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4843 IPW_TX_CMD_QUEUE_BD_BASE,
4844 IPW_TX_CMD_QUEUE_BD_SIZE);
4846 IPW_ERROR("Tx Cmd queue init failed\n");
4850 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4851 IPW_TX_QUEUE_0_READ_INDEX,
4852 IPW_TX_QUEUE_0_WRITE_INDEX,
4853 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4855 IPW_ERROR("Tx 0 queue init failed\n");
4858 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4859 IPW_TX_QUEUE_1_READ_INDEX,
4860 IPW_TX_QUEUE_1_WRITE_INDEX,
4861 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4863 IPW_ERROR("Tx 1 queue init failed\n");
4866 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4867 IPW_TX_QUEUE_2_READ_INDEX,
4868 IPW_TX_QUEUE_2_WRITE_INDEX,
4869 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4871 IPW_ERROR("Tx 2 queue init failed\n");
4874 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4875 IPW_TX_QUEUE_3_READ_INDEX,
4876 IPW_TX_QUEUE_3_WRITE_INDEX,
4877 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4879 IPW_ERROR("Tx 3 queue init failed\n");
4883 priv->rx_bufs_min = 0;
4884 priv->rx_pend_max = 0;
4888 ipw_tx_queue_free(priv);
4893 * Reclaim Tx queue entries no more used by NIC.
4895 * When FW adwances 'R' index, all entries between old and
4896 * new 'R' index need to be reclaimed. As result, some free space
4897 * forms. If there is enough free space (> low mark), wake Tx queue.
4899 * @note Need to protect against garbage in 'R' index
4903 * @return Number of used entries remains in the queue
4905 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4906 struct clx2_tx_queue *txq, int qindex)
4910 struct clx2_queue *q = &txq->q;
4912 hw_tail = ipw_read32(priv, q->reg_r);
4913 if (hw_tail >= q->n_bd) {
4915 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4919 for (; q->last_used != hw_tail;
4920 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4921 ipw_queue_tx_free_tfd(priv, txq);
4925 if ((ipw_queue_space(q) > q->low_mark) &&
4927 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4928 netif_wake_queue(priv->net_dev);
4929 used = q->first_empty - q->last_used;
4936 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4939 struct clx2_tx_queue *txq = &priv->txq_cmd;
4940 struct clx2_queue *q = &txq->q;
4941 struct tfd_frame *tfd;
4943 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4944 IPW_ERROR("No space for Tx\n");
4948 tfd = &txq->bd[q->first_empty];
4949 txq->txb[q->first_empty] = NULL;
4951 memset(tfd, 0, sizeof(*tfd));
4952 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4953 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4955 tfd->u.cmd.index = hcmd;
4956 tfd->u.cmd.length = len;
4957 memcpy(tfd->u.cmd.payload, buf, len);
4958 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4959 ipw_write32(priv, q->reg_w, q->first_empty);
4960 _ipw_read32(priv, 0x90);
4966 * Rx theory of operation
4968 * The host allocates 32 DMA target addresses and passes the host address
4969 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4973 * The host/firmware share two index registers for managing the Rx buffers.
4975 * The READ index maps to the first position that the firmware may be writing
4976 * to -- the driver can read up to (but not including) this position and get
4978 * The READ index is managed by the firmware once the card is enabled.
4980 * The WRITE index maps to the last position the driver has read from -- the
4981 * position preceding WRITE is the last slot the firmware can place a packet.
4983 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4986 * During initialization the host sets up the READ queue position to the first
4987 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4989 * When the firmware places a packet in a buffer it will advance the READ index
4990 * and fire the RX interrupt. The driver can then query the READ index and
4991 * process as many packets as possible, moving the WRITE index forward as it
4992 * resets the Rx queue buffers with new memory.
4994 * The management in the driver is as follows:
4995 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4996 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4997 * to replensish the ipw->rxq->rx_free.
4998 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4999 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5000 * 'processed' and 'read' driver indexes as well)
5001 * + A received packet is processed and handed to the kernel network stack,
5002 * detached from the ipw->rxq. The driver 'processed' index is updated.
5003 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5004 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5005 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5006 * were enough free buffers and RX_STALLED is set it is cleared.
5011 * ipw_rx_queue_alloc() Allocates rx_free
5012 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5013 * ipw_rx_queue_restock
5014 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5015 * queue, updates firmware pointers, and updates
5016 * the WRITE index. If insufficient rx_free buffers
5017 * are available, schedules ipw_rx_queue_replenish
5019 * -- enable interrupts --
5020 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5021 * READ INDEX, detaching the SKB from the pool.
5022 * Moves the packet buffer from queue to rx_used.
5023 * Calls ipw_rx_queue_restock to refill any empty
5030 * If there are slots in the RX queue that need to be restocked,
5031 * and we have free pre-allocated buffers, fill the ranks as much
5032 * as we can pulling from rx_free.
5034 * This moves the 'write' index forward to catch up with 'processed', and
5035 * also updates the memory address in the firmware to reference the new
5038 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5040 struct ipw_rx_queue *rxq = priv->rxq;
5041 struct list_head *element;
5042 struct ipw_rx_mem_buffer *rxb;
5043 unsigned long flags;
5046 spin_lock_irqsave(&rxq->lock, flags);
5048 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5049 element = rxq->rx_free.next;
5050 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5053 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5055 rxq->queue[rxq->write] = rxb;
5056 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5059 spin_unlock_irqrestore(&rxq->lock, flags);
5061 /* If the pre-allocated buffer pool is dropping low, schedule to
5063 if (rxq->free_count <= RX_LOW_WATERMARK)
5064 queue_work(priv->workqueue, &priv->rx_replenish);
5066 /* If we've added more space for the firmware to place data, tell it */
5067 if (write != rxq->write)
5068 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5072 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5073 * Also restock the Rx queue via ipw_rx_queue_restock.
5075 * This is called as a scheduled work item (except for during intialization)
5077 static void ipw_rx_queue_replenish(void *data)
5079 struct ipw_priv *priv = data;
5080 struct ipw_rx_queue *rxq = priv->rxq;
5081 struct list_head *element;
5082 struct ipw_rx_mem_buffer *rxb;
5083 unsigned long flags;
5085 spin_lock_irqsave(&rxq->lock, flags);
5086 while (!list_empty(&rxq->rx_used)) {
5087 element = rxq->rx_used.next;
5088 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5089 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5091 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5092 priv->net_dev->name);
5093 /* We don't reschedule replenish work here -- we will
5094 * call the restock method and if it still needs
5095 * more buffers it will schedule replenish */
5101 pci_map_single(priv->pci_dev, rxb->skb->data,
5102 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5104 list_add_tail(&rxb->list, &rxq->rx_free);
5107 spin_unlock_irqrestore(&rxq->lock, flags);
5109 ipw_rx_queue_restock(priv);
5112 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5114 struct ipw_priv *priv =
5115 container_of(work, struct ipw_priv, rx_replenish);
5116 mutex_lock(&priv->mutex);
5117 ipw_rx_queue_replenish(priv);
5118 mutex_unlock(&priv->mutex);
5121 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5122 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5123 * This free routine walks the list of POOL entries and if SKB is set to
5124 * non NULL it is unmapped and freed
5126 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5133 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5134 if (rxq->pool[i].skb != NULL) {
5135 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5136 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5137 dev_kfree_skb(rxq->pool[i].skb);
5144 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5146 struct ipw_rx_queue *rxq;
5149 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5150 if (unlikely(!rxq)) {
5151 IPW_ERROR("memory allocation failed\n");
5154 spin_lock_init(&rxq->lock);
5155 INIT_LIST_HEAD(&rxq->rx_free);
5156 INIT_LIST_HEAD(&rxq->rx_used);
5158 /* Fill the rx_used queue with _all_ of the Rx buffers */
5159 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5160 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5162 /* Set us so that we have processed and used all buffers, but have
5163 * not restocked the Rx queue with fresh buffers */
5164 rxq->read = rxq->write = 0;
5165 rxq->processed = RX_QUEUE_SIZE - 1;
5166 rxq->free_count = 0;
5171 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5173 rate &= ~IEEE80211_BASIC_RATE_MASK;
5174 if (ieee_mode == IEEE_A) {
5176 case IEEE80211_OFDM_RATE_6MB:
5177 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5179 case IEEE80211_OFDM_RATE_9MB:
5180 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5182 case IEEE80211_OFDM_RATE_12MB:
5184 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5185 case IEEE80211_OFDM_RATE_18MB:
5187 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5188 case IEEE80211_OFDM_RATE_24MB:
5190 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5191 case IEEE80211_OFDM_RATE_36MB:
5193 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5194 case IEEE80211_OFDM_RATE_48MB:
5196 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5197 case IEEE80211_OFDM_RATE_54MB:
5199 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5207 case IEEE80211_CCK_RATE_1MB:
5208 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5209 case IEEE80211_CCK_RATE_2MB:
5210 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5211 case IEEE80211_CCK_RATE_5MB:
5212 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5213 case IEEE80211_CCK_RATE_11MB:
5214 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5217 /* If we are limited to B modulations, bail at this point */
5218 if (ieee_mode == IEEE_B)
5223 case IEEE80211_OFDM_RATE_6MB:
5224 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5225 case IEEE80211_OFDM_RATE_9MB:
5226 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5227 case IEEE80211_OFDM_RATE_12MB:
5228 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5229 case IEEE80211_OFDM_RATE_18MB:
5230 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231 case IEEE80211_OFDM_RATE_24MB:
5232 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5233 case IEEE80211_OFDM_RATE_36MB:
5234 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5235 case IEEE80211_OFDM_RATE_48MB:
5236 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5237 case IEEE80211_OFDM_RATE_54MB:
5238 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5244 static int ipw_compatible_rates(struct ipw_priv *priv,
5245 const struct ieee80211_network *network,
5246 struct ipw_supported_rates *rates)
5250 memset(rates, 0, sizeof(*rates));
5251 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5252 rates->num_rates = 0;
5253 for (i = 0; i < num_rates; i++) {
5254 if (!ipw_is_rate_in_mask(priv, network->mode,
5255 network->rates[i])) {
5257 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5258 IPW_DEBUG_SCAN("Adding masked mandatory "
5261 rates->supported_rates[rates->num_rates++] =
5266 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5267 network->rates[i], priv->rates_mask);
5271 rates->supported_rates[rates->num_rates++] = network->rates[i];
5274 num_rates = min(network->rates_ex_len,
5275 (u8) (IPW_MAX_RATES - num_rates));
5276 for (i = 0; i < num_rates; i++) {
5277 if (!ipw_is_rate_in_mask(priv, network->mode,
5278 network->rates_ex[i])) {
5279 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5280 IPW_DEBUG_SCAN("Adding masked mandatory "
5282 network->rates_ex[i]);
5283 rates->supported_rates[rates->num_rates++] =
5288 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5289 network->rates_ex[i], priv->rates_mask);
5293 rates->supported_rates[rates->num_rates++] =
5294 network->rates_ex[i];
5300 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5301 const struct ipw_supported_rates *src)
5304 for (i = 0; i < src->num_rates; i++)
5305 dest->supported_rates[i] = src->supported_rates[i];
5306 dest->num_rates = src->num_rates;
5309 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5310 * mask should ever be used -- right now all callers to add the scan rates are
5311 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5312 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5313 u8 modulation, u32 rate_mask)
5315 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5316 IEEE80211_BASIC_RATE_MASK : 0;
5318 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5319 rates->supported_rates[rates->num_rates++] =
5320 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5322 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5323 rates->supported_rates[rates->num_rates++] =
5324 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5326 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5327 rates->supported_rates[rates->num_rates++] = basic_mask |
5328 IEEE80211_CCK_RATE_5MB;
5330 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5331 rates->supported_rates[rates->num_rates++] = basic_mask |
5332 IEEE80211_CCK_RATE_11MB;
5335 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5336 u8 modulation, u32 rate_mask)
5338 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5339 IEEE80211_BASIC_RATE_MASK : 0;
5341 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5342 rates->supported_rates[rates->num_rates++] = basic_mask |
5343 IEEE80211_OFDM_RATE_6MB;
5345 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5346 rates->supported_rates[rates->num_rates++] =
5347 IEEE80211_OFDM_RATE_9MB;
5349 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5350 rates->supported_rates[rates->num_rates++] = basic_mask |
5351 IEEE80211_OFDM_RATE_12MB;
5353 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5354 rates->supported_rates[rates->num_rates++] =
5355 IEEE80211_OFDM_RATE_18MB;
5357 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5358 rates->supported_rates[rates->num_rates++] = basic_mask |
5359 IEEE80211_OFDM_RATE_24MB;
5361 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5362 rates->supported_rates[rates->num_rates++] =
5363 IEEE80211_OFDM_RATE_36MB;
5365 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5366 rates->supported_rates[rates->num_rates++] =
5367 IEEE80211_OFDM_RATE_48MB;
5369 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5370 rates->supported_rates[rates->num_rates++] =
5371 IEEE80211_OFDM_RATE_54MB;
5374 struct ipw_network_match {
5375 struct ieee80211_network *network;
5376 struct ipw_supported_rates rates;
5379 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5380 struct ipw_network_match *match,
5381 struct ieee80211_network *network,
5384 struct ipw_supported_rates rates;
5386 /* Verify that this network's capability is compatible with the
5387 * current mode (AdHoc or Infrastructure) */
5388 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5389 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5390 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5391 "capability mismatch.\n",
5392 escape_essid(network->ssid, network->ssid_len),
5393 MAC_ARG(network->bssid));
5397 /* If we do not have an ESSID for this AP, we can not associate with
5399 if (network->flags & NETWORK_EMPTY_ESSID) {
5400 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5401 "because of hidden ESSID.\n",
5402 escape_essid(network->ssid, network->ssid_len),
5403 MAC_ARG(network->bssid));
5407 if (unlikely(roaming)) {
5408 /* If we are roaming, then ensure check if this is a valid
5409 * network to try and roam to */
5410 if ((network->ssid_len != match->network->ssid_len) ||
5411 memcmp(network->ssid, match->network->ssid,
5412 network->ssid_len)) {
5413 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5414 "because of non-network ESSID.\n",
5415 escape_essid(network->ssid,
5417 MAC_ARG(network->bssid));
5421 /* If an ESSID has been configured then compare the broadcast
5423 if ((priv->config & CFG_STATIC_ESSID) &&
5424 ((network->ssid_len != priv->essid_len) ||
5425 memcmp(network->ssid, priv->essid,
5426 min(network->ssid_len, priv->essid_len)))) {
5427 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5430 escape_essid(network->ssid, network->ssid_len),
5432 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5433 "because of ESSID mismatch: '%s'.\n",
5434 escaped, MAC_ARG(network->bssid),
5435 escape_essid(priv->essid,
5441 /* If the old network rate is better than this one, don't bother
5442 * testing everything else. */
5444 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5445 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5446 "current network.\n",
5447 escape_essid(match->network->ssid,
5448 match->network->ssid_len));
5450 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5451 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5452 "current network.\n",
5453 escape_essid(match->network->ssid,
5454 match->network->ssid_len));
5458 /* Now go through and see if the requested network is valid... */
5459 if (priv->ieee->scan_age != 0 &&
5460 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5461 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5462 "because of age: %ums.\n",
5463 escape_essid(network->ssid, network->ssid_len),
5464 MAC_ARG(network->bssid),
5465 jiffies_to_msecs(jiffies -
5466 network->last_scanned));
5470 if ((priv->config & CFG_STATIC_CHANNEL) &&
5471 (network->channel != priv->channel)) {
5472 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5473 "because of channel mismatch: %d != %d.\n",
5474 escape_essid(network->ssid, network->ssid_len),
5475 MAC_ARG(network->bssid),
5476 network->channel, priv->channel);
5480 /* Verify privacy compatability */
5481 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5482 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5483 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5484 "because of privacy mismatch: %s != %s.\n",
5485 escape_essid(network->ssid, network->ssid_len),
5486 MAC_ARG(network->bssid),
5488 capability & CAP_PRIVACY_ON ? "on" : "off",
5490 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5495 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5496 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5497 "because of the same BSSID match: " MAC_FMT
5498 ".\n", escape_essid(network->ssid,
5500 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5504 /* Filter out any incompatible freq / mode combinations */
5505 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5506 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5507 "because of invalid frequency/mode "
5509 escape_essid(network->ssid, network->ssid_len),
5510 MAC_ARG(network->bssid));
5514 /* Ensure that the rates supported by the driver are compatible with
5515 * this AP, including verification of basic rates (mandatory) */
5516 if (!ipw_compatible_rates(priv, network, &rates)) {
5517 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5518 "because configured rate mask excludes "
5519 "AP mandatory rate.\n",
5520 escape_essid(network->ssid, network->ssid_len),
5521 MAC_ARG(network->bssid));
5525 if (rates.num_rates == 0) {
5526 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5527 "because of no compatible rates.\n",
5528 escape_essid(network->ssid, network->ssid_len),
5529 MAC_ARG(network->bssid));
5533 /* TODO: Perform any further minimal comparititive tests. We do not
5534 * want to put too much policy logic here; intelligent scan selection
5535 * should occur within a generic IEEE 802.11 user space tool. */
5537 /* Set up 'new' AP to this network */
5538 ipw_copy_rates(&match->rates, &rates);
5539 match->network = network;
5540 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5541 escape_essid(network->ssid, network->ssid_len),
5542 MAC_ARG(network->bssid));
5547 static void ipw_merge_adhoc_network(struct work_struct *work)
5549 struct ipw_priv *priv =
5550 container_of(work, struct ipw_priv, merge_networks);
5551 struct ieee80211_network *network = NULL;
5552 struct ipw_network_match match = {
5553 .network = priv->assoc_network
5556 if ((priv->status & STATUS_ASSOCIATED) &&
5557 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5558 /* First pass through ROAM process -- look for a better
5560 unsigned long flags;
5562 spin_lock_irqsave(&priv->ieee->lock, flags);
5563 list_for_each_entry(network, &priv->ieee->network_list, list) {
5564 if (network != priv->assoc_network)
5565 ipw_find_adhoc_network(priv, &match, network,
5568 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5570 if (match.network == priv->assoc_network) {
5571 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5576 mutex_lock(&priv->mutex);
5577 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578 IPW_DEBUG_MERGE("remove network %s\n",
5579 escape_essid(priv->essid,
5581 ipw_remove_current_network(priv);
5584 ipw_disassociate(priv);
5585 priv->assoc_network = match.network;
5586 mutex_unlock(&priv->mutex);
5591 static int ipw_best_network(struct ipw_priv *priv,
5592 struct ipw_network_match *match,
5593 struct ieee80211_network *network, int roaming)
5595 struct ipw_supported_rates rates;
5597 /* Verify that this network's capability is compatible with the
5598 * current mode (AdHoc or Infrastructure) */
5599 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5600 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5601 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5602 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5603 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5604 "capability mismatch.\n",
5605 escape_essid(network->ssid, network->ssid_len),
5606 MAC_ARG(network->bssid));
5610 /* If we do not have an ESSID for this AP, we can not associate with
5612 if (network->flags & NETWORK_EMPTY_ESSID) {
5613 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5614 "because of hidden ESSID.\n",
5615 escape_essid(network->ssid, network->ssid_len),
5616 MAC_ARG(network->bssid));
5620 if (unlikely(roaming)) {
5621 /* If we are roaming, then ensure check if this is a valid
5622 * network to try and roam to */
5623 if ((network->ssid_len != match->network->ssid_len) ||
5624 memcmp(network->ssid, match->network->ssid,
5625 network->ssid_len)) {
5626 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5627 "because of non-network ESSID.\n",
5628 escape_essid(network->ssid,
5630 MAC_ARG(network->bssid));
5634 /* If an ESSID has been configured then compare the broadcast
5636 if ((priv->config & CFG_STATIC_ESSID) &&
5637 ((network->ssid_len != priv->essid_len) ||
5638 memcmp(network->ssid, priv->essid,
5639 min(network->ssid_len, priv->essid_len)))) {
5640 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5642 escape_essid(network->ssid, network->ssid_len),
5644 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5645 "because of ESSID mismatch: '%s'.\n",
5646 escaped, MAC_ARG(network->bssid),
5647 escape_essid(priv->essid,
5653 /* If the old network rate is better than this one, don't bother
5654 * testing everything else. */
5655 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5656 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5658 escape_essid(network->ssid, network->ssid_len),
5660 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5661 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5662 escaped, MAC_ARG(network->bssid),
5663 escape_essid(match->network->ssid,
5664 match->network->ssid_len),
5665 MAC_ARG(match->network->bssid));
5669 /* If this network has already had an association attempt within the
5670 * last 3 seconds, do not try and associate again... */
5671 if (network->last_associate &&
5672 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5673 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5674 "because of storming (%ums since last "
5675 "assoc attempt).\n",
5676 escape_essid(network->ssid, network->ssid_len),
5677 MAC_ARG(network->bssid),
5678 jiffies_to_msecs(jiffies -
5679 network->last_associate));
5683 /* Now go through and see if the requested network is valid... */
5684 if (priv->ieee->scan_age != 0 &&
5685 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5686 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5687 "because of age: %ums.\n",
5688 escape_essid(network->ssid, network->ssid_len),
5689 MAC_ARG(network->bssid),
5690 jiffies_to_msecs(jiffies -
5691 network->last_scanned));
5695 if ((priv->config & CFG_STATIC_CHANNEL) &&
5696 (network->channel != priv->channel)) {
5697 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5698 "because of channel mismatch: %d != %d.\n",
5699 escape_essid(network->ssid, network->ssid_len),
5700 MAC_ARG(network->bssid),
5701 network->channel, priv->channel);
5705 /* Verify privacy compatability */
5706 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5707 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5708 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5709 "because of privacy mismatch: %s != %s.\n",
5710 escape_essid(network->ssid, network->ssid_len),
5711 MAC_ARG(network->bssid),
5712 priv->capability & CAP_PRIVACY_ON ? "on" :
5714 network->capability &
5715 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5719 if ((priv->config & CFG_STATIC_BSSID) &&
5720 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5721 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5722 "because of BSSID mismatch: " MAC_FMT ".\n",
5723 escape_essid(network->ssid, network->ssid_len),
5724 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5728 /* Filter out any incompatible freq / mode combinations */
5729 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5730 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5731 "because of invalid frequency/mode "
5733 escape_essid(network->ssid, network->ssid_len),
5734 MAC_ARG(network->bssid));
5738 /* Filter out invalid channel in current GEO */
5739 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5740 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5741 "because of invalid channel in current GEO\n",
5742 escape_essid(network->ssid, network->ssid_len),
5743 MAC_ARG(network->bssid));
5747 /* Ensure that the rates supported by the driver are compatible with
5748 * this AP, including verification of basic rates (mandatory) */
5749 if (!ipw_compatible_rates(priv, network, &rates)) {
5750 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5751 "because configured rate mask excludes "
5752 "AP mandatory rate.\n",
5753 escape_essid(network->ssid, network->ssid_len),
5754 MAC_ARG(network->bssid));
5758 if (rates.num_rates == 0) {
5759 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5760 "because of no compatible rates.\n",
5761 escape_essid(network->ssid, network->ssid_len),
5762 MAC_ARG(network->bssid));
5766 /* TODO: Perform any further minimal comparititive tests. We do not
5767 * want to put too much policy logic here; intelligent scan selection
5768 * should occur within a generic IEEE 802.11 user space tool. */
5770 /* Set up 'new' AP to this network */
5771 ipw_copy_rates(&match->rates, &rates);
5772 match->network = network;
5774 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5775 escape_essid(network->ssid, network->ssid_len),
5776 MAC_ARG(network->bssid));
5781 static void ipw_adhoc_create(struct ipw_priv *priv,
5782 struct ieee80211_network *network)
5784 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5788 * For the purposes of scanning, we can set our wireless mode
5789 * to trigger scans across combinations of bands, but when it
5790 * comes to creating a new ad-hoc network, we have tell the FW
5791 * exactly which band to use.
5793 * We also have the possibility of an invalid channel for the
5794 * chossen band. Attempting to create a new ad-hoc network
5795 * with an invalid channel for wireless mode will trigger a
5799 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5800 case IEEE80211_52GHZ_BAND:
5801 network->mode = IEEE_A;
5802 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5804 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5805 IPW_WARNING("Overriding invalid channel\n");
5806 priv->channel = geo->a[0].channel;
5810 case IEEE80211_24GHZ_BAND:
5811 if (priv->ieee->mode & IEEE_G)
5812 network->mode = IEEE_G;
5814 network->mode = IEEE_B;
5815 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5817 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5818 IPW_WARNING("Overriding invalid channel\n");
5819 priv->channel = geo->bg[0].channel;
5824 IPW_WARNING("Overriding invalid channel\n");
5825 if (priv->ieee->mode & IEEE_A) {
5826 network->mode = IEEE_A;
5827 priv->channel = geo->a[0].channel;
5828 } else if (priv->ieee->mode & IEEE_G) {
5829 network->mode = IEEE_G;
5830 priv->channel = geo->bg[0].channel;
5832 network->mode = IEEE_B;
5833 priv->channel = geo->bg[0].channel;
5838 network->channel = priv->channel;
5839 priv->config |= CFG_ADHOC_PERSIST;
5840 ipw_create_bssid(priv, network->bssid);
5841 network->ssid_len = priv->essid_len;
5842 memcpy(network->ssid, priv->essid, priv->essid_len);
5843 memset(&network->stats, 0, sizeof(network->stats));
5844 network->capability = WLAN_CAPABILITY_IBSS;
5845 if (!(priv->config & CFG_PREAMBLE_LONG))
5846 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5847 if (priv->capability & CAP_PRIVACY_ON)
5848 network->capability |= WLAN_CAPABILITY_PRIVACY;
5849 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5850 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5851 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5852 memcpy(network->rates_ex,
5853 &priv->rates.supported_rates[network->rates_len],
5854 network->rates_ex_len);
5855 network->last_scanned = 0;
5857 network->last_associate = 0;
5858 network->time_stamp[0] = 0;
5859 network->time_stamp[1] = 0;
5860 network->beacon_interval = 100; /* Default */
5861 network->listen_interval = 10; /* Default */
5862 network->atim_window = 0; /* Default */
5863 network->wpa_ie_len = 0;
5864 network->rsn_ie_len = 0;
5867 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5869 struct ipw_tgi_tx_key key;
5871 if (!(priv->ieee->sec.flags & (1 << index)))
5875 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5876 key.security_type = type;
5877 key.station_index = 0; /* always 0 for BSS */
5879 /* 0 for new key; previous value of counter (after fatal error) */
5880 key.tx_counter[0] = cpu_to_le32(0);
5881 key.tx_counter[1] = cpu_to_le32(0);
5883 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5886 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5888 struct ipw_wep_key key;
5891 key.cmd_id = DINO_CMD_WEP_KEY;
5894 /* Note: AES keys cannot be set for multiple times.
5895 * Only set it at the first time. */
5896 for (i = 0; i < 4; i++) {
5897 key.key_index = i | type;
5898 if (!(priv->ieee->sec.flags & (1 << i))) {
5903 key.key_size = priv->ieee->sec.key_sizes[i];
5904 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5906 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5910 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5912 if (priv->ieee->host_encrypt)
5917 priv->sys_config.disable_unicast_decryption = 0;
5918 priv->ieee->host_decrypt = 0;
5921 priv->sys_config.disable_unicast_decryption = 1;
5922 priv->ieee->host_decrypt = 1;
5925 priv->sys_config.disable_unicast_decryption = 0;
5926 priv->ieee->host_decrypt = 0;
5929 priv->sys_config.disable_unicast_decryption = 1;
5936 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5938 if (priv->ieee->host_encrypt)
5943 priv->sys_config.disable_multicast_decryption = 0;
5946 priv->sys_config.disable_multicast_decryption = 1;
5949 priv->sys_config.disable_multicast_decryption = 0;
5952 priv->sys_config.disable_multicast_decryption = 1;
5959 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5961 switch (priv->ieee->sec.level) {
5963 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5964 ipw_send_tgi_tx_key(priv,
5965 DCT_FLAG_EXT_SECURITY_CCM,
5966 priv->ieee->sec.active_key);
5968 if (!priv->ieee->host_mc_decrypt)
5969 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5972 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5973 ipw_send_tgi_tx_key(priv,
5974 DCT_FLAG_EXT_SECURITY_TKIP,
5975 priv->ieee->sec.active_key);
5978 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5979 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5980 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5988 static void ipw_adhoc_check(void *data)
5990 struct ipw_priv *priv = data;
5992 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5993 !(priv->config & CFG_ADHOC_PERSIST)) {
5994 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5995 IPW_DL_STATE | IPW_DL_ASSOC,
5996 "Missed beacon: %d - disassociate\n",
5997 priv->missed_adhoc_beacons);
5998 ipw_remove_current_network(priv);
5999 ipw_disassociate(priv);
6003 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6004 priv->assoc_request.beacon_interval);
6007 static void ipw_bg_adhoc_check(struct work_struct *work)
6009 struct ipw_priv *priv =
6010 container_of(work, struct ipw_priv, adhoc_check.work);
6011 mutex_lock(&priv->mutex);
6012 ipw_adhoc_check(priv);
6013 mutex_unlock(&priv->mutex);
6016 static void ipw_debug_config(struct ipw_priv *priv)
6018 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6019 "[CFG 0x%08X]\n", priv->config);
6020 if (priv->config & CFG_STATIC_CHANNEL)
6021 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6023 IPW_DEBUG_INFO("Channel unlocked.\n");
6024 if (priv->config & CFG_STATIC_ESSID)
6025 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6026 escape_essid(priv->essid, priv->essid_len));
6028 IPW_DEBUG_INFO("ESSID unlocked.\n");
6029 if (priv->config & CFG_STATIC_BSSID)
6030 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6031 MAC_ARG(priv->bssid));
6033 IPW_DEBUG_INFO("BSSID unlocked.\n");
6034 if (priv->capability & CAP_PRIVACY_ON)
6035 IPW_DEBUG_INFO("PRIVACY on\n");
6037 IPW_DEBUG_INFO("PRIVACY off\n");
6038 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6041 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6043 /* TODO: Verify that this works... */
6044 struct ipw_fixed_rate fr = {
6045 .tx_rates = priv->rates_mask
6050 /* Identify 'current FW band' and match it with the fixed
6053 switch (priv->ieee->freq_band) {
6054 case IEEE80211_52GHZ_BAND: /* A only */
6056 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6057 /* Invalid fixed rate mask */
6059 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6064 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6067 default: /* 2.4Ghz or Mixed */
6069 if (mode == IEEE_B) {
6070 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6071 /* Invalid fixed rate mask */
6073 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6080 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6081 IEEE80211_OFDM_RATES_MASK)) {
6082 /* Invalid fixed rate mask */
6084 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6089 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6090 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6091 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6094 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6095 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6096 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6099 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6100 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6101 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6104 fr.tx_rates |= mask;
6108 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6109 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6112 static void ipw_abort_scan(struct ipw_priv *priv)
6116 if (priv->status & STATUS_SCAN_ABORTING) {
6117 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6120 priv->status |= STATUS_SCAN_ABORTING;
6122 err = ipw_send_scan_abort(priv);
6124 IPW_DEBUG_HC("Request to abort scan failed.\n");
6127 static void ipw_add_scan_channels(struct ipw_priv *priv,
6128 struct ipw_scan_request_ext *scan,
6131 int channel_index = 0;
6132 const struct ieee80211_geo *geo;
6135 geo = ieee80211_get_geo(priv->ieee);
6137 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6138 int start = channel_index;
6139 for (i = 0; i < geo->a_channels; i++) {
6140 if ((priv->status & STATUS_ASSOCIATED) &&
6141 geo->a[i].channel == priv->channel)
6144 scan->channels_list[channel_index] = geo->a[i].channel;
6145 ipw_set_scan_type(scan, channel_index,
6147 flags & IEEE80211_CH_PASSIVE_ONLY ?
6148 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6152 if (start != channel_index) {
6153 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6154 (channel_index - start);
6159 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6160 int start = channel_index;
6161 if (priv->config & CFG_SPEED_SCAN) {
6163 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6164 /* nop out the list */
6169 while (channel_index < IPW_SCAN_CHANNELS) {
6171 priv->speed_scan[priv->speed_scan_pos];
6173 priv->speed_scan_pos = 0;
6174 channel = priv->speed_scan[0];
6176 if ((priv->status & STATUS_ASSOCIATED) &&
6177 channel == priv->channel) {
6178 priv->speed_scan_pos++;
6182 /* If this channel has already been
6183 * added in scan, break from loop
6184 * and this will be the first channel
6187 if (channels[channel - 1] != 0)
6190 channels[channel - 1] = 1;
6191 priv->speed_scan_pos++;
6193 scan->channels_list[channel_index] = channel;
6195 ieee80211_channel_to_index(priv->ieee, channel);
6196 ipw_set_scan_type(scan, channel_index,
6199 IEEE80211_CH_PASSIVE_ONLY ?
6200 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6204 for (i = 0; i < geo->bg_channels; i++) {
6205 if ((priv->status & STATUS_ASSOCIATED) &&
6206 geo->bg[i].channel == priv->channel)
6209 scan->channels_list[channel_index] =
6211 ipw_set_scan_type(scan, channel_index,
6214 IEEE80211_CH_PASSIVE_ONLY ?
6215 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6220 if (start != channel_index) {
6221 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6222 (channel_index - start);
6227 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6229 struct ipw_scan_request_ext scan;
6230 int err = 0, scan_type;
6232 if (!(priv->status & STATUS_INIT) ||
6233 (priv->status & STATUS_EXIT_PENDING))
6236 mutex_lock(&priv->mutex);
6238 if (priv->status & STATUS_SCANNING) {
6239 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6240 priv->status |= STATUS_SCAN_PENDING;
6244 if (!(priv->status & STATUS_SCAN_FORCED) &&
6245 priv->status & STATUS_SCAN_ABORTING) {
6246 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6247 priv->status |= STATUS_SCAN_PENDING;
6251 if (priv->status & STATUS_RF_KILL_MASK) {
6252 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6253 priv->status |= STATUS_SCAN_PENDING;
6257 memset(&scan, 0, sizeof(scan));
6258 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6260 if (type == IW_SCAN_TYPE_PASSIVE) {
6261 IPW_DEBUG_WX("use passive scanning\n");
6262 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6263 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6265 ipw_add_scan_channels(priv, &scan, scan_type);
6269 /* Use active scan by default. */
6270 if (priv->config & CFG_SPEED_SCAN)
6271 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6274 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6277 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6280 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6282 #ifdef CONFIG_IPW2200_MONITOR
6283 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6287 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6288 case IEEE80211_52GHZ_BAND:
6289 band = (u8) (IPW_A_MODE << 6) | 1;
6290 channel = priv->channel;
6293 case IEEE80211_24GHZ_BAND:
6294 band = (u8) (IPW_B_MODE << 6) | 1;
6295 channel = priv->channel;
6299 band = (u8) (IPW_B_MODE << 6) | 1;
6304 scan.channels_list[0] = band;
6305 scan.channels_list[1] = channel;
6306 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6308 /* NOTE: The card will sit on this channel for this time
6309 * period. Scan aborts are timing sensitive and frequently
6310 * result in firmware restarts. As such, it is best to
6311 * set a small dwell_time here and just keep re-issuing
6312 * scans. Otherwise fast channel hopping will not actually
6315 * TODO: Move SPEED SCAN support to all modes and bands */
6316 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6319 #endif /* CONFIG_IPW2200_MONITOR */
6320 /* If we are roaming, then make this a directed scan for the
6321 * current network. Otherwise, ensure that every other scan
6322 * is a fast channel hop scan */
6323 if ((priv->status & STATUS_ROAMING)
6324 || (!(priv->status & STATUS_ASSOCIATED)
6325 && (priv->config & CFG_STATIC_ESSID)
6326 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6327 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6329 IPW_DEBUG_HC("Attempt to send SSID command "
6334 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6336 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6338 ipw_add_scan_channels(priv, &scan, scan_type);
6339 #ifdef CONFIG_IPW2200_MONITOR
6344 err = ipw_send_scan_request_ext(priv, &scan);
6346 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6350 priv->status |= STATUS_SCANNING;
6351 priv->status &= ~STATUS_SCAN_PENDING;
6352 queue_delayed_work(priv->workqueue, &priv->scan_check,
6353 IPW_SCAN_CHECK_WATCHDOG);
6355 mutex_unlock(&priv->mutex);
6359 static void ipw_request_passive_scan(struct work_struct *work)
6361 struct ipw_priv *priv =
6362 container_of(work, struct ipw_priv, request_passive_scan);
6363 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6366 static void ipw_request_scan(struct work_struct *work)
6368 struct ipw_priv *priv =
6369 container_of(work, struct ipw_priv, request_scan.work);
6370 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6373 static void ipw_bg_abort_scan(struct work_struct *work)
6375 struct ipw_priv *priv =
6376 container_of(work, struct ipw_priv, abort_scan);
6377 mutex_lock(&priv->mutex);
6378 ipw_abort_scan(priv);
6379 mutex_unlock(&priv->mutex);
6382 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6384 /* This is called when wpa_supplicant loads and closes the driver
6386 priv->ieee->wpa_enabled = value;
6390 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6392 struct ieee80211_device *ieee = priv->ieee;
6393 struct ieee80211_security sec = {
6394 .flags = SEC_AUTH_MODE,
6398 if (value & IW_AUTH_ALG_SHARED_KEY) {
6399 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6401 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6402 sec.auth_mode = WLAN_AUTH_OPEN;
6404 } else if (value & IW_AUTH_ALG_LEAP) {
6405 sec.auth_mode = WLAN_AUTH_LEAP;
6410 if (ieee->set_security)
6411 ieee->set_security(ieee->dev, &sec);
6418 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6421 /* make sure WPA is enabled */
6422 ipw_wpa_enable(priv, 1);
6425 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6426 char *capabilities, int length)
6428 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6430 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6439 static int ipw_wx_set_genie(struct net_device *dev,
6440 struct iw_request_info *info,
6441 union iwreq_data *wrqu, char *extra)
6443 struct ipw_priv *priv = ieee80211_priv(dev);
6444 struct ieee80211_device *ieee = priv->ieee;
6448 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6449 (wrqu->data.length && extra == NULL))
6452 if (wrqu->data.length) {
6453 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6459 memcpy(buf, extra, wrqu->data.length);
6460 kfree(ieee->wpa_ie);
6462 ieee->wpa_ie_len = wrqu->data.length;
6464 kfree(ieee->wpa_ie);
6465 ieee->wpa_ie = NULL;
6466 ieee->wpa_ie_len = 0;
6469 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6475 static int ipw_wx_get_genie(struct net_device *dev,
6476 struct iw_request_info *info,
6477 union iwreq_data *wrqu, char *extra)
6479 struct ipw_priv *priv = ieee80211_priv(dev);
6480 struct ieee80211_device *ieee = priv->ieee;
6483 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6484 wrqu->data.length = 0;
6488 if (wrqu->data.length < ieee->wpa_ie_len) {
6493 wrqu->data.length = ieee->wpa_ie_len;
6494 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6500 static int wext_cipher2level(int cipher)
6503 case IW_AUTH_CIPHER_NONE:
6505 case IW_AUTH_CIPHER_WEP40:
6506 case IW_AUTH_CIPHER_WEP104:
6508 case IW_AUTH_CIPHER_TKIP:
6510 case IW_AUTH_CIPHER_CCMP:
6518 static int ipw_wx_set_auth(struct net_device *dev,
6519 struct iw_request_info *info,
6520 union iwreq_data *wrqu, char *extra)
6522 struct ipw_priv *priv = ieee80211_priv(dev);
6523 struct ieee80211_device *ieee = priv->ieee;
6524 struct iw_param *param = &wrqu->param;
6525 struct ieee80211_crypt_data *crypt;
6526 unsigned long flags;
6529 switch (param->flags & IW_AUTH_INDEX) {
6530 case IW_AUTH_WPA_VERSION:
6532 case IW_AUTH_CIPHER_PAIRWISE:
6533 ipw_set_hw_decrypt_unicast(priv,
6534 wext_cipher2level(param->value));
6536 case IW_AUTH_CIPHER_GROUP:
6537 ipw_set_hw_decrypt_multicast(priv,
6538 wext_cipher2level(param->value));
6540 case IW_AUTH_KEY_MGMT:
6542 * ipw2200 does not use these parameters
6546 case IW_AUTH_TKIP_COUNTERMEASURES:
6547 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6548 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6551 flags = crypt->ops->get_flags(crypt->priv);
6554 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6556 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6558 crypt->ops->set_flags(flags, crypt->priv);
6562 case IW_AUTH_DROP_UNENCRYPTED:{
6565 * wpa_supplicant calls set_wpa_enabled when the driver
6566 * is loaded and unloaded, regardless of if WPA is being
6567 * used. No other calls are made which can be used to
6568 * determine if encryption will be used or not prior to
6569 * association being expected. If encryption is not being
6570 * used, drop_unencrypted is set to false, else true -- we
6571 * can use this to determine if the CAP_PRIVACY_ON bit should
6574 struct ieee80211_security sec = {
6575 .flags = SEC_ENABLED,
6576 .enabled = param->value,
6578 priv->ieee->drop_unencrypted = param->value;
6579 /* We only change SEC_LEVEL for open mode. Others
6580 * are set by ipw_wpa_set_encryption.
6582 if (!param->value) {
6583 sec.flags |= SEC_LEVEL;
6584 sec.level = SEC_LEVEL_0;
6586 sec.flags |= SEC_LEVEL;
6587 sec.level = SEC_LEVEL_1;
6589 if (priv->ieee->set_security)
6590 priv->ieee->set_security(priv->ieee->dev, &sec);
6594 case IW_AUTH_80211_AUTH_ALG:
6595 ret = ipw_wpa_set_auth_algs(priv, param->value);
6598 case IW_AUTH_WPA_ENABLED:
6599 ret = ipw_wpa_enable(priv, param->value);
6600 ipw_disassociate(priv);
6603 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6604 ieee->ieee802_1x = param->value;
6607 case IW_AUTH_PRIVACY_INVOKED:
6608 ieee->privacy_invoked = param->value;
6618 static int ipw_wx_get_auth(struct net_device *dev,
6619 struct iw_request_info *info,
6620 union iwreq_data *wrqu, char *extra)
6622 struct ipw_priv *priv = ieee80211_priv(dev);
6623 struct ieee80211_device *ieee = priv->ieee;
6624 struct ieee80211_crypt_data *crypt;
6625 struct iw_param *param = &wrqu->param;
6628 switch (param->flags & IW_AUTH_INDEX) {
6629 case IW_AUTH_WPA_VERSION:
6630 case IW_AUTH_CIPHER_PAIRWISE:
6631 case IW_AUTH_CIPHER_GROUP:
6632 case IW_AUTH_KEY_MGMT:
6634 * wpa_supplicant will control these internally
6639 case IW_AUTH_TKIP_COUNTERMEASURES:
6640 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6641 if (!crypt || !crypt->ops->get_flags)
6644 param->value = (crypt->ops->get_flags(crypt->priv) &
6645 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6649 case IW_AUTH_DROP_UNENCRYPTED:
6650 param->value = ieee->drop_unencrypted;
6653 case IW_AUTH_80211_AUTH_ALG:
6654 param->value = ieee->sec.auth_mode;
6657 case IW_AUTH_WPA_ENABLED:
6658 param->value = ieee->wpa_enabled;
6661 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6662 param->value = ieee->ieee802_1x;
6665 case IW_AUTH_ROAMING_CONTROL:
6666 case IW_AUTH_PRIVACY_INVOKED:
6667 param->value = ieee->privacy_invoked;
6676 /* SIOCSIWENCODEEXT */
6677 static int ipw_wx_set_encodeext(struct net_device *dev,
6678 struct iw_request_info *info,
6679 union iwreq_data *wrqu, char *extra)
6681 struct ipw_priv *priv = ieee80211_priv(dev);
6682 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6685 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6686 /* IPW HW can't build TKIP MIC,
6687 host decryption still needed */
6688 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6689 priv->ieee->host_mc_decrypt = 1;
6691 priv->ieee->host_encrypt = 0;
6692 priv->ieee->host_encrypt_msdu = 1;
6693 priv->ieee->host_decrypt = 1;
6696 priv->ieee->host_encrypt = 0;
6697 priv->ieee->host_encrypt_msdu = 0;
6698 priv->ieee->host_decrypt = 0;
6699 priv->ieee->host_mc_decrypt = 0;
6703 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6706 /* SIOCGIWENCODEEXT */
6707 static int ipw_wx_get_encodeext(struct net_device *dev,
6708 struct iw_request_info *info,
6709 union iwreq_data *wrqu, char *extra)
6711 struct ipw_priv *priv = ieee80211_priv(dev);
6712 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6716 static int ipw_wx_set_mlme(struct net_device *dev,
6717 struct iw_request_info *info,
6718 union iwreq_data *wrqu, char *extra)
6720 struct ipw_priv *priv = ieee80211_priv(dev);
6721 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6724 reason = cpu_to_le16(mlme->reason_code);
6726 switch (mlme->cmd) {
6727 case IW_MLME_DEAUTH:
6728 /* silently ignore */
6731 case IW_MLME_DISASSOC:
6732 ipw_disassociate(priv);
6741 #ifdef CONFIG_IPW2200_QOS
6745 * get the modulation type of the current network or
6746 * the card current mode
6748 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6752 if (priv->status & STATUS_ASSOCIATED) {
6753 unsigned long flags;
6755 spin_lock_irqsave(&priv->ieee->lock, flags);
6756 mode = priv->assoc_network->mode;
6757 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6759 mode = priv->ieee->mode;
6761 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6766 * Handle management frame beacon and probe response
6768 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6770 struct ieee80211_network *network)
6772 u32 size = sizeof(struct ieee80211_qos_parameters);
6774 if (network->capability & WLAN_CAPABILITY_IBSS)
6775 network->qos_data.active = network->qos_data.supported;
6777 if (network->flags & NETWORK_HAS_QOS_MASK) {
6778 if (active_network &&
6779 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6780 network->qos_data.active = network->qos_data.supported;
6782 if ((network->qos_data.active == 1) && (active_network == 1) &&
6783 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6784 (network->qos_data.old_param_count !=
6785 network->qos_data.param_count)) {
6786 network->qos_data.old_param_count =
6787 network->qos_data.param_count;
6788 schedule_work(&priv->qos_activate);
6789 IPW_DEBUG_QOS("QoS parameters change call "
6793 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6794 memcpy(&network->qos_data.parameters,
6795 &def_parameters_CCK, size);
6797 memcpy(&network->qos_data.parameters,
6798 &def_parameters_OFDM, size);
6800 if ((network->qos_data.active == 1) && (active_network == 1)) {
6801 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6802 schedule_work(&priv->qos_activate);
6805 network->qos_data.active = 0;
6806 network->qos_data.supported = 0;
6808 if ((priv->status & STATUS_ASSOCIATED) &&
6809 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6810 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6811 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6812 !(network->flags & NETWORK_EMPTY_ESSID))
6813 if ((network->ssid_len ==
6814 priv->assoc_network->ssid_len) &&
6815 !memcmp(network->ssid,
6816 priv->assoc_network->ssid,
6817 network->ssid_len)) {
6818 queue_work(priv->workqueue,
6819 &priv->merge_networks);
6827 * This function set up the firmware to support QoS. It sends
6828 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6830 static int ipw_qos_activate(struct ipw_priv *priv,
6831 struct ieee80211_qos_data *qos_network_data)
6834 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6835 struct ieee80211_qos_parameters *active_one = NULL;
6836 u32 size = sizeof(struct ieee80211_qos_parameters);
6841 type = ipw_qos_current_mode(priv);
6843 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6844 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6845 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6846 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6848 if (qos_network_data == NULL) {
6849 if (type == IEEE_B) {
6850 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6851 active_one = &def_parameters_CCK;
6853 active_one = &def_parameters_OFDM;
6855 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6856 burst_duration = ipw_qos_get_burst_duration(priv);
6857 for (i = 0; i < QOS_QUEUE_NUM; i++)
6858 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6859 (u16)burst_duration;
6860 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6861 if (type == IEEE_B) {
6862 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6864 if (priv->qos_data.qos_enable == 0)
6865 active_one = &def_parameters_CCK;
6867 active_one = priv->qos_data.def_qos_parm_CCK;
6869 if (priv->qos_data.qos_enable == 0)
6870 active_one = &def_parameters_OFDM;
6872 active_one = priv->qos_data.def_qos_parm_OFDM;
6874 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6876 unsigned long flags;
6879 spin_lock_irqsave(&priv->ieee->lock, flags);
6880 active_one = &(qos_network_data->parameters);
6881 qos_network_data->old_param_count =
6882 qos_network_data->param_count;
6883 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6884 active = qos_network_data->supported;
6885 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6888 burst_duration = ipw_qos_get_burst_duration(priv);
6889 for (i = 0; i < QOS_QUEUE_NUM; i++)
6890 qos_parameters[QOS_PARAM_SET_ACTIVE].
6891 tx_op_limit[i] = (u16)burst_duration;
6895 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6896 for (i = 0; i < 3; i++) {
6898 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6899 qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6900 qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6901 qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6905 err = ipw_send_qos_params_command(priv,
6906 (struct ieee80211_qos_parameters *)
6907 &(qos_parameters[0]));
6909 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6915 * send IPW_CMD_WME_INFO to the firmware
6917 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6920 struct ieee80211_qos_information_element qos_info;
6925 qos_info.elementID = QOS_ELEMENT_ID;
6926 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6928 qos_info.version = QOS_VERSION_1;
6929 qos_info.ac_info = 0;
6931 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6932 qos_info.qui_type = QOS_OUI_TYPE;
6933 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6935 ret = ipw_send_qos_info_command(priv, &qos_info);
6937 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6943 * Set the QoS parameter with the association request structure
6945 static int ipw_qos_association(struct ipw_priv *priv,
6946 struct ieee80211_network *network)
6949 struct ieee80211_qos_data *qos_data = NULL;
6950 struct ieee80211_qos_data ibss_data = {
6955 switch (priv->ieee->iw_mode) {
6957 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6959 qos_data = &ibss_data;
6963 qos_data = &network->qos_data;
6971 err = ipw_qos_activate(priv, qos_data);
6973 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6977 if (priv->qos_data.qos_enable && qos_data->supported) {
6978 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6979 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6980 return ipw_qos_set_info_element(priv);
6987 * handling the beaconing responses. if we get different QoS setting
6988 * off the network from the associated setting, adjust the QoS
6991 static int ipw_qos_association_resp(struct ipw_priv *priv,
6992 struct ieee80211_network *network)
6995 unsigned long flags;
6996 u32 size = sizeof(struct ieee80211_qos_parameters);
6997 int set_qos_param = 0;
6999 if ((priv == NULL) || (network == NULL) ||
7000 (priv->assoc_network == NULL))
7003 if (!(priv->status & STATUS_ASSOCIATED))
7006 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7009 spin_lock_irqsave(&priv->ieee->lock, flags);
7010 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7011 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7012 sizeof(struct ieee80211_qos_data));
7013 priv->assoc_network->qos_data.active = 1;
7014 if ((network->qos_data.old_param_count !=
7015 network->qos_data.param_count)) {
7017 network->qos_data.old_param_count =
7018 network->qos_data.param_count;
7022 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7023 memcpy(&priv->assoc_network->qos_data.parameters,
7024 &def_parameters_CCK, size);
7026 memcpy(&priv->assoc_network->qos_data.parameters,
7027 &def_parameters_OFDM, size);
7028 priv->assoc_network->qos_data.active = 0;
7029 priv->assoc_network->qos_data.supported = 0;
7033 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7035 if (set_qos_param == 1)
7036 schedule_work(&priv->qos_activate);
7041 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7048 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7049 ret = priv->qos_data.burst_duration_CCK;
7051 ret = priv->qos_data.burst_duration_OFDM;
7057 * Initialize the setting of QoS global
7059 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7060 int burst_enable, u32 burst_duration_CCK,
7061 u32 burst_duration_OFDM)
7063 priv->qos_data.qos_enable = enable;
7065 if (priv->qos_data.qos_enable) {
7066 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7067 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7068 IPW_DEBUG_QOS("QoS is enabled\n");
7070 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7071 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7072 IPW_DEBUG_QOS("QoS is not enabled\n");
7075 priv->qos_data.burst_enable = burst_enable;
7078 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7079 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7081 priv->qos_data.burst_duration_CCK = 0;
7082 priv->qos_data.burst_duration_OFDM = 0;
7087 * map the packet priority to the right TX Queue
7089 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7091 if (priority > 7 || !priv->qos_data.qos_enable)
7094 return from_priority_to_tx_queue[priority] - 1;
7097 static int ipw_is_qos_active(struct net_device *dev,
7098 struct sk_buff *skb)
7100 struct ipw_priv *priv = ieee80211_priv(dev);
7101 struct ieee80211_qos_data *qos_data = NULL;
7102 int active, supported;
7103 u8 *daddr = skb->data + ETH_ALEN;
7104 int unicast = !is_multicast_ether_addr(daddr);
7106 if (!(priv->status & STATUS_ASSOCIATED))
7109 qos_data = &priv->assoc_network->qos_data;
7111 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7113 qos_data->active = 0;
7115 qos_data->active = qos_data->supported;
7117 active = qos_data->active;
7118 supported = qos_data->supported;
7119 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7121 priv->qos_data.qos_enable, active, supported, unicast);
7122 if (active && priv->qos_data.qos_enable)
7129 * add QoS parameter to the TX command
7131 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7133 struct tfd_data *tfd)
7135 int tx_queue_id = 0;
7138 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7139 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7141 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7142 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7143 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7149 * background support to run QoS activate functionality
7151 static void ipw_bg_qos_activate(struct work_struct *work)
7153 struct ipw_priv *priv =
7154 container_of(work, struct ipw_priv, qos_activate);
7159 mutex_lock(&priv->mutex);
7161 if (priv->status & STATUS_ASSOCIATED)
7162 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7164 mutex_unlock(&priv->mutex);
7167 static int ipw_handle_probe_response(struct net_device *dev,
7168 struct ieee80211_probe_response *resp,
7169 struct ieee80211_network *network)
7171 struct ipw_priv *priv = ieee80211_priv(dev);
7172 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7173 (network == priv->assoc_network));
7175 ipw_qos_handle_probe_response(priv, active_network, network);
7180 static int ipw_handle_beacon(struct net_device *dev,
7181 struct ieee80211_beacon *resp,
7182 struct ieee80211_network *network)
7184 struct ipw_priv *priv = ieee80211_priv(dev);
7185 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7186 (network == priv->assoc_network));
7188 ipw_qos_handle_probe_response(priv, active_network, network);
7193 static int ipw_handle_assoc_response(struct net_device *dev,
7194 struct ieee80211_assoc_response *resp,
7195 struct ieee80211_network *network)
7197 struct ipw_priv *priv = ieee80211_priv(dev);
7198 ipw_qos_association_resp(priv, network);
7202 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7205 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7206 sizeof(*qos_param) * 3, qos_param);
7209 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7212 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7216 #endif /* CONFIG_IPW2200_QOS */
7218 static int ipw_associate_network(struct ipw_priv *priv,
7219 struct ieee80211_network *network,
7220 struct ipw_supported_rates *rates, int roaming)
7224 if (priv->config & CFG_FIXED_RATE)
7225 ipw_set_fixed_rate(priv, network->mode);
7227 if (!(priv->config & CFG_STATIC_ESSID)) {
7228 priv->essid_len = min(network->ssid_len,
7229 (u8) IW_ESSID_MAX_SIZE);
7230 memcpy(priv->essid, network->ssid, priv->essid_len);
7233 network->last_associate = jiffies;
7235 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7236 priv->assoc_request.channel = network->channel;
7237 priv->assoc_request.auth_key = 0;
7239 if ((priv->capability & CAP_PRIVACY_ON) &&
7240 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7241 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7242 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7244 if (priv->ieee->sec.level == SEC_LEVEL_1)
7245 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7247 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7248 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7249 priv->assoc_request.auth_type = AUTH_LEAP;
7251 priv->assoc_request.auth_type = AUTH_OPEN;
7253 if (priv->ieee->wpa_ie_len) {
7254 priv->assoc_request.policy_support = 0x02; /* RSN active */
7255 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7256 priv->ieee->wpa_ie_len);
7260 * It is valid for our ieee device to support multiple modes, but
7261 * when it comes to associating to a given network we have to choose
7264 if (network->mode & priv->ieee->mode & IEEE_A)
7265 priv->assoc_request.ieee_mode = IPW_A_MODE;
7266 else if (network->mode & priv->ieee->mode & IEEE_G)
7267 priv->assoc_request.ieee_mode = IPW_G_MODE;
7268 else if (network->mode & priv->ieee->mode & IEEE_B)
7269 priv->assoc_request.ieee_mode = IPW_B_MODE;
7271 priv->assoc_request.capability = network->capability;
7272 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7273 && !(priv->config & CFG_PREAMBLE_LONG)) {
7274 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7276 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7278 /* Clear the short preamble if we won't be supporting it */
7279 priv->assoc_request.capability &=
7280 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7283 /* Clear capability bits that aren't used in Ad Hoc */
7284 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7285 priv->assoc_request.capability &=
7286 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7288 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7289 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7290 roaming ? "Rea" : "A",
7291 escape_essid(priv->essid, priv->essid_len),
7293 ipw_modes[priv->assoc_request.ieee_mode],
7295 (priv->assoc_request.preamble_length ==
7296 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7297 network->capability &
7298 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7299 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7300 priv->capability & CAP_PRIVACY_ON ?
7301 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7303 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7304 priv->capability & CAP_PRIVACY_ON ?
7305 '1' + priv->ieee->sec.active_key : '.',
7306 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7308 priv->assoc_request.beacon_interval = network->beacon_interval;
7309 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7310 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7311 priv->assoc_request.assoc_type = HC_IBSS_START;
7312 priv->assoc_request.assoc_tsf_msw = 0;
7313 priv->assoc_request.assoc_tsf_lsw = 0;
7315 if (unlikely(roaming))
7316 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7318 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7319 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7320 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7323 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7325 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7326 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7327 priv->assoc_request.atim_window = network->atim_window;
7329 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7330 priv->assoc_request.atim_window = 0;
7333 priv->assoc_request.listen_interval = network->listen_interval;
7335 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7337 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7341 rates->ieee_mode = priv->assoc_request.ieee_mode;
7342 rates->purpose = IPW_RATE_CONNECT;
7343 ipw_send_supported_rates(priv, rates);
7345 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7346 priv->sys_config.dot11g_auto_detection = 1;
7348 priv->sys_config.dot11g_auto_detection = 0;
7350 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7351 priv->sys_config.answer_broadcast_ssid_probe = 1;
7353 priv->sys_config.answer_broadcast_ssid_probe = 0;
7355 err = ipw_send_system_config(priv);
7357 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7361 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7362 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7364 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7369 * If preemption is enabled, it is possible for the association
7370 * to complete before we return from ipw_send_associate. Therefore
7371 * we have to be sure and update our priviate data first.
7373 priv->channel = network->channel;
7374 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7375 priv->status |= STATUS_ASSOCIATING;
7376 priv->status &= ~STATUS_SECURITY_UPDATED;
7378 priv->assoc_network = network;
7380 #ifdef CONFIG_IPW2200_QOS
7381 ipw_qos_association(priv, network);
7384 err = ipw_send_associate(priv, &priv->assoc_request);
7386 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7390 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7391 escape_essid(priv->essid, priv->essid_len),
7392 MAC_ARG(priv->bssid));
7397 static void ipw_roam(void *data)
7399 struct ipw_priv *priv = data;
7400 struct ieee80211_network *network = NULL;
7401 struct ipw_network_match match = {
7402 .network = priv->assoc_network
7405 /* The roaming process is as follows:
7407 * 1. Missed beacon threshold triggers the roaming process by
7408 * setting the status ROAM bit and requesting a scan.
7409 * 2. When the scan completes, it schedules the ROAM work
7410 * 3. The ROAM work looks at all of the known networks for one that
7411 * is a better network than the currently associated. If none
7412 * found, the ROAM process is over (ROAM bit cleared)
7413 * 4. If a better network is found, a disassociation request is
7415 * 5. When the disassociation completes, the roam work is again
7416 * scheduled. The second time through, the driver is no longer
7417 * associated, and the newly selected network is sent an
7418 * association request.
7419 * 6. At this point ,the roaming process is complete and the ROAM
7420 * status bit is cleared.
7423 /* If we are no longer associated, and the roaming bit is no longer
7424 * set, then we are not actively roaming, so just return */
7425 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7428 if (priv->status & STATUS_ASSOCIATED) {
7429 /* First pass through ROAM process -- look for a better
7431 unsigned long flags;
7432 u8 rssi = priv->assoc_network->stats.rssi;
7433 priv->assoc_network->stats.rssi = -128;
7434 spin_lock_irqsave(&priv->ieee->lock, flags);
7435 list_for_each_entry(network, &priv->ieee->network_list, list) {
7436 if (network != priv->assoc_network)
7437 ipw_best_network(priv, &match, network, 1);
7439 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7440 priv->assoc_network->stats.rssi = rssi;
7442 if (match.network == priv->assoc_network) {
7443 IPW_DEBUG_ASSOC("No better APs in this network to "
7445 priv->status &= ~STATUS_ROAMING;
7446 ipw_debug_config(priv);
7450 ipw_send_disassociate(priv, 1);
7451 priv->assoc_network = match.network;
7456 /* Second pass through ROAM process -- request association */
7457 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7458 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7459 priv->status &= ~STATUS_ROAMING;
7462 static void ipw_bg_roam(struct work_struct *work)
7464 struct ipw_priv *priv =
7465 container_of(work, struct ipw_priv, roam);
7466 mutex_lock(&priv->mutex);
7468 mutex_unlock(&priv->mutex);
7471 static int ipw_associate(void *data)
7473 struct ipw_priv *priv = data;
7475 struct ieee80211_network *network = NULL;
7476 struct ipw_network_match match = {
7479 struct ipw_supported_rates *rates;
7480 struct list_head *element;
7481 unsigned long flags;
7483 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7484 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7488 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7489 IPW_DEBUG_ASSOC("Not attempting association (already in "
7494 if (priv->status & STATUS_DISASSOCIATING) {
7495 IPW_DEBUG_ASSOC("Not attempting association (in "
7496 "disassociating)\n ");
7497 queue_work(priv->workqueue, &priv->associate);
7501 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7507 if (!(priv->config & CFG_ASSOCIATE) &&
7508 !(priv->config & (CFG_STATIC_ESSID |
7509 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7510 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7514 /* Protect our use of the network_list */
7515 spin_lock_irqsave(&priv->ieee->lock, flags);
7516 list_for_each_entry(network, &priv->ieee->network_list, list)
7517 ipw_best_network(priv, &match, network, 0);
7519 network = match.network;
7520 rates = &match.rates;
7522 if (network == NULL &&
7523 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7524 priv->config & CFG_ADHOC_CREATE &&
7525 priv->config & CFG_STATIC_ESSID &&
7526 priv->config & CFG_STATIC_CHANNEL &&
7527 !list_empty(&priv->ieee->network_free_list)) {
7528 element = priv->ieee->network_free_list.next;
7529 network = list_entry(element, struct ieee80211_network, list);
7530 ipw_adhoc_create(priv, network);
7531 rates = &priv->rates;
7533 list_add_tail(&network->list, &priv->ieee->network_list);
7535 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7537 /* If we reached the end of the list, then we don't have any valid
7540 ipw_debug_config(priv);
7542 if (!(priv->status & STATUS_SCANNING)) {
7543 if (!(priv->config & CFG_SPEED_SCAN))
7544 queue_delayed_work(priv->workqueue,
7545 &priv->request_scan,
7548 queue_delayed_work(priv->workqueue,
7549 &priv->request_scan, 0);
7555 ipw_associate_network(priv, network, rates, 0);
7560 static void ipw_bg_associate(struct work_struct *work)
7562 struct ipw_priv *priv =
7563 container_of(work, struct ipw_priv, associate);
7564 mutex_lock(&priv->mutex);
7565 ipw_associate(priv);
7566 mutex_unlock(&priv->mutex);
7569 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7570 struct sk_buff *skb)
7572 struct ieee80211_hdr *hdr;
7575 hdr = (struct ieee80211_hdr *)skb->data;
7576 fc = le16_to_cpu(hdr->frame_ctl);
7577 if (!(fc & IEEE80211_FCTL_PROTECTED))
7580 fc &= ~IEEE80211_FCTL_PROTECTED;
7581 hdr->frame_ctl = cpu_to_le16(fc);
7582 switch (priv->ieee->sec.level) {
7584 /* Remove CCMP HDR */
7585 memmove(skb->data + IEEE80211_3ADDR_LEN,
7586 skb->data + IEEE80211_3ADDR_LEN + 8,
7587 skb->len - IEEE80211_3ADDR_LEN - 8);
7588 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7594 memmove(skb->data + IEEE80211_3ADDR_LEN,
7595 skb->data + IEEE80211_3ADDR_LEN + 4,
7596 skb->len - IEEE80211_3ADDR_LEN - 4);
7597 skb_trim(skb, skb->len - 8); /* IV + ICV */
7602 printk(KERN_ERR "Unknow security level %d\n",
7603 priv->ieee->sec.level);
7608 static void ipw_handle_data_packet(struct ipw_priv *priv,
7609 struct ipw_rx_mem_buffer *rxb,
7610 struct ieee80211_rx_stats *stats)
7612 struct ieee80211_hdr_4addr *hdr;
7613 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7615 /* We received data from the HW, so stop the watchdog */
7616 priv->net_dev->trans_start = jiffies;
7618 /* We only process data packets if the
7619 * interface is open */
7620 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7621 skb_tailroom(rxb->skb))) {
7622 priv->ieee->stats.rx_errors++;
7623 priv->wstats.discard.misc++;
7624 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7626 } else if (unlikely(!netif_running(priv->net_dev))) {
7627 priv->ieee->stats.rx_dropped++;
7628 priv->wstats.discard.misc++;
7629 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7633 /* Advance skb->data to the start of the actual payload */
7634 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7636 /* Set the size of the skb to the size of the frame */
7637 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7639 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7641 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7642 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7643 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7644 (is_multicast_ether_addr(hdr->addr1) ?
7645 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7646 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7648 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7649 priv->ieee->stats.rx_errors++;
7650 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7652 __ipw_led_activity_on(priv);
7656 #ifdef CONFIG_IPW2200_RADIOTAP
7657 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7658 struct ipw_rx_mem_buffer *rxb,
7659 struct ieee80211_rx_stats *stats)
7661 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7662 struct ipw_rx_frame *frame = &pkt->u.frame;
7664 /* initial pull of some data */
7665 u16 received_channel = frame->received_channel;
7666 u8 antennaAndPhy = frame->antennaAndPhy;
7667 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7668 u16 pktrate = frame->rate;
7670 /* Magic struct that slots into the radiotap header -- no reason
7671 * to build this manually element by element, we can write it much
7672 * more efficiently than we can parse it. ORDER MATTERS HERE */
7673 struct ipw_rt_hdr *ipw_rt;
7675 short len = le16_to_cpu(pkt->u.frame.length);
7677 /* We received data from the HW, so stop the watchdog */
7678 priv->net_dev->trans_start = jiffies;
7680 /* We only process data packets if the
7681 * interface is open */
7682 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7683 skb_tailroom(rxb->skb))) {
7684 priv->ieee->stats.rx_errors++;
7685 priv->wstats.discard.misc++;
7686 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7688 } else if (unlikely(!netif_running(priv->net_dev))) {
7689 priv->ieee->stats.rx_dropped++;
7690 priv->wstats.discard.misc++;
7691 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7695 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7697 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7698 /* FIXME: Should alloc bigger skb instead */
7699 priv->ieee->stats.rx_dropped++;
7700 priv->wstats.discard.misc++;
7701 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7705 /* copy the frame itself */
7706 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7707 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7709 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7710 * part of our real header, saves a little time.
7712 * No longer necessary since we fill in all our data. Purge before merging
7714 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7715 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7718 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7720 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7721 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7722 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7724 /* Big bitfield of all the fields we provide in radiotap */
7725 ipw_rt->rt_hdr.it_present =
7726 ((1 << IEEE80211_RADIOTAP_TSFT) |
7727 (1 << IEEE80211_RADIOTAP_FLAGS) |
7728 (1 << IEEE80211_RADIOTAP_RATE) |
7729 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7730 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7731 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7732 (1 << IEEE80211_RADIOTAP_ANTENNA));
7734 /* Zero the flags, we'll add to them as we go */
7735 ipw_rt->rt_flags = 0;
7736 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7737 frame->parent_tsf[2] << 16 |
7738 frame->parent_tsf[1] << 8 |
7739 frame->parent_tsf[0]);
7741 /* Convert signal to DBM */
7742 ipw_rt->rt_dbmsignal = antsignal;
7743 ipw_rt->rt_dbmnoise = frame->noise;
7745 /* Convert the channel data and set the flags */
7746 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7747 if (received_channel > 14) { /* 802.11a */
7748 ipw_rt->rt_chbitmask =
7749 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7750 } else if (antennaAndPhy & 32) { /* 802.11b */
7751 ipw_rt->rt_chbitmask =
7752 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7753 } else { /* 802.11g */
7754 ipw_rt->rt_chbitmask =
7755 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7758 /* set the rate in multiples of 500k/s */
7760 case IPW_TX_RATE_1MB:
7761 ipw_rt->rt_rate = 2;
7763 case IPW_TX_RATE_2MB:
7764 ipw_rt->rt_rate = 4;
7766 case IPW_TX_RATE_5MB:
7767 ipw_rt->rt_rate = 10;
7769 case IPW_TX_RATE_6MB:
7770 ipw_rt->rt_rate = 12;
7772 case IPW_TX_RATE_9MB:
7773 ipw_rt->rt_rate = 18;
7775 case IPW_TX_RATE_11MB:
7776 ipw_rt->rt_rate = 22;
7778 case IPW_TX_RATE_12MB:
7779 ipw_rt->rt_rate = 24;
7781 case IPW_TX_RATE_18MB:
7782 ipw_rt->rt_rate = 36;
7784 case IPW_TX_RATE_24MB:
7785 ipw_rt->rt_rate = 48;
7787 case IPW_TX_RATE_36MB:
7788 ipw_rt->rt_rate = 72;
7790 case IPW_TX_RATE_48MB:
7791 ipw_rt->rt_rate = 96;
7793 case IPW_TX_RATE_54MB:
7794 ipw_rt->rt_rate = 108;
7797 ipw_rt->rt_rate = 0;
7801 /* antenna number */
7802 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7804 /* set the preamble flag if we have it */
7805 if ((antennaAndPhy & 64))
7806 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7808 /* Set the size of the skb to the size of the frame */
7809 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7811 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7813 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7814 priv->ieee->stats.rx_errors++;
7815 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7817 /* no LED during capture */
7822 #ifdef CONFIG_IPW2200_PROMISCUOUS
7823 #define ieee80211_is_probe_response(fc) \
7824 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7825 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7827 #define ieee80211_is_management(fc) \
7828 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7830 #define ieee80211_is_control(fc) \
7831 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7833 #define ieee80211_is_data(fc) \
7834 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7836 #define ieee80211_is_assoc_request(fc) \
7837 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7839 #define ieee80211_is_reassoc_request(fc) \
7840 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7842 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7843 struct ipw_rx_mem_buffer *rxb,
7844 struct ieee80211_rx_stats *stats)
7846 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7847 struct ipw_rx_frame *frame = &pkt->u.frame;
7848 struct ipw_rt_hdr *ipw_rt;
7850 /* First cache any information we need before we overwrite
7851 * the information provided in the skb from the hardware */
7852 struct ieee80211_hdr *hdr;
7853 u16 channel = frame->received_channel;
7854 u8 phy_flags = frame->antennaAndPhy;
7855 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7856 s8 noise = frame->noise;
7857 u8 rate = frame->rate;
7858 short len = le16_to_cpu(pkt->u.frame.length);
7859 struct sk_buff *skb;
7861 u16 filter = priv->prom_priv->filter;
7863 /* If the filter is set to not include Rx frames then return */
7864 if (filter & IPW_PROM_NO_RX)
7867 /* We received data from the HW, so stop the watchdog */
7868 priv->prom_net_dev->trans_start = jiffies;
7870 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7871 priv->prom_priv->ieee->stats.rx_errors++;
7872 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7876 /* We only process data packets if the interface is open */
7877 if (unlikely(!netif_running(priv->prom_net_dev))) {
7878 priv->prom_priv->ieee->stats.rx_dropped++;
7879 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7883 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7885 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886 /* FIXME: Should alloc bigger skb instead */
7887 priv->prom_priv->ieee->stats.rx_dropped++;
7888 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7892 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7893 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7894 if (filter & IPW_PROM_NO_MGMT)
7896 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7898 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7899 if (filter & IPW_PROM_NO_CTL)
7901 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7903 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7904 if (filter & IPW_PROM_NO_DATA)
7906 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7910 /* Copy the SKB since this is for the promiscuous side */
7911 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7913 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7917 /* copy the frame data to write after where the radiotap header goes */
7918 ipw_rt = (void *)skb->data;
7921 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7923 memcpy(ipw_rt->payload, hdr, len);
7925 /* Zero the radiotap static buffer ... We only need to zero the bytes
7926 * NOT part of our real header, saves a little time.
7928 * No longer necessary since we fill in all our data. Purge before
7929 * merging patch officially.
7930 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7931 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7934 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7935 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7936 ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt); /* total header+data */
7938 /* Set the size of the skb to the size of the frame */
7939 skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7941 /* Big bitfield of all the fields we provide in radiotap */
7942 ipw_rt->rt_hdr.it_present =
7943 ((1 << IEEE80211_RADIOTAP_TSFT) |
7944 (1 << IEEE80211_RADIOTAP_FLAGS) |
7945 (1 << IEEE80211_RADIOTAP_RATE) |
7946 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7947 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7948 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7949 (1 << IEEE80211_RADIOTAP_ANTENNA));
7951 /* Zero the flags, we'll add to them as we go */
7952 ipw_rt->rt_flags = 0;
7953 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7954 frame->parent_tsf[2] << 16 |
7955 frame->parent_tsf[1] << 8 |
7956 frame->parent_tsf[0]);
7958 /* Convert to DBM */
7959 ipw_rt->rt_dbmsignal = signal;
7960 ipw_rt->rt_dbmnoise = noise;
7962 /* Convert the channel data and set the flags */
7963 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7964 if (channel > 14) { /* 802.11a */
7965 ipw_rt->rt_chbitmask =
7966 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7967 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7968 ipw_rt->rt_chbitmask =
7969 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7970 } else { /* 802.11g */
7971 ipw_rt->rt_chbitmask =
7972 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7975 /* set the rate in multiples of 500k/s */
7977 case IPW_TX_RATE_1MB:
7978 ipw_rt->rt_rate = 2;
7980 case IPW_TX_RATE_2MB:
7981 ipw_rt->rt_rate = 4;
7983 case IPW_TX_RATE_5MB:
7984 ipw_rt->rt_rate = 10;
7986 case IPW_TX_RATE_6MB:
7987 ipw_rt->rt_rate = 12;
7989 case IPW_TX_RATE_9MB:
7990 ipw_rt->rt_rate = 18;
7992 case IPW_TX_RATE_11MB:
7993 ipw_rt->rt_rate = 22;
7995 case IPW_TX_RATE_12MB:
7996 ipw_rt->rt_rate = 24;
7998 case IPW_TX_RATE_18MB:
7999 ipw_rt->rt_rate = 36;
8001 case IPW_TX_RATE_24MB:
8002 ipw_rt->rt_rate = 48;
8004 case IPW_TX_RATE_36MB:
8005 ipw_rt->rt_rate = 72;
8007 case IPW_TX_RATE_48MB:
8008 ipw_rt->rt_rate = 96;
8010 case IPW_TX_RATE_54MB:
8011 ipw_rt->rt_rate = 108;
8014 ipw_rt->rt_rate = 0;
8018 /* antenna number */
8019 ipw_rt->rt_antenna = (phy_flags & 3);
8021 /* set the preamble flag if we have it */
8022 if (phy_flags & (1 << 6))
8023 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8025 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8027 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8028 priv->prom_priv->ieee->stats.rx_errors++;
8029 dev_kfree_skb_any(skb);
8034 static int is_network_packet(struct ipw_priv *priv,
8035 struct ieee80211_hdr_4addr *header)
8037 /* Filter incoming packets to determine if they are targetted toward
8038 * this network, discarding packets coming from ourselves */
8039 switch (priv->ieee->iw_mode) {
8040 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8041 /* packets from our adapter are dropped (echo) */
8042 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8045 /* {broad,multi}cast packets to our BSSID go through */
8046 if (is_multicast_ether_addr(header->addr1))
8047 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8049 /* packets to our adapter go through */
8050 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8053 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8054 /* packets from our adapter are dropped (echo) */
8055 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8058 /* {broad,multi}cast packets to our BSS go through */
8059 if (is_multicast_ether_addr(header->addr1))
8060 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8062 /* packets to our adapter go through */
8063 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8070 #define IPW_PACKET_RETRY_TIME HZ
8072 static int is_duplicate_packet(struct ipw_priv *priv,
8073 struct ieee80211_hdr_4addr *header)
8075 u16 sc = le16_to_cpu(header->seq_ctl);
8076 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8077 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8078 u16 *last_seq, *last_frag;
8079 unsigned long *last_time;
8081 switch (priv->ieee->iw_mode) {
8084 struct list_head *p;
8085 struct ipw_ibss_seq *entry = NULL;
8086 u8 *mac = header->addr2;
8087 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8089 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8091 list_entry(p, struct ipw_ibss_seq, list);
8092 if (!memcmp(entry->mac, mac, ETH_ALEN))
8095 if (p == &priv->ibss_mac_hash[index]) {
8096 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8099 ("Cannot malloc new mac entry\n");
8102 memcpy(entry->mac, mac, ETH_ALEN);
8103 entry->seq_num = seq;
8104 entry->frag_num = frag;
8105 entry->packet_time = jiffies;
8106 list_add(&entry->list,
8107 &priv->ibss_mac_hash[index]);
8110 last_seq = &entry->seq_num;
8111 last_frag = &entry->frag_num;
8112 last_time = &entry->packet_time;
8116 last_seq = &priv->last_seq_num;
8117 last_frag = &priv->last_frag_num;
8118 last_time = &priv->last_packet_time;
8123 if ((*last_seq == seq) &&
8124 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8125 if (*last_frag == frag)
8127 if (*last_frag + 1 != frag)
8128 /* out-of-order fragment */
8134 *last_time = jiffies;
8138 /* Comment this line now since we observed the card receives
8139 * duplicate packets but the FCTL_RETRY bit is not set in the
8140 * IBSS mode with fragmentation enabled.
8141 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8145 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8146 struct ipw_rx_mem_buffer *rxb,
8147 struct ieee80211_rx_stats *stats)
8149 struct sk_buff *skb = rxb->skb;
8150 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8151 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8152 (skb->data + IPW_RX_FRAME_SIZE);
8154 ieee80211_rx_mgt(priv->ieee, header, stats);
8156 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8157 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8158 IEEE80211_STYPE_PROBE_RESP) ||
8159 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160 IEEE80211_STYPE_BEACON))) {
8161 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8162 ipw_add_station(priv, header->addr2);
8165 if (priv->config & CFG_NET_STATS) {
8166 IPW_DEBUG_HC("sending stat packet\n");
8168 /* Set the size of the skb to the size of the full
8169 * ipw header and 802.11 frame */
8170 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8173 /* Advance past the ipw packet header to the 802.11 frame */
8174 skb_pull(skb, IPW_RX_FRAME_SIZE);
8176 /* Push the ieee80211_rx_stats before the 802.11 frame */
8177 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8179 skb->dev = priv->ieee->dev;
8181 /* Point raw at the ieee80211_stats */
8182 skb_reset_mac_header(skb);
8184 skb->pkt_type = PACKET_OTHERHOST;
8185 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8186 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8193 * Main entry function for recieving a packet with 80211 headers. This
8194 * should be called when ever the FW has notified us that there is a new
8195 * skb in the recieve queue.
8197 static void ipw_rx(struct ipw_priv *priv)
8199 struct ipw_rx_mem_buffer *rxb;
8200 struct ipw_rx_packet *pkt;
8201 struct ieee80211_hdr_4addr *header;
8205 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8206 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8207 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8210 rxb = priv->rxq->queue[i];
8211 if (unlikely(rxb == NULL)) {
8212 printk(KERN_CRIT "Queue not allocated!\n");
8215 priv->rxq->queue[i] = NULL;
8217 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8219 PCI_DMA_FROMDEVICE);
8221 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8222 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8223 pkt->header.message_type,
8224 pkt->header.rx_seq_num, pkt->header.control_bits);
8226 switch (pkt->header.message_type) {
8227 case RX_FRAME_TYPE: /* 802.11 frame */ {
8228 struct ieee80211_rx_stats stats = {
8229 .rssi = pkt->u.frame.rssi_dbm -
8232 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8233 IPW_RSSI_TO_DBM + 0x100,
8235 le16_to_cpu(pkt->u.frame.noise),
8236 .rate = pkt->u.frame.rate,
8237 .mac_time = jiffies,
8239 pkt->u.frame.received_channel,
8242 control & (1 << 0)) ?
8243 IEEE80211_24GHZ_BAND :
8244 IEEE80211_52GHZ_BAND,
8245 .len = le16_to_cpu(pkt->u.frame.length),
8248 if (stats.rssi != 0)
8249 stats.mask |= IEEE80211_STATMASK_RSSI;
8250 if (stats.signal != 0)
8251 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8252 if (stats.noise != 0)
8253 stats.mask |= IEEE80211_STATMASK_NOISE;
8254 if (stats.rate != 0)
8255 stats.mask |= IEEE80211_STATMASK_RATE;
8259 #ifdef CONFIG_IPW2200_PROMISCUOUS
8260 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8261 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8264 #ifdef CONFIG_IPW2200_MONITOR
8265 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8266 #ifdef CONFIG_IPW2200_RADIOTAP
8268 ipw_handle_data_packet_monitor(priv,
8272 ipw_handle_data_packet(priv, rxb,
8280 (struct ieee80211_hdr_4addr *)(rxb->skb->
8283 /* TODO: Check Ad-Hoc dest/source and make sure
8284 * that we are actually parsing these packets
8285 * correctly -- we should probably use the
8286 * frame control of the packet and disregard
8287 * the current iw_mode */
8290 is_network_packet(priv, header);
8291 if (network_packet && priv->assoc_network) {
8292 priv->assoc_network->stats.rssi =
8294 priv->exp_avg_rssi =
8295 exponential_average(priv->exp_avg_rssi,
8296 stats.rssi, DEPTH_RSSI);
8299 IPW_DEBUG_RX("Frame: len=%u\n",
8300 le16_to_cpu(pkt->u.frame.length));
8302 if (le16_to_cpu(pkt->u.frame.length) <
8303 ieee80211_get_hdrlen(le16_to_cpu(
8304 header->frame_ctl))) {
8306 ("Received packet is too small. "
8308 priv->ieee->stats.rx_errors++;
8309 priv->wstats.discard.misc++;
8313 switch (WLAN_FC_GET_TYPE
8314 (le16_to_cpu(header->frame_ctl))) {
8316 case IEEE80211_FTYPE_MGMT:
8317 ipw_handle_mgmt_packet(priv, rxb,
8321 case IEEE80211_FTYPE_CTL:
8324 case IEEE80211_FTYPE_DATA:
8325 if (unlikely(!network_packet ||
8326 is_duplicate_packet(priv,
8329 IPW_DEBUG_DROP("Dropping: "
8342 ipw_handle_data_packet(priv, rxb,
8350 case RX_HOST_NOTIFICATION_TYPE:{
8352 ("Notification: subtype=%02X flags=%02X size=%d\n",
8353 pkt->u.notification.subtype,
8354 pkt->u.notification.flags,
8355 le16_to_cpu(pkt->u.notification.size));
8356 ipw_rx_notification(priv, &pkt->u.notification);
8361 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8362 pkt->header.message_type);
8366 /* For now we just don't re-use anything. We can tweak this
8367 * later to try and re-use notification packets and SKBs that
8368 * fail to Rx correctly */
8369 if (rxb->skb != NULL) {
8370 dev_kfree_skb_any(rxb->skb);
8374 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8375 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8376 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8378 i = (i + 1) % RX_QUEUE_SIZE;
8381 /* Backtrack one entry */
8382 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8384 ipw_rx_queue_restock(priv);
8387 #define DEFAULT_RTS_THRESHOLD 2304U
8388 #define MIN_RTS_THRESHOLD 1U
8389 #define MAX_RTS_THRESHOLD 2304U
8390 #define DEFAULT_BEACON_INTERVAL 100U
8391 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8392 #define DEFAULT_LONG_RETRY_LIMIT 4U
8396 * @option: options to control different reset behaviour
8397 * 0 = reset everything except the 'disable' module_param
8398 * 1 = reset everything and print out driver info (for probe only)
8399 * 2 = reset everything
8401 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8403 int band, modulation;
8404 int old_mode = priv->ieee->iw_mode;
8406 /* Initialize module parameter values here */
8409 /* We default to disabling the LED code as right now it causes
8410 * too many systems to lock up... */
8412 priv->config |= CFG_NO_LED;
8415 priv->config |= CFG_ASSOCIATE;
8417 IPW_DEBUG_INFO("Auto associate disabled.\n");
8420 priv->config |= CFG_ADHOC_CREATE;
8422 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8424 priv->config &= ~CFG_STATIC_ESSID;
8425 priv->essid_len = 0;
8426 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8428 if (disable && option) {
8429 priv->status |= STATUS_RF_KILL_SW;
8430 IPW_DEBUG_INFO("Radio disabled.\n");
8434 priv->config |= CFG_STATIC_CHANNEL;
8435 priv->channel = channel;
8436 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8437 /* TODO: Validate that provided channel is in range */
8439 #ifdef CONFIG_IPW2200_QOS
8440 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8441 burst_duration_CCK, burst_duration_OFDM);
8442 #endif /* CONFIG_IPW2200_QOS */
8446 priv->ieee->iw_mode = IW_MODE_ADHOC;
8447 priv->net_dev->type = ARPHRD_ETHER;
8450 #ifdef CONFIG_IPW2200_MONITOR
8452 priv->ieee->iw_mode = IW_MODE_MONITOR;
8453 #ifdef CONFIG_IPW2200_RADIOTAP
8454 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8456 priv->net_dev->type = ARPHRD_IEEE80211;
8462 priv->net_dev->type = ARPHRD_ETHER;
8463 priv->ieee->iw_mode = IW_MODE_INFRA;
8468 priv->ieee->host_encrypt = 0;
8469 priv->ieee->host_encrypt_msdu = 0;
8470 priv->ieee->host_decrypt = 0;
8471 priv->ieee->host_mc_decrypt = 0;
8473 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8475 /* IPW2200/2915 is abled to do hardware fragmentation. */
8476 priv->ieee->host_open_frag = 0;
8478 if ((priv->pci_dev->device == 0x4223) ||
8479 (priv->pci_dev->device == 0x4224)) {
8481 printk(KERN_INFO DRV_NAME
8482 ": Detected Intel PRO/Wireless 2915ABG Network "
8484 priv->ieee->abg_true = 1;
8485 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8486 modulation = IEEE80211_OFDM_MODULATION |
8487 IEEE80211_CCK_MODULATION;
8488 priv->adapter = IPW_2915ABG;
8489 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8492 printk(KERN_INFO DRV_NAME
8493 ": Detected Intel PRO/Wireless 2200BG Network "
8496 priv->ieee->abg_true = 0;
8497 band = IEEE80211_24GHZ_BAND;
8498 modulation = IEEE80211_OFDM_MODULATION |
8499 IEEE80211_CCK_MODULATION;
8500 priv->adapter = IPW_2200BG;
8501 priv->ieee->mode = IEEE_G | IEEE_B;
8504 priv->ieee->freq_band = band;
8505 priv->ieee->modulation = modulation;
8507 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8509 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8510 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8512 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8513 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8514 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8516 /* If power management is turned on, default to AC mode */
8517 priv->power_mode = IPW_POWER_AC;
8518 priv->tx_power = IPW_TX_POWER_DEFAULT;
8520 return old_mode == priv->ieee->iw_mode;
8524 * This file defines the Wireless Extension handlers. It does not
8525 * define any methods of hardware manipulation and relies on the
8526 * functions defined in ipw_main to provide the HW interaction.
8528 * The exception to this is the use of the ipw_get_ordinal()
8529 * function used to poll the hardware vs. making unecessary calls.
8533 static int ipw_wx_get_name(struct net_device *dev,
8534 struct iw_request_info *info,
8535 union iwreq_data *wrqu, char *extra)
8537 struct ipw_priv *priv = ieee80211_priv(dev);
8538 mutex_lock(&priv->mutex);
8539 if (priv->status & STATUS_RF_KILL_MASK)
8540 strcpy(wrqu->name, "radio off");
8541 else if (!(priv->status & STATUS_ASSOCIATED))
8542 strcpy(wrqu->name, "unassociated");
8544 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8545 ipw_modes[priv->assoc_request.ieee_mode]);
8546 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8547 mutex_unlock(&priv->mutex);
8551 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8554 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8555 priv->config &= ~CFG_STATIC_CHANNEL;
8556 IPW_DEBUG_ASSOC("Attempting to associate with new "
8558 ipw_associate(priv);
8562 priv->config |= CFG_STATIC_CHANNEL;
8564 if (priv->channel == channel) {
8565 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8570 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8571 priv->channel = channel;
8573 #ifdef CONFIG_IPW2200_MONITOR
8574 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8576 if (priv->status & STATUS_SCANNING) {
8577 IPW_DEBUG_SCAN("Scan abort triggered due to "
8578 "channel change.\n");
8579 ipw_abort_scan(priv);
8582 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8585 if (priv->status & STATUS_SCANNING)
8586 IPW_DEBUG_SCAN("Still scanning...\n");
8588 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8593 #endif /* CONFIG_IPW2200_MONITOR */
8595 /* Network configuration changed -- force [re]association */
8596 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8597 if (!ipw_disassociate(priv))
8598 ipw_associate(priv);
8603 static int ipw_wx_set_freq(struct net_device *dev,
8604 struct iw_request_info *info,
8605 union iwreq_data *wrqu, char *extra)
8607 struct ipw_priv *priv = ieee80211_priv(dev);
8608 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8609 struct iw_freq *fwrq = &wrqu->freq;
8615 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8616 mutex_lock(&priv->mutex);
8617 ret = ipw_set_channel(priv, 0);
8618 mutex_unlock(&priv->mutex);
8621 /* if setting by freq convert to channel */
8623 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8629 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8632 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8633 i = ieee80211_channel_to_index(priv->ieee, channel);
8637 flags = (band == IEEE80211_24GHZ_BAND) ?
8638 geo->bg[i].flags : geo->a[i].flags;
8639 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8640 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8645 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8646 mutex_lock(&priv->mutex);
8647 ret = ipw_set_channel(priv, channel);
8648 mutex_unlock(&priv->mutex);
8652 static int ipw_wx_get_freq(struct net_device *dev,
8653 struct iw_request_info *info,
8654 union iwreq_data *wrqu, char *extra)
8656 struct ipw_priv *priv = ieee80211_priv(dev);
8660 /* If we are associated, trying to associate, or have a statically
8661 * configured CHANNEL then return that; otherwise return ANY */
8662 mutex_lock(&priv->mutex);
8663 if (priv->config & CFG_STATIC_CHANNEL ||
8664 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8667 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8671 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8672 case IEEE80211_52GHZ_BAND:
8673 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8676 case IEEE80211_24GHZ_BAND:
8677 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8686 mutex_unlock(&priv->mutex);
8687 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8691 static int ipw_wx_set_mode(struct net_device *dev,
8692 struct iw_request_info *info,
8693 union iwreq_data *wrqu, char *extra)
8695 struct ipw_priv *priv = ieee80211_priv(dev);
8698 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8700 switch (wrqu->mode) {
8701 #ifdef CONFIG_IPW2200_MONITOR
8702 case IW_MODE_MONITOR:
8708 wrqu->mode = IW_MODE_INFRA;
8713 if (wrqu->mode == priv->ieee->iw_mode)
8716 mutex_lock(&priv->mutex);
8718 ipw_sw_reset(priv, 0);
8720 #ifdef CONFIG_IPW2200_MONITOR
8721 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8722 priv->net_dev->type = ARPHRD_ETHER;
8724 if (wrqu->mode == IW_MODE_MONITOR)
8725 #ifdef CONFIG_IPW2200_RADIOTAP
8726 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8728 priv->net_dev->type = ARPHRD_IEEE80211;
8730 #endif /* CONFIG_IPW2200_MONITOR */
8732 /* Free the existing firmware and reset the fw_loaded
8733 * flag so ipw_load() will bring in the new firmawre */
8736 priv->ieee->iw_mode = wrqu->mode;
8738 queue_work(priv->workqueue, &priv->adapter_restart);
8739 mutex_unlock(&priv->mutex);
8743 static int ipw_wx_get_mode(struct net_device *dev,
8744 struct iw_request_info *info,
8745 union iwreq_data *wrqu, char *extra)
8747 struct ipw_priv *priv = ieee80211_priv(dev);
8748 mutex_lock(&priv->mutex);
8749 wrqu->mode = priv->ieee->iw_mode;
8750 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8751 mutex_unlock(&priv->mutex);
8755 /* Values are in microsecond */
8756 static const s32 timeout_duration[] = {
8764 static const s32 period_duration[] = {
8772 static int ipw_wx_get_range(struct net_device *dev,
8773 struct iw_request_info *info,
8774 union iwreq_data *wrqu, char *extra)
8776 struct ipw_priv *priv = ieee80211_priv(dev);
8777 struct iw_range *range = (struct iw_range *)extra;
8778 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8781 wrqu->data.length = sizeof(*range);
8782 memset(range, 0, sizeof(*range));
8784 /* 54Mbs == ~27 Mb/s real (802.11g) */
8785 range->throughput = 27 * 1000 * 1000;
8787 range->max_qual.qual = 100;
8788 /* TODO: Find real max RSSI and stick here */
8789 range->max_qual.level = 0;
8790 range->max_qual.noise = 0;
8791 range->max_qual.updated = 7; /* Updated all three */
8793 range->avg_qual.qual = 70;
8794 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8795 range->avg_qual.level = 0; /* FIXME to real average level */
8796 range->avg_qual.noise = 0;
8797 range->avg_qual.updated = 7; /* Updated all three */
8798 mutex_lock(&priv->mutex);
8799 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8801 for (i = 0; i < range->num_bitrates; i++)
8802 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8805 range->max_rts = DEFAULT_RTS_THRESHOLD;
8806 range->min_frag = MIN_FRAG_THRESHOLD;
8807 range->max_frag = MAX_FRAG_THRESHOLD;
8809 range->encoding_size[0] = 5;
8810 range->encoding_size[1] = 13;
8811 range->num_encoding_sizes = 2;
8812 range->max_encoding_tokens = WEP_KEYS;
8814 /* Set the Wireless Extension versions */
8815 range->we_version_compiled = WIRELESS_EXT;
8816 range->we_version_source = 18;
8819 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8820 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8821 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8822 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8825 range->freq[i].i = geo->bg[j].channel;
8826 range->freq[i].m = geo->bg[j].freq * 100000;
8827 range->freq[i].e = 1;
8832 if (priv->ieee->mode & IEEE_A) {
8833 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8834 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8835 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8838 range->freq[i].i = geo->a[j].channel;
8839 range->freq[i].m = geo->a[j].freq * 100000;
8840 range->freq[i].e = 1;
8845 range->num_channels = i;
8846 range->num_frequency = i;
8848 mutex_unlock(&priv->mutex);
8850 /* Event capability (kernel + driver) */
8851 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8852 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8853 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8854 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8855 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8857 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8858 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8860 IPW_DEBUG_WX("GET Range\n");
8864 static int ipw_wx_set_wap(struct net_device *dev,
8865 struct iw_request_info *info,
8866 union iwreq_data *wrqu, char *extra)
8868 struct ipw_priv *priv = ieee80211_priv(dev);
8870 static const unsigned char any[] = {
8871 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8873 static const unsigned char off[] = {
8874 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8877 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8879 mutex_lock(&priv->mutex);
8880 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8881 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8882 /* we disable mandatory BSSID association */
8883 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8884 priv->config &= ~CFG_STATIC_BSSID;
8885 IPW_DEBUG_ASSOC("Attempting to associate with new "
8887 ipw_associate(priv);
8888 mutex_unlock(&priv->mutex);
8892 priv->config |= CFG_STATIC_BSSID;
8893 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8894 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8895 mutex_unlock(&priv->mutex);
8899 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8900 MAC_ARG(wrqu->ap_addr.sa_data));
8902 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8904 /* Network configuration changed -- force [re]association */
8905 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8906 if (!ipw_disassociate(priv))
8907 ipw_associate(priv);
8909 mutex_unlock(&priv->mutex);
8913 static int ipw_wx_get_wap(struct net_device *dev,
8914 struct iw_request_info *info,
8915 union iwreq_data *wrqu, char *extra)
8917 struct ipw_priv *priv = ieee80211_priv(dev);
8918 /* If we are associated, trying to associate, or have a statically
8919 * configured BSSID then return that; otherwise return ANY */
8920 mutex_lock(&priv->mutex);
8921 if (priv->config & CFG_STATIC_BSSID ||
8922 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8923 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8924 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8926 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8928 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8929 MAC_ARG(wrqu->ap_addr.sa_data));
8930 mutex_unlock(&priv->mutex);
8934 static int ipw_wx_set_essid(struct net_device *dev,
8935 struct iw_request_info *info,
8936 union iwreq_data *wrqu, char *extra)
8938 struct ipw_priv *priv = ieee80211_priv(dev);
8941 mutex_lock(&priv->mutex);
8943 if (!wrqu->essid.flags)
8945 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8946 ipw_disassociate(priv);
8947 priv->config &= ~CFG_STATIC_ESSID;
8948 ipw_associate(priv);
8949 mutex_unlock(&priv->mutex);
8953 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8955 priv->config |= CFG_STATIC_ESSID;
8957 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8958 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8959 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8960 mutex_unlock(&priv->mutex);
8964 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8967 priv->essid_len = length;
8968 memcpy(priv->essid, extra, priv->essid_len);
8970 /* Network configuration changed -- force [re]association */
8971 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8972 if (!ipw_disassociate(priv))
8973 ipw_associate(priv);
8975 mutex_unlock(&priv->mutex);
8979 static int ipw_wx_get_essid(struct net_device *dev,
8980 struct iw_request_info *info,
8981 union iwreq_data *wrqu, char *extra)
8983 struct ipw_priv *priv = ieee80211_priv(dev);
8985 /* If we are associated, trying to associate, or have a statically
8986 * configured ESSID then return that; otherwise return ANY */
8987 mutex_lock(&priv->mutex);
8988 if (priv->config & CFG_STATIC_ESSID ||
8989 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8990 IPW_DEBUG_WX("Getting essid: '%s'\n",
8991 escape_essid(priv->essid, priv->essid_len));
8992 memcpy(extra, priv->essid, priv->essid_len);
8993 wrqu->essid.length = priv->essid_len;
8994 wrqu->essid.flags = 1; /* active */
8996 IPW_DEBUG_WX("Getting essid: ANY\n");
8997 wrqu->essid.length = 0;
8998 wrqu->essid.flags = 0; /* active */
9000 mutex_unlock(&priv->mutex);
9004 static int ipw_wx_set_nick(struct net_device *dev,
9005 struct iw_request_info *info,
9006 union iwreq_data *wrqu, char *extra)
9008 struct ipw_priv *priv = ieee80211_priv(dev);
9010 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9011 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9013 mutex_lock(&priv->mutex);
9014 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9015 memset(priv->nick, 0, sizeof(priv->nick));
9016 memcpy(priv->nick, extra, wrqu->data.length);
9017 IPW_DEBUG_TRACE("<<\n");
9018 mutex_unlock(&priv->mutex);
9023 static int ipw_wx_get_nick(struct net_device *dev,
9024 struct iw_request_info *info,
9025 union iwreq_data *wrqu, char *extra)
9027 struct ipw_priv *priv = ieee80211_priv(dev);
9028 IPW_DEBUG_WX("Getting nick\n");
9029 mutex_lock(&priv->mutex);
9030 wrqu->data.length = strlen(priv->nick);
9031 memcpy(extra, priv->nick, wrqu->data.length);
9032 wrqu->data.flags = 1; /* active */
9033 mutex_unlock(&priv->mutex);
9037 static int ipw_wx_set_sens(struct net_device *dev,
9038 struct iw_request_info *info,
9039 union iwreq_data *wrqu, char *extra)
9041 struct ipw_priv *priv = ieee80211_priv(dev);
9044 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9045 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9046 mutex_lock(&priv->mutex);
9048 if (wrqu->sens.fixed == 0)
9050 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9051 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9054 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9055 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9060 priv->roaming_threshold = wrqu->sens.value;
9061 priv->disassociate_threshold = 3*wrqu->sens.value;
9063 mutex_unlock(&priv->mutex);
9067 static int ipw_wx_get_sens(struct net_device *dev,
9068 struct iw_request_info *info,
9069 union iwreq_data *wrqu, char *extra)
9071 struct ipw_priv *priv = ieee80211_priv(dev);
9072 mutex_lock(&priv->mutex);
9073 wrqu->sens.fixed = 1;
9074 wrqu->sens.value = priv->roaming_threshold;
9075 mutex_unlock(&priv->mutex);
9077 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9078 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9083 static int ipw_wx_set_rate(struct net_device *dev,
9084 struct iw_request_info *info,
9085 union iwreq_data *wrqu, char *extra)
9087 /* TODO: We should use semaphores or locks for access to priv */
9088 struct ipw_priv *priv = ieee80211_priv(dev);
9089 u32 target_rate = wrqu->bitrate.value;
9092 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9093 /* value = X, fixed = 1 means only rate X */
9094 /* value = X, fixed = 0 means all rates lower equal X */
9096 if (target_rate == -1) {
9098 mask = IEEE80211_DEFAULT_RATES_MASK;
9099 /* Now we should reassociate */
9104 fixed = wrqu->bitrate.fixed;
9106 if (target_rate == 1000000 || !fixed)
9107 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9108 if (target_rate == 1000000)
9111 if (target_rate == 2000000 || !fixed)
9112 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9113 if (target_rate == 2000000)
9116 if (target_rate == 5500000 || !fixed)
9117 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9118 if (target_rate == 5500000)
9121 if (target_rate == 6000000 || !fixed)
9122 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9123 if (target_rate == 6000000)
9126 if (target_rate == 9000000 || !fixed)
9127 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9128 if (target_rate == 9000000)
9131 if (target_rate == 11000000 || !fixed)
9132 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9133 if (target_rate == 11000000)
9136 if (target_rate == 12000000 || !fixed)
9137 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9138 if (target_rate == 12000000)
9141 if (target_rate == 18000000 || !fixed)
9142 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9143 if (target_rate == 18000000)
9146 if (target_rate == 24000000 || !fixed)
9147 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9148 if (target_rate == 24000000)
9151 if (target_rate == 36000000 || !fixed)
9152 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9153 if (target_rate == 36000000)
9156 if (target_rate == 48000000 || !fixed)
9157 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9158 if (target_rate == 48000000)
9161 if (target_rate == 54000000 || !fixed)
9162 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9163 if (target_rate == 54000000)
9166 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9170 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9171 mask, fixed ? "fixed" : "sub-rates");
9172 mutex_lock(&priv->mutex);
9173 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9174 priv->config &= ~CFG_FIXED_RATE;
9175 ipw_set_fixed_rate(priv, priv->ieee->mode);
9177 priv->config |= CFG_FIXED_RATE;
9179 if (priv->rates_mask == mask) {
9180 IPW_DEBUG_WX("Mask set to current mask.\n");
9181 mutex_unlock(&priv->mutex);
9185 priv->rates_mask = mask;
9187 /* Network configuration changed -- force [re]association */
9188 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9189 if (!ipw_disassociate(priv))
9190 ipw_associate(priv);
9192 mutex_unlock(&priv->mutex);
9196 static int ipw_wx_get_rate(struct net_device *dev,
9197 struct iw_request_info *info,
9198 union iwreq_data *wrqu, char *extra)
9200 struct ipw_priv *priv = ieee80211_priv(dev);
9201 mutex_lock(&priv->mutex);
9202 wrqu->bitrate.value = priv->last_rate;
9203 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9204 mutex_unlock(&priv->mutex);
9205 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9209 static int ipw_wx_set_rts(struct net_device *dev,
9210 struct iw_request_info *info,
9211 union iwreq_data *wrqu, char *extra)
9213 struct ipw_priv *priv = ieee80211_priv(dev);
9214 mutex_lock(&priv->mutex);
9215 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9216 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9218 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9219 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9220 mutex_unlock(&priv->mutex);
9223 priv->rts_threshold = wrqu->rts.value;
9226 ipw_send_rts_threshold(priv, priv->rts_threshold);
9227 mutex_unlock(&priv->mutex);
9228 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9232 static int ipw_wx_get_rts(struct net_device *dev,
9233 struct iw_request_info *info,
9234 union iwreq_data *wrqu, char *extra)
9236 struct ipw_priv *priv = ieee80211_priv(dev);
9237 mutex_lock(&priv->mutex);
9238 wrqu->rts.value = priv->rts_threshold;
9239 wrqu->rts.fixed = 0; /* no auto select */
9240 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9241 mutex_unlock(&priv->mutex);
9242 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9246 static int ipw_wx_set_txpow(struct net_device *dev,
9247 struct iw_request_info *info,
9248 union iwreq_data *wrqu, char *extra)
9250 struct ipw_priv *priv = ieee80211_priv(dev);
9253 mutex_lock(&priv->mutex);
9254 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9259 if (!wrqu->power.fixed)
9260 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9262 if (wrqu->power.flags != IW_TXPOW_DBM) {
9267 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9268 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9273 priv->tx_power = wrqu->power.value;
9274 err = ipw_set_tx_power(priv);
9276 mutex_unlock(&priv->mutex);
9280 static int ipw_wx_get_txpow(struct net_device *dev,
9281 struct iw_request_info *info,
9282 union iwreq_data *wrqu, char *extra)
9284 struct ipw_priv *priv = ieee80211_priv(dev);
9285 mutex_lock(&priv->mutex);
9286 wrqu->power.value = priv->tx_power;
9287 wrqu->power.fixed = 1;
9288 wrqu->power.flags = IW_TXPOW_DBM;
9289 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9290 mutex_unlock(&priv->mutex);
9292 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9293 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9298 static int ipw_wx_set_frag(struct net_device *dev,
9299 struct iw_request_info *info,
9300 union iwreq_data *wrqu, char *extra)
9302 struct ipw_priv *priv = ieee80211_priv(dev);
9303 mutex_lock(&priv->mutex);
9304 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9305 priv->ieee->fts = DEFAULT_FTS;
9307 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9308 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9309 mutex_unlock(&priv->mutex);
9313 priv->ieee->fts = wrqu->frag.value & ~0x1;
9316 ipw_send_frag_threshold(priv, wrqu->frag.value);
9317 mutex_unlock(&priv->mutex);
9318 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9322 static int ipw_wx_get_frag(struct net_device *dev,
9323 struct iw_request_info *info,
9324 union iwreq_data *wrqu, char *extra)
9326 struct ipw_priv *priv = ieee80211_priv(dev);
9327 mutex_lock(&priv->mutex);
9328 wrqu->frag.value = priv->ieee->fts;
9329 wrqu->frag.fixed = 0; /* no auto select */
9330 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9331 mutex_unlock(&priv->mutex);
9332 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9337 static int ipw_wx_set_retry(struct net_device *dev,
9338 struct iw_request_info *info,
9339 union iwreq_data *wrqu, char *extra)
9341 struct ipw_priv *priv = ieee80211_priv(dev);
9343 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9346 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9349 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9352 mutex_lock(&priv->mutex);
9353 if (wrqu->retry.flags & IW_RETRY_SHORT)
9354 priv->short_retry_limit = (u8) wrqu->retry.value;
9355 else if (wrqu->retry.flags & IW_RETRY_LONG)
9356 priv->long_retry_limit = (u8) wrqu->retry.value;
9358 priv->short_retry_limit = (u8) wrqu->retry.value;
9359 priv->long_retry_limit = (u8) wrqu->retry.value;
9362 ipw_send_retry_limit(priv, priv->short_retry_limit,
9363 priv->long_retry_limit);
9364 mutex_unlock(&priv->mutex);
9365 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9366 priv->short_retry_limit, priv->long_retry_limit);
9370 static int ipw_wx_get_retry(struct net_device *dev,
9371 struct iw_request_info *info,
9372 union iwreq_data *wrqu, char *extra)
9374 struct ipw_priv *priv = ieee80211_priv(dev);
9376 mutex_lock(&priv->mutex);
9377 wrqu->retry.disabled = 0;
9379 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9380 mutex_unlock(&priv->mutex);
9384 if (wrqu->retry.flags & IW_RETRY_LONG) {
9385 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9386 wrqu->retry.value = priv->long_retry_limit;
9387 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9388 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9389 wrqu->retry.value = priv->short_retry_limit;
9391 wrqu->retry.flags = IW_RETRY_LIMIT;
9392 wrqu->retry.value = priv->short_retry_limit;
9394 mutex_unlock(&priv->mutex);
9396 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9401 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9404 struct ipw_scan_request_ext scan;
9405 int err = 0, scan_type;
9407 if (!(priv->status & STATUS_INIT) ||
9408 (priv->status & STATUS_EXIT_PENDING))
9411 mutex_lock(&priv->mutex);
9413 if (priv->status & STATUS_RF_KILL_MASK) {
9414 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9415 priv->status |= STATUS_SCAN_PENDING;
9419 IPW_DEBUG_HC("starting request direct scan!\n");
9421 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9422 /* We should not sleep here; otherwise we will block most
9423 * of the system (for instance, we hold rtnl_lock when we
9429 memset(&scan, 0, sizeof(scan));
9431 if (priv->config & CFG_SPEED_SCAN)
9432 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9435 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9438 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9440 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9441 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9443 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9445 err = ipw_send_ssid(priv, essid, essid_len);
9447 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9450 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9452 ipw_add_scan_channels(priv, &scan, scan_type);
9454 err = ipw_send_scan_request_ext(priv, &scan);
9456 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9460 priv->status |= STATUS_SCANNING;
9463 mutex_unlock(&priv->mutex);
9467 static int ipw_wx_set_scan(struct net_device *dev,
9468 struct iw_request_info *info,
9469 union iwreq_data *wrqu, char *extra)
9471 struct ipw_priv *priv = ieee80211_priv(dev);
9472 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9474 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9475 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9476 ipw_request_direct_scan(priv, req->essid,
9480 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9481 queue_work(priv->workqueue,
9482 &priv->request_passive_scan);
9487 IPW_DEBUG_WX("Start scan\n");
9489 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9494 static int ipw_wx_get_scan(struct net_device *dev,
9495 struct iw_request_info *info,
9496 union iwreq_data *wrqu, char *extra)
9498 struct ipw_priv *priv = ieee80211_priv(dev);
9499 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9502 static int ipw_wx_set_encode(struct net_device *dev,
9503 struct iw_request_info *info,
9504 union iwreq_data *wrqu, char *key)
9506 struct ipw_priv *priv = ieee80211_priv(dev);
9508 u32 cap = priv->capability;
9510 mutex_lock(&priv->mutex);
9511 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9513 /* In IBSS mode, we need to notify the firmware to update
9514 * the beacon info after we changed the capability. */
9515 if (cap != priv->capability &&
9516 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9517 priv->status & STATUS_ASSOCIATED)
9518 ipw_disassociate(priv);
9520 mutex_unlock(&priv->mutex);
9524 static int ipw_wx_get_encode(struct net_device *dev,
9525 struct iw_request_info *info,
9526 union iwreq_data *wrqu, char *key)
9528 struct ipw_priv *priv = ieee80211_priv(dev);
9529 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9532 static int ipw_wx_set_power(struct net_device *dev,
9533 struct iw_request_info *info,
9534 union iwreq_data *wrqu, char *extra)
9536 struct ipw_priv *priv = ieee80211_priv(dev);
9538 mutex_lock(&priv->mutex);
9539 if (wrqu->power.disabled) {
9540 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9541 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9543 IPW_DEBUG_WX("failed setting power mode.\n");
9544 mutex_unlock(&priv->mutex);
9547 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9548 mutex_unlock(&priv->mutex);
9552 switch (wrqu->power.flags & IW_POWER_MODE) {
9553 case IW_POWER_ON: /* If not specified */
9554 case IW_POWER_MODE: /* If set all mask */
9555 case IW_POWER_ALL_R: /* If explicitely state all */
9557 default: /* Otherwise we don't support it */
9558 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9560 mutex_unlock(&priv->mutex);
9564 /* If the user hasn't specified a power management mode yet, default
9566 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9567 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9569 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9570 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9572 IPW_DEBUG_WX("failed setting power mode.\n");
9573 mutex_unlock(&priv->mutex);
9577 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9578 mutex_unlock(&priv->mutex);
9582 static int ipw_wx_get_power(struct net_device *dev,
9583 struct iw_request_info *info,
9584 union iwreq_data *wrqu, char *extra)
9586 struct ipw_priv *priv = ieee80211_priv(dev);
9587 mutex_lock(&priv->mutex);
9588 if (!(priv->power_mode & IPW_POWER_ENABLED))
9589 wrqu->power.disabled = 1;
9591 wrqu->power.disabled = 0;
9593 mutex_unlock(&priv->mutex);
9594 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9599 static int ipw_wx_set_powermode(struct net_device *dev,
9600 struct iw_request_info *info,
9601 union iwreq_data *wrqu, char *extra)
9603 struct ipw_priv *priv = ieee80211_priv(dev);
9604 int mode = *(int *)extra;
9606 mutex_lock(&priv->mutex);
9607 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9608 mode = IPW_POWER_AC;
9609 priv->power_mode = mode;
9611 priv->power_mode = IPW_POWER_ENABLED | mode;
9614 if (priv->power_mode != mode) {
9615 err = ipw_send_power_mode(priv, mode);
9618 IPW_DEBUG_WX("failed setting power mode.\n");
9619 mutex_unlock(&priv->mutex);
9623 mutex_unlock(&priv->mutex);
9627 #define MAX_WX_STRING 80
9628 static int ipw_wx_get_powermode(struct net_device *dev,
9629 struct iw_request_info *info,
9630 union iwreq_data *wrqu, char *extra)
9632 struct ipw_priv *priv = ieee80211_priv(dev);
9633 int level = IPW_POWER_LEVEL(priv->power_mode);
9636 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9640 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9642 case IPW_POWER_BATTERY:
9643 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9646 p += snprintf(p, MAX_WX_STRING - (p - extra),
9647 "(Timeout %dms, Period %dms)",
9648 timeout_duration[level - 1] / 1000,
9649 period_duration[level - 1] / 1000);
9652 if (!(priv->power_mode & IPW_POWER_ENABLED))
9653 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9655 wrqu->data.length = p - extra + 1;
9660 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9661 struct iw_request_info *info,
9662 union iwreq_data *wrqu, char *extra)
9664 struct ipw_priv *priv = ieee80211_priv(dev);
9665 int mode = *(int *)extra;
9666 u8 band = 0, modulation = 0;
9668 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9669 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9672 mutex_lock(&priv->mutex);
9673 if (priv->adapter == IPW_2915ABG) {
9674 priv->ieee->abg_true = 1;
9675 if (mode & IEEE_A) {
9676 band |= IEEE80211_52GHZ_BAND;
9677 modulation |= IEEE80211_OFDM_MODULATION;
9679 priv->ieee->abg_true = 0;
9681 if (mode & IEEE_A) {
9682 IPW_WARNING("Attempt to set 2200BG into "
9684 mutex_unlock(&priv->mutex);
9688 priv->ieee->abg_true = 0;
9691 if (mode & IEEE_B) {
9692 band |= IEEE80211_24GHZ_BAND;
9693 modulation |= IEEE80211_CCK_MODULATION;
9695 priv->ieee->abg_true = 0;
9697 if (mode & IEEE_G) {
9698 band |= IEEE80211_24GHZ_BAND;
9699 modulation |= IEEE80211_OFDM_MODULATION;
9701 priv->ieee->abg_true = 0;
9703 priv->ieee->mode = mode;
9704 priv->ieee->freq_band = band;
9705 priv->ieee->modulation = modulation;
9706 init_supported_rates(priv, &priv->rates);
9708 /* Network configuration changed -- force [re]association */
9709 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9710 if (!ipw_disassociate(priv)) {
9711 ipw_send_supported_rates(priv, &priv->rates);
9712 ipw_associate(priv);
9715 /* Update the band LEDs */
9716 ipw_led_band_on(priv);
9718 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9719 mode & IEEE_A ? 'a' : '.',
9720 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9721 mutex_unlock(&priv->mutex);
9725 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9726 struct iw_request_info *info,
9727 union iwreq_data *wrqu, char *extra)
9729 struct ipw_priv *priv = ieee80211_priv(dev);
9730 mutex_lock(&priv->mutex);
9731 switch (priv->ieee->mode) {
9733 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9736 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9738 case IEEE_A | IEEE_B:
9739 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9742 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9744 case IEEE_A | IEEE_G:
9745 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9747 case IEEE_B | IEEE_G:
9748 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9750 case IEEE_A | IEEE_B | IEEE_G:
9751 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9754 strncpy(extra, "unknown", MAX_WX_STRING);
9758 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9760 wrqu->data.length = strlen(extra) + 1;
9761 mutex_unlock(&priv->mutex);
9766 static int ipw_wx_set_preamble(struct net_device *dev,
9767 struct iw_request_info *info,
9768 union iwreq_data *wrqu, char *extra)
9770 struct ipw_priv *priv = ieee80211_priv(dev);
9771 int mode = *(int *)extra;
9772 mutex_lock(&priv->mutex);
9773 /* Switching from SHORT -> LONG requires a disassociation */
9775 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9776 priv->config |= CFG_PREAMBLE_LONG;
9778 /* Network configuration changed -- force [re]association */
9780 ("[re]association triggered due to preamble change.\n");
9781 if (!ipw_disassociate(priv))
9782 ipw_associate(priv);
9788 priv->config &= ~CFG_PREAMBLE_LONG;
9791 mutex_unlock(&priv->mutex);
9795 mutex_unlock(&priv->mutex);
9799 static int ipw_wx_get_preamble(struct net_device *dev,
9800 struct iw_request_info *info,
9801 union iwreq_data *wrqu, char *extra)
9803 struct ipw_priv *priv = ieee80211_priv(dev);
9804 mutex_lock(&priv->mutex);
9805 if (priv->config & CFG_PREAMBLE_LONG)
9806 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9808 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9809 mutex_unlock(&priv->mutex);
9813 #ifdef CONFIG_IPW2200_MONITOR
9814 static int ipw_wx_set_monitor(struct net_device *dev,
9815 struct iw_request_info *info,
9816 union iwreq_data *wrqu, char *extra)
9818 struct ipw_priv *priv = ieee80211_priv(dev);
9819 int *parms = (int *)extra;
9820 int enable = (parms[0] > 0);
9821 mutex_lock(&priv->mutex);
9822 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9824 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9825 #ifdef CONFIG_IPW2200_RADIOTAP
9826 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9828 priv->net_dev->type = ARPHRD_IEEE80211;
9830 queue_work(priv->workqueue, &priv->adapter_restart);
9833 ipw_set_channel(priv, parms[1]);
9835 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9836 mutex_unlock(&priv->mutex);
9839 priv->net_dev->type = ARPHRD_ETHER;
9840 queue_work(priv->workqueue, &priv->adapter_restart);
9842 mutex_unlock(&priv->mutex);
9846 #endif /* CONFIG_IPW2200_MONITOR */
9848 static int ipw_wx_reset(struct net_device *dev,
9849 struct iw_request_info *info,
9850 union iwreq_data *wrqu, char *extra)
9852 struct ipw_priv *priv = ieee80211_priv(dev);
9853 IPW_DEBUG_WX("RESET\n");
9854 queue_work(priv->workqueue, &priv->adapter_restart);
9858 static int ipw_wx_sw_reset(struct net_device *dev,
9859 struct iw_request_info *info,
9860 union iwreq_data *wrqu, char *extra)
9862 struct ipw_priv *priv = ieee80211_priv(dev);
9863 union iwreq_data wrqu_sec = {
9865 .flags = IW_ENCODE_DISABLED,
9870 IPW_DEBUG_WX("SW_RESET\n");
9872 mutex_lock(&priv->mutex);
9874 ret = ipw_sw_reset(priv, 2);
9877 ipw_adapter_restart(priv);
9880 /* The SW reset bit might have been toggled on by the 'disable'
9881 * module parameter, so take appropriate action */
9882 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9884 mutex_unlock(&priv->mutex);
9885 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9886 mutex_lock(&priv->mutex);
9888 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9889 /* Configuration likely changed -- force [re]association */
9890 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9892 if (!ipw_disassociate(priv))
9893 ipw_associate(priv);
9896 mutex_unlock(&priv->mutex);
9901 /* Rebase the WE IOCTLs to zero for the handler array */
9902 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9903 static iw_handler ipw_wx_handlers[] = {
9904 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9905 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9906 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9907 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9908 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9909 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9910 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9911 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9912 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9913 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9914 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9915 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9916 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9917 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9918 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9919 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9920 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9921 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9922 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9923 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9924 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9925 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9926 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9927 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9928 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9929 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9930 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9931 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9932 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9933 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9934 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9935 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9936 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9937 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9938 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9939 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9940 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9941 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9942 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9943 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9944 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9948 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9952 IPW_PRIV_SET_PREAMBLE,
9953 IPW_PRIV_GET_PREAMBLE,
9956 #ifdef CONFIG_IPW2200_MONITOR
9957 IPW_PRIV_SET_MONITOR,
9961 static struct iw_priv_args ipw_priv_args[] = {
9963 .cmd = IPW_PRIV_SET_POWER,
9964 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965 .name = "set_power"},
9967 .cmd = IPW_PRIV_GET_POWER,
9968 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969 .name = "get_power"},
9971 .cmd = IPW_PRIV_SET_MODE,
9972 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973 .name = "set_mode"},
9975 .cmd = IPW_PRIV_GET_MODE,
9976 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9977 .name = "get_mode"},
9979 .cmd = IPW_PRIV_SET_PREAMBLE,
9980 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9981 .name = "set_preamble"},
9983 .cmd = IPW_PRIV_GET_PREAMBLE,
9984 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9985 .name = "get_preamble"},
9988 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9991 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9992 #ifdef CONFIG_IPW2200_MONITOR
9994 IPW_PRIV_SET_MONITOR,
9995 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9996 #endif /* CONFIG_IPW2200_MONITOR */
9999 static iw_handler ipw_priv_handler[] = {
10000 ipw_wx_set_powermode,
10001 ipw_wx_get_powermode,
10002 ipw_wx_set_wireless_mode,
10003 ipw_wx_get_wireless_mode,
10004 ipw_wx_set_preamble,
10005 ipw_wx_get_preamble,
10008 #ifdef CONFIG_IPW2200_MONITOR
10009 ipw_wx_set_monitor,
10013 static struct iw_handler_def ipw_wx_handler_def = {
10014 .standard = ipw_wx_handlers,
10015 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10016 .num_private = ARRAY_SIZE(ipw_priv_handler),
10017 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10018 .private = ipw_priv_handler,
10019 .private_args = ipw_priv_args,
10020 .get_wireless_stats = ipw_get_wireless_stats,
10024 * Get wireless statistics.
10025 * Called by /proc/net/wireless
10026 * Also called by SIOCGIWSTATS
10028 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10030 struct ipw_priv *priv = ieee80211_priv(dev);
10031 struct iw_statistics *wstats;
10033 wstats = &priv->wstats;
10035 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10036 * netdev->get_wireless_stats seems to be called before fw is
10037 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10038 * and associated; if not associcated, the values are all meaningless
10039 * anyway, so set them all to NULL and INVALID */
10040 if (!(priv->status & STATUS_ASSOCIATED)) {
10041 wstats->miss.beacon = 0;
10042 wstats->discard.retries = 0;
10043 wstats->qual.qual = 0;
10044 wstats->qual.level = 0;
10045 wstats->qual.noise = 0;
10046 wstats->qual.updated = 7;
10047 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10048 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10052 wstats->qual.qual = priv->quality;
10053 wstats->qual.level = priv->exp_avg_rssi;
10054 wstats->qual.noise = priv->exp_avg_noise;
10055 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10056 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10058 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10059 wstats->discard.retries = priv->last_tx_failures;
10060 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10062 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10063 goto fail_get_ordinal;
10064 wstats->discard.retries += tx_retry; */
10069 /* net device stuff */
10071 static void init_sys_config(struct ipw_sys_config *sys_config)
10073 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10074 sys_config->bt_coexistence = 0;
10075 sys_config->answer_broadcast_ssid_probe = 0;
10076 sys_config->accept_all_data_frames = 0;
10077 sys_config->accept_non_directed_frames = 1;
10078 sys_config->exclude_unicast_unencrypted = 0;
10079 sys_config->disable_unicast_decryption = 1;
10080 sys_config->exclude_multicast_unencrypted = 0;
10081 sys_config->disable_multicast_decryption = 1;
10082 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10083 antenna = CFG_SYS_ANTENNA_BOTH;
10084 sys_config->antenna_diversity = antenna;
10085 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10086 sys_config->dot11g_auto_detection = 0;
10087 sys_config->enable_cts_to_self = 0;
10088 sys_config->bt_coexist_collision_thr = 0;
10089 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10090 sys_config->silence_threshold = 0x1e;
10093 static int ipw_net_open(struct net_device *dev)
10095 struct ipw_priv *priv = ieee80211_priv(dev);
10096 IPW_DEBUG_INFO("dev->open\n");
10097 /* we should be verifying the device is ready to be opened */
10098 mutex_lock(&priv->mutex);
10099 if (!(priv->status & STATUS_RF_KILL_MASK) &&
10100 (priv->status & STATUS_ASSOCIATED))
10101 netif_start_queue(dev);
10102 mutex_unlock(&priv->mutex);
10106 static int ipw_net_stop(struct net_device *dev)
10108 IPW_DEBUG_INFO("dev->close\n");
10109 netif_stop_queue(dev);
10116 modify to send one tfd per fragment instead of using chunking. otherwise
10117 we need to heavily modify the ieee80211_skb_to_txb.
10120 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10123 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10124 txb->fragments[0]->data;
10126 struct tfd_frame *tfd;
10127 #ifdef CONFIG_IPW2200_QOS
10128 int tx_id = ipw_get_tx_queue_number(priv, pri);
10129 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10131 struct clx2_tx_queue *txq = &priv->txq[0];
10133 struct clx2_queue *q = &txq->q;
10134 u8 id, hdr_len, unicast;
10135 u16 remaining_bytes;
10138 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10139 switch (priv->ieee->iw_mode) {
10140 case IW_MODE_ADHOC:
10141 unicast = !is_multicast_ether_addr(hdr->addr1);
10142 id = ipw_find_station(priv, hdr->addr1);
10143 if (id == IPW_INVALID_STATION) {
10144 id = ipw_add_station(priv, hdr->addr1);
10145 if (id == IPW_INVALID_STATION) {
10146 IPW_WARNING("Attempt to send data to "
10147 "invalid cell: " MAC_FMT "\n",
10148 MAC_ARG(hdr->addr1));
10154 case IW_MODE_INFRA:
10156 unicast = !is_multicast_ether_addr(hdr->addr3);
10161 tfd = &txq->bd[q->first_empty];
10162 txq->txb[q->first_empty] = txb;
10163 memset(tfd, 0, sizeof(*tfd));
10164 tfd->u.data.station_number = id;
10166 tfd->control_flags.message_type = TX_FRAME_TYPE;
10167 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10169 tfd->u.data.cmd_id = DINO_CMD_TX;
10170 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10171 remaining_bytes = txb->payload_size;
10173 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10174 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10176 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10178 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10179 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10181 fc = le16_to_cpu(hdr->frame_ctl);
10182 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10184 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10186 if (likely(unicast))
10187 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10189 if (txb->encrypted && !priv->ieee->host_encrypt) {
10190 switch (priv->ieee->sec.level) {
10192 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10193 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10194 /* XXX: ACK flag must be set for CCMP even if it
10195 * is a multicast/broadcast packet, because CCMP
10196 * group communication encrypted by GTK is
10197 * actually done by the AP. */
10199 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10201 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10202 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10203 tfd->u.data.key_index = 0;
10204 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10207 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10208 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10209 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10210 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10211 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10214 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10215 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10216 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10217 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10219 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10221 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10226 printk(KERN_ERR "Unknow security level %d\n",
10227 priv->ieee->sec.level);
10231 /* No hardware encryption */
10232 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10234 #ifdef CONFIG_IPW2200_QOS
10235 if (fc & IEEE80211_STYPE_QOS_DATA)
10236 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10237 #endif /* CONFIG_IPW2200_QOS */
10240 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10242 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10243 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10244 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10245 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10246 i, le32_to_cpu(tfd->u.data.num_chunks),
10247 txb->fragments[i]->len - hdr_len);
10248 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10249 i, tfd->u.data.num_chunks,
10250 txb->fragments[i]->len - hdr_len);
10251 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10252 txb->fragments[i]->len - hdr_len);
10254 tfd->u.data.chunk_ptr[i] =
10255 cpu_to_le32(pci_map_single
10257 txb->fragments[i]->data + hdr_len,
10258 txb->fragments[i]->len - hdr_len,
10259 PCI_DMA_TODEVICE));
10260 tfd->u.data.chunk_len[i] =
10261 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10264 if (i != txb->nr_frags) {
10265 struct sk_buff *skb;
10266 u16 remaining_bytes = 0;
10269 for (j = i; j < txb->nr_frags; j++)
10270 remaining_bytes += txb->fragments[j]->len - hdr_len;
10272 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10274 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10276 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10277 for (j = i; j < txb->nr_frags; j++) {
10278 int size = txb->fragments[j]->len - hdr_len;
10280 printk(KERN_INFO "Adding frag %d %d...\n",
10282 memcpy(skb_put(skb, size),
10283 txb->fragments[j]->data + hdr_len, size);
10285 dev_kfree_skb_any(txb->fragments[i]);
10286 txb->fragments[i] = skb;
10287 tfd->u.data.chunk_ptr[i] =
10288 cpu_to_le32(pci_map_single
10289 (priv->pci_dev, skb->data,
10290 tfd->u.data.chunk_len[i],
10291 PCI_DMA_TODEVICE));
10293 tfd->u.data.num_chunks =
10294 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10300 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10301 ipw_write32(priv, q->reg_w, q->first_empty);
10303 if (ipw_queue_space(q) < q->high_mark)
10304 netif_stop_queue(priv->net_dev);
10306 return NETDEV_TX_OK;
10309 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10310 ieee80211_txb_free(txb);
10311 return NETDEV_TX_OK;
10314 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10316 struct ipw_priv *priv = ieee80211_priv(dev);
10317 #ifdef CONFIG_IPW2200_QOS
10318 int tx_id = ipw_get_tx_queue_number(priv, pri);
10319 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10321 struct clx2_tx_queue *txq = &priv->txq[0];
10322 #endif /* CONFIG_IPW2200_QOS */
10324 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10330 #ifdef CONFIG_IPW2200_PROMISCUOUS
10331 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10332 struct ieee80211_txb *txb)
10334 struct ieee80211_rx_stats dummystats;
10335 struct ieee80211_hdr *hdr;
10337 u16 filter = priv->prom_priv->filter;
10340 if (filter & IPW_PROM_NO_TX)
10343 memset(&dummystats, 0, sizeof(dummystats));
10345 /* Filtering of fragment chains is done agains the first fragment */
10346 hdr = (void *)txb->fragments[0]->data;
10347 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10348 if (filter & IPW_PROM_NO_MGMT)
10350 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10352 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10353 if (filter & IPW_PROM_NO_CTL)
10355 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10357 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10358 if (filter & IPW_PROM_NO_DATA)
10360 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10364 for(n=0; n<txb->nr_frags; ++n) {
10365 struct sk_buff *src = txb->fragments[n];
10366 struct sk_buff *dst;
10367 struct ieee80211_radiotap_header *rt_hdr;
10371 hdr = (void *)src->data;
10372 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10377 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10378 if (!dst) continue;
10380 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10382 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10383 rt_hdr->it_pad = 0;
10384 rt_hdr->it_present = 0; /* after all, it's just an idea */
10385 rt_hdr->it_present |= (1 << IEEE80211_RADIOTAP_CHANNEL);
10387 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10388 ieee80211chan2mhz(priv->channel));
10389 if (priv->channel > 14) /* 802.11a */
10390 *(u16*)skb_put(dst, sizeof(u16)) =
10391 cpu_to_le16(IEEE80211_CHAN_OFDM |
10392 IEEE80211_CHAN_5GHZ);
10393 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10394 *(u16*)skb_put(dst, sizeof(u16)) =
10395 cpu_to_le16(IEEE80211_CHAN_CCK |
10396 IEEE80211_CHAN_2GHZ);
10398 *(u16*)skb_put(dst, sizeof(u16)) =
10399 cpu_to_le16(IEEE80211_CHAN_OFDM |
10400 IEEE80211_CHAN_2GHZ);
10402 rt_hdr->it_len = dst->len;
10404 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10406 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10407 dev_kfree_skb_any(dst);
10412 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10413 struct net_device *dev, int pri)
10415 struct ipw_priv *priv = ieee80211_priv(dev);
10416 unsigned long flags;
10419 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10420 spin_lock_irqsave(&priv->lock, flags);
10422 if (!(priv->status & STATUS_ASSOCIATED)) {
10423 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10424 priv->ieee->stats.tx_carrier_errors++;
10425 netif_stop_queue(dev);
10429 #ifdef CONFIG_IPW2200_PROMISCUOUS
10430 if (rtap_iface && netif_running(priv->prom_net_dev))
10431 ipw_handle_promiscuous_tx(priv, txb);
10434 ret = ipw_tx_skb(priv, txb, pri);
10435 if (ret == NETDEV_TX_OK)
10436 __ipw_led_activity_on(priv);
10437 spin_unlock_irqrestore(&priv->lock, flags);
10442 spin_unlock_irqrestore(&priv->lock, flags);
10446 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10448 struct ipw_priv *priv = ieee80211_priv(dev);
10450 priv->ieee->stats.tx_packets = priv->tx_packets;
10451 priv->ieee->stats.rx_packets = priv->rx_packets;
10452 return &priv->ieee->stats;
10455 static void ipw_net_set_multicast_list(struct net_device *dev)
10460 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10462 struct ipw_priv *priv = ieee80211_priv(dev);
10463 struct sockaddr *addr = p;
10464 if (!is_valid_ether_addr(addr->sa_data))
10465 return -EADDRNOTAVAIL;
10466 mutex_lock(&priv->mutex);
10467 priv->config |= CFG_CUSTOM_MAC;
10468 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10469 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10470 priv->net_dev->name, MAC_ARG(priv->mac_addr));
10471 queue_work(priv->workqueue, &priv->adapter_restart);
10472 mutex_unlock(&priv->mutex);
10476 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10477 struct ethtool_drvinfo *info)
10479 struct ipw_priv *p = ieee80211_priv(dev);
10484 strcpy(info->driver, DRV_NAME);
10485 strcpy(info->version, DRV_VERSION);
10487 len = sizeof(vers);
10488 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10489 len = sizeof(date);
10490 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10492 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10494 strcpy(info->bus_info, pci_name(p->pci_dev));
10495 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10498 static u32 ipw_ethtool_get_link(struct net_device *dev)
10500 struct ipw_priv *priv = ieee80211_priv(dev);
10501 return (priv->status & STATUS_ASSOCIATED) != 0;
10504 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10506 return IPW_EEPROM_IMAGE_SIZE;
10509 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10510 struct ethtool_eeprom *eeprom, u8 * bytes)
10512 struct ipw_priv *p = ieee80211_priv(dev);
10514 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10516 mutex_lock(&p->mutex);
10517 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10518 mutex_unlock(&p->mutex);
10522 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10523 struct ethtool_eeprom *eeprom, u8 * bytes)
10525 struct ipw_priv *p = ieee80211_priv(dev);
10528 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10530 mutex_lock(&p->mutex);
10531 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10532 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10533 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10534 mutex_unlock(&p->mutex);
10538 static const struct ethtool_ops ipw_ethtool_ops = {
10539 .get_link = ipw_ethtool_get_link,
10540 .get_drvinfo = ipw_ethtool_get_drvinfo,
10541 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10542 .get_eeprom = ipw_ethtool_get_eeprom,
10543 .set_eeprom = ipw_ethtool_set_eeprom,
10546 static irqreturn_t ipw_isr(int irq, void *data)
10548 struct ipw_priv *priv = data;
10549 u32 inta, inta_mask;
10554 spin_lock(&priv->irq_lock);
10556 if (!(priv->status & STATUS_INT_ENABLED)) {
10561 inta = ipw_read32(priv, IPW_INTA_RW);
10562 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10564 if (inta == 0xFFFFFFFF) {
10565 /* Hardware disappeared */
10566 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10570 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10571 /* Shared interrupt */
10575 /* tell the device to stop sending interrupts */
10576 __ipw_disable_interrupts(priv);
10578 /* ack current interrupts */
10579 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10580 ipw_write32(priv, IPW_INTA_RW, inta);
10582 /* Cache INTA value for our tasklet */
10583 priv->isr_inta = inta;
10585 tasklet_schedule(&priv->irq_tasklet);
10587 spin_unlock(&priv->irq_lock);
10589 return IRQ_HANDLED;
10591 spin_unlock(&priv->irq_lock);
10595 static void ipw_rf_kill(void *adapter)
10597 struct ipw_priv *priv = adapter;
10598 unsigned long flags;
10600 spin_lock_irqsave(&priv->lock, flags);
10602 if (rf_kill_active(priv)) {
10603 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10604 if (priv->workqueue)
10605 queue_delayed_work(priv->workqueue,
10606 &priv->rf_kill, 2 * HZ);
10610 /* RF Kill is now disabled, so bring the device back up */
10612 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10613 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10616 /* we can not do an adapter restart while inside an irq lock */
10617 queue_work(priv->workqueue, &priv->adapter_restart);
10619 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10623 spin_unlock_irqrestore(&priv->lock, flags);
10626 static void ipw_bg_rf_kill(struct work_struct *work)
10628 struct ipw_priv *priv =
10629 container_of(work, struct ipw_priv, rf_kill.work);
10630 mutex_lock(&priv->mutex);
10632 mutex_unlock(&priv->mutex);
10635 static void ipw_link_up(struct ipw_priv *priv)
10637 priv->last_seq_num = -1;
10638 priv->last_frag_num = -1;
10639 priv->last_packet_time = 0;
10641 netif_carrier_on(priv->net_dev);
10642 if (netif_queue_stopped(priv->net_dev)) {
10643 IPW_DEBUG_NOTIF("waking queue\n");
10644 netif_wake_queue(priv->net_dev);
10646 IPW_DEBUG_NOTIF("starting queue\n");
10647 netif_start_queue(priv->net_dev);
10650 cancel_delayed_work(&priv->request_scan);
10651 ipw_reset_stats(priv);
10652 /* Ensure the rate is updated immediately */
10653 priv->last_rate = ipw_get_current_rate(priv);
10654 ipw_gather_stats(priv);
10655 ipw_led_link_up(priv);
10656 notify_wx_assoc_event(priv);
10658 if (priv->config & CFG_BACKGROUND_SCAN)
10659 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10662 static void ipw_bg_link_up(struct work_struct *work)
10664 struct ipw_priv *priv =
10665 container_of(work, struct ipw_priv, link_up);
10666 mutex_lock(&priv->mutex);
10668 mutex_unlock(&priv->mutex);
10671 static void ipw_link_down(struct ipw_priv *priv)
10673 ipw_led_link_down(priv);
10674 netif_carrier_off(priv->net_dev);
10675 netif_stop_queue(priv->net_dev);
10676 notify_wx_assoc_event(priv);
10678 /* Cancel any queued work ... */
10679 cancel_delayed_work(&priv->request_scan);
10680 cancel_delayed_work(&priv->adhoc_check);
10681 cancel_delayed_work(&priv->gather_stats);
10683 ipw_reset_stats(priv);
10685 if (!(priv->status & STATUS_EXIT_PENDING)) {
10686 /* Queue up another scan... */
10687 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10691 static void ipw_bg_link_down(struct work_struct *work)
10693 struct ipw_priv *priv =
10694 container_of(work, struct ipw_priv, link_down);
10695 mutex_lock(&priv->mutex);
10696 ipw_link_down(priv);
10697 mutex_unlock(&priv->mutex);
10700 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10704 priv->workqueue = create_workqueue(DRV_NAME);
10705 init_waitqueue_head(&priv->wait_command_queue);
10706 init_waitqueue_head(&priv->wait_state);
10708 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10709 INIT_WORK(&priv->associate, ipw_bg_associate);
10710 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10711 INIT_WORK(&priv->system_config, ipw_system_config);
10712 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10713 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10714 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10715 INIT_WORK(&priv->up, ipw_bg_up);
10716 INIT_WORK(&priv->down, ipw_bg_down);
10717 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10718 INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10719 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10720 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10721 INIT_WORK(&priv->roam, ipw_bg_roam);
10722 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10723 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10724 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10725 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10726 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10727 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10728 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10730 #ifdef CONFIG_IPW2200_QOS
10731 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10732 #endif /* CONFIG_IPW2200_QOS */
10734 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10735 ipw_irq_tasklet, (unsigned long)priv);
10740 static void shim__set_security(struct net_device *dev,
10741 struct ieee80211_security *sec)
10743 struct ipw_priv *priv = ieee80211_priv(dev);
10745 for (i = 0; i < 4; i++) {
10746 if (sec->flags & (1 << i)) {
10747 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10748 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10749 if (sec->key_sizes[i] == 0)
10750 priv->ieee->sec.flags &= ~(1 << i);
10752 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10753 sec->key_sizes[i]);
10754 priv->ieee->sec.flags |= (1 << i);
10756 priv->status |= STATUS_SECURITY_UPDATED;
10757 } else if (sec->level != SEC_LEVEL_1)
10758 priv->ieee->sec.flags &= ~(1 << i);
10761 if (sec->flags & SEC_ACTIVE_KEY) {
10762 if (sec->active_key <= 3) {
10763 priv->ieee->sec.active_key = sec->active_key;
10764 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10766 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10767 priv->status |= STATUS_SECURITY_UPDATED;
10769 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10771 if ((sec->flags & SEC_AUTH_MODE) &&
10772 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10773 priv->ieee->sec.auth_mode = sec->auth_mode;
10774 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10775 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10776 priv->capability |= CAP_SHARED_KEY;
10778 priv->capability &= ~CAP_SHARED_KEY;
10779 priv->status |= STATUS_SECURITY_UPDATED;
10782 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10783 priv->ieee->sec.flags |= SEC_ENABLED;
10784 priv->ieee->sec.enabled = sec->enabled;
10785 priv->status |= STATUS_SECURITY_UPDATED;
10787 priv->capability |= CAP_PRIVACY_ON;
10789 priv->capability &= ~CAP_PRIVACY_ON;
10792 if (sec->flags & SEC_ENCRYPT)
10793 priv->ieee->sec.encrypt = sec->encrypt;
10795 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10796 priv->ieee->sec.level = sec->level;
10797 priv->ieee->sec.flags |= SEC_LEVEL;
10798 priv->status |= STATUS_SECURITY_UPDATED;
10801 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10802 ipw_set_hwcrypto_keys(priv);
10804 /* To match current functionality of ipw2100 (which works well w/
10805 * various supplicants, we don't force a disassociate if the
10806 * privacy capability changes ... */
10808 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10809 (((priv->assoc_request.capability &
10810 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10811 (!(priv->assoc_request.capability &
10812 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10813 IPW_DEBUG_ASSOC("Disassociating due to capability "
10815 ipw_disassociate(priv);
10820 static int init_supported_rates(struct ipw_priv *priv,
10821 struct ipw_supported_rates *rates)
10823 /* TODO: Mask out rates based on priv->rates_mask */
10825 memset(rates, 0, sizeof(*rates));
10826 /* configure supported rates */
10827 switch (priv->ieee->freq_band) {
10828 case IEEE80211_52GHZ_BAND:
10829 rates->ieee_mode = IPW_A_MODE;
10830 rates->purpose = IPW_RATE_CAPABILITIES;
10831 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10832 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10835 default: /* Mixed or 2.4Ghz */
10836 rates->ieee_mode = IPW_G_MODE;
10837 rates->purpose = IPW_RATE_CAPABILITIES;
10838 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10839 IEEE80211_CCK_DEFAULT_RATES_MASK);
10840 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10841 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10842 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10850 static int ipw_config(struct ipw_priv *priv)
10852 /* This is only called from ipw_up, which resets/reloads the firmware
10853 so, we don't need to first disable the card before we configure
10855 if (ipw_set_tx_power(priv))
10858 /* initialize adapter address */
10859 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10862 /* set basic system config settings */
10863 init_sys_config(&priv->sys_config);
10865 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10866 * Does not support BT priority yet (don't abort or defer our Tx) */
10868 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10870 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10871 priv->sys_config.bt_coexistence
10872 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10873 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10874 priv->sys_config.bt_coexistence
10875 |= CFG_BT_COEXISTENCE_OOB;
10878 #ifdef CONFIG_IPW2200_PROMISCUOUS
10879 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10880 priv->sys_config.accept_all_data_frames = 1;
10881 priv->sys_config.accept_non_directed_frames = 1;
10882 priv->sys_config.accept_all_mgmt_bcpr = 1;
10883 priv->sys_config.accept_all_mgmt_frames = 1;
10887 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10888 priv->sys_config.answer_broadcast_ssid_probe = 1;
10890 priv->sys_config.answer_broadcast_ssid_probe = 0;
10892 if (ipw_send_system_config(priv))
10895 init_supported_rates(priv, &priv->rates);
10896 if (ipw_send_supported_rates(priv, &priv->rates))
10899 /* Set request-to-send threshold */
10900 if (priv->rts_threshold) {
10901 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10904 #ifdef CONFIG_IPW2200_QOS
10905 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10906 ipw_qos_activate(priv, NULL);
10907 #endif /* CONFIG_IPW2200_QOS */
10909 if (ipw_set_random_seed(priv))
10912 /* final state transition to the RUN state */
10913 if (ipw_send_host_complete(priv))
10916 priv->status |= STATUS_INIT;
10918 ipw_led_init(priv);
10919 ipw_led_radio_on(priv);
10920 priv->notif_missed_beacons = 0;
10922 /* Set hardware WEP key if it is configured. */
10923 if ((priv->capability & CAP_PRIVACY_ON) &&
10924 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10925 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10926 ipw_set_hwcrypto_keys(priv);
10937 * These tables have been tested in conjunction with the
10938 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10940 * Altering this values, using it on other hardware, or in geographies
10941 * not intended for resale of the above mentioned Intel adapters has
10944 * Remember to update the table in README.ipw2200 when changing this
10948 static const struct ieee80211_geo ipw_geos[] = {
10952 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10953 {2427, 4}, {2432, 5}, {2437, 6},
10954 {2442, 7}, {2447, 8}, {2452, 9},
10955 {2457, 10}, {2462, 11}},
10958 { /* Custom US/Canada */
10961 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962 {2427, 4}, {2432, 5}, {2437, 6},
10963 {2442, 7}, {2447, 8}, {2452, 9},
10964 {2457, 10}, {2462, 11}},
10970 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10971 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10972 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10973 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10976 { /* Rest of World */
10979 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980 {2427, 4}, {2432, 5}, {2437, 6},
10981 {2442, 7}, {2447, 8}, {2452, 9},
10982 {2457, 10}, {2462, 11}, {2467, 12},
10986 { /* Custom USA & Europe & High */
10989 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990 {2427, 4}, {2432, 5}, {2437, 6},
10991 {2442, 7}, {2447, 8}, {2452, 9},
10992 {2457, 10}, {2462, 11}},
10998 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10999 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11000 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11001 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11009 { /* Custom NA & Europe */
11012 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013 {2427, 4}, {2432, 5}, {2437, 6},
11014 {2442, 7}, {2447, 8}, {2452, 9},
11015 {2457, 10}, {2462, 11}},
11021 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11022 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11023 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11024 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11025 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11026 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11027 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11028 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11029 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11032 { /* Custom Japan */
11035 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036 {2427, 4}, {2432, 5}, {2437, 6},
11037 {2442, 7}, {2447, 8}, {2452, 9},
11038 {2457, 10}, {2462, 11}},
11040 .a = {{5170, 34}, {5190, 38},
11041 {5210, 42}, {5230, 46}},
11047 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048 {2427, 4}, {2432, 5}, {2437, 6},
11049 {2442, 7}, {2447, 8}, {2452, 9},
11050 {2457, 10}, {2462, 11}},
11056 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 {2427, 4}, {2432, 5}, {2437, 6},
11058 {2442, 7}, {2447, 8}, {2452, 9},
11059 {2457, 10}, {2462, 11}, {2467, 12},
11066 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11067 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11068 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11069 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11070 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11071 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11072 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11073 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11074 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11075 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11076 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11077 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11078 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11079 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11080 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11083 { /* Custom Japan */
11086 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11087 {2427, 4}, {2432, 5}, {2437, 6},
11088 {2442, 7}, {2447, 8}, {2452, 9},
11089 {2457, 10}, {2462, 11}, {2467, 12},
11090 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11092 .a = {{5170, 34}, {5190, 38},
11093 {5210, 42}, {5230, 46}},
11096 { /* Rest of World */
11099 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11100 {2427, 4}, {2432, 5}, {2437, 6},
11101 {2442, 7}, {2447, 8}, {2452, 9},
11102 {2457, 10}, {2462, 11}, {2467, 12},
11103 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11104 IEEE80211_CH_PASSIVE_ONLY}},
11110 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11111 {2427, 4}, {2432, 5}, {2437, 6},
11112 {2442, 7}, {2447, 8}, {2452, 9},
11113 {2457, 10}, {2462, 11},
11114 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11115 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11117 .a = {{5745, 149}, {5765, 153},
11118 {5785, 157}, {5805, 161}},
11121 { /* Custom Europe */
11124 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125 {2427, 4}, {2432, 5}, {2437, 6},
11126 {2442, 7}, {2447, 8}, {2452, 9},
11127 {2457, 10}, {2462, 11},
11128 {2467, 12}, {2472, 13}},
11130 .a = {{5180, 36}, {5200, 40},
11131 {5220, 44}, {5240, 48}},
11137 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138 {2427, 4}, {2432, 5}, {2437, 6},
11139 {2442, 7}, {2447, 8}, {2452, 9},
11140 {2457, 10}, {2462, 11},
11141 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11142 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11144 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11145 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11146 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11147 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11148 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11149 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11150 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11151 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11152 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11153 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11154 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11155 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11156 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11157 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11158 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11159 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11160 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11161 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11162 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11163 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11164 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11165 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11166 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11167 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11173 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174 {2427, 4}, {2432, 5}, {2437, 6},
11175 {2442, 7}, {2447, 8}, {2452, 9},
11176 {2457, 10}, {2462, 11}},
11178 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11179 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11180 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11181 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11182 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11183 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11184 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11185 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11186 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11187 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11188 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11189 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11190 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11194 #define MAX_HW_RESTARTS 5
11195 static int ipw_up(struct ipw_priv *priv)
11199 if (priv->status & STATUS_EXIT_PENDING)
11202 if (cmdlog && !priv->cmdlog) {
11203 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11205 if (priv->cmdlog == NULL) {
11206 IPW_ERROR("Error allocating %d command log entries.\n",
11210 priv->cmdlog_len = cmdlog;
11214 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11215 /* Load the microcode, firmware, and eeprom.
11216 * Also start the clocks. */
11217 rc = ipw_load(priv);
11219 IPW_ERROR("Unable to load firmware: %d\n", rc);
11223 ipw_init_ordinals(priv);
11224 if (!(priv->config & CFG_CUSTOM_MAC))
11225 eeprom_parse_mac(priv, priv->mac_addr);
11226 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11228 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11229 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11230 ipw_geos[j].name, 3))
11233 if (j == ARRAY_SIZE(ipw_geos)) {
11234 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11235 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11236 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11237 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11240 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11241 IPW_WARNING("Could not set geography.");
11245 if (priv->status & STATUS_RF_KILL_SW) {
11246 IPW_WARNING("Radio disabled by module parameter.\n");
11248 } else if (rf_kill_active(priv)) {
11249 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11250 "Kill switch must be turned off for "
11251 "wireless networking to work.\n");
11252 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11257 rc = ipw_config(priv);
11259 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11261 /* If configure to try and auto-associate, kick
11263 queue_delayed_work(priv->workqueue,
11264 &priv->request_scan, 0);
11269 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11270 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11271 i, MAX_HW_RESTARTS);
11273 /* We had an error bringing up the hardware, so take it
11274 * all the way back down so we can try again */
11278 /* tried to restart and config the device for as long as our
11279 * patience could withstand */
11280 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11285 static void ipw_bg_up(struct work_struct *work)
11287 struct ipw_priv *priv =
11288 container_of(work, struct ipw_priv, up);
11289 mutex_lock(&priv->mutex);
11291 mutex_unlock(&priv->mutex);
11294 static void ipw_deinit(struct ipw_priv *priv)
11298 if (priv->status & STATUS_SCANNING) {
11299 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11300 ipw_abort_scan(priv);
11303 if (priv->status & STATUS_ASSOCIATED) {
11304 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11305 ipw_disassociate(priv);
11308 ipw_led_shutdown(priv);
11310 /* Wait up to 1s for status to change to not scanning and not
11311 * associated (disassociation can take a while for a ful 802.11
11313 for (i = 1000; i && (priv->status &
11314 (STATUS_DISASSOCIATING |
11315 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11318 if (priv->status & (STATUS_DISASSOCIATING |
11319 STATUS_ASSOCIATED | STATUS_SCANNING))
11320 IPW_DEBUG_INFO("Still associated or scanning...\n");
11322 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11324 /* Attempt to disable the card */
11325 ipw_send_card_disable(priv, 0);
11327 priv->status &= ~STATUS_INIT;
11330 static void ipw_down(struct ipw_priv *priv)
11332 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11334 priv->status |= STATUS_EXIT_PENDING;
11336 if (ipw_is_init(priv))
11339 /* Wipe out the EXIT_PENDING status bit if we are not actually
11340 * exiting the module */
11342 priv->status &= ~STATUS_EXIT_PENDING;
11344 /* tell the device to stop sending interrupts */
11345 ipw_disable_interrupts(priv);
11347 /* Clear all bits but the RF Kill */
11348 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11349 netif_carrier_off(priv->net_dev);
11350 netif_stop_queue(priv->net_dev);
11352 ipw_stop_nic(priv);
11354 ipw_led_radio_off(priv);
11357 static void ipw_bg_down(struct work_struct *work)
11359 struct ipw_priv *priv =
11360 container_of(work, struct ipw_priv, down);
11361 mutex_lock(&priv->mutex);
11363 mutex_unlock(&priv->mutex);
11366 /* Called by register_netdev() */
11367 static int ipw_net_init(struct net_device *dev)
11369 struct ipw_priv *priv = ieee80211_priv(dev);
11370 mutex_lock(&priv->mutex);
11372 if (ipw_up(priv)) {
11373 mutex_unlock(&priv->mutex);
11377 mutex_unlock(&priv->mutex);
11381 /* PCI driver stuff */
11382 static struct pci_device_id card_ids[] = {
11383 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11384 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11385 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11386 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11387 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11388 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11389 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11390 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11391 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11392 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11393 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11394 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11395 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11396 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11397 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11398 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11399 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11400 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11401 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11402 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11403 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11404 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11406 /* required last entry */
11410 MODULE_DEVICE_TABLE(pci, card_ids);
11412 static struct attribute *ipw_sysfs_entries[] = {
11413 &dev_attr_rf_kill.attr,
11414 &dev_attr_direct_dword.attr,
11415 &dev_attr_indirect_byte.attr,
11416 &dev_attr_indirect_dword.attr,
11417 &dev_attr_mem_gpio_reg.attr,
11418 &dev_attr_command_event_reg.attr,
11419 &dev_attr_nic_type.attr,
11420 &dev_attr_status.attr,
11421 &dev_attr_cfg.attr,
11422 &dev_attr_error.attr,
11423 &dev_attr_event_log.attr,
11424 &dev_attr_cmd_log.attr,
11425 &dev_attr_eeprom_delay.attr,
11426 &dev_attr_ucode_version.attr,
11427 &dev_attr_rtc.attr,
11428 &dev_attr_scan_age.attr,
11429 &dev_attr_led.attr,
11430 &dev_attr_speed_scan.attr,
11431 &dev_attr_net_stats.attr,
11432 &dev_attr_channels.attr,
11433 #ifdef CONFIG_IPW2200_PROMISCUOUS
11434 &dev_attr_rtap_iface.attr,
11435 &dev_attr_rtap_filter.attr,
11440 static struct attribute_group ipw_attribute_group = {
11441 .name = NULL, /* put in device directory */
11442 .attrs = ipw_sysfs_entries,
11445 #ifdef CONFIG_IPW2200_PROMISCUOUS
11446 static int ipw_prom_open(struct net_device *dev)
11448 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11449 struct ipw_priv *priv = prom_priv->priv;
11451 IPW_DEBUG_INFO("prom dev->open\n");
11452 netif_carrier_off(dev);
11453 netif_stop_queue(dev);
11455 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11456 priv->sys_config.accept_all_data_frames = 1;
11457 priv->sys_config.accept_non_directed_frames = 1;
11458 priv->sys_config.accept_all_mgmt_bcpr = 1;
11459 priv->sys_config.accept_all_mgmt_frames = 1;
11461 ipw_send_system_config(priv);
11467 static int ipw_prom_stop(struct net_device *dev)
11469 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11470 struct ipw_priv *priv = prom_priv->priv;
11472 IPW_DEBUG_INFO("prom dev->stop\n");
11474 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11475 priv->sys_config.accept_all_data_frames = 0;
11476 priv->sys_config.accept_non_directed_frames = 0;
11477 priv->sys_config.accept_all_mgmt_bcpr = 0;
11478 priv->sys_config.accept_all_mgmt_frames = 0;
11480 ipw_send_system_config(priv);
11486 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11488 IPW_DEBUG_INFO("prom dev->xmit\n");
11489 netif_stop_queue(dev);
11490 return -EOPNOTSUPP;
11493 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11495 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11496 return &prom_priv->ieee->stats;
11499 static int ipw_prom_alloc(struct ipw_priv *priv)
11503 if (priv->prom_net_dev)
11506 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11507 if (priv->prom_net_dev == NULL)
11510 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11511 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11512 priv->prom_priv->priv = priv;
11514 strcpy(priv->prom_net_dev->name, "rtap%d");
11516 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11517 priv->prom_net_dev->open = ipw_prom_open;
11518 priv->prom_net_dev->stop = ipw_prom_stop;
11519 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11520 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11522 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11524 rc = register_netdev(priv->prom_net_dev);
11526 free_ieee80211(priv->prom_net_dev);
11527 priv->prom_net_dev = NULL;
11534 static void ipw_prom_free(struct ipw_priv *priv)
11536 if (!priv->prom_net_dev)
11539 unregister_netdev(priv->prom_net_dev);
11540 free_ieee80211(priv->prom_net_dev);
11542 priv->prom_net_dev = NULL;
11548 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11551 struct net_device *net_dev;
11552 void __iomem *base;
11554 struct ipw_priv *priv;
11557 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11558 if (net_dev == NULL) {
11563 priv = ieee80211_priv(net_dev);
11564 priv->ieee = netdev_priv(net_dev);
11566 priv->net_dev = net_dev;
11567 priv->pci_dev = pdev;
11568 ipw_debug_level = debug;
11569 spin_lock_init(&priv->irq_lock);
11570 spin_lock_init(&priv->lock);
11571 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11572 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11574 mutex_init(&priv->mutex);
11575 if (pci_enable_device(pdev)) {
11577 goto out_free_ieee80211;
11580 pci_set_master(pdev);
11582 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11584 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11586 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11587 goto out_pci_disable_device;
11590 pci_set_drvdata(pdev, priv);
11592 err = pci_request_regions(pdev, DRV_NAME);
11594 goto out_pci_disable_device;
11596 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11597 * PCI Tx retries from interfering with C3 CPU state */
11598 pci_read_config_dword(pdev, 0x40, &val);
11599 if ((val & 0x0000ff00) != 0)
11600 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11602 length = pci_resource_len(pdev, 0);
11603 priv->hw_len = length;
11605 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11608 goto out_pci_release_regions;
11611 priv->hw_base = base;
11612 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11613 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11615 err = ipw_setup_deferred_work(priv);
11617 IPW_ERROR("Unable to setup deferred work\n");
11621 ipw_sw_reset(priv, 1);
11623 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11625 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11626 goto out_destroy_workqueue;
11629 SET_MODULE_OWNER(net_dev);
11630 SET_NETDEV_DEV(net_dev, &pdev->dev);
11632 mutex_lock(&priv->mutex);
11634 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11635 priv->ieee->set_security = shim__set_security;
11636 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11638 #ifdef CONFIG_IPW2200_QOS
11639 priv->ieee->is_qos_active = ipw_is_qos_active;
11640 priv->ieee->handle_probe_response = ipw_handle_beacon;
11641 priv->ieee->handle_beacon = ipw_handle_probe_response;
11642 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11643 #endif /* CONFIG_IPW2200_QOS */
11645 priv->ieee->perfect_rssi = -20;
11646 priv->ieee->worst_rssi = -85;
11648 net_dev->open = ipw_net_open;
11649 net_dev->stop = ipw_net_stop;
11650 net_dev->init = ipw_net_init;
11651 net_dev->get_stats = ipw_net_get_stats;
11652 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11653 net_dev->set_mac_address = ipw_net_set_mac_address;
11654 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11655 net_dev->wireless_data = &priv->wireless_data;
11656 net_dev->wireless_handlers = &ipw_wx_handler_def;
11657 net_dev->ethtool_ops = &ipw_ethtool_ops;
11658 net_dev->irq = pdev->irq;
11659 net_dev->base_addr = (unsigned long)priv->hw_base;
11660 net_dev->mem_start = pci_resource_start(pdev, 0);
11661 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11663 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11665 IPW_ERROR("failed to create sysfs device attributes\n");
11666 mutex_unlock(&priv->mutex);
11667 goto out_release_irq;
11670 mutex_unlock(&priv->mutex);
11671 err = register_netdev(net_dev);
11673 IPW_ERROR("failed to register network device\n");
11674 goto out_remove_sysfs;
11677 #ifdef CONFIG_IPW2200_PROMISCUOUS
11679 err = ipw_prom_alloc(priv);
11681 IPW_ERROR("Failed to register promiscuous network "
11682 "device (error %d).\n", err);
11683 unregister_netdev(priv->net_dev);
11684 goto out_remove_sysfs;
11689 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11690 "channels, %d 802.11a channels)\n",
11691 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11692 priv->ieee->geo.a_channels);
11697 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11699 free_irq(pdev->irq, priv);
11700 out_destroy_workqueue:
11701 destroy_workqueue(priv->workqueue);
11702 priv->workqueue = NULL;
11704 iounmap(priv->hw_base);
11705 out_pci_release_regions:
11706 pci_release_regions(pdev);
11707 out_pci_disable_device:
11708 pci_disable_device(pdev);
11709 pci_set_drvdata(pdev, NULL);
11710 out_free_ieee80211:
11711 free_ieee80211(priv->net_dev);
11716 static void ipw_pci_remove(struct pci_dev *pdev)
11718 struct ipw_priv *priv = pci_get_drvdata(pdev);
11719 struct list_head *p, *q;
11725 mutex_lock(&priv->mutex);
11727 priv->status |= STATUS_EXIT_PENDING;
11729 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11731 mutex_unlock(&priv->mutex);
11733 unregister_netdev(priv->net_dev);
11736 ipw_rx_queue_free(priv, priv->rxq);
11739 ipw_tx_queue_free(priv);
11741 if (priv->cmdlog) {
11742 kfree(priv->cmdlog);
11743 priv->cmdlog = NULL;
11745 /* ipw_down will ensure that there is no more pending work
11746 * in the workqueue's, so we can safely remove them now. */
11747 cancel_delayed_work(&priv->adhoc_check);
11748 cancel_delayed_work(&priv->gather_stats);
11749 cancel_delayed_work(&priv->request_scan);
11750 cancel_delayed_work(&priv->rf_kill);
11751 cancel_delayed_work(&priv->scan_check);
11752 destroy_workqueue(priv->workqueue);
11753 priv->workqueue = NULL;
11755 /* Free MAC hash list for ADHOC */
11756 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11757 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11759 kfree(list_entry(p, struct ipw_ibss_seq, list));
11763 kfree(priv->error);
11764 priv->error = NULL;
11766 #ifdef CONFIG_IPW2200_PROMISCUOUS
11767 ipw_prom_free(priv);
11770 free_irq(pdev->irq, priv);
11771 iounmap(priv->hw_base);
11772 pci_release_regions(pdev);
11773 pci_disable_device(pdev);
11774 pci_set_drvdata(pdev, NULL);
11775 free_ieee80211(priv->net_dev);
11780 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11782 struct ipw_priv *priv = pci_get_drvdata(pdev);
11783 struct net_device *dev = priv->net_dev;
11785 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11787 /* Take down the device; powers it off, etc. */
11790 /* Remove the PRESENT state of the device */
11791 netif_device_detach(dev);
11793 pci_save_state(pdev);
11794 pci_disable_device(pdev);
11795 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11800 static int ipw_pci_resume(struct pci_dev *pdev)
11802 struct ipw_priv *priv = pci_get_drvdata(pdev);
11803 struct net_device *dev = priv->net_dev;
11807 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11809 pci_set_power_state(pdev, PCI_D0);
11810 err = pci_enable_device(pdev);
11812 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11816 pci_restore_state(pdev);
11819 * Suspend/Resume resets the PCI configuration space, so we have to
11820 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11821 * from interfering with C3 CPU state. pci_restore_state won't help
11822 * here since it only restores the first 64 bytes pci config header.
11824 pci_read_config_dword(pdev, 0x40, &val);
11825 if ((val & 0x0000ff00) != 0)
11826 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11828 /* Set the device back into the PRESENT state; this will also wake
11829 * the queue of needed */
11830 netif_device_attach(dev);
11832 /* Bring the device back up */
11833 queue_work(priv->workqueue, &priv->up);
11839 static void ipw_pci_shutdown(struct pci_dev *pdev)
11841 struct ipw_priv *priv = pci_get_drvdata(pdev);
11843 /* Take down the device; powers it off, etc. */
11846 pci_disable_device(pdev);
11849 /* driver initialization stuff */
11850 static struct pci_driver ipw_driver = {
11852 .id_table = card_ids,
11853 .probe = ipw_pci_probe,
11854 .remove = __devexit_p(ipw_pci_remove),
11856 .suspend = ipw_pci_suspend,
11857 .resume = ipw_pci_resume,
11859 .shutdown = ipw_pci_shutdown,
11862 static int __init ipw_init(void)
11866 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11867 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11869 ret = pci_register_driver(&ipw_driver);
11871 IPW_ERROR("Unable to initialize PCI module\n");
11875 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11877 IPW_ERROR("Unable to create driver sysfs file\n");
11878 pci_unregister_driver(&ipw_driver);
11885 static void __exit ipw_exit(void)
11887 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11888 pci_unregister_driver(&ipw_driver);
11891 module_param(disable, int, 0444);
11892 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11894 module_param(associate, int, 0444);
11895 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11897 module_param(auto_create, int, 0444);
11898 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11900 module_param(led, int, 0444);
11901 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11903 module_param(debug, int, 0444);
11904 MODULE_PARM_DESC(debug, "debug output mask");
11906 module_param(channel, int, 0444);
11907 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11909 #ifdef CONFIG_IPW2200_PROMISCUOUS
11910 module_param(rtap_iface, int, 0444);
11911 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11914 #ifdef CONFIG_IPW2200_QOS
11915 module_param(qos_enable, int, 0444);
11916 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11918 module_param(qos_burst_enable, int, 0444);
11919 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11921 module_param(qos_no_ack_mask, int, 0444);
11922 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11924 module_param(burst_duration_CCK, int, 0444);
11925 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11927 module_param(burst_duration_OFDM, int, 0444);
11928 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11929 #endif /* CONFIG_IPW2200_QOS */
11931 #ifdef CONFIG_IPW2200_MONITOR
11932 module_param(mode, int, 0444);
11933 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11935 module_param(mode, int, 0444);
11936 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11939 module_param(bt_coexist, int, 0444);
11940 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11942 module_param(hwcrypto, int, 0444);
11943 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11945 module_param(cmdlog, int, 0444);
11946 MODULE_PARM_DESC(cmdlog,
11947 "allocate a ring buffer for logging firmware commands");
11949 module_param(roaming, int, 0444);
11950 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11952 module_param(antenna, int, 0444);
11953 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11955 module_exit(ipw_exit);
11956 module_init(ipw_init);