Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.0" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         struct ipw_event log[log_len];
1237         u32 len = 0, i;
1238
1239         ipw_capture_event_log(priv, log_len, log);
1240
1241         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1242         for (i = 0; i < log_len; i++)
1243                 len += snprintf(buf + len, PAGE_SIZE - len,
1244                                 "\n%08X%08X%08X",
1245                                 log[i].time, log[i].event, log[i].data);
1246         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1247         return len;
1248 }
1249
1250 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1251
1252 static ssize_t show_error(struct device *d,
1253                           struct device_attribute *attr, char *buf)
1254 {
1255         struct ipw_priv *priv = dev_get_drvdata(d);
1256         u32 len = 0, i;
1257         if (!priv->error)
1258                 return 0;
1259         len += snprintf(buf + len, PAGE_SIZE - len,
1260                         "%08lX%08X%08X%08X",
1261                         priv->error->jiffies,
1262                         priv->error->status,
1263                         priv->error->config, priv->error->elem_len);
1264         for (i = 0; i < priv->error->elem_len; i++)
1265                 len += snprintf(buf + len, PAGE_SIZE - len,
1266                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1267                                 priv->error->elem[i].time,
1268                                 priv->error->elem[i].desc,
1269                                 priv->error->elem[i].blink1,
1270                                 priv->error->elem[i].blink2,
1271                                 priv->error->elem[i].link1,
1272                                 priv->error->elem[i].link2,
1273                                 priv->error->elem[i].data);
1274
1275         len += snprintf(buf + len, PAGE_SIZE - len,
1276                         "\n%08X", priv->error->log_len);
1277         for (i = 0; i < priv->error->log_len; i++)
1278                 len += snprintf(buf + len, PAGE_SIZE - len,
1279                                 "\n%08X%08X%08X",
1280                                 priv->error->log[i].time,
1281                                 priv->error->log[i].event,
1282                                 priv->error->log[i].data);
1283         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1284         return len;
1285 }
1286
1287 static ssize_t clear_error(struct device *d,
1288                            struct device_attribute *attr,
1289                            const char *buf, size_t count)
1290 {
1291         struct ipw_priv *priv = dev_get_drvdata(d);
1292
1293         kfree(priv->error);
1294         priv->error = NULL;
1295         return count;
1296 }
1297
1298 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1299
1300 static ssize_t show_cmd_log(struct device *d,
1301                             struct device_attribute *attr, char *buf)
1302 {
1303         struct ipw_priv *priv = dev_get_drvdata(d);
1304         u32 len = 0, i;
1305         if (!priv->cmdlog)
1306                 return 0;
1307         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1308              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1309              i = (i + 1) % priv->cmdlog_len) {
1310                 len +=
1311                     snprintf(buf + len, PAGE_SIZE - len,
1312                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1313                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1314                              priv->cmdlog[i].cmd.len);
1315                 len +=
1316                     snprintk_buf(buf + len, PAGE_SIZE - len,
1317                                  (u8 *) priv->cmdlog[i].cmd.param,
1318                                  priv->cmdlog[i].cmd.len);
1319                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1320         }
1321         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1322         return len;
1323 }
1324
1325 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1326
1327 #ifdef CONFIG_IPW2200_PROMISCUOUS
1328 static void ipw_prom_free(struct ipw_priv *priv);
1329 static int ipw_prom_alloc(struct ipw_priv *priv);
1330 static ssize_t store_rtap_iface(struct device *d,
1331                          struct device_attribute *attr,
1332                          const char *buf, size_t count)
1333 {
1334         struct ipw_priv *priv = dev_get_drvdata(d);
1335         int rc = 0;
1336
1337         if (count < 1)
1338                 return -EINVAL;
1339
1340         switch (buf[0]) {
1341         case '0':
1342                 if (!rtap_iface)
1343                         return count;
1344
1345                 if (netif_running(priv->prom_net_dev)) {
1346                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1347                         return count;
1348                 }
1349
1350                 ipw_prom_free(priv);
1351                 rtap_iface = 0;
1352                 break;
1353
1354         case '1':
1355                 if (rtap_iface)
1356                         return count;
1357
1358                 rc = ipw_prom_alloc(priv);
1359                 if (!rc)
1360                         rtap_iface = 1;
1361                 break;
1362
1363         default:
1364                 return -EINVAL;
1365         }
1366
1367         if (rc) {
1368                 IPW_ERROR("Failed to register promiscuous network "
1369                           "device (error %d).\n", rc);
1370         }
1371
1372         return count;
1373 }
1374
1375 static ssize_t show_rtap_iface(struct device *d,
1376                         struct device_attribute *attr,
1377                         char *buf)
1378 {
1379         struct ipw_priv *priv = dev_get_drvdata(d);
1380         if (rtap_iface)
1381                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1382         else {
1383                 buf[0] = '-';
1384                 buf[1] = '1';
1385                 buf[2] = '\0';
1386                 return 3;
1387         }
1388 }
1389
1390 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1391                    store_rtap_iface);
1392
1393 static ssize_t store_rtap_filter(struct device *d,
1394                          struct device_attribute *attr,
1395                          const char *buf, size_t count)
1396 {
1397         struct ipw_priv *priv = dev_get_drvdata(d);
1398
1399         if (!priv->prom_priv) {
1400                 IPW_ERROR("Attempting to set filter without "
1401                           "rtap_iface enabled.\n");
1402                 return -EPERM;
1403         }
1404
1405         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1406
1407         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1408                        BIT_ARG16(priv->prom_priv->filter));
1409
1410         return count;
1411 }
1412
1413 static ssize_t show_rtap_filter(struct device *d,
1414                         struct device_attribute *attr,
1415                         char *buf)
1416 {
1417         struct ipw_priv *priv = dev_get_drvdata(d);
1418         return sprintf(buf, "0x%04X",
1419                        priv->prom_priv ? priv->prom_priv->filter : 0);
1420 }
1421
1422 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1423                    store_rtap_filter);
1424 #endif
1425
1426 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1427                              char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1431 }
1432
1433 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1434                               const char *buf, size_t count)
1435 {
1436         struct ipw_priv *priv = dev_get_drvdata(d);
1437         struct net_device *dev = priv->net_dev;
1438         char buffer[] = "00000000";
1439         unsigned long len =
1440             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1441         unsigned long val;
1442         char *p = buffer;
1443
1444         IPW_DEBUG_INFO("enter\n");
1445
1446         strncpy(buffer, buf, len);
1447         buffer[len] = 0;
1448
1449         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1450                 p++;
1451                 if (p[0] == 'x' || p[0] == 'X')
1452                         p++;
1453                 val = simple_strtoul(p, &p, 16);
1454         } else
1455                 val = simple_strtoul(p, &p, 10);
1456         if (p == buffer) {
1457                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1458         } else {
1459                 priv->ieee->scan_age = val;
1460                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1461         }
1462
1463         IPW_DEBUG_INFO("exit\n");
1464         return len;
1465 }
1466
1467 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1468
1469 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1474 }
1475
1476 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1477                          const char *buf, size_t count)
1478 {
1479         struct ipw_priv *priv = dev_get_drvdata(d);
1480
1481         IPW_DEBUG_INFO("enter\n");
1482
1483         if (count == 0)
1484                 return 0;
1485
1486         if (*buf == 0) {
1487                 IPW_DEBUG_LED("Disabling LED control.\n");
1488                 priv->config |= CFG_NO_LED;
1489                 ipw_led_shutdown(priv);
1490         } else {
1491                 IPW_DEBUG_LED("Enabling LED control.\n");
1492                 priv->config &= ~CFG_NO_LED;
1493                 ipw_led_init(priv);
1494         }
1495
1496         IPW_DEBUG_INFO("exit\n");
1497         return count;
1498 }
1499
1500 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1501
1502 static ssize_t show_status(struct device *d,
1503                            struct device_attribute *attr, char *buf)
1504 {
1505         struct ipw_priv *p = d->driver_data;
1506         return sprintf(buf, "0x%08x\n", (int)p->status);
1507 }
1508
1509 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1510
1511 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1512                         char *buf)
1513 {
1514         struct ipw_priv *p = d->driver_data;
1515         return sprintf(buf, "0x%08x\n", (int)p->config);
1516 }
1517
1518 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1519
1520 static ssize_t show_nic_type(struct device *d,
1521                              struct device_attribute *attr, char *buf)
1522 {
1523         struct ipw_priv *priv = d->driver_data;
1524         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1525 }
1526
1527 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1528
1529 static ssize_t show_ucode_version(struct device *d,
1530                                   struct device_attribute *attr, char *buf)
1531 {
1532         u32 len = sizeof(u32), tmp = 0;
1533         struct ipw_priv *p = d->driver_data;
1534
1535         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1536                 return 0;
1537
1538         return sprintf(buf, "0x%08x\n", tmp);
1539 }
1540
1541 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1542
1543 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1544                         char *buf)
1545 {
1546         u32 len = sizeof(u32), tmp = 0;
1547         struct ipw_priv *p = d->driver_data;
1548
1549         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1550                 return 0;
1551
1552         return sprintf(buf, "0x%08x\n", tmp);
1553 }
1554
1555 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1556
1557 /*
1558  * Add a device attribute to view/control the delay between eeprom
1559  * operations.
1560  */
1561 static ssize_t show_eeprom_delay(struct device *d,
1562                                  struct device_attribute *attr, char *buf)
1563 {
1564         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1565         return sprintf(buf, "%i\n", n);
1566 }
1567 static ssize_t store_eeprom_delay(struct device *d,
1568                                   struct device_attribute *attr,
1569                                   const char *buf, size_t count)
1570 {
1571         struct ipw_priv *p = d->driver_data;
1572         sscanf(buf, "%i", &p->eeprom_delay);
1573         return strnlen(buf, count);
1574 }
1575
1576 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1577                    show_eeprom_delay, store_eeprom_delay);
1578
1579 static ssize_t show_command_event_reg(struct device *d,
1580                                       struct device_attribute *attr, char *buf)
1581 {
1582         u32 reg = 0;
1583         struct ipw_priv *p = d->driver_data;
1584
1585         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1586         return sprintf(buf, "0x%08x\n", reg);
1587 }
1588 static ssize_t store_command_event_reg(struct device *d,
1589                                        struct device_attribute *attr,
1590                                        const char *buf, size_t count)
1591 {
1592         u32 reg;
1593         struct ipw_priv *p = d->driver_data;
1594
1595         sscanf(buf, "%x", &reg);
1596         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1597         return strnlen(buf, count);
1598 }
1599
1600 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1601                    show_command_event_reg, store_command_event_reg);
1602
1603 static ssize_t show_mem_gpio_reg(struct device *d,
1604                                  struct device_attribute *attr, char *buf)
1605 {
1606         u32 reg = 0;
1607         struct ipw_priv *p = d->driver_data;
1608
1609         reg = ipw_read_reg32(p, 0x301100);
1610         return sprintf(buf, "0x%08x\n", reg);
1611 }
1612 static ssize_t store_mem_gpio_reg(struct device *d,
1613                                   struct device_attribute *attr,
1614                                   const char *buf, size_t count)
1615 {
1616         u32 reg;
1617         struct ipw_priv *p = d->driver_data;
1618
1619         sscanf(buf, "%x", &reg);
1620         ipw_write_reg32(p, 0x301100, reg);
1621         return strnlen(buf, count);
1622 }
1623
1624 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1625                    show_mem_gpio_reg, store_mem_gpio_reg);
1626
1627 static ssize_t show_indirect_dword(struct device *d,
1628                                    struct device_attribute *attr, char *buf)
1629 {
1630         u32 reg = 0;
1631         struct ipw_priv *priv = d->driver_data;
1632
1633         if (priv->status & STATUS_INDIRECT_DWORD)
1634                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1635         else
1636                 reg = 0;
1637
1638         return sprintf(buf, "0x%08x\n", reg);
1639 }
1640 static ssize_t store_indirect_dword(struct device *d,
1641                                     struct device_attribute *attr,
1642                                     const char *buf, size_t count)
1643 {
1644         struct ipw_priv *priv = d->driver_data;
1645
1646         sscanf(buf, "%x", &priv->indirect_dword);
1647         priv->status |= STATUS_INDIRECT_DWORD;
1648         return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1652                    show_indirect_dword, store_indirect_dword);
1653
1654 static ssize_t show_indirect_byte(struct device *d,
1655                                   struct device_attribute *attr, char *buf)
1656 {
1657         u8 reg = 0;
1658         struct ipw_priv *priv = d->driver_data;
1659
1660         if (priv->status & STATUS_INDIRECT_BYTE)
1661                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1662         else
1663                 reg = 0;
1664
1665         return sprintf(buf, "0x%02x\n", reg);
1666 }
1667 static ssize_t store_indirect_byte(struct device *d,
1668                                    struct device_attribute *attr,
1669                                    const char *buf, size_t count)
1670 {
1671         struct ipw_priv *priv = d->driver_data;
1672
1673         sscanf(buf, "%x", &priv->indirect_byte);
1674         priv->status |= STATUS_INDIRECT_BYTE;
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1679                    show_indirect_byte, store_indirect_byte);
1680
1681 static ssize_t show_direct_dword(struct device *d,
1682                                  struct device_attribute *attr, char *buf)
1683 {
1684         u32 reg = 0;
1685         struct ipw_priv *priv = d->driver_data;
1686
1687         if (priv->status & STATUS_DIRECT_DWORD)
1688                 reg = ipw_read32(priv, priv->direct_dword);
1689         else
1690                 reg = 0;
1691
1692         return sprintf(buf, "0x%08x\n", reg);
1693 }
1694 static ssize_t store_direct_dword(struct device *d,
1695                                   struct device_attribute *attr,
1696                                   const char *buf, size_t count)
1697 {
1698         struct ipw_priv *priv = d->driver_data;
1699
1700         sscanf(buf, "%x", &priv->direct_dword);
1701         priv->status |= STATUS_DIRECT_DWORD;
1702         return strnlen(buf, count);
1703 }
1704
1705 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1706                    show_direct_dword, store_direct_dword);
1707
1708 static int rf_kill_active(struct ipw_priv *priv)
1709 {
1710         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1711                 priv->status |= STATUS_RF_KILL_HW;
1712         else
1713                 priv->status &= ~STATUS_RF_KILL_HW;
1714
1715         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1716 }
1717
1718 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1719                             char *buf)
1720 {
1721         /* 0 - RF kill not enabled
1722            1 - SW based RF kill active (sysfs)
1723            2 - HW based RF kill active
1724            3 - Both HW and SW baed RF kill active */
1725         struct ipw_priv *priv = d->driver_data;
1726         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1727             (rf_kill_active(priv) ? 0x2 : 0x0);
1728         return sprintf(buf, "%i\n", val);
1729 }
1730
1731 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1732 {
1733         if ((disable_radio ? 1 : 0) ==
1734             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1735                 return 0;
1736
1737         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1738                           disable_radio ? "OFF" : "ON");
1739
1740         if (disable_radio) {
1741                 priv->status |= STATUS_RF_KILL_SW;
1742
1743                 if (priv->workqueue)
1744                         cancel_delayed_work(&priv->request_scan);
1745                 queue_work(priv->workqueue, &priv->down);
1746         } else {
1747                 priv->status &= ~STATUS_RF_KILL_SW;
1748                 if (rf_kill_active(priv)) {
1749                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1750                                           "disabled by HW switch\n");
1751                         /* Make sure the RF_KILL check timer is running */
1752                         cancel_delayed_work(&priv->rf_kill);
1753                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1754                                            2 * HZ);
1755                 } else
1756                         queue_work(priv->workqueue, &priv->up);
1757         }
1758
1759         return 1;
1760 }
1761
1762 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1763                              const char *buf, size_t count)
1764 {
1765         struct ipw_priv *priv = d->driver_data;
1766
1767         ipw_radio_kill_sw(priv, buf[0] == '1');
1768
1769         return count;
1770 }
1771
1772 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1773
1774 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1775                                char *buf)
1776 {
1777         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1778         int pos = 0, len = 0;
1779         if (priv->config & CFG_SPEED_SCAN) {
1780                 while (priv->speed_scan[pos] != 0)
1781                         len += sprintf(&buf[len], "%d ",
1782                                        priv->speed_scan[pos++]);
1783                 return len + sprintf(&buf[len], "\n");
1784         }
1785
1786         return sprintf(buf, "0\n");
1787 }
1788
1789 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1790                                 const char *buf, size_t count)
1791 {
1792         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793         int channel, pos = 0;
1794         const char *p = buf;
1795
1796         /* list of space separated channels to scan, optionally ending with 0 */
1797         while ((channel = simple_strtol(p, NULL, 0))) {
1798                 if (pos == MAX_SPEED_SCAN - 1) {
1799                         priv->speed_scan[pos] = 0;
1800                         break;
1801                 }
1802
1803                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1804                         priv->speed_scan[pos++] = channel;
1805                 else
1806                         IPW_WARNING("Skipping invalid channel request: %d\n",
1807                                     channel);
1808                 p = strchr(p, ' ');
1809                 if (!p)
1810                         break;
1811                 while (*p == ' ' || *p == '\t')
1812                         p++;
1813         }
1814
1815         if (pos == 0)
1816                 priv->config &= ~CFG_SPEED_SCAN;
1817         else {
1818                 priv->speed_scan_pos = 0;
1819                 priv->config |= CFG_SPEED_SCAN;
1820         }
1821
1822         return count;
1823 }
1824
1825 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1826                    store_speed_scan);
1827
1828 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1829                               char *buf)
1830 {
1831         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1832         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1833 }
1834
1835 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1836                                const char *buf, size_t count)
1837 {
1838         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1839         if (buf[0] == '1')
1840                 priv->config |= CFG_NET_STATS;
1841         else
1842                 priv->config &= ~CFG_NET_STATS;
1843
1844         return count;
1845 }
1846
1847 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1848                    show_net_stats, store_net_stats);
1849
1850 static ssize_t show_channels(struct device *d,
1851                              struct device_attribute *attr,
1852                              char *buf)
1853 {
1854         struct ipw_priv *priv = dev_get_drvdata(d);
1855         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1856         int len = 0, i;
1857
1858         len = sprintf(&buf[len],
1859                       "Displaying %d channels in 2.4Ghz band "
1860                       "(802.11bg):\n", geo->bg_channels);
1861
1862         for (i = 0; i < geo->bg_channels; i++) {
1863                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1864                                geo->bg[i].channel,
1865                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1866                                " (radar spectrum)" : "",
1867                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1868                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1869                                ? "" : ", IBSS",
1870                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1871                                "passive only" : "active/passive",
1872                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1873                                "B" : "B/G");
1874         }
1875
1876         len += sprintf(&buf[len],
1877                        "Displaying %d channels in 5.2Ghz band "
1878                        "(802.11a):\n", geo->a_channels);
1879         for (i = 0; i < geo->a_channels; i++) {
1880                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1881                                geo->a[i].channel,
1882                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1883                                " (radar spectrum)" : "",
1884                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1885                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1886                                ? "" : ", IBSS",
1887                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1888                                "passive only" : "active/passive");
1889         }
1890
1891         return len;
1892 }
1893
1894 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1895
1896 static void notify_wx_assoc_event(struct ipw_priv *priv)
1897 {
1898         union iwreq_data wrqu;
1899         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1900         if (priv->status & STATUS_ASSOCIATED)
1901                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1902         else
1903                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1904         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1905 }
1906
1907 static void ipw_irq_tasklet(struct ipw_priv *priv)
1908 {
1909         u32 inta, inta_mask, handled = 0;
1910         unsigned long flags;
1911         int rc = 0;
1912
1913         spin_lock_irqsave(&priv->irq_lock, flags);
1914
1915         inta = ipw_read32(priv, IPW_INTA_RW);
1916         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1917         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1918
1919         /* Add any cached INTA values that need to be handled */
1920         inta |= priv->isr_inta;
1921
1922         spin_unlock_irqrestore(&priv->irq_lock, flags);
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925
1926         /* handle all the justifications for the interrupt */
1927         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1928                 ipw_rx(priv);
1929                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1933                 IPW_DEBUG_HC("Command completed.\n");
1934                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1935                 priv->status &= ~STATUS_HCMD_ACTIVE;
1936                 wake_up_interruptible(&priv->wait_command_queue);
1937                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1938         }
1939
1940         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1941                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1942                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1943                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1944         }
1945
1946         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1947                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1948                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1949                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1950         }
1951
1952         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1953                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1954                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1955                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1956         }
1957
1958         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1959                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1960                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1961                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1962         }
1963
1964         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1965                 IPW_WARNING("STATUS_CHANGE\n");
1966                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1967         }
1968
1969         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1970                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1971                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1972         }
1973
1974         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1975                 IPW_WARNING("HOST_CMD_DONE\n");
1976                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1977         }
1978
1979         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1980                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1981                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1982         }
1983
1984         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1985                 IPW_WARNING("PHY_OFF_DONE\n");
1986                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1987         }
1988
1989         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1990                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1991                 priv->status |= STATUS_RF_KILL_HW;
1992                 wake_up_interruptible(&priv->wait_command_queue);
1993                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1994                 cancel_delayed_work(&priv->request_scan);
1995                 schedule_work(&priv->link_down);
1996                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1997                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1998         }
1999
2000         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2001                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2002                 if (priv->error) {
2003                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2004                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2005                                 struct ipw_fw_error *error =
2006                                     ipw_alloc_error_log(priv);
2007                                 ipw_dump_error_log(priv, error);
2008                                 kfree(error);
2009                         }
2010                 } else {
2011                         priv->error = ipw_alloc_error_log(priv);
2012                         if (priv->error)
2013                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2014                         else
2015                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2016                                              "log.\n");
2017                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2018                                 ipw_dump_error_log(priv, priv->error);
2019                 }
2020
2021                 /* XXX: If hardware encryption is for WPA/WPA2,
2022                  * we have to notify the supplicant. */
2023                 if (priv->ieee->sec.encrypt) {
2024                         priv->status &= ~STATUS_ASSOCIATED;
2025                         notify_wx_assoc_event(priv);
2026                 }
2027
2028                 /* Keep the restart process from trying to send host
2029                  * commands by clearing the INIT status bit */
2030                 priv->status &= ~STATUS_INIT;
2031
2032                 /* Cancel currently queued command. */
2033                 priv->status &= ~STATUS_HCMD_ACTIVE;
2034                 wake_up_interruptible(&priv->wait_command_queue);
2035
2036                 queue_work(priv->workqueue, &priv->adapter_restart);
2037                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2041                 IPW_ERROR("Parity error\n");
2042                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2043         }
2044
2045         if (handled != inta) {
2046                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2047         }
2048
2049         spin_unlock_irqrestore(&priv->lock, flags);
2050
2051         /* enable all interrupts */
2052         ipw_enable_interrupts(priv);
2053 }
2054
2055 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2056 static char *get_cmd_string(u8 cmd)
2057 {
2058         switch (cmd) {
2059                 IPW_CMD(HOST_COMPLETE);
2060                 IPW_CMD(POWER_DOWN);
2061                 IPW_CMD(SYSTEM_CONFIG);
2062                 IPW_CMD(MULTICAST_ADDRESS);
2063                 IPW_CMD(SSID);
2064                 IPW_CMD(ADAPTER_ADDRESS);
2065                 IPW_CMD(PORT_TYPE);
2066                 IPW_CMD(RTS_THRESHOLD);
2067                 IPW_CMD(FRAG_THRESHOLD);
2068                 IPW_CMD(POWER_MODE);
2069                 IPW_CMD(WEP_KEY);
2070                 IPW_CMD(TGI_TX_KEY);
2071                 IPW_CMD(SCAN_REQUEST);
2072                 IPW_CMD(SCAN_REQUEST_EXT);
2073                 IPW_CMD(ASSOCIATE);
2074                 IPW_CMD(SUPPORTED_RATES);
2075                 IPW_CMD(SCAN_ABORT);
2076                 IPW_CMD(TX_FLUSH);
2077                 IPW_CMD(QOS_PARAMETERS);
2078                 IPW_CMD(DINO_CONFIG);
2079                 IPW_CMD(RSN_CAPABILITIES);
2080                 IPW_CMD(RX_KEY);
2081                 IPW_CMD(CARD_DISABLE);
2082                 IPW_CMD(SEED_NUMBER);
2083                 IPW_CMD(TX_POWER);
2084                 IPW_CMD(COUNTRY_INFO);
2085                 IPW_CMD(AIRONET_INFO);
2086                 IPW_CMD(AP_TX_POWER);
2087                 IPW_CMD(CCKM_INFO);
2088                 IPW_CMD(CCX_VER_INFO);
2089                 IPW_CMD(SET_CALIBRATION);
2090                 IPW_CMD(SENSITIVITY_CALIB);
2091                 IPW_CMD(RETRY_LIMIT);
2092                 IPW_CMD(IPW_PRE_POWER_DOWN);
2093                 IPW_CMD(VAP_BEACON_TEMPLATE);
2094                 IPW_CMD(VAP_DTIM_PERIOD);
2095                 IPW_CMD(EXT_SUPPORTED_RATES);
2096                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2097                 IPW_CMD(VAP_QUIET_INTERVALS);
2098                 IPW_CMD(VAP_CHANNEL_SWITCH);
2099                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2100                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2101                 IPW_CMD(VAP_CF_PARAM_SET);
2102                 IPW_CMD(VAP_SET_BEACONING_STATE);
2103                 IPW_CMD(MEASUREMENT);
2104                 IPW_CMD(POWER_CAPABILITY);
2105                 IPW_CMD(SUPPORTED_CHANNELS);
2106                 IPW_CMD(TPC_REPORT);
2107                 IPW_CMD(WME_INFO);
2108                 IPW_CMD(PRODUCTION_COMMAND);
2109         default:
2110                 return "UNKNOWN";
2111         }
2112 }
2113
2114 #define HOST_COMPLETE_TIMEOUT HZ
2115
2116 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2117 {
2118         int rc = 0;
2119         unsigned long flags;
2120
2121         spin_lock_irqsave(&priv->lock, flags);
2122         if (priv->status & STATUS_HCMD_ACTIVE) {
2123                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2124                           get_cmd_string(cmd->cmd));
2125                 spin_unlock_irqrestore(&priv->lock, flags);
2126                 return -EAGAIN;
2127         }
2128
2129         priv->status |= STATUS_HCMD_ACTIVE;
2130
2131         if (priv->cmdlog) {
2132                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2133                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2134                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2135                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2136                        cmd->len);
2137                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2138         }
2139
2140         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2141                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2142                      priv->status);
2143
2144 #ifndef DEBUG_CMD_WEP_KEY
2145         if (cmd->cmd == IPW_CMD_WEP_KEY)
2146                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2147         else
2148 #endif
2149                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2150
2151         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2152         if (rc) {
2153                 priv->status &= ~STATUS_HCMD_ACTIVE;
2154                 IPW_ERROR("Failed to send %s: Reason %d\n",
2155                           get_cmd_string(cmd->cmd), rc);
2156                 spin_unlock_irqrestore(&priv->lock, flags);
2157                 goto exit;
2158         }
2159         spin_unlock_irqrestore(&priv->lock, flags);
2160
2161         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2162                                               !(priv->
2163                                                 status & STATUS_HCMD_ACTIVE),
2164                                               HOST_COMPLETE_TIMEOUT);
2165         if (rc == 0) {
2166                 spin_lock_irqsave(&priv->lock, flags);
2167                 if (priv->status & STATUS_HCMD_ACTIVE) {
2168                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2169                                   get_cmd_string(cmd->cmd));
2170                         priv->status &= ~STATUS_HCMD_ACTIVE;
2171                         spin_unlock_irqrestore(&priv->lock, flags);
2172                         rc = -EIO;
2173                         goto exit;
2174                 }
2175                 spin_unlock_irqrestore(&priv->lock, flags);
2176         } else
2177                 rc = 0;
2178
2179         if (priv->status & STATUS_RF_KILL_HW) {
2180                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2181                           get_cmd_string(cmd->cmd));
2182                 rc = -EIO;
2183                 goto exit;
2184         }
2185
2186       exit:
2187         if (priv->cmdlog) {
2188                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2189                 priv->cmdlog_pos %= priv->cmdlog_len;
2190         }
2191         return rc;
2192 }
2193
2194 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2195 {
2196         struct host_cmd cmd = {
2197                 .cmd = command,
2198         };
2199
2200         return __ipw_send_cmd(priv, &cmd);
2201 }
2202
2203 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2204                             void *data)
2205 {
2206         struct host_cmd cmd = {
2207                 .cmd = command,
2208                 .len = len,
2209                 .param = data,
2210         };
2211
2212         return __ipw_send_cmd(priv, &cmd);
2213 }
2214
2215 static int ipw_send_host_complete(struct ipw_priv *priv)
2216 {
2217         if (!priv) {
2218                 IPW_ERROR("Invalid args\n");
2219                 return -1;
2220         }
2221
2222         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2223 }
2224
2225 static int ipw_send_system_config(struct ipw_priv *priv)
2226 {
2227         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2228                                 sizeof(priv->sys_config),
2229                                 &priv->sys_config);
2230 }
2231
2232 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2233 {
2234         if (!priv || !ssid) {
2235                 IPW_ERROR("Invalid args\n");
2236                 return -1;
2237         }
2238
2239         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2240                                 ssid);
2241 }
2242
2243 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2244 {
2245         if (!priv || !mac) {
2246                 IPW_ERROR("Invalid args\n");
2247                 return -1;
2248         }
2249
2250         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2251                        priv->net_dev->name, MAC_ARG(mac));
2252
2253         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2254 }
2255
2256 /*
2257  * NOTE: This must be executed from our workqueue as it results in udelay
2258  * being called which may corrupt the keyboard if executed on default
2259  * workqueue
2260  */
2261 static void ipw_adapter_restart(void *adapter)
2262 {
2263         struct ipw_priv *priv = adapter;
2264
2265         if (priv->status & STATUS_RF_KILL_MASK)
2266                 return;
2267
2268         ipw_down(priv);
2269
2270         if (priv->assoc_network &&
2271             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2272                 ipw_remove_current_network(priv);
2273
2274         if (ipw_up(priv)) {
2275                 IPW_ERROR("Failed to up device\n");
2276                 return;
2277         }
2278 }
2279
2280 static void ipw_bg_adapter_restart(struct work_struct *work)
2281 {
2282         struct ipw_priv *priv =
2283                 container_of(work, struct ipw_priv, adapter_restart);
2284         mutex_lock(&priv->mutex);
2285         ipw_adapter_restart(priv);
2286         mutex_unlock(&priv->mutex);
2287 }
2288
2289 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2290
2291 static void ipw_scan_check(void *data)
2292 {
2293         struct ipw_priv *priv = data;
2294         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2295                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2296                                "adapter after (%dms).\n",
2297                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2298                 queue_work(priv->workqueue, &priv->adapter_restart);
2299         }
2300 }
2301
2302 static void ipw_bg_scan_check(struct work_struct *work)
2303 {
2304         struct ipw_priv *priv =
2305                 container_of(work, struct ipw_priv, scan_check.work);
2306         mutex_lock(&priv->mutex);
2307         ipw_scan_check(priv);
2308         mutex_unlock(&priv->mutex);
2309 }
2310
2311 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2312                                      struct ipw_scan_request_ext *request)
2313 {
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2315                                 sizeof(*request), request);
2316 }
2317
2318 static int ipw_send_scan_abort(struct ipw_priv *priv)
2319 {
2320         if (!priv) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2326 }
2327
2328 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2329 {
2330         struct ipw_sensitivity_calib calib = {
2331                 .beacon_rssi_raw = cpu_to_le16(sens),
2332         };
2333
2334         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2335                                 &calib);
2336 }
2337
2338 static int ipw_send_associate(struct ipw_priv *priv,
2339                               struct ipw_associate *associate)
2340 {
2341         struct ipw_associate tmp_associate;
2342
2343         if (!priv || !associate) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         memcpy(&tmp_associate, associate, sizeof(*associate));
2349         tmp_associate.policy_support =
2350             cpu_to_le16(tmp_associate.policy_support);
2351         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2352         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2353         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2354         tmp_associate.listen_interval =
2355             cpu_to_le16(tmp_associate.listen_interval);
2356         tmp_associate.beacon_interval =
2357             cpu_to_le16(tmp_associate.beacon_interval);
2358         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2359
2360         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2361                                 &tmp_associate);
2362 }
2363
2364 static int ipw_send_supported_rates(struct ipw_priv *priv,
2365                                     struct ipw_supported_rates *rates)
2366 {
2367         if (!priv || !rates) {
2368                 IPW_ERROR("Invalid args\n");
2369                 return -1;
2370         }
2371
2372         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2373                                 rates);
2374 }
2375
2376 static int ipw_set_random_seed(struct ipw_priv *priv)
2377 {
2378         u32 val;
2379
2380         if (!priv) {
2381                 IPW_ERROR("Invalid args\n");
2382                 return -1;
2383         }
2384
2385         get_random_bytes(&val, sizeof(val));
2386
2387         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2388 }
2389
2390 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2391 {
2392         if (!priv) {
2393                 IPW_ERROR("Invalid args\n");
2394                 return -1;
2395         }
2396
2397         phy_off = cpu_to_le32(phy_off);
2398         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2399                                 &phy_off);
2400 }
2401
2402 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2403 {
2404         if (!priv || !power) {
2405                 IPW_ERROR("Invalid args\n");
2406                 return -1;
2407         }
2408
2409         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2410 }
2411
2412 static int ipw_set_tx_power(struct ipw_priv *priv)
2413 {
2414         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2415         struct ipw_tx_power tx_power;
2416         s8 max_power;
2417         int i;
2418
2419         memset(&tx_power, 0, sizeof(tx_power));
2420
2421         /* configure device for 'G' band */
2422         tx_power.ieee_mode = IPW_G_MODE;
2423         tx_power.num_channels = geo->bg_channels;
2424         for (i = 0; i < geo->bg_channels; i++) {
2425                 max_power = geo->bg[i].max_power;
2426                 tx_power.channels_tx_power[i].channel_number =
2427                     geo->bg[i].channel;
2428                 tx_power.channels_tx_power[i].tx_power = max_power ?
2429                     min(max_power, priv->tx_power) : priv->tx_power;
2430         }
2431         if (ipw_send_tx_power(priv, &tx_power))
2432                 return -EIO;
2433
2434         /* configure device to also handle 'B' band */
2435         tx_power.ieee_mode = IPW_B_MODE;
2436         if (ipw_send_tx_power(priv, &tx_power))
2437                 return -EIO;
2438
2439         /* configure device to also handle 'A' band */
2440         if (priv->ieee->abg_true) {
2441                 tx_power.ieee_mode = IPW_A_MODE;
2442                 tx_power.num_channels = geo->a_channels;
2443                 for (i = 0; i < tx_power.num_channels; i++) {
2444                         max_power = geo->a[i].max_power;
2445                         tx_power.channels_tx_power[i].channel_number =
2446                             geo->a[i].channel;
2447                         tx_power.channels_tx_power[i].tx_power = max_power ?
2448                             min(max_power, priv->tx_power) : priv->tx_power;
2449                 }
2450                 if (ipw_send_tx_power(priv, &tx_power))
2451                         return -EIO;
2452         }
2453         return 0;
2454 }
2455
2456 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2457 {
2458         struct ipw_rts_threshold rts_threshold = {
2459                 .rts_threshold = cpu_to_le16(rts),
2460         };
2461
2462         if (!priv) {
2463                 IPW_ERROR("Invalid args\n");
2464                 return -1;
2465         }
2466
2467         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2468                                 sizeof(rts_threshold), &rts_threshold);
2469 }
2470
2471 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2472 {
2473         struct ipw_frag_threshold frag_threshold = {
2474                 .frag_threshold = cpu_to_le16(frag),
2475         };
2476
2477         if (!priv) {
2478                 IPW_ERROR("Invalid args\n");
2479                 return -1;
2480         }
2481
2482         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2483                                 sizeof(frag_threshold), &frag_threshold);
2484 }
2485
2486 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2487 {
2488         u32 param;
2489
2490         if (!priv) {
2491                 IPW_ERROR("Invalid args\n");
2492                 return -1;
2493         }
2494
2495         /* If on battery, set to 3, if AC set to CAM, else user
2496          * level */
2497         switch (mode) {
2498         case IPW_POWER_BATTERY:
2499                 param = IPW_POWER_INDEX_3;
2500                 break;
2501         case IPW_POWER_AC:
2502                 param = IPW_POWER_MODE_CAM;
2503                 break;
2504         default:
2505                 param = mode;
2506                 break;
2507         }
2508
2509         param = cpu_to_le32(mode);
2510         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2511                                 &param);
2512 }
2513
2514 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2515 {
2516         struct ipw_retry_limit retry_limit = {
2517                 .short_retry_limit = slimit,
2518                 .long_retry_limit = llimit
2519         };
2520
2521         if (!priv) {
2522                 IPW_ERROR("Invalid args\n");
2523                 return -1;
2524         }
2525
2526         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2527                                 &retry_limit);
2528 }
2529
2530 /*
2531  * The IPW device contains a Microwire compatible EEPROM that stores
2532  * various data like the MAC address.  Usually the firmware has exclusive
2533  * access to the eeprom, but during device initialization (before the
2534  * device driver has sent the HostComplete command to the firmware) the
2535  * device driver has read access to the EEPROM by way of indirect addressing
2536  * through a couple of memory mapped registers.
2537  *
2538  * The following is a simplified implementation for pulling data out of the
2539  * the eeprom, along with some helper functions to find information in
2540  * the per device private data's copy of the eeprom.
2541  *
2542  * NOTE: To better understand how these functions work (i.e what is a chip
2543  *       select and why do have to keep driving the eeprom clock?), read
2544  *       just about any data sheet for a Microwire compatible EEPROM.
2545  */
2546
2547 /* write a 32 bit value into the indirect accessor register */
2548 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2549 {
2550         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2551
2552         /* the eeprom requires some time to complete the operation */
2553         udelay(p->eeprom_delay);
2554
2555         return;
2556 }
2557
2558 /* perform a chip select operation */
2559 static void eeprom_cs(struct ipw_priv *priv)
2560 {
2561         eeprom_write_reg(priv, 0);
2562         eeprom_write_reg(priv, EEPROM_BIT_CS);
2563         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564         eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 }
2566
2567 /* perform a chip select operation */
2568 static void eeprom_disable_cs(struct ipw_priv *priv)
2569 {
2570         eeprom_write_reg(priv, EEPROM_BIT_CS);
2571         eeprom_write_reg(priv, 0);
2572         eeprom_write_reg(priv, EEPROM_BIT_SK);
2573 }
2574
2575 /* push a single bit down to the eeprom */
2576 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2577 {
2578         int d = (bit ? EEPROM_BIT_DI : 0);
2579         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2580         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2581 }
2582
2583 /* push an opcode followed by an address down to the eeprom */
2584 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2585 {
2586         int i;
2587
2588         eeprom_cs(priv);
2589         eeprom_write_bit(priv, 1);
2590         eeprom_write_bit(priv, op & 2);
2591         eeprom_write_bit(priv, op & 1);
2592         for (i = 7; i >= 0; i--) {
2593                 eeprom_write_bit(priv, addr & (1 << i));
2594         }
2595 }
2596
2597 /* pull 16 bits off the eeprom, one bit at a time */
2598 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2599 {
2600         int i;
2601         u16 r = 0;
2602
2603         /* Send READ Opcode */
2604         eeprom_op(priv, EEPROM_CMD_READ, addr);
2605
2606         /* Send dummy bit */
2607         eeprom_write_reg(priv, EEPROM_BIT_CS);
2608
2609         /* Read the byte off the eeprom one bit at a time */
2610         for (i = 0; i < 16; i++) {
2611                 u32 data = 0;
2612                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2614                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2615                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2616         }
2617
2618         /* Send another dummy bit */
2619         eeprom_write_reg(priv, 0);
2620         eeprom_disable_cs(priv);
2621
2622         return r;
2623 }
2624
2625 /* helper function for pulling the mac address out of the private */
2626 /* data's copy of the eeprom data                                 */
2627 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2628 {
2629         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2630 }
2631
2632 /*
2633  * Either the device driver (i.e. the host) or the firmware can
2634  * load eeprom data into the designated region in SRAM.  If neither
2635  * happens then the FW will shutdown with a fatal error.
2636  *
2637  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2638  * bit needs region of shared SRAM needs to be non-zero.
2639  */
2640 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2641 {
2642         int i;
2643         u16 *eeprom = (u16 *) priv->eeprom;
2644
2645         IPW_DEBUG_TRACE(">>\n");
2646
2647         /* read entire contents of eeprom into private buffer */
2648         for (i = 0; i < 128; i++)
2649                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2650
2651         /*
2652            If the data looks correct, then copy it to our private
2653            copy.  Otherwise let the firmware know to perform the operation
2654            on its own.
2655          */
2656         if (priv->eeprom[EEPROM_VERSION] != 0) {
2657                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2658
2659                 /* write the eeprom data to sram */
2660                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2661                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2662
2663                 /* Do not load eeprom data on fatal error or suspend */
2664                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2665         } else {
2666                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2667
2668                 /* Load eeprom data on fatal error or suspend */
2669                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2670         }
2671
2672         IPW_DEBUG_TRACE("<<\n");
2673 }
2674
2675 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2676 {
2677         count >>= 2;
2678         if (!count)
2679                 return;
2680         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2681         while (count--)
2682                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2683 }
2684
2685 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2686 {
2687         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2688                         CB_NUMBER_OF_ELEMENTS_SMALL *
2689                         sizeof(struct command_block));
2690 }
2691
2692 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2693 {                               /* start dma engine but no transfers yet */
2694
2695         IPW_DEBUG_FW(">> : \n");
2696
2697         /* Start the dma */
2698         ipw_fw_dma_reset_command_blocks(priv);
2699
2700         /* Write CB base address */
2701         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2702
2703         IPW_DEBUG_FW("<< : \n");
2704         return 0;
2705 }
2706
2707 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2708 {
2709         u32 control = 0;
2710
2711         IPW_DEBUG_FW(">> :\n");
2712
2713         /* set the Stop and Abort bit */
2714         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2715         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2716         priv->sram_desc.last_cb_index = 0;
2717
2718         IPW_DEBUG_FW("<< \n");
2719 }
2720
2721 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2722                                           struct command_block *cb)
2723 {
2724         u32 address =
2725             IPW_SHARED_SRAM_DMA_CONTROL +
2726             (sizeof(struct command_block) * index);
2727         IPW_DEBUG_FW(">> :\n");
2728
2729         ipw_write_indirect(priv, address, (u8 *) cb,
2730                            (int)sizeof(struct command_block));
2731
2732         IPW_DEBUG_FW("<< :\n");
2733         return 0;
2734
2735 }
2736
2737 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2738 {
2739         u32 control = 0;
2740         u32 index = 0;
2741
2742         IPW_DEBUG_FW(">> :\n");
2743
2744         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2745                 ipw_fw_dma_write_command_block(priv, index,
2746                                                &priv->sram_desc.cb_list[index]);
2747
2748         /* Enable the DMA in the CSR register */
2749         ipw_clear_bit(priv, IPW_RESET_REG,
2750                       IPW_RESET_REG_MASTER_DISABLED |
2751                       IPW_RESET_REG_STOP_MASTER);
2752
2753         /* Set the Start bit. */
2754         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2755         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2756
2757         IPW_DEBUG_FW("<< :\n");
2758         return 0;
2759 }
2760
2761 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2762 {
2763         u32 address;
2764         u32 register_value = 0;
2765         u32 cb_fields_address = 0;
2766
2767         IPW_DEBUG_FW(">> :\n");
2768         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2769         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2770
2771         /* Read the DMA Controlor register */
2772         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2773         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2774
2775         /* Print the CB values */
2776         cb_fields_address = address;
2777         register_value = ipw_read_reg32(priv, cb_fields_address);
2778         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2779
2780         cb_fields_address += sizeof(u32);
2781         register_value = ipw_read_reg32(priv, cb_fields_address);
2782         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2783
2784         cb_fields_address += sizeof(u32);
2785         register_value = ipw_read_reg32(priv, cb_fields_address);
2786         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2787                           register_value);
2788
2789         cb_fields_address += sizeof(u32);
2790         register_value = ipw_read_reg32(priv, cb_fields_address);
2791         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2792
2793         IPW_DEBUG_FW(">> :\n");
2794 }
2795
2796 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2797 {
2798         u32 current_cb_address = 0;
2799         u32 current_cb_index = 0;
2800
2801         IPW_DEBUG_FW("<< :\n");
2802         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2803
2804         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2805             sizeof(struct command_block);
2806
2807         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2808                           current_cb_index, current_cb_address);
2809
2810         IPW_DEBUG_FW(">> :\n");
2811         return current_cb_index;
2812
2813 }
2814
2815 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2816                                         u32 src_address,
2817                                         u32 dest_address,
2818                                         u32 length,
2819                                         int interrupt_enabled, int is_last)
2820 {
2821
2822         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2823             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2824             CB_DEST_SIZE_LONG;
2825         struct command_block *cb;
2826         u32 last_cb_element = 0;
2827
2828         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2829                           src_address, dest_address, length);
2830
2831         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2832                 return -1;
2833
2834         last_cb_element = priv->sram_desc.last_cb_index;
2835         cb = &priv->sram_desc.cb_list[last_cb_element];
2836         priv->sram_desc.last_cb_index++;
2837
2838         /* Calculate the new CB control word */
2839         if (interrupt_enabled)
2840                 control |= CB_INT_ENABLED;
2841
2842         if (is_last)
2843                 control |= CB_LAST_VALID;
2844
2845         control |= length;
2846
2847         /* Calculate the CB Element's checksum value */
2848         cb->status = control ^ src_address ^ dest_address;
2849
2850         /* Copy the Source and Destination addresses */
2851         cb->dest_addr = dest_address;
2852         cb->source_addr = src_address;
2853
2854         /* Copy the Control Word last */
2855         cb->control = control;
2856
2857         return 0;
2858 }
2859
2860 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2861                                  u32 src_phys, u32 dest_address, u32 length)
2862 {
2863         u32 bytes_left = length;
2864         u32 src_offset = 0;
2865         u32 dest_offset = 0;
2866         int status = 0;
2867         IPW_DEBUG_FW(">> \n");
2868         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2869                           src_phys, dest_address, length);
2870         while (bytes_left > CB_MAX_LENGTH) {
2871                 status = ipw_fw_dma_add_command_block(priv,
2872                                                       src_phys + src_offset,
2873                                                       dest_address +
2874                                                       dest_offset,
2875                                                       CB_MAX_LENGTH, 0, 0);
2876                 if (status) {
2877                         IPW_DEBUG_FW_INFO(": Failed\n");
2878                         return -1;
2879                 } else
2880                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2881
2882                 src_offset += CB_MAX_LENGTH;
2883                 dest_offset += CB_MAX_LENGTH;
2884                 bytes_left -= CB_MAX_LENGTH;
2885         }
2886
2887         /* add the buffer tail */
2888         if (bytes_left > 0) {
2889                 status =
2890                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2891                                                  dest_address + dest_offset,
2892                                                  bytes_left, 0, 0);
2893                 if (status) {
2894                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2895                         return -1;
2896                 } else
2897                         IPW_DEBUG_FW_INFO
2898                             (": Adding new cb - the buffer tail\n");
2899         }
2900
2901         IPW_DEBUG_FW("<< \n");
2902         return 0;
2903 }
2904
2905 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2906 {
2907         u32 current_index = 0, previous_index;
2908         u32 watchdog = 0;
2909
2910         IPW_DEBUG_FW(">> : \n");
2911
2912         current_index = ipw_fw_dma_command_block_index(priv);
2913         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2914                           (int)priv->sram_desc.last_cb_index);
2915
2916         while (current_index < priv->sram_desc.last_cb_index) {
2917                 udelay(50);
2918                 previous_index = current_index;
2919                 current_index = ipw_fw_dma_command_block_index(priv);
2920
2921                 if (previous_index < current_index) {
2922                         watchdog = 0;
2923                         continue;
2924                 }
2925                 if (++watchdog > 400) {
2926                         IPW_DEBUG_FW_INFO("Timeout\n");
2927                         ipw_fw_dma_dump_command_block(priv);
2928                         ipw_fw_dma_abort(priv);
2929                         return -1;
2930                 }
2931         }
2932
2933         ipw_fw_dma_abort(priv);
2934
2935         /*Disable the DMA in the CSR register */
2936         ipw_set_bit(priv, IPW_RESET_REG,
2937                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2938
2939         IPW_DEBUG_FW("<< dmaWaitSync \n");
2940         return 0;
2941 }
2942
2943 static void ipw_remove_current_network(struct ipw_priv *priv)
2944 {
2945         struct list_head *element, *safe;
2946         struct ieee80211_network *network = NULL;
2947         unsigned long flags;
2948
2949         spin_lock_irqsave(&priv->ieee->lock, flags);
2950         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2951                 network = list_entry(element, struct ieee80211_network, list);
2952                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2953                         list_del(element);
2954                         list_add_tail(&network->list,
2955                                       &priv->ieee->network_free_list);
2956                 }
2957         }
2958         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2959 }
2960
2961 /**
2962  * Check that card is still alive.
2963  * Reads debug register from domain0.
2964  * If card is present, pre-defined value should
2965  * be found there.
2966  *
2967  * @param priv
2968  * @return 1 if card is present, 0 otherwise
2969  */
2970 static inline int ipw_alive(struct ipw_priv *priv)
2971 {
2972         return ipw_read32(priv, 0x90) == 0xd55555d5;
2973 }
2974
2975 /* timeout in msec, attempted in 10-msec quanta */
2976 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2977                                int timeout)
2978 {
2979         int i = 0;
2980
2981         do {
2982                 if ((ipw_read32(priv, addr) & mask) == mask)
2983                         return i;
2984                 mdelay(10);
2985                 i += 10;
2986         } while (i < timeout);
2987
2988         return -ETIME;
2989 }
2990
2991 /* These functions load the firmware and micro code for the operation of
2992  * the ipw hardware.  It assumes the buffer has all the bits for the
2993  * image and the caller is handling the memory allocation and clean up.
2994  */
2995
2996 static int ipw_stop_master(struct ipw_priv *priv)
2997 {
2998         int rc;
2999
3000         IPW_DEBUG_TRACE(">> \n");
3001         /* stop master. typical delay - 0 */
3002         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3003
3004         /* timeout is in msec, polled in 10-msec quanta */
3005         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3006                           IPW_RESET_REG_MASTER_DISABLED, 100);
3007         if (rc < 0) {
3008                 IPW_ERROR("wait for stop master failed after 100ms\n");
3009                 return -1;
3010         }
3011
3012         IPW_DEBUG_INFO("stop master %dms\n", rc);
3013
3014         return rc;
3015 }
3016
3017 static void ipw_arc_release(struct ipw_priv *priv)
3018 {
3019         IPW_DEBUG_TRACE(">> \n");
3020         mdelay(5);
3021
3022         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3023
3024         /* no one knows timing, for safety add some delay */
3025         mdelay(5);
3026 }
3027
3028 struct fw_chunk {
3029         u32 address;
3030         u32 length;
3031 };
3032
3033 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3034 {
3035         int rc = 0, i, addr;
3036         u8 cr = 0;
3037         u16 *image;
3038
3039         image = (u16 *) data;
3040
3041         IPW_DEBUG_TRACE(">> \n");
3042
3043         rc = ipw_stop_master(priv);
3044
3045         if (rc < 0)
3046                 return rc;
3047
3048         for (addr = IPW_SHARED_LOWER_BOUND;
3049              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3050                 ipw_write32(priv, addr, 0);
3051         }
3052
3053         /* no ucode (yet) */
3054         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3055         /* destroy DMA queues */
3056         /* reset sequence */
3057
3058         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3059         ipw_arc_release(priv);
3060         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3061         mdelay(1);
3062
3063         /* reset PHY */
3064         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3065         mdelay(1);
3066
3067         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3068         mdelay(1);
3069
3070         /* enable ucode store */
3071         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3072         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3073         mdelay(1);
3074
3075         /* write ucode */
3076         /**
3077          * @bug
3078          * Do NOT set indirect address register once and then
3079          * store data to indirect data register in the loop.
3080          * It seems very reasonable, but in this case DINO do not
3081          * accept ucode. It is essential to set address each time.
3082          */
3083         /* load new ipw uCode */
3084         for (i = 0; i < len / 2; i++)
3085                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3086                                 cpu_to_le16(image[i]));
3087
3088         /* enable DINO */
3089         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3090         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3091
3092         /* this is where the igx / win driver deveates from the VAP driver. */
3093
3094         /* wait for alive response */
3095         for (i = 0; i < 100; i++) {
3096                 /* poll for incoming data */
3097                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3098                 if (cr & DINO_RXFIFO_DATA)
3099                         break;
3100                 mdelay(1);
3101         }
3102
3103         if (cr & DINO_RXFIFO_DATA) {
3104                 /* alive_command_responce size is NOT multiple of 4 */
3105                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3106
3107                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3108                         response_buffer[i] =
3109                             le32_to_cpu(ipw_read_reg32(priv,
3110                                                        IPW_BASEBAND_RX_FIFO_READ));
3111                 memcpy(&priv->dino_alive, response_buffer,
3112                        sizeof(priv->dino_alive));
3113                 if (priv->dino_alive.alive_command == 1
3114                     && priv->dino_alive.ucode_valid == 1) {
3115                         rc = 0;
3116                         IPW_DEBUG_INFO
3117                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3118                              "of %02d/%02d/%02d %02d:%02d\n",
3119                              priv->dino_alive.software_revision,
3120                              priv->dino_alive.software_revision,
3121                              priv->dino_alive.device_identifier,
3122                              priv->dino_alive.device_identifier,
3123                              priv->dino_alive.time_stamp[0],
3124                              priv->dino_alive.time_stamp[1],
3125                              priv->dino_alive.time_stamp[2],
3126                              priv->dino_alive.time_stamp[3],
3127                              priv->dino_alive.time_stamp[4]);
3128                 } else {
3129                         IPW_DEBUG_INFO("Microcode is not alive\n");
3130                         rc = -EINVAL;
3131                 }
3132         } else {
3133                 IPW_DEBUG_INFO("No alive response from DINO\n");
3134                 rc = -ETIME;
3135         }
3136
3137         /* disable DINO, otherwise for some reason
3138            firmware have problem getting alive resp. */
3139         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3140
3141         return rc;
3142 }
3143
3144 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3145 {
3146         int rc = -1;
3147         int offset = 0;
3148         struct fw_chunk *chunk;
3149         dma_addr_t shared_phys;
3150         u8 *shared_virt;
3151
3152         IPW_DEBUG_TRACE("<< : \n");
3153         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3154
3155         if (!shared_virt)
3156                 return -ENOMEM;
3157
3158         memmove(shared_virt, data, len);
3159
3160         /* Start the Dma */
3161         rc = ipw_fw_dma_enable(priv);
3162
3163         if (priv->sram_desc.last_cb_index > 0) {
3164                 /* the DMA is already ready this would be a bug. */
3165                 BUG();
3166                 goto out;
3167         }
3168
3169         do {
3170                 chunk = (struct fw_chunk *)(data + offset);
3171                 offset += sizeof(struct fw_chunk);
3172                 /* build DMA packet and queue up for sending */
3173                 /* dma to chunk->address, the chunk->length bytes from data +
3174                  * offeset*/
3175                 /* Dma loading */
3176                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3177                                            le32_to_cpu(chunk->address),
3178                                            le32_to_cpu(chunk->length));
3179                 if (rc) {
3180                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3181                         goto out;
3182                 }
3183
3184                 offset += le32_to_cpu(chunk->length);
3185         } while (offset < len);
3186
3187         /* Run the DMA and wait for the answer */
3188         rc = ipw_fw_dma_kick(priv);
3189         if (rc) {
3190                 IPW_ERROR("dmaKick Failed\n");
3191                 goto out;
3192         }
3193
3194         rc = ipw_fw_dma_wait(priv);
3195         if (rc) {
3196                 IPW_ERROR("dmaWaitSync Failed\n");
3197                 goto out;
3198         }
3199       out:
3200         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3201         return rc;
3202 }
3203
3204 /* stop nic */
3205 static int ipw_stop_nic(struct ipw_priv *priv)
3206 {
3207         int rc = 0;
3208
3209         /* stop */
3210         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3211
3212         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3213                           IPW_RESET_REG_MASTER_DISABLED, 500);
3214         if (rc < 0) {
3215                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3216                 return rc;
3217         }
3218
3219         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3220
3221         return rc;
3222 }
3223
3224 static void ipw_start_nic(struct ipw_priv *priv)
3225 {
3226         IPW_DEBUG_TRACE(">>\n");
3227
3228         /* prvHwStartNic  release ARC */
3229         ipw_clear_bit(priv, IPW_RESET_REG,
3230                       IPW_RESET_REG_MASTER_DISABLED |
3231                       IPW_RESET_REG_STOP_MASTER |
3232                       CBD_RESET_REG_PRINCETON_RESET);
3233
3234         /* enable power management */
3235         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3236                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3237
3238         IPW_DEBUG_TRACE("<<\n");
3239 }
3240
3241 static int ipw_init_nic(struct ipw_priv *priv)
3242 {
3243         int rc;
3244
3245         IPW_DEBUG_TRACE(">>\n");
3246         /* reset */
3247         /*prvHwInitNic */
3248         /* set "initialization complete" bit to move adapter to D0 state */
3249         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3250
3251         /* low-level PLL activation */
3252         ipw_write32(priv, IPW_READ_INT_REGISTER,
3253                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3254
3255         /* wait for clock stabilization */
3256         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3257                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3258         if (rc < 0)
3259                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3260
3261         /* assert SW reset */
3262         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3263
3264         udelay(10);
3265
3266         /* set "initialization complete" bit to move adapter to D0 state */
3267         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3268
3269         IPW_DEBUG_TRACE(">>\n");
3270         return 0;
3271 }
3272
3273 /* Call this function from process context, it will sleep in request_firmware.
3274  * Probe is an ok place to call this from.
3275  */
3276 static int ipw_reset_nic(struct ipw_priv *priv)
3277 {
3278         int rc = 0;
3279         unsigned long flags;
3280
3281         IPW_DEBUG_TRACE(">>\n");
3282
3283         rc = ipw_init_nic(priv);
3284
3285         spin_lock_irqsave(&priv->lock, flags);
3286         /* Clear the 'host command active' bit... */
3287         priv->status &= ~STATUS_HCMD_ACTIVE;
3288         wake_up_interruptible(&priv->wait_command_queue);
3289         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3290         wake_up_interruptible(&priv->wait_state);
3291         spin_unlock_irqrestore(&priv->lock, flags);
3292
3293         IPW_DEBUG_TRACE("<<\n");
3294         return rc;
3295 }
3296
3297
3298 struct ipw_fw {
3299         __le32 ver;
3300         __le32 boot_size;
3301         __le32 ucode_size;
3302         __le32 fw_size;
3303         u8 data[0];
3304 };
3305
3306 static int ipw_get_fw(struct ipw_priv *priv,
3307                       const struct firmware **raw, const char *name)
3308 {
3309         struct ipw_fw *fw;
3310         int rc;
3311
3312         /* ask firmware_class module to get the boot firmware off disk */
3313         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3314         if (rc < 0) {
3315                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3316                 return rc;
3317         }
3318
3319         if ((*raw)->size < sizeof(*fw)) {
3320                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3321                 return -EINVAL;
3322         }
3323
3324         fw = (void *)(*raw)->data;
3325
3326         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3327             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3328                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3329                           name, (*raw)->size);
3330                 return -EINVAL;
3331         }
3332
3333         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3334                        name,
3335                        le32_to_cpu(fw->ver) >> 16,
3336                        le32_to_cpu(fw->ver) & 0xff,
3337                        (*raw)->size - sizeof(*fw));
3338         return 0;
3339 }
3340
3341 #define IPW_RX_BUF_SIZE (3000)
3342
3343 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3344                                       struct ipw_rx_queue *rxq)
3345 {
3346         unsigned long flags;
3347         int i;
3348
3349         spin_lock_irqsave(&rxq->lock, flags);
3350
3351         INIT_LIST_HEAD(&rxq->rx_free);
3352         INIT_LIST_HEAD(&rxq->rx_used);
3353
3354         /* Fill the rx_used queue with _all_ of the Rx buffers */
3355         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3356                 /* In the reset function, these buffers may have been allocated
3357                  * to an SKB, so we need to unmap and free potential storage */
3358                 if (rxq->pool[i].skb != NULL) {
3359                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3360                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3361                         dev_kfree_skb(rxq->pool[i].skb);
3362                         rxq->pool[i].skb = NULL;
3363                 }
3364                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3365         }
3366
3367         /* Set us so that we have processed and used all buffers, but have
3368          * not restocked the Rx queue with fresh buffers */
3369         rxq->read = rxq->write = 0;
3370         rxq->processed = RX_QUEUE_SIZE - 1;
3371         rxq->free_count = 0;
3372         spin_unlock_irqrestore(&rxq->lock, flags);
3373 }
3374
3375 #ifdef CONFIG_PM
3376 static int fw_loaded = 0;
3377 static const struct firmware *raw = NULL;
3378
3379 static void free_firmware(void)
3380 {
3381         if (fw_loaded) {
3382                 release_firmware(raw);
3383                 raw = NULL;
3384                 fw_loaded = 0;
3385         }
3386 }
3387 #else
3388 #define free_firmware() do {} while (0)
3389 #endif
3390
3391 static int ipw_load(struct ipw_priv *priv)
3392 {
3393 #ifndef CONFIG_PM
3394         const struct firmware *raw = NULL;
3395 #endif
3396         struct ipw_fw *fw;
3397         u8 *boot_img, *ucode_img, *fw_img;
3398         u8 *name = NULL;
3399         int rc = 0, retries = 3;
3400
3401         switch (priv->ieee->iw_mode) {
3402         case IW_MODE_ADHOC:
3403                 name = "ipw2200-ibss.fw";
3404                 break;
3405 #ifdef CONFIG_IPW2200_MONITOR
3406         case IW_MODE_MONITOR:
3407                 name = "ipw2200-sniffer.fw";
3408                 break;
3409 #endif
3410         case IW_MODE_INFRA:
3411                 name = "ipw2200-bss.fw";
3412                 break;
3413         }
3414
3415         if (!name) {
3416                 rc = -EINVAL;
3417                 goto error;
3418         }
3419
3420 #ifdef CONFIG_PM
3421         if (!fw_loaded) {
3422 #endif
3423                 rc = ipw_get_fw(priv, &raw, name);
3424                 if (rc < 0)
3425                         goto error;
3426 #ifdef CONFIG_PM
3427         }
3428 #endif
3429
3430         fw = (void *)raw->data;
3431         boot_img = &fw->data[0];
3432         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3433         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3434                            le32_to_cpu(fw->ucode_size)];
3435
3436         if (rc < 0)
3437                 goto error;
3438
3439         if (!priv->rxq)
3440                 priv->rxq = ipw_rx_queue_alloc(priv);
3441         else
3442                 ipw_rx_queue_reset(priv, priv->rxq);
3443         if (!priv->rxq) {
3444                 IPW_ERROR("Unable to initialize Rx queue\n");
3445                 goto error;
3446         }
3447
3448       retry:
3449         /* Ensure interrupts are disabled */
3450         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3451         priv->status &= ~STATUS_INT_ENABLED;
3452
3453         /* ack pending interrupts */
3454         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3455
3456         ipw_stop_nic(priv);
3457
3458         rc = ipw_reset_nic(priv);
3459         if (rc < 0) {
3460                 IPW_ERROR("Unable to reset NIC\n");
3461                 goto error;
3462         }
3463
3464         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3465                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3466
3467         /* DMA the initial boot firmware into the device */
3468         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3469         if (rc < 0) {
3470                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3471                 goto error;
3472         }
3473
3474         /* kick start the device */
3475         ipw_start_nic(priv);
3476
3477         /* wait for the device to finish its initial startup sequence */
3478         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3479                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3480         if (rc < 0) {
3481                 IPW_ERROR("device failed to boot initial fw image\n");
3482                 goto error;
3483         }
3484         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3485
3486         /* ack fw init done interrupt */
3487         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3488
3489         /* DMA the ucode into the device */
3490         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3491         if (rc < 0) {
3492                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3493                 goto error;
3494         }
3495
3496         /* stop nic */
3497         ipw_stop_nic(priv);
3498
3499         /* DMA bss firmware into the device */
3500         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3501         if (rc < 0) {
3502                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3503                 goto error;
3504         }
3505 #ifdef CONFIG_PM
3506         fw_loaded = 1;
3507 #endif
3508
3509         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3510
3511         rc = ipw_queue_reset(priv);
3512         if (rc < 0) {
3513                 IPW_ERROR("Unable to initialize queues\n");
3514                 goto error;
3515         }
3516
3517         /* Ensure interrupts are disabled */
3518         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3519         /* ack pending interrupts */
3520         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3521
3522         /* kick start the device */
3523         ipw_start_nic(priv);
3524
3525         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3526                 if (retries > 0) {
3527                         IPW_WARNING("Parity error.  Retrying init.\n");
3528                         retries--;
3529                         goto retry;
3530                 }
3531
3532                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3533                 rc = -EIO;
3534                 goto error;
3535         }
3536
3537         /* wait for the device */
3538         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3539                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3540         if (rc < 0) {
3541                 IPW_ERROR("device failed to start within 500ms\n");
3542                 goto error;
3543         }
3544         IPW_DEBUG_INFO("device response after %dms\n", rc);
3545
3546         /* ack fw init done interrupt */
3547         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3548
3549         /* read eeprom data and initialize the eeprom region of sram */
3550         priv->eeprom_delay = 1;
3551         ipw_eeprom_init_sram(priv);
3552
3553         /* enable interrupts */
3554         ipw_enable_interrupts(priv);
3555
3556         /* Ensure our queue has valid packets */
3557         ipw_rx_queue_replenish(priv);
3558
3559         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3560
3561         /* ack pending interrupts */
3562         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3563
3564 #ifndef CONFIG_PM
3565         release_firmware(raw);
3566 #endif
3567         return 0;
3568
3569       error:
3570         if (priv->rxq) {
3571                 ipw_rx_queue_free(priv, priv->rxq);
3572                 priv->rxq = NULL;
3573         }
3574         ipw_tx_queue_free(priv);
3575         if (raw)
3576                 release_firmware(raw);
3577 #ifdef CONFIG_PM
3578         fw_loaded = 0;
3579         raw = NULL;
3580 #endif
3581
3582         return rc;
3583 }
3584
3585 /**
3586  * DMA services
3587  *
3588  * Theory of operation
3589  *
3590  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3591  * 2 empty entries always kept in the buffer to protect from overflow.
3592  *
3593  * For Tx queue, there are low mark and high mark limits. If, after queuing
3594  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3595  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3596  * Tx queue resumed.
3597  *
3598  * The IPW operates with six queues, one receive queue in the device's
3599  * sram, one transmit queue for sending commands to the device firmware,
3600  * and four transmit queues for data.
3601  *
3602  * The four transmit queues allow for performing quality of service (qos)
3603  * transmissions as per the 802.11 protocol.  Currently Linux does not
3604  * provide a mechanism to the user for utilizing prioritized queues, so
3605  * we only utilize the first data transmit queue (queue1).
3606  */
3607
3608 /**
3609  * Driver allocates buffers of this size for Rx
3610  */
3611
3612 static inline int ipw_queue_space(const struct clx2_queue *q)
3613 {
3614         int s = q->last_used - q->first_empty;
3615         if (s <= 0)
3616                 s += q->n_bd;
3617         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3618         if (s < 0)
3619                 s = 0;
3620         return s;
3621 }
3622
3623 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3624 {
3625         return (++index == n_bd) ? 0 : index;
3626 }
3627
3628 /**
3629  * Initialize common DMA queue structure
3630  *
3631  * @param q                queue to init
3632  * @param count            Number of BD's to allocate. Should be power of 2
3633  * @param read_register    Address for 'read' register
3634  *                         (not offset within BAR, full address)
3635  * @param write_register   Address for 'write' register
3636  *                         (not offset within BAR, full address)
3637  * @param base_register    Address for 'base' register
3638  *                         (not offset within BAR, full address)
3639  * @param size             Address for 'size' register
3640  *                         (not offset within BAR, full address)
3641  */
3642 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3643                            int count, u32 read, u32 write, u32 base, u32 size)
3644 {
3645         q->n_bd = count;
3646
3647         q->low_mark = q->n_bd / 4;
3648         if (q->low_mark < 4)
3649                 q->low_mark = 4;
3650
3651         q->high_mark = q->n_bd / 8;
3652         if (q->high_mark < 2)
3653                 q->high_mark = 2;
3654
3655         q->first_empty = q->last_used = 0;
3656         q->reg_r = read;
3657         q->reg_w = write;
3658
3659         ipw_write32(priv, base, q->dma_addr);
3660         ipw_write32(priv, size, count);
3661         ipw_write32(priv, read, 0);
3662         ipw_write32(priv, write, 0);
3663
3664         _ipw_read32(priv, 0x90);
3665 }
3666
3667 static int ipw_queue_tx_init(struct ipw_priv *priv,
3668                              struct clx2_tx_queue *q,
3669                              int count, u32 read, u32 write, u32 base, u32 size)
3670 {
3671         struct pci_dev *dev = priv->pci_dev;
3672
3673         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3674         if (!q->txb) {
3675                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3676                 return -ENOMEM;
3677         }
3678
3679         q->bd =
3680             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3681         if (!q->bd) {
3682                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3683                           sizeof(q->bd[0]) * count);
3684                 kfree(q->txb);
3685                 q->txb = NULL;
3686                 return -ENOMEM;
3687         }
3688
3689         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3690         return 0;
3691 }
3692
3693 /**
3694  * Free one TFD, those at index [txq->q.last_used].
3695  * Do NOT advance any indexes
3696  *
3697  * @param dev
3698  * @param txq
3699  */
3700 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3701                                   struct clx2_tx_queue *txq)
3702 {
3703         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3704         struct pci_dev *dev = priv->pci_dev;
3705         int i;
3706
3707         /* classify bd */
3708         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3709                 /* nothing to cleanup after for host commands */
3710                 return;
3711
3712         /* sanity check */
3713         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3714                 IPW_ERROR("Too many chunks: %i\n",
3715                           le32_to_cpu(bd->u.data.num_chunks));
3716                 /** @todo issue fatal error, it is quite serious situation */
3717                 return;
3718         }
3719
3720         /* unmap chunks if any */
3721         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3722                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3723                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3724                                  PCI_DMA_TODEVICE);
3725                 if (txq->txb[txq->q.last_used]) {
3726                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3727                         txq->txb[txq->q.last_used] = NULL;
3728                 }
3729         }
3730 }
3731
3732 /**
3733  * Deallocate DMA queue.
3734  *
3735  * Empty queue by removing and destroying all BD's.
3736  * Free all buffers.
3737  *
3738  * @param dev
3739  * @param q
3740  */
3741 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3742 {
3743         struct clx2_queue *q = &txq->q;
3744         struct pci_dev *dev = priv->pci_dev;
3745
3746         if (q->n_bd == 0)
3747                 return;
3748
3749         /* first, empty all BD's */
3750         for (; q->first_empty != q->last_used;
3751              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3752                 ipw_queue_tx_free_tfd(priv, txq);
3753         }
3754
3755         /* free buffers belonging to queue itself */
3756         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3757                             q->dma_addr);
3758         kfree(txq->txb);
3759
3760         /* 0 fill whole structure */
3761         memset(txq, 0, sizeof(*txq));
3762 }
3763
3764 /**
3765  * Destroy all DMA queues and structures
3766  *
3767  * @param priv
3768  */
3769 static void ipw_tx_queue_free(struct ipw_priv *priv)
3770 {
3771         /* Tx CMD queue */
3772         ipw_queue_tx_free(priv, &priv->txq_cmd);
3773
3774         /* Tx queues */
3775         ipw_queue_tx_free(priv, &priv->txq[0]);
3776         ipw_queue_tx_free(priv, &priv->txq[1]);
3777         ipw_queue_tx_free(priv, &priv->txq[2]);
3778         ipw_queue_tx_free(priv, &priv->txq[3]);
3779 }
3780
3781 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3782 {
3783         /* First 3 bytes are manufacturer */
3784         bssid[0] = priv->mac_addr[0];
3785         bssid[1] = priv->mac_addr[1];
3786         bssid[2] = priv->mac_addr[2];
3787
3788         /* Last bytes are random */
3789         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3790
3791         bssid[0] &= 0xfe;       /* clear multicast bit */
3792         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3793 }
3794
3795 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3796 {
3797         struct ipw_station_entry entry;
3798         int i;
3799
3800         for (i = 0; i < priv->num_stations; i++) {
3801                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3802                         /* Another node is active in network */
3803                         priv->missed_adhoc_beacons = 0;
3804                         if (!(priv->config & CFG_STATIC_CHANNEL))
3805                                 /* when other nodes drop out, we drop out */
3806                                 priv->config &= ~CFG_ADHOC_PERSIST;
3807
3808                         return i;
3809                 }
3810         }
3811
3812         if (i == MAX_STATIONS)
3813                 return IPW_INVALID_STATION;
3814
3815         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3816
3817         entry.reserved = 0;
3818         entry.support_mode = 0;
3819         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3820         memcpy(priv->stations[i], bssid, ETH_ALEN);
3821         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3822                          &entry, sizeof(entry));
3823         priv->num_stations++;
3824
3825         return i;
3826 }
3827
3828 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3829 {
3830         int i;
3831
3832         for (i = 0; i < priv->num_stations; i++)
3833                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3834                         return i;
3835
3836         return IPW_INVALID_STATION;
3837 }
3838
3839 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3840 {
3841         int err;
3842
3843         if (priv->status & STATUS_ASSOCIATING) {
3844                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3845                 queue_work(priv->workqueue, &priv->disassociate);
3846                 return;
3847         }
3848
3849         if (!(priv->status & STATUS_ASSOCIATED)) {
3850                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3851                 return;
3852         }
3853
3854         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3855                         "on channel %d.\n",
3856                         MAC_ARG(priv->assoc_request.bssid),
3857                         priv->assoc_request.channel);
3858
3859         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3860         priv->status |= STATUS_DISASSOCIATING;
3861
3862         if (quiet)
3863                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3864         else
3865                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3866
3867         err = ipw_send_associate(priv, &priv->assoc_request);
3868         if (err) {
3869                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3870                              "failed.\n");
3871                 return;
3872         }
3873
3874 }
3875
3876 static int ipw_disassociate(void *data)
3877 {
3878         struct ipw_priv *priv = data;
3879         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3880                 return 0;
3881         ipw_send_disassociate(data, 0);
3882         return 1;
3883 }
3884
3885 static void ipw_bg_disassociate(struct work_struct *work)
3886 {
3887         struct ipw_priv *priv =
3888                 container_of(work, struct ipw_priv, disassociate);
3889         mutex_lock(&priv->mutex);
3890         ipw_disassociate(priv);
3891         mutex_unlock(&priv->mutex);
3892 }
3893
3894 static void ipw_system_config(struct work_struct *work)
3895 {
3896         struct ipw_priv *priv =
3897                 container_of(work, struct ipw_priv, system_config);
3898
3899 #ifdef CONFIG_IPW2200_PROMISCUOUS
3900         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3901                 priv->sys_config.accept_all_data_frames = 1;
3902                 priv->sys_config.accept_non_directed_frames = 1;
3903                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3904                 priv->sys_config.accept_all_mgmt_frames = 1;
3905         }
3906 #endif
3907
3908         ipw_send_system_config(priv);
3909 }
3910
3911 struct ipw_status_code {
3912         u16 status;
3913         const char *reason;
3914 };
3915
3916 static const struct ipw_status_code ipw_status_codes[] = {
3917         {0x00, "Successful"},
3918         {0x01, "Unspecified failure"},
3919         {0x0A, "Cannot support all requested capabilities in the "
3920          "Capability information field"},
3921         {0x0B, "Reassociation denied due to inability to confirm that "
3922          "association exists"},
3923         {0x0C, "Association denied due to reason outside the scope of this "
3924          "standard"},
3925         {0x0D,
3926          "Responding station does not support the specified authentication "
3927          "algorithm"},
3928         {0x0E,
3929          "Received an Authentication frame with authentication sequence "
3930          "transaction sequence number out of expected sequence"},
3931         {0x0F, "Authentication rejected because of challenge failure"},
3932         {0x10, "Authentication rejected due to timeout waiting for next "
3933          "frame in sequence"},
3934         {0x11, "Association denied because AP is unable to handle additional "
3935          "associated stations"},
3936         {0x12,
3937          "Association denied due to requesting station not supporting all "
3938          "of the datarates in the BSSBasicServiceSet Parameter"},
3939         {0x13,
3940          "Association denied due to requesting station not supporting "
3941          "short preamble operation"},
3942         {0x14,
3943          "Association denied due to requesting station not supporting "
3944          "PBCC encoding"},
3945         {0x15,
3946          "Association denied due to requesting station not supporting "
3947          "channel agility"},
3948         {0x19,
3949          "Association denied due to requesting station not supporting "
3950          "short slot operation"},
3951         {0x1A,
3952          "Association denied due to requesting station not supporting "
3953          "DSSS-OFDM operation"},
3954         {0x28, "Invalid Information Element"},
3955         {0x29, "Group Cipher is not valid"},
3956         {0x2A, "Pairwise Cipher is not valid"},
3957         {0x2B, "AKMP is not valid"},
3958         {0x2C, "Unsupported RSN IE version"},
3959         {0x2D, "Invalid RSN IE Capabilities"},
3960         {0x2E, "Cipher suite is rejected per security policy"},
3961 };
3962
3963 static const char *ipw_get_status_code(u16 status)
3964 {
3965         int i;
3966         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3967                 if (ipw_status_codes[i].status == (status & 0xff))
3968                         return ipw_status_codes[i].reason;
3969         return "Unknown status value.";
3970 }
3971
3972 static void inline average_init(struct average *avg)
3973 {
3974         memset(avg, 0, sizeof(*avg));
3975 }
3976
3977 #define DEPTH_RSSI 8
3978 #define DEPTH_NOISE 16
3979 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3980 {
3981         return ((depth-1)*prev_avg +  val)/depth;
3982 }
3983
3984 static void average_add(struct average *avg, s16 val)
3985 {
3986         avg->sum -= avg->entries[avg->pos];
3987         avg->sum += val;
3988         avg->entries[avg->pos++] = val;
3989         if (unlikely(avg->pos == AVG_ENTRIES)) {
3990                 avg->init = 1;
3991                 avg->pos = 0;
3992         }
3993 }
3994
3995 static s16 average_value(struct average *avg)
3996 {
3997         if (!unlikely(avg->init)) {
3998                 if (avg->pos)
3999                         return avg->sum / avg->pos;
4000                 return 0;
4001         }
4002
4003         return avg->sum / AVG_ENTRIES;
4004 }
4005
4006 static void ipw_reset_stats(struct ipw_priv *priv)
4007 {
4008         u32 len = sizeof(u32);
4009
4010         priv->quality = 0;
4011
4012         average_init(&priv->average_missed_beacons);
4013         priv->exp_avg_rssi = -60;
4014         priv->exp_avg_noise = -85 + 0x100;
4015
4016         priv->last_rate = 0;
4017         priv->last_missed_beacons = 0;
4018         priv->last_rx_packets = 0;
4019         priv->last_tx_packets = 0;
4020         priv->last_tx_failures = 0;
4021
4022         /* Firmware managed, reset only when NIC is restarted, so we have to
4023          * normalize on the current value */
4024         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4025                         &priv->last_rx_err, &len);
4026         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4027                         &priv->last_tx_failures, &len);
4028
4029         /* Driver managed, reset with each association */
4030         priv->missed_adhoc_beacons = 0;
4031         priv->missed_beacons = 0;
4032         priv->tx_packets = 0;
4033         priv->rx_packets = 0;
4034
4035 }
4036
4037 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4038 {
4039         u32 i = 0x80000000;
4040         u32 mask = priv->rates_mask;
4041         /* If currently associated in B mode, restrict the maximum
4042          * rate match to B rates */
4043         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4044                 mask &= IEEE80211_CCK_RATES_MASK;
4045
4046         /* TODO: Verify that the rate is supported by the current rates
4047          * list. */
4048
4049         while (i && !(mask & i))
4050                 i >>= 1;
4051         switch (i) {
4052         case IEEE80211_CCK_RATE_1MB_MASK:
4053                 return 1000000;
4054         case IEEE80211_CCK_RATE_2MB_MASK:
4055                 return 2000000;
4056         case IEEE80211_CCK_RATE_5MB_MASK:
4057                 return 5500000;
4058         case IEEE80211_OFDM_RATE_6MB_MASK:
4059                 return 6000000;
4060         case IEEE80211_OFDM_RATE_9MB_MASK:
4061                 return 9000000;
4062         case IEEE80211_CCK_RATE_11MB_MASK:
4063                 return 11000000;
4064         case IEEE80211_OFDM_RATE_12MB_MASK:
4065                 return 12000000;
4066         case IEEE80211_OFDM_RATE_18MB_MASK:
4067                 return 18000000;
4068         case IEEE80211_OFDM_RATE_24MB_MASK:
4069                 return 24000000;
4070         case IEEE80211_OFDM_RATE_36MB_MASK:
4071                 return 36000000;
4072         case IEEE80211_OFDM_RATE_48MB_MASK:
4073                 return 48000000;
4074         case IEEE80211_OFDM_RATE_54MB_MASK:
4075                 return 54000000;
4076         }
4077
4078         if (priv->ieee->mode == IEEE_B)
4079                 return 11000000;
4080         else
4081                 return 54000000;
4082 }
4083
4084 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4085 {
4086         u32 rate, len = sizeof(rate);
4087         int err;
4088
4089         if (!(priv->status & STATUS_ASSOCIATED))
4090                 return 0;
4091
4092         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4093                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4094                                       &len);
4095                 if (err) {
4096                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4097                         return 0;
4098                 }
4099         } else
4100                 return ipw_get_max_rate(priv);
4101
4102         switch (rate) {
4103         case IPW_TX_RATE_1MB:
4104                 return 1000000;
4105         case IPW_TX_RATE_2MB:
4106                 return 2000000;
4107         case IPW_TX_RATE_5MB:
4108                 return 5500000;
4109         case IPW_TX_RATE_6MB:
4110                 return 6000000;
4111         case IPW_TX_RATE_9MB:
4112                 return 9000000;
4113         case IPW_TX_RATE_11MB:
4114                 return 11000000;
4115         case IPW_TX_RATE_12MB:
4116                 return 12000000;
4117         case IPW_TX_RATE_18MB:
4118                 return 18000000;
4119         case IPW_TX_RATE_24MB:
4120                 return 24000000;
4121         case IPW_TX_RATE_36MB:
4122                 return 36000000;
4123         case IPW_TX_RATE_48MB:
4124                 return 48000000;
4125         case IPW_TX_RATE_54MB:
4126                 return 54000000;
4127         }
4128
4129         return 0;
4130 }
4131
4132 #define IPW_STATS_INTERVAL (2 * HZ)
4133 static void ipw_gather_stats(struct ipw_priv *priv)
4134 {
4135         u32 rx_err, rx_err_delta, rx_packets_delta;
4136         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4137         u32 missed_beacons_percent, missed_beacons_delta;
4138         u32 quality = 0;
4139         u32 len = sizeof(u32);
4140         s16 rssi;
4141         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4142             rate_quality;
4143         u32 max_rate;
4144
4145         if (!(priv->status & STATUS_ASSOCIATED)) {
4146                 priv->quality = 0;
4147                 return;
4148         }
4149
4150         /* Update the statistics */
4151         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4152                         &priv->missed_beacons, &len);
4153         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4154         priv->last_missed_beacons = priv->missed_beacons;
4155         if (priv->assoc_request.beacon_interval) {
4156                 missed_beacons_percent = missed_beacons_delta *
4157                     (HZ * priv->assoc_request.beacon_interval) /
4158                     (IPW_STATS_INTERVAL * 10);
4159         } else {
4160                 missed_beacons_percent = 0;
4161         }
4162         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4163
4164         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4165         rx_err_delta = rx_err - priv->last_rx_err;
4166         priv->last_rx_err = rx_err;
4167
4168         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4169         tx_failures_delta = tx_failures - priv->last_tx_failures;
4170         priv->last_tx_failures = tx_failures;
4171
4172         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4173         priv->last_rx_packets = priv->rx_packets;
4174
4175         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4176         priv->last_tx_packets = priv->tx_packets;
4177
4178         /* Calculate quality based on the following:
4179          *
4180          * Missed beacon: 100% = 0, 0% = 70% missed
4181          * Rate: 60% = 1Mbs, 100% = Max
4182          * Rx and Tx errors represent a straight % of total Rx/Tx
4183          * RSSI: 100% = > -50,  0% = < -80
4184          * Rx errors: 100% = 0, 0% = 50% missed
4185          *
4186          * The lowest computed quality is used.
4187          *
4188          */
4189 #define BEACON_THRESHOLD 5
4190         beacon_quality = 100 - missed_beacons_percent;
4191         if (beacon_quality < BEACON_THRESHOLD)
4192                 beacon_quality = 0;
4193         else
4194                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4195                     (100 - BEACON_THRESHOLD);
4196         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4197                         beacon_quality, missed_beacons_percent);
4198
4199         priv->last_rate = ipw_get_current_rate(priv);
4200         max_rate = ipw_get_max_rate(priv);
4201         rate_quality = priv->last_rate * 40 / max_rate + 60;
4202         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4203                         rate_quality, priv->last_rate / 1000000);
4204
4205         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4206                 rx_quality = 100 - (rx_err_delta * 100) /
4207                     (rx_packets_delta + rx_err_delta);
4208         else
4209                 rx_quality = 100;
4210         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4211                         rx_quality, rx_err_delta, rx_packets_delta);
4212
4213         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4214                 tx_quality = 100 - (tx_failures_delta * 100) /
4215                     (tx_packets_delta + tx_failures_delta);
4216         else
4217                 tx_quality = 100;
4218         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4219                         tx_quality, tx_failures_delta, tx_packets_delta);
4220
4221         rssi = priv->exp_avg_rssi;
4222         signal_quality =
4223             (100 *
4224              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4225              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4226              (priv->ieee->perfect_rssi - rssi) *
4227              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4228               62 * (priv->ieee->perfect_rssi - rssi))) /
4229             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4230              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4231         if (signal_quality > 100)
4232                 signal_quality = 100;
4233         else if (signal_quality < 1)
4234                 signal_quality = 0;
4235
4236         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4237                         signal_quality, rssi);
4238
4239         quality = min(beacon_quality,
4240                       min(rate_quality,
4241                           min(tx_quality, min(rx_quality, signal_quality))));
4242         if (quality == beacon_quality)
4243                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4244                                 quality);
4245         if (quality == rate_quality)
4246                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4247                                 quality);
4248         if (quality == tx_quality)
4249                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4250                                 quality);
4251         if (quality == rx_quality)
4252                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4253                                 quality);
4254         if (quality == signal_quality)
4255                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4256                                 quality);
4257
4258         priv->quality = quality;
4259
4260         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4261                            IPW_STATS_INTERVAL);
4262 }
4263
4264 static void ipw_bg_gather_stats(struct work_struct *work)
4265 {
4266         struct ipw_priv *priv =
4267                 container_of(work, struct ipw_priv, gather_stats.work);
4268         mutex_lock(&priv->mutex);
4269         ipw_gather_stats(priv);
4270         mutex_unlock(&priv->mutex);
4271 }
4272
4273 /* Missed beacon behavior:
4274  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4275  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4276  * Above disassociate threshold, give up and stop scanning.
4277  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4278 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4279                                             int missed_count)
4280 {
4281         priv->notif_missed_beacons = missed_count;
4282
4283         if (missed_count > priv->disassociate_threshold &&
4284             priv->status & STATUS_ASSOCIATED) {
4285                 /* If associated and we've hit the missed
4286                  * beacon threshold, disassociate, turn
4287                  * off roaming, and abort any active scans */
4288                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4289                           IPW_DL_STATE | IPW_DL_ASSOC,
4290                           "Missed beacon: %d - disassociate\n", missed_count);
4291                 priv->status &= ~STATUS_ROAMING;
4292                 if (priv->status & STATUS_SCANNING) {
4293                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4294                                   IPW_DL_STATE,
4295                                   "Aborting scan with missed beacon.\n");
4296                         queue_work(priv->workqueue, &priv->abort_scan);
4297                 }
4298
4299                 queue_work(priv->workqueue, &priv->disassociate);
4300                 return;
4301         }
4302
4303         if (priv->status & STATUS_ROAMING) {
4304                 /* If we are currently roaming, then just
4305                  * print a debug statement... */
4306                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4307                           "Missed beacon: %d - roam in progress\n",
4308                           missed_count);
4309                 return;
4310         }
4311
4312         if (roaming &&
4313             (missed_count > priv->roaming_threshold &&
4314              missed_count <= priv->disassociate_threshold)) {
4315                 /* If we are not already roaming, set the ROAM
4316                  * bit in the status and kick off a scan.
4317                  * This can happen several times before we reach
4318                  * disassociate_threshold. */
4319                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4320                           "Missed beacon: %d - initiate "
4321                           "roaming\n", missed_count);
4322                 if (!(priv->status & STATUS_ROAMING)) {
4323                         priv->status |= STATUS_ROAMING;
4324                         if (!(priv->status & STATUS_SCANNING))
4325                                 queue_delayed_work(priv->workqueue,
4326                                                    &priv->request_scan, 0);
4327                 }
4328                 return;
4329         }
4330
4331         if (priv->status & STATUS_SCANNING) {
4332                 /* Stop scan to keep fw from getting
4333                  * stuck (only if we aren't roaming --
4334                  * otherwise we'll never scan more than 2 or 3
4335                  * channels..) */
4336                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4337                           "Aborting scan with missed beacon.\n");
4338                 queue_work(priv->workqueue, &priv->abort_scan);
4339         }
4340
4341         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4342 }
4343
4344 /**
4345  * Handle host notification packet.
4346  * Called from interrupt routine
4347  */
4348 static void ipw_rx_notification(struct ipw_priv *priv,
4349                                        struct ipw_rx_notification *notif)
4350 {
4351         notif->size = le16_to_cpu(notif->size);
4352
4353         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4354
4355         switch (notif->subtype) {
4356         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4357                         struct notif_association *assoc = &notif->u.assoc;
4358
4359                         switch (assoc->state) {
4360                         case CMAS_ASSOCIATED:{
4361                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362                                                   IPW_DL_ASSOC,
4363                                                   "associated: '%s' " MAC_FMT
4364                                                   " \n",
4365                                                   escape_essid(priv->essid,
4366                                                                priv->essid_len),
4367                                                   MAC_ARG(priv->bssid));
4368
4369                                         switch (priv->ieee->iw_mode) {
4370                                         case IW_MODE_INFRA:
4371                                                 memcpy(priv->ieee->bssid,
4372                                                        priv->bssid, ETH_ALEN);
4373                                                 break;
4374
4375                                         case IW_MODE_ADHOC:
4376                                                 memcpy(priv->ieee->bssid,
4377                                                        priv->bssid, ETH_ALEN);
4378
4379                                                 /* clear out the station table */
4380                                                 priv->num_stations = 0;
4381
4382                                                 IPW_DEBUG_ASSOC
4383                                                     ("queueing adhoc check\n");
4384                                                 queue_delayed_work(priv->
4385                                                                    workqueue,
4386                                                                    &priv->
4387                                                                    adhoc_check,
4388                                                                    priv->
4389                                                                    assoc_request.
4390                                                                    beacon_interval);
4391                                                 break;
4392                                         }
4393
4394                                         priv->status &= ~STATUS_ASSOCIATING;
4395                                         priv->status |= STATUS_ASSOCIATED;
4396                                         queue_work(priv->workqueue,
4397                                                    &priv->system_config);
4398
4399 #ifdef CONFIG_IPW2200_QOS
4400 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4401                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4402                                         if ((priv->status & STATUS_AUTH) &&
4403                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4404                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4405                                                 if ((sizeof
4406                                                      (struct
4407                                                       ieee80211_assoc_response)
4408                                                      <= notif->size)
4409                                                     && (notif->size <= 2314)) {
4410                                                         struct
4411                                                         ieee80211_rx_stats
4412                                                             stats = {
4413                                                                 .len =
4414                                                                     notif->
4415                                                                     size - 1,
4416                                                         };
4417
4418                                                         IPW_DEBUG_QOS
4419                                                             ("QoS Associate "
4420                                                              "size %d\n",
4421                                                              notif->size);
4422                                                         ieee80211_rx_mgt(priv->
4423                                                                          ieee,
4424                                                                          (struct
4425                                                                           ieee80211_hdr_4addr
4426                                                                           *)
4427                                                                          &notif->u.raw, &stats);
4428                                                 }
4429                                         }
4430 #endif
4431
4432                                         schedule_work(&priv->link_up);
4433
4434                                         break;
4435                                 }
4436
4437                         case CMAS_AUTHENTICATED:{
4438                                         if (priv->
4439                                             status & (STATUS_ASSOCIATED |
4440                                                       STATUS_AUTH)) {
4441                                                 struct notif_authenticate *auth
4442                                                     = &notif->u.auth;
4443                                                 IPW_DEBUG(IPW_DL_NOTIF |
4444                                                           IPW_DL_STATE |
4445                                                           IPW_DL_ASSOC,
4446                                                           "deauthenticated: '%s' "
4447                                                           MAC_FMT
4448                                                           ": (0x%04X) - %s \n",
4449                                                           escape_essid(priv->
4450                                                                        essid,
4451                                                                        priv->
4452                                                                        essid_len),
4453                                                           MAC_ARG(priv->bssid),
4454                                                           ntohs(auth->status),
4455                                                           ipw_get_status_code
4456                                                           (ntohs
4457                                                            (auth->status)));
4458
4459                                                 priv->status &=
4460                                                     ~(STATUS_ASSOCIATING |
4461                                                       STATUS_AUTH |
4462                                                       STATUS_ASSOCIATED);
4463
4464                                                 schedule_work(&priv->link_down);
4465                                                 break;
4466                                         }
4467
4468                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4469                                                   IPW_DL_ASSOC,
4470                                                   "authenticated: '%s' " MAC_FMT
4471                                                   "\n",
4472                                                   escape_essid(priv->essid,
4473                                                                priv->essid_len),
4474                                                   MAC_ARG(priv->bssid));
4475                                         break;
4476                                 }
4477
4478                         case CMAS_INIT:{
4479                                         if (priv->status & STATUS_AUTH) {
4480                                                 struct
4481                                                     ieee80211_assoc_response
4482                                                 *resp;
4483                                                 resp =
4484                                                     (struct
4485                                                      ieee80211_assoc_response
4486                                                      *)&notif->u.raw;
4487                                                 IPW_DEBUG(IPW_DL_NOTIF |
4488                                                           IPW_DL_STATE |
4489                                                           IPW_DL_ASSOC,
4490                                                           "association failed (0x%04X): %s\n",
4491                                                           ntohs(resp->status),
4492                                                           ipw_get_status_code
4493                                                           (ntohs
4494                                                            (resp->status)));
4495                                         }
4496
4497                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4498                                                   IPW_DL_ASSOC,
4499                                                   "disassociated: '%s' " MAC_FMT
4500                                                   " \n",
4501                                                   escape_essid(priv->essid,
4502                                                                priv->essid_len),
4503                                                   MAC_ARG(priv->bssid));
4504
4505                                         priv->status &=
4506                                             ~(STATUS_DISASSOCIATING |
4507                                               STATUS_ASSOCIATING |
4508                                               STATUS_ASSOCIATED | STATUS_AUTH);
4509                                         if (priv->assoc_network
4510                                             && (priv->assoc_network->
4511                                                 capability &
4512                                                 WLAN_CAPABILITY_IBSS))
4513                                                 ipw_remove_current_network
4514                                                     (priv);
4515
4516                                         schedule_work(&priv->link_down);
4517
4518                                         break;
4519                                 }
4520
4521                         case CMAS_RX_ASSOC_RESP:
4522                                 break;
4523
4524                         default:
4525                                 IPW_ERROR("assoc: unknown (%d)\n",
4526                                           assoc->state);
4527                                 break;
4528                         }
4529
4530                         break;
4531                 }
4532
4533         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4534                         struct notif_authenticate *auth = &notif->u.auth;
4535                         switch (auth->state) {
4536                         case CMAS_AUTHENTICATED:
4537                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4538                                           "authenticated: '%s' " MAC_FMT " \n",
4539                                           escape_essid(priv->essid,
4540                                                        priv->essid_len),
4541                                           MAC_ARG(priv->bssid));
4542                                 priv->status |= STATUS_AUTH;
4543                                 break;
4544
4545                         case CMAS_INIT:
4546                                 if (priv->status & STATUS_AUTH) {
4547                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4548                                                   IPW_DL_ASSOC,
4549                                                   "authentication failed (0x%04X): %s\n",
4550                                                   ntohs(auth->status),
4551                                                   ipw_get_status_code(ntohs
4552                                                                       (auth->
4553                                                                        status)));
4554                                 }
4555                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4556                                           IPW_DL_ASSOC,
4557                                           "deauthenticated: '%s' " MAC_FMT "\n",
4558                                           escape_essid(priv->essid,
4559                                                        priv->essid_len),
4560                                           MAC_ARG(priv->bssid));
4561
4562                                 priv->status &= ~(STATUS_ASSOCIATING |
4563                                                   STATUS_AUTH |
4564                                                   STATUS_ASSOCIATED);
4565
4566                                 schedule_work(&priv->link_down);
4567                                 break;
4568
4569                         case CMAS_TX_AUTH_SEQ_1:
4570                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4572                                 break;
4573                         case CMAS_RX_AUTH_SEQ_2:
4574                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4575                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4576                                 break;
4577                         case CMAS_AUTH_SEQ_1_PASS:
4578                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4579                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4580                                 break;
4581                         case CMAS_AUTH_SEQ_1_FAIL:
4582                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4583                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4584                                 break;
4585                         case CMAS_TX_AUTH_SEQ_3:
4586                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4588                                 break;
4589                         case CMAS_RX_AUTH_SEQ_4:
4590                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4591                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4592                                 break;
4593                         case CMAS_AUTH_SEQ_2_PASS:
4594                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4595                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4596                                 break;
4597                         case CMAS_AUTH_SEQ_2_FAIL:
4598                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4599                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4600                                 break;
4601                         case CMAS_TX_ASSOC:
4602                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4603                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4604                                 break;
4605                         case CMAS_RX_ASSOC_RESP:
4606                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4607                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4608
4609                                 break;
4610                         case CMAS_ASSOCIATED:
4611                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4613                                 break;
4614                         default:
4615                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4616                                                 auth->state);
4617                                 break;
4618                         }
4619                         break;
4620                 }
4621
4622         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4623                         struct notif_channel_result *x =
4624                             &notif->u.channel_result;
4625
4626                         if (notif->size == sizeof(*x)) {
4627                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4628                                                x->channel_num);
4629                         } else {
4630                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4631                                                "(should be %zd)\n",
4632                                                notif->size, sizeof(*x));
4633                         }
4634                         break;
4635                 }
4636
4637         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4638                         struct notif_scan_complete *x = &notif->u.scan_complete;
4639                         if (notif->size == sizeof(*x)) {
4640                                 IPW_DEBUG_SCAN
4641                                     ("Scan completed: type %d, %d channels, "
4642                                      "%d status\n", x->scan_type,
4643                                      x->num_channels, x->status);
4644                         } else {
4645                                 IPW_ERROR("Scan completed of wrong size %d "
4646                                           "(should be %zd)\n",
4647                                           notif->size, sizeof(*x));
4648                         }
4649
4650                         priv->status &=
4651                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4652
4653                         wake_up_interruptible(&priv->wait_state);
4654                         cancel_delayed_work(&priv->scan_check);
4655
4656                         if (priv->status & STATUS_EXIT_PENDING)
4657                                 break;
4658
4659                         priv->ieee->scans++;
4660
4661 #ifdef CONFIG_IPW2200_MONITOR
4662                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4663                                 priv->status |= STATUS_SCAN_FORCED;
4664                                 queue_delayed_work(priv->workqueue,
4665                                                    &priv->request_scan, 0);
4666                                 break;
4667                         }
4668                         priv->status &= ~STATUS_SCAN_FORCED;
4669 #endif                          /* CONFIG_IPW2200_MONITOR */
4670
4671                         if (!(priv->status & (STATUS_ASSOCIATED |
4672                                               STATUS_ASSOCIATING |
4673                                               STATUS_ROAMING |
4674                                               STATUS_DISASSOCIATING)))
4675                                 queue_work(priv->workqueue, &priv->associate);
4676                         else if (priv->status & STATUS_ROAMING) {
4677                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4678                                         /* If a scan completed and we are in roam mode, then
4679                                          * the scan that completed was the one requested as a
4680                                          * result of entering roam... so, schedule the
4681                                          * roam work */
4682                                         queue_work(priv->workqueue,
4683                                                    &priv->roam);
4684                                 else
4685                                         /* Don't schedule if we aborted the scan */
4686                                         priv->status &= ~STATUS_ROAMING;
4687                         } else if (priv->status & STATUS_SCAN_PENDING)
4688                                 queue_delayed_work(priv->workqueue,
4689                                                    &priv->request_scan, 0);
4690                         else if (priv->config & CFG_BACKGROUND_SCAN
4691                                  && priv->status & STATUS_ASSOCIATED)
4692                                 queue_delayed_work(priv->workqueue,
4693                                                    &priv->request_scan, HZ);
4694
4695                         /* Send an empty event to user space.
4696                          * We don't send the received data on the event because
4697                          * it would require us to do complex transcoding, and
4698                          * we want to minimise the work done in the irq handler
4699                          * Use a request to extract the data.
4700                          * Also, we generate this even for any scan, regardless
4701                          * on how the scan was initiated. User space can just
4702                          * sync on periodic scan to get fresh data...
4703                          * Jean II */
4704                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4705                                 union iwreq_data wrqu;
4706
4707                                 wrqu.data.length = 0;
4708                                 wrqu.data.flags = 0;
4709                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4710                                                     &wrqu, NULL);
4711                         }
4712                         break;
4713                 }
4714
4715         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4716                         struct notif_frag_length *x = &notif->u.frag_len;
4717
4718                         if (notif->size == sizeof(*x))
4719                                 IPW_ERROR("Frag length: %d\n",
4720                                           le16_to_cpu(x->frag_length));
4721                         else
4722                                 IPW_ERROR("Frag length of wrong size %d "
4723                                           "(should be %zd)\n",
4724                                           notif->size, sizeof(*x));
4725                         break;
4726                 }
4727
4728         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4729                         struct notif_link_deterioration *x =
4730                             &notif->u.link_deterioration;
4731
4732                         if (notif->size == sizeof(*x)) {
4733                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4734                                         "link deterioration: type %d, cnt %d\n",
4735                                         x->silence_notification_type,
4736                                         x->silence_count);
4737                                 memcpy(&priv->last_link_deterioration, x,
4738                                        sizeof(*x));
4739                         } else {
4740                                 IPW_ERROR("Link Deterioration of wrong size %d "
4741                                           "(should be %zd)\n",
4742                                           notif->size, sizeof(*x));
4743                         }
4744                         break;
4745                 }
4746
4747         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4748                         IPW_ERROR("Dino config\n");
4749                         if (priv->hcmd
4750                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4751                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4752
4753                         break;
4754                 }
4755
4756         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4757                         struct notif_beacon_state *x = &notif->u.beacon_state;
4758                         if (notif->size != sizeof(*x)) {
4759                                 IPW_ERROR
4760                                     ("Beacon state of wrong size %d (should "
4761                                      "be %zd)\n", notif->size, sizeof(*x));
4762                                 break;
4763                         }
4764
4765                         if (le32_to_cpu(x->state) ==
4766                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4767                                 ipw_handle_missed_beacon(priv,
4768                                                          le32_to_cpu(x->
4769                                                                      number));
4770
4771                         break;
4772                 }
4773
4774         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4775                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4776                         if (notif->size == sizeof(*x)) {
4777                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4778                                           "0x%02x station %d\n",
4779                                           x->key_state, x->security_type,
4780                                           x->station_index);
4781                                 break;
4782                         }
4783
4784                         IPW_ERROR
4785                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4786                              notif->size, sizeof(*x));
4787                         break;
4788                 }
4789
4790         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4791                         struct notif_calibration *x = &notif->u.calibration;
4792
4793                         if (notif->size == sizeof(*x)) {
4794                                 memcpy(&priv->calib, x, sizeof(*x));
4795                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4796                                 break;
4797                         }
4798
4799                         IPW_ERROR
4800                             ("Calibration of wrong size %d (should be %zd)\n",
4801                              notif->size, sizeof(*x));
4802                         break;
4803                 }
4804
4805         case HOST_NOTIFICATION_NOISE_STATS:{
4806                         if (notif->size == sizeof(u32)) {
4807                                 priv->exp_avg_noise =
4808                                     exponential_average(priv->exp_avg_noise,
4809                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4810                                     DEPTH_NOISE);
4811                                 break;
4812                         }
4813
4814                         IPW_ERROR
4815                             ("Noise stat is wrong size %d (should be %zd)\n",
4816                              notif->size, sizeof(u32));
4817                         break;
4818                 }
4819
4820         default:
4821                 IPW_DEBUG_NOTIF("Unknown notification: "
4822                                 "subtype=%d,flags=0x%2x,size=%d\n",
4823                                 notif->subtype, notif->flags, notif->size);
4824         }
4825 }
4826
4827 /**
4828  * Destroys all DMA structures and initialise them again
4829  *
4830  * @param priv
4831  * @return error code
4832  */
4833 static int ipw_queue_reset(struct ipw_priv *priv)
4834 {
4835         int rc = 0;
4836         /** @todo customize queue sizes */
4837         int nTx = 64, nTxCmd = 8;
4838         ipw_tx_queue_free(priv);
4839         /* Tx CMD queue */
4840         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4841                                IPW_TX_CMD_QUEUE_READ_INDEX,
4842                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4843                                IPW_TX_CMD_QUEUE_BD_BASE,
4844                                IPW_TX_CMD_QUEUE_BD_SIZE);
4845         if (rc) {
4846                 IPW_ERROR("Tx Cmd queue init failed\n");
4847                 goto error;
4848         }
4849         /* Tx queue(s) */
4850         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4851                                IPW_TX_QUEUE_0_READ_INDEX,
4852                                IPW_TX_QUEUE_0_WRITE_INDEX,
4853                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4854         if (rc) {
4855                 IPW_ERROR("Tx 0 queue init failed\n");
4856                 goto error;
4857         }
4858         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4859                                IPW_TX_QUEUE_1_READ_INDEX,
4860                                IPW_TX_QUEUE_1_WRITE_INDEX,
4861                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4862         if (rc) {
4863                 IPW_ERROR("Tx 1 queue init failed\n");
4864                 goto error;
4865         }
4866         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4867                                IPW_TX_QUEUE_2_READ_INDEX,
4868                                IPW_TX_QUEUE_2_WRITE_INDEX,
4869                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4870         if (rc) {
4871                 IPW_ERROR("Tx 2 queue init failed\n");
4872                 goto error;
4873         }
4874         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4875                                IPW_TX_QUEUE_3_READ_INDEX,
4876                                IPW_TX_QUEUE_3_WRITE_INDEX,
4877                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4878         if (rc) {
4879                 IPW_ERROR("Tx 3 queue init failed\n");
4880                 goto error;
4881         }
4882         /* statistics */
4883         priv->rx_bufs_min = 0;
4884         priv->rx_pend_max = 0;
4885         return rc;
4886
4887       error:
4888         ipw_tx_queue_free(priv);
4889         return rc;
4890 }
4891
4892 /**
4893  * Reclaim Tx queue entries no more used by NIC.
4894  *
4895  * When FW adwances 'R' index, all entries between old and
4896  * new 'R' index need to be reclaimed. As result, some free space
4897  * forms. If there is enough free space (> low mark), wake Tx queue.
4898  *
4899  * @note Need to protect against garbage in 'R' index
4900  * @param priv
4901  * @param txq
4902  * @param qindex
4903  * @return Number of used entries remains in the queue
4904  */
4905 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4906                                 struct clx2_tx_queue *txq, int qindex)
4907 {
4908         u32 hw_tail;
4909         int used;
4910         struct clx2_queue *q = &txq->q;
4911
4912         hw_tail = ipw_read32(priv, q->reg_r);
4913         if (hw_tail >= q->n_bd) {
4914                 IPW_ERROR
4915                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4916                      hw_tail, q->n_bd);
4917                 goto done;
4918         }
4919         for (; q->last_used != hw_tail;
4920              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4921                 ipw_queue_tx_free_tfd(priv, txq);
4922                 priv->tx_packets++;
4923         }
4924       done:
4925         if ((ipw_queue_space(q) > q->low_mark) &&
4926             (qindex >= 0) &&
4927             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4928                 netif_wake_queue(priv->net_dev);
4929         used = q->first_empty - q->last_used;
4930         if (used < 0)
4931                 used += q->n_bd;
4932
4933         return used;
4934 }
4935
4936 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4937                              int len, int sync)
4938 {
4939         struct clx2_tx_queue *txq = &priv->txq_cmd;
4940         struct clx2_queue *q = &txq->q;
4941         struct tfd_frame *tfd;
4942
4943         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4944                 IPW_ERROR("No space for Tx\n");
4945                 return -EBUSY;
4946         }
4947
4948         tfd = &txq->bd[q->first_empty];
4949         txq->txb[q->first_empty] = NULL;
4950
4951         memset(tfd, 0, sizeof(*tfd));
4952         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4953         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4954         priv->hcmd_seq++;
4955         tfd->u.cmd.index = hcmd;
4956         tfd->u.cmd.length = len;
4957         memcpy(tfd->u.cmd.payload, buf, len);
4958         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4959         ipw_write32(priv, q->reg_w, q->first_empty);
4960         _ipw_read32(priv, 0x90);
4961
4962         return 0;
4963 }
4964
4965 /*
4966  * Rx theory of operation
4967  *
4968  * The host allocates 32 DMA target addresses and passes the host address
4969  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4970  * 0 to 31
4971  *
4972  * Rx Queue Indexes
4973  * The host/firmware share two index registers for managing the Rx buffers.
4974  *
4975  * The READ index maps to the first position that the firmware may be writing
4976  * to -- the driver can read up to (but not including) this position and get
4977  * good data.
4978  * The READ index is managed by the firmware once the card is enabled.
4979  *
4980  * The WRITE index maps to the last position the driver has read from -- the
4981  * position preceding WRITE is the last slot the firmware can place a packet.
4982  *
4983  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4984  * WRITE = READ.
4985  *
4986  * During initialization the host sets up the READ queue position to the first
4987  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4988  *
4989  * When the firmware places a packet in a buffer it will advance the READ index
4990  * and fire the RX interrupt.  The driver can then query the READ index and
4991  * process as many packets as possible, moving the WRITE index forward as it
4992  * resets the Rx queue buffers with new memory.
4993  *
4994  * The management in the driver is as follows:
4995  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4996  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4997  *   to replensish the ipw->rxq->rx_free.
4998  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4999  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5000  *   'processed' and 'read' driver indexes as well)
5001  * + A received packet is processed and handed to the kernel network stack,
5002  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5003  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5004  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5005  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5006  *   were enough free buffers and RX_STALLED is set it is cleared.
5007  *
5008  *
5009  * Driver sequence:
5010  *
5011  * ipw_rx_queue_alloc()       Allocates rx_free
5012  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5013  *                            ipw_rx_queue_restock
5014  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5015  *                            queue, updates firmware pointers, and updates
5016  *                            the WRITE index.  If insufficient rx_free buffers
5017  *                            are available, schedules ipw_rx_queue_replenish
5018  *
5019  * -- enable interrupts --
5020  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5021  *                            READ INDEX, detaching the SKB from the pool.
5022  *                            Moves the packet buffer from queue to rx_used.
5023  *                            Calls ipw_rx_queue_restock to refill any empty
5024  *                            slots.
5025  * ...
5026  *
5027  */
5028
5029 /*
5030  * If there are slots in the RX queue that  need to be restocked,
5031  * and we have free pre-allocated buffers, fill the ranks as much
5032  * as we can pulling from rx_free.
5033  *
5034  * This moves the 'write' index forward to catch up with 'processed', and
5035  * also updates the memory address in the firmware to reference the new
5036  * target buffer.
5037  */
5038 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5039 {
5040         struct ipw_rx_queue *rxq = priv->rxq;
5041         struct list_head *element;
5042         struct ipw_rx_mem_buffer *rxb;
5043         unsigned long flags;
5044         int write;
5045
5046         spin_lock_irqsave(&rxq->lock, flags);
5047         write = rxq->write;
5048         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5049                 element = rxq->rx_free.next;
5050                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5051                 list_del(element);
5052
5053                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5054                             rxb->dma_addr);
5055                 rxq->queue[rxq->write] = rxb;
5056                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5057                 rxq->free_count--;
5058         }
5059         spin_unlock_irqrestore(&rxq->lock, flags);
5060
5061         /* If the pre-allocated buffer pool is dropping low, schedule to
5062          * refill it */
5063         if (rxq->free_count <= RX_LOW_WATERMARK)
5064                 queue_work(priv->workqueue, &priv->rx_replenish);
5065
5066         /* If we've added more space for the firmware to place data, tell it */
5067         if (write != rxq->write)
5068                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5069 }
5070
5071 /*
5072  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5073  * Also restock the Rx queue via ipw_rx_queue_restock.
5074  *
5075  * This is called as a scheduled work item (except for during intialization)
5076  */
5077 static void ipw_rx_queue_replenish(void *data)
5078 {
5079         struct ipw_priv *priv = data;
5080         struct ipw_rx_queue *rxq = priv->rxq;
5081         struct list_head *element;
5082         struct ipw_rx_mem_buffer *rxb;
5083         unsigned long flags;
5084
5085         spin_lock_irqsave(&rxq->lock, flags);
5086         while (!list_empty(&rxq->rx_used)) {
5087                 element = rxq->rx_used.next;
5088                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5089                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5090                 if (!rxb->skb) {
5091                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5092                                priv->net_dev->name);
5093                         /* We don't reschedule replenish work here -- we will
5094                          * call the restock method and if it still needs
5095                          * more buffers it will schedule replenish */
5096                         break;
5097                 }
5098                 list_del(element);
5099
5100                 rxb->dma_addr =
5101                     pci_map_single(priv->pci_dev, rxb->skb->data,
5102                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5103
5104                 list_add_tail(&rxb->list, &rxq->rx_free);
5105                 rxq->free_count++;
5106         }
5107         spin_unlock_irqrestore(&rxq->lock, flags);
5108
5109         ipw_rx_queue_restock(priv);
5110 }
5111
5112 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5113 {
5114         struct ipw_priv *priv =
5115                 container_of(work, struct ipw_priv, rx_replenish);
5116         mutex_lock(&priv->mutex);
5117         ipw_rx_queue_replenish(priv);
5118         mutex_unlock(&priv->mutex);
5119 }
5120
5121 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5122  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5123  * This free routine walks the list of POOL entries and if SKB is set to
5124  * non NULL it is unmapped and freed
5125  */
5126 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5127 {
5128         int i;
5129
5130         if (!rxq)
5131                 return;
5132
5133         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5134                 if (rxq->pool[i].skb != NULL) {
5135                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5136                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5137                         dev_kfree_skb(rxq->pool[i].skb);
5138                 }
5139         }
5140
5141         kfree(rxq);
5142 }
5143
5144 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5145 {
5146         struct ipw_rx_queue *rxq;
5147         int i;
5148
5149         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5150         if (unlikely(!rxq)) {
5151                 IPW_ERROR("memory allocation failed\n");
5152                 return NULL;
5153         }
5154         spin_lock_init(&rxq->lock);
5155         INIT_LIST_HEAD(&rxq->rx_free);
5156         INIT_LIST_HEAD(&rxq->rx_used);
5157
5158         /* Fill the rx_used queue with _all_ of the Rx buffers */
5159         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5160                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5161
5162         /* Set us so that we have processed and used all buffers, but have
5163          * not restocked the Rx queue with fresh buffers */
5164         rxq->read = rxq->write = 0;
5165         rxq->processed = RX_QUEUE_SIZE - 1;
5166         rxq->free_count = 0;
5167
5168         return rxq;
5169 }
5170
5171 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5172 {
5173         rate &= ~IEEE80211_BASIC_RATE_MASK;
5174         if (ieee_mode == IEEE_A) {
5175                 switch (rate) {
5176                 case IEEE80211_OFDM_RATE_6MB:
5177                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5178                             1 : 0;
5179                 case IEEE80211_OFDM_RATE_9MB:
5180                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5181                             1 : 0;
5182                 case IEEE80211_OFDM_RATE_12MB:
5183                         return priv->
5184                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5185                 case IEEE80211_OFDM_RATE_18MB:
5186                         return priv->
5187                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5188                 case IEEE80211_OFDM_RATE_24MB:
5189                         return priv->
5190                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5191                 case IEEE80211_OFDM_RATE_36MB:
5192                         return priv->
5193                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5194                 case IEEE80211_OFDM_RATE_48MB:
5195                         return priv->
5196                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5197                 case IEEE80211_OFDM_RATE_54MB:
5198                         return priv->
5199                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5200                 default:
5201                         return 0;
5202                 }
5203         }
5204
5205         /* B and G mixed */
5206         switch (rate) {
5207         case IEEE80211_CCK_RATE_1MB:
5208                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5209         case IEEE80211_CCK_RATE_2MB:
5210                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5211         case IEEE80211_CCK_RATE_5MB:
5212                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5213         case IEEE80211_CCK_RATE_11MB:
5214                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5215         }
5216
5217         /* If we are limited to B modulations, bail at this point */
5218         if (ieee_mode == IEEE_B)
5219                 return 0;
5220
5221         /* G */
5222         switch (rate) {
5223         case IEEE80211_OFDM_RATE_6MB:
5224                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5225         case IEEE80211_OFDM_RATE_9MB:
5226                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5227         case IEEE80211_OFDM_RATE_12MB:
5228                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5229         case IEEE80211_OFDM_RATE_18MB:
5230                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5231         case IEEE80211_OFDM_RATE_24MB:
5232                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5233         case IEEE80211_OFDM_RATE_36MB:
5234                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5235         case IEEE80211_OFDM_RATE_48MB:
5236                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5237         case IEEE80211_OFDM_RATE_54MB:
5238                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5239         }
5240
5241         return 0;
5242 }
5243
5244 static int ipw_compatible_rates(struct ipw_priv *priv,
5245                                 const struct ieee80211_network *network,
5246                                 struct ipw_supported_rates *rates)
5247 {
5248         int num_rates, i;
5249
5250         memset(rates, 0, sizeof(*rates));
5251         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5252         rates->num_rates = 0;
5253         for (i = 0; i < num_rates; i++) {
5254                 if (!ipw_is_rate_in_mask(priv, network->mode,
5255                                          network->rates[i])) {
5256
5257                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5258                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5259                                                "rate %02X\n",
5260                                                network->rates[i]);
5261                                 rates->supported_rates[rates->num_rates++] =
5262                                     network->rates[i];
5263                                 continue;
5264                         }
5265
5266                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5267                                        network->rates[i], priv->rates_mask);
5268                         continue;
5269                 }
5270
5271                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5272         }
5273
5274         num_rates = min(network->rates_ex_len,
5275                         (u8) (IPW_MAX_RATES - num_rates));
5276         for (i = 0; i < num_rates; i++) {
5277                 if (!ipw_is_rate_in_mask(priv, network->mode,
5278                                          network->rates_ex[i])) {
5279                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5280                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5281                                                "rate %02X\n",
5282                                                network->rates_ex[i]);
5283                                 rates->supported_rates[rates->num_rates++] =
5284                                     network->rates[i];
5285                                 continue;
5286                         }
5287
5288                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5289                                        network->rates_ex[i], priv->rates_mask);
5290                         continue;
5291                 }
5292
5293                 rates->supported_rates[rates->num_rates++] =
5294                     network->rates_ex[i];
5295         }
5296
5297         return 1;
5298 }
5299
5300 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5301                                   const struct ipw_supported_rates *src)
5302 {
5303         u8 i;
5304         for (i = 0; i < src->num_rates; i++)
5305                 dest->supported_rates[i] = src->supported_rates[i];
5306         dest->num_rates = src->num_rates;
5307 }
5308
5309 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5310  * mask should ever be used -- right now all callers to add the scan rates are
5311  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5312 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5313                                    u8 modulation, u32 rate_mask)
5314 {
5315         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5316             IEEE80211_BASIC_RATE_MASK : 0;
5317
5318         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5319                 rates->supported_rates[rates->num_rates++] =
5320                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5321
5322         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5323                 rates->supported_rates[rates->num_rates++] =
5324                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5325
5326         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5327                 rates->supported_rates[rates->num_rates++] = basic_mask |
5328                     IEEE80211_CCK_RATE_5MB;
5329
5330         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5331                 rates->supported_rates[rates->num_rates++] = basic_mask |
5332                     IEEE80211_CCK_RATE_11MB;
5333 }
5334
5335 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5336                                     u8 modulation, u32 rate_mask)
5337 {
5338         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5339             IEEE80211_BASIC_RATE_MASK : 0;
5340
5341         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5342                 rates->supported_rates[rates->num_rates++] = basic_mask |
5343                     IEEE80211_OFDM_RATE_6MB;
5344
5345         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5346                 rates->supported_rates[rates->num_rates++] =
5347                     IEEE80211_OFDM_RATE_9MB;
5348
5349         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5350                 rates->supported_rates[rates->num_rates++] = basic_mask |
5351                     IEEE80211_OFDM_RATE_12MB;
5352
5353         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5354                 rates->supported_rates[rates->num_rates++] =
5355                     IEEE80211_OFDM_RATE_18MB;
5356
5357         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5358                 rates->supported_rates[rates->num_rates++] = basic_mask |
5359                     IEEE80211_OFDM_RATE_24MB;
5360
5361         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5362                 rates->supported_rates[rates->num_rates++] =
5363                     IEEE80211_OFDM_RATE_36MB;
5364
5365         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5366                 rates->supported_rates[rates->num_rates++] =
5367                     IEEE80211_OFDM_RATE_48MB;
5368
5369         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5370                 rates->supported_rates[rates->num_rates++] =
5371                     IEEE80211_OFDM_RATE_54MB;
5372 }
5373
5374 struct ipw_network_match {
5375         struct ieee80211_network *network;
5376         struct ipw_supported_rates rates;
5377 };
5378
5379 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5380                                   struct ipw_network_match *match,
5381                                   struct ieee80211_network *network,
5382                                   int roaming)
5383 {
5384         struct ipw_supported_rates rates;
5385
5386         /* Verify that this network's capability is compatible with the
5387          * current mode (AdHoc or Infrastructure) */
5388         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5389              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5390                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5391                                 "capability mismatch.\n",
5392                                 escape_essid(network->ssid, network->ssid_len),
5393                                 MAC_ARG(network->bssid));
5394                 return 0;
5395         }
5396
5397         /* If we do not have an ESSID for this AP, we can not associate with
5398          * it */
5399         if (network->flags & NETWORK_EMPTY_ESSID) {
5400                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5401                                 "because of hidden ESSID.\n",
5402                                 escape_essid(network->ssid, network->ssid_len),
5403                                 MAC_ARG(network->bssid));
5404                 return 0;
5405         }
5406
5407         if (unlikely(roaming)) {
5408                 /* If we are roaming, then ensure check if this is a valid
5409                  * network to try and roam to */
5410                 if ((network->ssid_len != match->network->ssid_len) ||
5411                     memcmp(network->ssid, match->network->ssid,
5412                            network->ssid_len)) {
5413                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5414                                         "because of non-network ESSID.\n",
5415                                         escape_essid(network->ssid,
5416                                                      network->ssid_len),
5417                                         MAC_ARG(network->bssid));
5418                         return 0;
5419                 }
5420         } else {
5421                 /* If an ESSID has been configured then compare the broadcast
5422                  * ESSID to ours */
5423                 if ((priv->config & CFG_STATIC_ESSID) &&
5424                     ((network->ssid_len != priv->essid_len) ||
5425                      memcmp(network->ssid, priv->essid,
5426                             min(network->ssid_len, priv->essid_len)))) {
5427                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5428
5429                         strncpy(escaped,
5430                                 escape_essid(network->ssid, network->ssid_len),
5431                                 sizeof(escaped));
5432                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5433                                         "because of ESSID mismatch: '%s'.\n",
5434                                         escaped, MAC_ARG(network->bssid),
5435                                         escape_essid(priv->essid,
5436                                                      priv->essid_len));
5437                         return 0;
5438                 }
5439         }
5440
5441         /* If the old network rate is better than this one, don't bother
5442          * testing everything else. */
5443
5444         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5445                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5446                                 "current network.\n",
5447                                 escape_essid(match->network->ssid,
5448                                              match->network->ssid_len));
5449                 return 0;
5450         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5451                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5452                                 "current network.\n",
5453                                 escape_essid(match->network->ssid,
5454                                              match->network->ssid_len));
5455                 return 0;
5456         }
5457
5458         /* Now go through and see if the requested network is valid... */
5459         if (priv->ieee->scan_age != 0 &&
5460             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5461                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5462                                 "because of age: %ums.\n",
5463                                 escape_essid(network->ssid, network->ssid_len),
5464                                 MAC_ARG(network->bssid),
5465                                 jiffies_to_msecs(jiffies -
5466                                                  network->last_scanned));
5467                 return 0;
5468         }
5469
5470         if ((priv->config & CFG_STATIC_CHANNEL) &&
5471             (network->channel != priv->channel)) {
5472                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5473                                 "because of channel mismatch: %d != %d.\n",
5474                                 escape_essid(network->ssid, network->ssid_len),
5475                                 MAC_ARG(network->bssid),
5476                                 network->channel, priv->channel);
5477                 return 0;
5478         }
5479
5480         /* Verify privacy compatability */
5481         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5482             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5483                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5484                                 "because of privacy mismatch: %s != %s.\n",
5485                                 escape_essid(network->ssid, network->ssid_len),
5486                                 MAC_ARG(network->bssid),
5487                                 priv->
5488                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5489                                 network->
5490                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5491                                 "off");
5492                 return 0;
5493         }
5494
5495         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5496                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5497                                 "because of the same BSSID match: " MAC_FMT
5498                                 ".\n", escape_essid(network->ssid,
5499                                                     network->ssid_len),
5500                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5501                 return 0;
5502         }
5503
5504         /* Filter out any incompatible freq / mode combinations */
5505         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5506                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5507                                 "because of invalid frequency/mode "
5508                                 "combination.\n",
5509                                 escape_essid(network->ssid, network->ssid_len),
5510                                 MAC_ARG(network->bssid));
5511                 return 0;
5512         }
5513
5514         /* Ensure that the rates supported by the driver are compatible with
5515          * this AP, including verification of basic rates (mandatory) */
5516         if (!ipw_compatible_rates(priv, network, &rates)) {
5517                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5518                                 "because configured rate mask excludes "
5519                                 "AP mandatory rate.\n",
5520                                 escape_essid(network->ssid, network->ssid_len),
5521                                 MAC_ARG(network->bssid));
5522                 return 0;
5523         }
5524
5525         if (rates.num_rates == 0) {
5526                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5527                                 "because of no compatible rates.\n",
5528                                 escape_essid(network->ssid, network->ssid_len),
5529                                 MAC_ARG(network->bssid));
5530                 return 0;
5531         }
5532
5533         /* TODO: Perform any further minimal comparititive tests.  We do not
5534          * want to put too much policy logic here; intelligent scan selection
5535          * should occur within a generic IEEE 802.11 user space tool.  */
5536
5537         /* Set up 'new' AP to this network */
5538         ipw_copy_rates(&match->rates, &rates);
5539         match->network = network;
5540         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5541                         escape_essid(network->ssid, network->ssid_len),
5542                         MAC_ARG(network->bssid));
5543
5544         return 1;
5545 }
5546
5547 static void ipw_merge_adhoc_network(struct work_struct *work)
5548 {
5549         struct ipw_priv *priv =
5550                 container_of(work, struct ipw_priv, merge_networks);
5551         struct ieee80211_network *network = NULL;
5552         struct ipw_network_match match = {
5553                 .network = priv->assoc_network
5554         };
5555
5556         if ((priv->status & STATUS_ASSOCIATED) &&
5557             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5558                 /* First pass through ROAM process -- look for a better
5559                  * network */
5560                 unsigned long flags;
5561
5562                 spin_lock_irqsave(&priv->ieee->lock, flags);
5563                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5564                         if (network != priv->assoc_network)
5565                                 ipw_find_adhoc_network(priv, &match, network,
5566                                                        1);
5567                 }
5568                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5569
5570                 if (match.network == priv->assoc_network) {
5571                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5572                                         "merge to.\n");
5573                         return;
5574                 }
5575
5576                 mutex_lock(&priv->mutex);
5577                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578                         IPW_DEBUG_MERGE("remove network %s\n",
5579                                         escape_essid(priv->essid,
5580                                                      priv->essid_len));
5581                         ipw_remove_current_network(priv);
5582                 }
5583
5584                 ipw_disassociate(priv);
5585                 priv->assoc_network = match.network;
5586                 mutex_unlock(&priv->mutex);
5587                 return;
5588         }
5589 }
5590
5591 static int ipw_best_network(struct ipw_priv *priv,
5592                             struct ipw_network_match *match,
5593                             struct ieee80211_network *network, int roaming)
5594 {
5595         struct ipw_supported_rates rates;
5596
5597         /* Verify that this network's capability is compatible with the
5598          * current mode (AdHoc or Infrastructure) */
5599         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5600              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5601             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5602              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5603                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5604                                 "capability mismatch.\n",
5605                                 escape_essid(network->ssid, network->ssid_len),
5606                                 MAC_ARG(network->bssid));
5607                 return 0;
5608         }
5609
5610         /* If we do not have an ESSID for this AP, we can not associate with
5611          * it */
5612         if (network->flags & NETWORK_EMPTY_ESSID) {
5613                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5614                                 "because of hidden ESSID.\n",
5615                                 escape_essid(network->ssid, network->ssid_len),
5616                                 MAC_ARG(network->bssid));
5617                 return 0;
5618         }
5619
5620         if (unlikely(roaming)) {
5621                 /* If we are roaming, then ensure check if this is a valid
5622                  * network to try and roam to */
5623                 if ((network->ssid_len != match->network->ssid_len) ||
5624                     memcmp(network->ssid, match->network->ssid,
5625                            network->ssid_len)) {
5626                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5627                                         "because of non-network ESSID.\n",
5628                                         escape_essid(network->ssid,
5629                                                      network->ssid_len),
5630                                         MAC_ARG(network->bssid));
5631                         return 0;
5632                 }
5633         } else {
5634                 /* If an ESSID has been configured then compare the broadcast
5635                  * ESSID to ours */
5636                 if ((priv->config & CFG_STATIC_ESSID) &&
5637                     ((network->ssid_len != priv->essid_len) ||
5638                      memcmp(network->ssid, priv->essid,
5639                             min(network->ssid_len, priv->essid_len)))) {
5640                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5641                         strncpy(escaped,
5642                                 escape_essid(network->ssid, network->ssid_len),
5643                                 sizeof(escaped));
5644                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5645                                         "because of ESSID mismatch: '%s'.\n",
5646                                         escaped, MAC_ARG(network->bssid),
5647                                         escape_essid(priv->essid,
5648                                                      priv->essid_len));
5649                         return 0;
5650                 }
5651         }
5652
5653         /* If the old network rate is better than this one, don't bother
5654          * testing everything else. */
5655         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5656                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5657                 strncpy(escaped,
5658                         escape_essid(network->ssid, network->ssid_len),
5659                         sizeof(escaped));
5660                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5661                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5662                                 escaped, MAC_ARG(network->bssid),
5663                                 escape_essid(match->network->ssid,
5664                                              match->network->ssid_len),
5665                                 MAC_ARG(match->network->bssid));
5666                 return 0;
5667         }
5668
5669         /* If this network has already had an association attempt within the
5670          * last 3 seconds, do not try and associate again... */
5671         if (network->last_associate &&
5672             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5673                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5674                                 "because of storming (%ums since last "
5675                                 "assoc attempt).\n",
5676                                 escape_essid(network->ssid, network->ssid_len),
5677                                 MAC_ARG(network->bssid),
5678                                 jiffies_to_msecs(jiffies -
5679                                                  network->last_associate));
5680                 return 0;
5681         }
5682
5683         /* Now go through and see if the requested network is valid... */
5684         if (priv->ieee->scan_age != 0 &&
5685             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5686                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5687                                 "because of age: %ums.\n",
5688                                 escape_essid(network->ssid, network->ssid_len),
5689                                 MAC_ARG(network->bssid),
5690                                 jiffies_to_msecs(jiffies -
5691                                                  network->last_scanned));
5692                 return 0;
5693         }
5694
5695         if ((priv->config & CFG_STATIC_CHANNEL) &&
5696             (network->channel != priv->channel)) {
5697                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5698                                 "because of channel mismatch: %d != %d.\n",
5699                                 escape_essid(network->ssid, network->ssid_len),
5700                                 MAC_ARG(network->bssid),
5701                                 network->channel, priv->channel);
5702                 return 0;
5703         }
5704
5705         /* Verify privacy compatability */
5706         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5707             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5708                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5709                                 "because of privacy mismatch: %s != %s.\n",
5710                                 escape_essid(network->ssid, network->ssid_len),
5711                                 MAC_ARG(network->bssid),
5712                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5713                                 "off",
5714                                 network->capability &
5715                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5716                 return 0;
5717         }
5718
5719         if ((priv->config & CFG_STATIC_BSSID) &&
5720             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5721                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5722                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5723                                 escape_essid(network->ssid, network->ssid_len),
5724                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5725                 return 0;
5726         }
5727
5728         /* Filter out any incompatible freq / mode combinations */
5729         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5730                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5731                                 "because of invalid frequency/mode "
5732                                 "combination.\n",
5733                                 escape_essid(network->ssid, network->ssid_len),
5734                                 MAC_ARG(network->bssid));
5735                 return 0;
5736         }
5737
5738         /* Filter out invalid channel in current GEO */
5739         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5740                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5741                                 "because of invalid channel in current GEO\n",
5742                                 escape_essid(network->ssid, network->ssid_len),
5743                                 MAC_ARG(network->bssid));
5744                 return 0;
5745         }
5746
5747         /* Ensure that the rates supported by the driver are compatible with
5748          * this AP, including verification of basic rates (mandatory) */
5749         if (!ipw_compatible_rates(priv, network, &rates)) {
5750                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5751                                 "because configured rate mask excludes "
5752                                 "AP mandatory rate.\n",
5753                                 escape_essid(network->ssid, network->ssid_len),
5754                                 MAC_ARG(network->bssid));
5755                 return 0;
5756         }
5757
5758         if (rates.num_rates == 0) {
5759                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5760                                 "because of no compatible rates.\n",
5761                                 escape_essid(network->ssid, network->ssid_len),
5762                                 MAC_ARG(network->bssid));
5763                 return 0;
5764         }
5765
5766         /* TODO: Perform any further minimal comparititive tests.  We do not
5767          * want to put too much policy logic here; intelligent scan selection
5768          * should occur within a generic IEEE 802.11 user space tool.  */
5769
5770         /* Set up 'new' AP to this network */
5771         ipw_copy_rates(&match->rates, &rates);
5772         match->network = network;
5773
5774         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5775                         escape_essid(network->ssid, network->ssid_len),
5776                         MAC_ARG(network->bssid));
5777
5778         return 1;
5779 }
5780
5781 static void ipw_adhoc_create(struct ipw_priv *priv,
5782                              struct ieee80211_network *network)
5783 {
5784         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5785         int i;
5786
5787         /*
5788          * For the purposes of scanning, we can set our wireless mode
5789          * to trigger scans across combinations of bands, but when it
5790          * comes to creating a new ad-hoc network, we have tell the FW
5791          * exactly which band to use.
5792          *
5793          * We also have the possibility of an invalid channel for the
5794          * chossen band.  Attempting to create a new ad-hoc network
5795          * with an invalid channel for wireless mode will trigger a
5796          * FW fatal error.
5797          *
5798          */
5799         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5800         case IEEE80211_52GHZ_BAND:
5801                 network->mode = IEEE_A;
5802                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5803                 BUG_ON(i == -1);
5804                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5805                         IPW_WARNING("Overriding invalid channel\n");
5806                         priv->channel = geo->a[0].channel;
5807                 }
5808                 break;
5809
5810         case IEEE80211_24GHZ_BAND:
5811                 if (priv->ieee->mode & IEEE_G)
5812                         network->mode = IEEE_G;
5813                 else
5814                         network->mode = IEEE_B;
5815                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5816                 BUG_ON(i == -1);
5817                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5818                         IPW_WARNING("Overriding invalid channel\n");
5819                         priv->channel = geo->bg[0].channel;
5820                 }
5821                 break;
5822
5823         default:
5824                 IPW_WARNING("Overriding invalid channel\n");
5825                 if (priv->ieee->mode & IEEE_A) {
5826                         network->mode = IEEE_A;
5827                         priv->channel = geo->a[0].channel;
5828                 } else if (priv->ieee->mode & IEEE_G) {
5829                         network->mode = IEEE_G;
5830                         priv->channel = geo->bg[0].channel;
5831                 } else {
5832                         network->mode = IEEE_B;
5833                         priv->channel = geo->bg[0].channel;
5834                 }
5835                 break;
5836         }
5837
5838         network->channel = priv->channel;
5839         priv->config |= CFG_ADHOC_PERSIST;
5840         ipw_create_bssid(priv, network->bssid);
5841         network->ssid_len = priv->essid_len;
5842         memcpy(network->ssid, priv->essid, priv->essid_len);
5843         memset(&network->stats, 0, sizeof(network->stats));
5844         network->capability = WLAN_CAPABILITY_IBSS;
5845         if (!(priv->config & CFG_PREAMBLE_LONG))
5846                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5847         if (priv->capability & CAP_PRIVACY_ON)
5848                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5849         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5850         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5851         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5852         memcpy(network->rates_ex,
5853                &priv->rates.supported_rates[network->rates_len],
5854                network->rates_ex_len);
5855         network->last_scanned = 0;
5856         network->flags = 0;
5857         network->last_associate = 0;
5858         network->time_stamp[0] = 0;
5859         network->time_stamp[1] = 0;
5860         network->beacon_interval = 100; /* Default */
5861         network->listen_interval = 10;  /* Default */
5862         network->atim_window = 0;       /* Default */
5863         network->wpa_ie_len = 0;
5864         network->rsn_ie_len = 0;
5865 }
5866
5867 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5868 {
5869         struct ipw_tgi_tx_key key;
5870
5871         if (!(priv->ieee->sec.flags & (1 << index)))
5872                 return;
5873
5874         key.key_id = index;
5875         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5876         key.security_type = type;
5877         key.station_index = 0;  /* always 0 for BSS */
5878         key.flags = 0;
5879         /* 0 for new key; previous value of counter (after fatal error) */
5880         key.tx_counter[0] = cpu_to_le32(0);
5881         key.tx_counter[1] = cpu_to_le32(0);
5882
5883         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5884 }
5885
5886 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5887 {
5888         struct ipw_wep_key key;
5889         int i;
5890
5891         key.cmd_id = DINO_CMD_WEP_KEY;
5892         key.seq_num = 0;
5893
5894         /* Note: AES keys cannot be set for multiple times.
5895          * Only set it at the first time. */
5896         for (i = 0; i < 4; i++) {
5897                 key.key_index = i | type;
5898                 if (!(priv->ieee->sec.flags & (1 << i))) {
5899                         key.key_size = 0;
5900                         continue;
5901                 }
5902
5903                 key.key_size = priv->ieee->sec.key_sizes[i];
5904                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5905
5906                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5907         }
5908 }
5909
5910 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5911 {
5912         if (priv->ieee->host_encrypt)
5913                 return;
5914
5915         switch (level) {
5916         case SEC_LEVEL_3:
5917                 priv->sys_config.disable_unicast_decryption = 0;
5918                 priv->ieee->host_decrypt = 0;
5919                 break;
5920         case SEC_LEVEL_2:
5921                 priv->sys_config.disable_unicast_decryption = 1;
5922                 priv->ieee->host_decrypt = 1;
5923                 break;
5924         case SEC_LEVEL_1:
5925                 priv->sys_config.disable_unicast_decryption = 0;
5926                 priv->ieee->host_decrypt = 0;
5927                 break;
5928         case SEC_LEVEL_0:
5929                 priv->sys_config.disable_unicast_decryption = 1;
5930                 break;
5931         default:
5932                 break;
5933         }
5934 }
5935
5936 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5937 {
5938         if (priv->ieee->host_encrypt)
5939                 return;
5940
5941         switch (level) {
5942         case SEC_LEVEL_3:
5943                 priv->sys_config.disable_multicast_decryption = 0;
5944                 break;
5945         case SEC_LEVEL_2:
5946                 priv->sys_config.disable_multicast_decryption = 1;
5947                 break;
5948         case SEC_LEVEL_1:
5949                 priv->sys_config.disable_multicast_decryption = 0;
5950                 break;
5951         case SEC_LEVEL_0:
5952                 priv->sys_config.disable_multicast_decryption = 1;
5953                 break;
5954         default:
5955                 break;
5956         }
5957 }
5958
5959 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5960 {
5961         switch (priv->ieee->sec.level) {
5962         case SEC_LEVEL_3:
5963                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5964                         ipw_send_tgi_tx_key(priv,
5965                                             DCT_FLAG_EXT_SECURITY_CCM,
5966                                             priv->ieee->sec.active_key);
5967
5968                 if (!priv->ieee->host_mc_decrypt)
5969                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5970                 break;
5971         case SEC_LEVEL_2:
5972                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5973                         ipw_send_tgi_tx_key(priv,
5974                                             DCT_FLAG_EXT_SECURITY_TKIP,
5975                                             priv->ieee->sec.active_key);
5976                 break;
5977         case SEC_LEVEL_1:
5978                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5979                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5980                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5981                 break;
5982         case SEC_LEVEL_0:
5983         default:
5984                 break;
5985         }
5986 }
5987
5988 static void ipw_adhoc_check(void *data)
5989 {
5990         struct ipw_priv *priv = data;
5991
5992         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5993             !(priv->config & CFG_ADHOC_PERSIST)) {
5994                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5995                           IPW_DL_STATE | IPW_DL_ASSOC,
5996                           "Missed beacon: %d - disassociate\n",
5997                           priv->missed_adhoc_beacons);
5998                 ipw_remove_current_network(priv);
5999                 ipw_disassociate(priv);
6000                 return;
6001         }
6002
6003         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6004                            priv->assoc_request.beacon_interval);
6005 }
6006
6007 static void ipw_bg_adhoc_check(struct work_struct *work)
6008 {
6009         struct ipw_priv *priv =
6010                 container_of(work, struct ipw_priv, adhoc_check.work);
6011         mutex_lock(&priv->mutex);
6012         ipw_adhoc_check(priv);
6013         mutex_unlock(&priv->mutex);
6014 }
6015
6016 static void ipw_debug_config(struct ipw_priv *priv)
6017 {
6018         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6019                        "[CFG 0x%08X]\n", priv->config);
6020         if (priv->config & CFG_STATIC_CHANNEL)
6021                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6022         else
6023                 IPW_DEBUG_INFO("Channel unlocked.\n");
6024         if (priv->config & CFG_STATIC_ESSID)
6025                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6026                                escape_essid(priv->essid, priv->essid_len));
6027         else
6028                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6029         if (priv->config & CFG_STATIC_BSSID)
6030                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6031                                MAC_ARG(priv->bssid));
6032         else
6033                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6034         if (priv->capability & CAP_PRIVACY_ON)
6035                 IPW_DEBUG_INFO("PRIVACY on\n");
6036         else
6037                 IPW_DEBUG_INFO("PRIVACY off\n");
6038         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6039 }
6040
6041 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6042 {
6043         /* TODO: Verify that this works... */
6044         struct ipw_fixed_rate fr = {
6045                 .tx_rates = priv->rates_mask
6046         };
6047         u32 reg;
6048         u16 mask = 0;
6049
6050         /* Identify 'current FW band' and match it with the fixed
6051          * Tx rates */
6052
6053         switch (priv->ieee->freq_band) {
6054         case IEEE80211_52GHZ_BAND:      /* A only */
6055                 /* IEEE_A */
6056                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6057                         /* Invalid fixed rate mask */
6058                         IPW_DEBUG_WX
6059                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6060                         fr.tx_rates = 0;
6061                         break;
6062                 }
6063
6064                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6065                 break;
6066
6067         default:                /* 2.4Ghz or Mixed */
6068                 /* IEEE_B */
6069                 if (mode == IEEE_B) {
6070                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6071                                 /* Invalid fixed rate mask */
6072                                 IPW_DEBUG_WX
6073                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6074                                 fr.tx_rates = 0;
6075                         }
6076                         break;
6077                 }
6078
6079                 /* IEEE_G */
6080                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6081                                     IEEE80211_OFDM_RATES_MASK)) {
6082                         /* Invalid fixed rate mask */
6083                         IPW_DEBUG_WX
6084                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6085                         fr.tx_rates = 0;
6086                         break;
6087                 }
6088
6089                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6090                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6091                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6092                 }
6093
6094                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6095                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6096                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6097                 }
6098
6099                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6100                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6101                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6102                 }
6103
6104                 fr.tx_rates |= mask;
6105                 break;
6106         }
6107
6108         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6109         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6110 }
6111
6112 static void ipw_abort_scan(struct ipw_priv *priv)
6113 {
6114         int err;
6115
6116         if (priv->status & STATUS_SCAN_ABORTING) {
6117                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6118                 return;
6119         }
6120         priv->status |= STATUS_SCAN_ABORTING;
6121
6122         err = ipw_send_scan_abort(priv);
6123         if (err)
6124                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6125 }
6126
6127 static void ipw_add_scan_channels(struct ipw_priv *priv,
6128                                   struct ipw_scan_request_ext *scan,
6129                                   int scan_type)
6130 {
6131         int channel_index = 0;
6132         const struct ieee80211_geo *geo;
6133         int i;
6134
6135         geo = ieee80211_get_geo(priv->ieee);
6136
6137         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6138                 int start = channel_index;
6139                 for (i = 0; i < geo->a_channels; i++) {
6140                         if ((priv->status & STATUS_ASSOCIATED) &&
6141                             geo->a[i].channel == priv->channel)
6142                                 continue;
6143                         channel_index++;
6144                         scan->channels_list[channel_index] = geo->a[i].channel;
6145                         ipw_set_scan_type(scan, channel_index,
6146                                           geo->a[i].
6147                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6148                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6149                                           scan_type);
6150                 }
6151
6152                 if (start != channel_index) {
6153                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6154                             (channel_index - start);
6155                         channel_index++;
6156                 }
6157         }
6158
6159         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6160                 int start = channel_index;
6161                 if (priv->config & CFG_SPEED_SCAN) {
6162                         int index;
6163                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6164                                 /* nop out the list */
6165                                 [0] = 0
6166                         };
6167
6168                         u8 channel;
6169                         while (channel_index < IPW_SCAN_CHANNELS) {
6170                                 channel =
6171                                     priv->speed_scan[priv->speed_scan_pos];
6172                                 if (channel == 0) {
6173                                         priv->speed_scan_pos = 0;
6174                                         channel = priv->speed_scan[0];
6175                                 }
6176                                 if ((priv->status & STATUS_ASSOCIATED) &&
6177                                     channel == priv->channel) {
6178                                         priv->speed_scan_pos++;
6179                                         continue;
6180                                 }
6181
6182                                 /* If this channel has already been
6183                                  * added in scan, break from loop
6184                                  * and this will be the first channel
6185                                  * in the next scan.
6186                                  */
6187                                 if (channels[channel - 1] != 0)
6188                                         break;
6189
6190                                 channels[channel - 1] = 1;
6191                                 priv->speed_scan_pos++;
6192                                 channel_index++;
6193                                 scan->channels_list[channel_index] = channel;
6194                                 index =
6195                                     ieee80211_channel_to_index(priv->ieee, channel);
6196                                 ipw_set_scan_type(scan, channel_index,
6197                                                   geo->bg[index].
6198                                                   flags &
6199                                                   IEEE80211_CH_PASSIVE_ONLY ?
6200                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6201                                                   : scan_type);
6202                         }
6203                 } else {
6204                         for (i = 0; i < geo->bg_channels; i++) {
6205                                 if ((priv->status & STATUS_ASSOCIATED) &&
6206                                     geo->bg[i].channel == priv->channel)
6207                                         continue;
6208                                 channel_index++;
6209                                 scan->channels_list[channel_index] =
6210                                     geo->bg[i].channel;
6211                                 ipw_set_scan_type(scan, channel_index,
6212                                                   geo->bg[i].
6213                                                   flags &
6214                                                   IEEE80211_CH_PASSIVE_ONLY ?
6215                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6216                                                   : scan_type);
6217                         }
6218                 }
6219
6220                 if (start != channel_index) {
6221                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6222                             (channel_index - start);
6223                 }
6224         }
6225 }
6226
6227 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6228 {
6229         struct ipw_scan_request_ext scan;
6230         int err = 0, scan_type;
6231
6232         if (!(priv->status & STATUS_INIT) ||
6233             (priv->status & STATUS_EXIT_PENDING))
6234                 return 0;
6235
6236         mutex_lock(&priv->mutex);
6237
6238         if (priv->status & STATUS_SCANNING) {
6239                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6240                 priv->status |= STATUS_SCAN_PENDING;
6241                 goto done;
6242         }
6243
6244         if (!(priv->status & STATUS_SCAN_FORCED) &&
6245             priv->status & STATUS_SCAN_ABORTING) {
6246                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6247                 priv->status |= STATUS_SCAN_PENDING;
6248                 goto done;
6249         }
6250
6251         if (priv->status & STATUS_RF_KILL_MASK) {
6252                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6253                 priv->status |= STATUS_SCAN_PENDING;
6254                 goto done;
6255         }
6256
6257         memset(&scan, 0, sizeof(scan));
6258         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6259
6260         if (type == IW_SCAN_TYPE_PASSIVE) {
6261                 IPW_DEBUG_WX("use passive scanning\n");
6262                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6263                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6264                         cpu_to_le16(120);
6265                 ipw_add_scan_channels(priv, &scan, scan_type);
6266                 goto send_request;
6267         }
6268
6269         /* Use active scan by default. */
6270         if (priv->config & CFG_SPEED_SCAN)
6271                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6272                         cpu_to_le16(30);
6273         else
6274                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6275                         cpu_to_le16(20);
6276
6277         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6278                 cpu_to_le16(20);
6279
6280         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6281
6282 #ifdef CONFIG_IPW2200_MONITOR
6283         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6284                 u8 channel;
6285                 u8 band = 0;
6286
6287                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6288                 case IEEE80211_52GHZ_BAND:
6289                         band = (u8) (IPW_A_MODE << 6) | 1;
6290                         channel = priv->channel;
6291                         break;
6292
6293                 case IEEE80211_24GHZ_BAND:
6294                         band = (u8) (IPW_B_MODE << 6) | 1;
6295                         channel = priv->channel;
6296                         break;
6297
6298                 default:
6299                         band = (u8) (IPW_B_MODE << 6) | 1;
6300                         channel = 9;
6301                         break;
6302                 }
6303
6304                 scan.channels_list[0] = band;
6305                 scan.channels_list[1] = channel;
6306                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6307
6308                 /* NOTE:  The card will sit on this channel for this time
6309                  * period.  Scan aborts are timing sensitive and frequently
6310                  * result in firmware restarts.  As such, it is best to
6311                  * set a small dwell_time here and just keep re-issuing
6312                  * scans.  Otherwise fast channel hopping will not actually
6313                  * hop channels.
6314                  *
6315                  * TODO: Move SPEED SCAN support to all modes and bands */
6316                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6317                         cpu_to_le16(2000);
6318         } else {
6319 #endif                          /* CONFIG_IPW2200_MONITOR */
6320                 /* If we are roaming, then make this a directed scan for the
6321                  * current network.  Otherwise, ensure that every other scan
6322                  * is a fast channel hop scan */
6323                 if ((priv->status & STATUS_ROAMING)
6324                     || (!(priv->status & STATUS_ASSOCIATED)
6325                         && (priv->config & CFG_STATIC_ESSID)
6326                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6327                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6328                         if (err) {
6329                                 IPW_DEBUG_HC("Attempt to send SSID command "
6330                                              "failed.\n");
6331                                 goto done;
6332                         }
6333
6334                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6335                 } else
6336                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6337
6338                 ipw_add_scan_channels(priv, &scan, scan_type);
6339 #ifdef CONFIG_IPW2200_MONITOR
6340         }
6341 #endif
6342
6343 send_request:
6344         err = ipw_send_scan_request_ext(priv, &scan);
6345         if (err) {
6346                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6347                 goto done;
6348         }
6349
6350         priv->status |= STATUS_SCANNING;
6351         priv->status &= ~STATUS_SCAN_PENDING;
6352         queue_delayed_work(priv->workqueue, &priv->scan_check,
6353                            IPW_SCAN_CHECK_WATCHDOG);
6354 done:
6355         mutex_unlock(&priv->mutex);
6356         return err;
6357 }
6358
6359 static void ipw_request_passive_scan(struct work_struct *work)
6360 {
6361         struct ipw_priv *priv =
6362                 container_of(work, struct ipw_priv, request_passive_scan);
6363         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6364 }
6365
6366 static void ipw_request_scan(struct work_struct *work)
6367 {
6368         struct ipw_priv *priv =
6369                 container_of(work, struct ipw_priv, request_scan.work);
6370         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6371 }
6372
6373 static void ipw_bg_abort_scan(struct work_struct *work)
6374 {
6375         struct ipw_priv *priv =
6376                 container_of(work, struct ipw_priv, abort_scan);
6377         mutex_lock(&priv->mutex);
6378         ipw_abort_scan(priv);
6379         mutex_unlock(&priv->mutex);
6380 }
6381
6382 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6383 {
6384         /* This is called when wpa_supplicant loads and closes the driver
6385          * interface. */
6386         priv->ieee->wpa_enabled = value;
6387         return 0;
6388 }
6389
6390 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6391 {
6392         struct ieee80211_device *ieee = priv->ieee;
6393         struct ieee80211_security sec = {
6394                 .flags = SEC_AUTH_MODE,
6395         };
6396         int ret = 0;
6397
6398         if (value & IW_AUTH_ALG_SHARED_KEY) {
6399                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6400                 ieee->open_wep = 0;
6401         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6402                 sec.auth_mode = WLAN_AUTH_OPEN;
6403                 ieee->open_wep = 1;
6404         } else if (value & IW_AUTH_ALG_LEAP) {
6405                 sec.auth_mode = WLAN_AUTH_LEAP;
6406                 ieee->open_wep = 1;
6407         } else
6408                 return -EINVAL;
6409
6410         if (ieee->set_security)
6411                 ieee->set_security(ieee->dev, &sec);
6412         else
6413                 ret = -EOPNOTSUPP;
6414
6415         return ret;
6416 }
6417
6418 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6419                                 int wpa_ie_len)
6420 {
6421         /* make sure WPA is enabled */
6422         ipw_wpa_enable(priv, 1);
6423 }
6424
6425 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6426                             char *capabilities, int length)
6427 {
6428         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6429
6430         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6431                                 capabilities);
6432 }
6433
6434 /*
6435  * WE-18 support
6436  */
6437
6438 /* SIOCSIWGENIE */
6439 static int ipw_wx_set_genie(struct net_device *dev,
6440                             struct iw_request_info *info,
6441                             union iwreq_data *wrqu, char *extra)
6442 {
6443         struct ipw_priv *priv = ieee80211_priv(dev);
6444         struct ieee80211_device *ieee = priv->ieee;
6445         u8 *buf;
6446         int err = 0;
6447
6448         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6449             (wrqu->data.length && extra == NULL))
6450                 return -EINVAL;
6451
6452         if (wrqu->data.length) {
6453                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6454                 if (buf == NULL) {
6455                         err = -ENOMEM;
6456                         goto out;
6457                 }
6458
6459                 memcpy(buf, extra, wrqu->data.length);
6460                 kfree(ieee->wpa_ie);
6461                 ieee->wpa_ie = buf;
6462                 ieee->wpa_ie_len = wrqu->data.length;
6463         } else {
6464                 kfree(ieee->wpa_ie);
6465                 ieee->wpa_ie = NULL;
6466                 ieee->wpa_ie_len = 0;
6467         }
6468
6469         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6470       out:
6471         return err;
6472 }
6473
6474 /* SIOCGIWGENIE */
6475 static int ipw_wx_get_genie(struct net_device *dev,
6476                             struct iw_request_info *info,
6477                             union iwreq_data *wrqu, char *extra)
6478 {
6479         struct ipw_priv *priv = ieee80211_priv(dev);
6480         struct ieee80211_device *ieee = priv->ieee;
6481         int err = 0;
6482
6483         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6484                 wrqu->data.length = 0;
6485                 goto out;
6486         }
6487
6488         if (wrqu->data.length < ieee->wpa_ie_len) {
6489                 err = -E2BIG;
6490                 goto out;
6491         }
6492
6493         wrqu->data.length = ieee->wpa_ie_len;
6494         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6495
6496       out:
6497         return err;
6498 }
6499
6500 static int wext_cipher2level(int cipher)
6501 {
6502         switch (cipher) {
6503         case IW_AUTH_CIPHER_NONE:
6504                 return SEC_LEVEL_0;
6505         case IW_AUTH_CIPHER_WEP40:
6506         case IW_AUTH_CIPHER_WEP104:
6507                 return SEC_LEVEL_1;
6508         case IW_AUTH_CIPHER_TKIP:
6509                 return SEC_LEVEL_2;
6510         case IW_AUTH_CIPHER_CCMP:
6511                 return SEC_LEVEL_3;
6512         default:
6513                 return -1;
6514         }
6515 }
6516
6517 /* SIOCSIWAUTH */
6518 static int ipw_wx_set_auth(struct net_device *dev,
6519                            struct iw_request_info *info,
6520                            union iwreq_data *wrqu, char *extra)
6521 {
6522         struct ipw_priv *priv = ieee80211_priv(dev);
6523         struct ieee80211_device *ieee = priv->ieee;
6524         struct iw_param *param = &wrqu->param;
6525         struct ieee80211_crypt_data *crypt;
6526         unsigned long flags;
6527         int ret = 0;
6528
6529         switch (param->flags & IW_AUTH_INDEX) {
6530         case IW_AUTH_WPA_VERSION:
6531                 break;
6532         case IW_AUTH_CIPHER_PAIRWISE:
6533                 ipw_set_hw_decrypt_unicast(priv,
6534                                            wext_cipher2level(param->value));
6535                 break;
6536         case IW_AUTH_CIPHER_GROUP:
6537                 ipw_set_hw_decrypt_multicast(priv,
6538                                              wext_cipher2level(param->value));
6539                 break;
6540         case IW_AUTH_KEY_MGMT:
6541                 /*
6542                  * ipw2200 does not use these parameters
6543                  */
6544                 break;
6545
6546         case IW_AUTH_TKIP_COUNTERMEASURES:
6547                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6548                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6549                         break;
6550
6551                 flags = crypt->ops->get_flags(crypt->priv);
6552
6553                 if (param->value)
6554                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6555                 else
6556                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6557
6558                 crypt->ops->set_flags(flags, crypt->priv);
6559
6560                 break;
6561
6562         case IW_AUTH_DROP_UNENCRYPTED:{
6563                         /* HACK:
6564                          *
6565                          * wpa_supplicant calls set_wpa_enabled when the driver
6566                          * is loaded and unloaded, regardless of if WPA is being
6567                          * used.  No other calls are made which can be used to
6568                          * determine if encryption will be used or not prior to
6569                          * association being expected.  If encryption is not being
6570                          * used, drop_unencrypted is set to false, else true -- we
6571                          * can use this to determine if the CAP_PRIVACY_ON bit should
6572                          * be set.
6573                          */
6574                         struct ieee80211_security sec = {
6575                                 .flags = SEC_ENABLED,
6576                                 .enabled = param->value,
6577                         };
6578                         priv->ieee->drop_unencrypted = param->value;
6579                         /* We only change SEC_LEVEL for open mode. Others
6580                          * are set by ipw_wpa_set_encryption.
6581                          */
6582                         if (!param->value) {
6583                                 sec.flags |= SEC_LEVEL;
6584                                 sec.level = SEC_LEVEL_0;
6585                         } else {
6586                                 sec.flags |= SEC_LEVEL;
6587                                 sec.level = SEC_LEVEL_1;
6588                         }
6589                         if (priv->ieee->set_security)
6590                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6591                         break;
6592                 }
6593
6594         case IW_AUTH_80211_AUTH_ALG:
6595                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6596                 break;
6597
6598         case IW_AUTH_WPA_ENABLED:
6599                 ret = ipw_wpa_enable(priv, param->value);
6600                 ipw_disassociate(priv);
6601                 break;
6602
6603         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6604                 ieee->ieee802_1x = param->value;
6605                 break;
6606
6607         case IW_AUTH_PRIVACY_INVOKED:
6608                 ieee->privacy_invoked = param->value;
6609                 break;
6610
6611         default:
6612                 return -EOPNOTSUPP;
6613         }
6614         return ret;
6615 }
6616
6617 /* SIOCGIWAUTH */
6618 static int ipw_wx_get_auth(struct net_device *dev,
6619                            struct iw_request_info *info,
6620                            union iwreq_data *wrqu, char *extra)
6621 {
6622         struct ipw_priv *priv = ieee80211_priv(dev);
6623         struct ieee80211_device *ieee = priv->ieee;
6624         struct ieee80211_crypt_data *crypt;
6625         struct iw_param *param = &wrqu->param;
6626         int ret = 0;
6627
6628         switch (param->flags & IW_AUTH_INDEX) {
6629         case IW_AUTH_WPA_VERSION:
6630         case IW_AUTH_CIPHER_PAIRWISE:
6631         case IW_AUTH_CIPHER_GROUP:
6632         case IW_AUTH_KEY_MGMT:
6633                 /*
6634                  * wpa_supplicant will control these internally
6635                  */
6636                 ret = -EOPNOTSUPP;
6637                 break;
6638
6639         case IW_AUTH_TKIP_COUNTERMEASURES:
6640                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6641                 if (!crypt || !crypt->ops->get_flags)
6642                         break;
6643
6644                 param->value = (crypt->ops->get_flags(crypt->priv) &
6645                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6646
6647                 break;
6648
6649         case IW_AUTH_DROP_UNENCRYPTED:
6650                 param->value = ieee->drop_unencrypted;
6651                 break;
6652
6653         case IW_AUTH_80211_AUTH_ALG:
6654                 param->value = ieee->sec.auth_mode;
6655                 break;
6656
6657         case IW_AUTH_WPA_ENABLED:
6658                 param->value = ieee->wpa_enabled;
6659                 break;
6660
6661         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6662                 param->value = ieee->ieee802_1x;
6663                 break;
6664
6665         case IW_AUTH_ROAMING_CONTROL:
6666         case IW_AUTH_PRIVACY_INVOKED:
6667                 param->value = ieee->privacy_invoked;
6668                 break;
6669
6670         default:
6671                 return -EOPNOTSUPP;
6672         }
6673         return 0;
6674 }
6675
6676 /* SIOCSIWENCODEEXT */
6677 static int ipw_wx_set_encodeext(struct net_device *dev,
6678                                 struct iw_request_info *info,
6679                                 union iwreq_data *wrqu, char *extra)
6680 {
6681         struct ipw_priv *priv = ieee80211_priv(dev);
6682         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6683
6684         if (hwcrypto) {
6685                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6686                         /* IPW HW can't build TKIP MIC,
6687                            host decryption still needed */
6688                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6689                                 priv->ieee->host_mc_decrypt = 1;
6690                         else {
6691                                 priv->ieee->host_encrypt = 0;
6692                                 priv->ieee->host_encrypt_msdu = 1;
6693                                 priv->ieee->host_decrypt = 1;
6694                         }
6695                 } else {
6696                         priv->ieee->host_encrypt = 0;
6697                         priv->ieee->host_encrypt_msdu = 0;
6698                         priv->ieee->host_decrypt = 0;
6699                         priv->ieee->host_mc_decrypt = 0;
6700                 }
6701         }
6702
6703         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6704 }
6705
6706 /* SIOCGIWENCODEEXT */
6707 static int ipw_wx_get_encodeext(struct net_device *dev,
6708                                 struct iw_request_info *info,
6709                                 union iwreq_data *wrqu, char *extra)
6710 {
6711         struct ipw_priv *priv = ieee80211_priv(dev);
6712         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6713 }
6714
6715 /* SIOCSIWMLME */
6716 static int ipw_wx_set_mlme(struct net_device *dev,
6717                            struct iw_request_info *info,
6718                            union iwreq_data *wrqu, char *extra)
6719 {
6720         struct ipw_priv *priv = ieee80211_priv(dev);
6721         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6722         u16 reason;
6723
6724         reason = cpu_to_le16(mlme->reason_code);
6725
6726         switch (mlme->cmd) {
6727         case IW_MLME_DEAUTH:
6728                 /* silently ignore */
6729                 break;
6730
6731         case IW_MLME_DISASSOC:
6732                 ipw_disassociate(priv);
6733                 break;
6734
6735         default:
6736                 return -EOPNOTSUPP;
6737         }
6738         return 0;
6739 }
6740
6741 #ifdef CONFIG_IPW2200_QOS
6742
6743 /* QoS */
6744 /*
6745 * get the modulation type of the current network or
6746 * the card current mode
6747 */
6748 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6749 {
6750         u8 mode = 0;
6751
6752         if (priv->status & STATUS_ASSOCIATED) {
6753                 unsigned long flags;
6754
6755                 spin_lock_irqsave(&priv->ieee->lock, flags);
6756                 mode = priv->assoc_network->mode;
6757                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6758         } else {
6759                 mode = priv->ieee->mode;
6760         }
6761         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6762         return mode;
6763 }
6764
6765 /*
6766 * Handle management frame beacon and probe response
6767 */
6768 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6769                                          int active_network,
6770                                          struct ieee80211_network *network)
6771 {
6772         u32 size = sizeof(struct ieee80211_qos_parameters);
6773
6774         if (network->capability & WLAN_CAPABILITY_IBSS)
6775                 network->qos_data.active = network->qos_data.supported;
6776
6777         if (network->flags & NETWORK_HAS_QOS_MASK) {
6778                 if (active_network &&
6779                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6780                         network->qos_data.active = network->qos_data.supported;
6781
6782                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6783                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6784                     (network->qos_data.old_param_count !=
6785                      network->qos_data.param_count)) {
6786                         network->qos_data.old_param_count =
6787                             network->qos_data.param_count;
6788                         schedule_work(&priv->qos_activate);
6789                         IPW_DEBUG_QOS("QoS parameters change call "
6790                                       "qos_activate\n");
6791                 }
6792         } else {
6793                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6794                         memcpy(&network->qos_data.parameters,
6795                                &def_parameters_CCK, size);
6796                 else
6797                         memcpy(&network->qos_data.parameters,
6798                                &def_parameters_OFDM, size);
6799
6800                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6801                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6802                         schedule_work(&priv->qos_activate);
6803                 }
6804
6805                 network->qos_data.active = 0;
6806                 network->qos_data.supported = 0;
6807         }
6808         if ((priv->status & STATUS_ASSOCIATED) &&
6809             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6810                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6811                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6812                             !(network->flags & NETWORK_EMPTY_ESSID))
6813                                 if ((network->ssid_len ==
6814                                      priv->assoc_network->ssid_len) &&
6815                                     !memcmp(network->ssid,
6816                                             priv->assoc_network->ssid,
6817                                             network->ssid_len)) {
6818                                         queue_work(priv->workqueue,
6819                                                    &priv->merge_networks);
6820                                 }
6821         }
6822
6823         return 0;
6824 }
6825
6826 /*
6827 * This function set up the firmware to support QoS. It sends
6828 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6829 */
6830 static int ipw_qos_activate(struct ipw_priv *priv,
6831                             struct ieee80211_qos_data *qos_network_data)
6832 {
6833         int err;
6834         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6835         struct ieee80211_qos_parameters *active_one = NULL;
6836         u32 size = sizeof(struct ieee80211_qos_parameters);
6837         u32 burst_duration;
6838         int i;
6839         u8 type;
6840
6841         type = ipw_qos_current_mode(priv);
6842
6843         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6844         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6845         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6846         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6847
6848         if (qos_network_data == NULL) {
6849                 if (type == IEEE_B) {
6850                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6851                         active_one = &def_parameters_CCK;
6852                 } else
6853                         active_one = &def_parameters_OFDM;
6854
6855                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6856                 burst_duration = ipw_qos_get_burst_duration(priv);
6857                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6858                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6859                             (u16)burst_duration;
6860         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6861                 if (type == IEEE_B) {
6862                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6863                                       type);
6864                         if (priv->qos_data.qos_enable == 0)
6865                                 active_one = &def_parameters_CCK;
6866                         else
6867                                 active_one = priv->qos_data.def_qos_parm_CCK;
6868                 } else {
6869                         if (priv->qos_data.qos_enable == 0)
6870                                 active_one = &def_parameters_OFDM;
6871                         else
6872                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6873                 }
6874                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6875         } else {
6876                 unsigned long flags;
6877                 int active;
6878
6879                 spin_lock_irqsave(&priv->ieee->lock, flags);
6880                 active_one = &(qos_network_data->parameters);
6881                 qos_network_data->old_param_count =
6882                     qos_network_data->param_count;
6883                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6884                 active = qos_network_data->supported;
6885                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6886
6887                 if (active == 0) {
6888                         burst_duration = ipw_qos_get_burst_duration(priv);
6889                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6890                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6891                                     tx_op_limit[i] = (u16)burst_duration;
6892                 }
6893         }
6894
6895         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6896         for (i = 0; i < 3; i++) {
6897                 int j;
6898                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6899                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6900                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6901                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6902                 }
6903         }
6904
6905         err = ipw_send_qos_params_command(priv,
6906                                           (struct ieee80211_qos_parameters *)
6907                                           &(qos_parameters[0]));
6908         if (err)
6909                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6910
6911         return err;
6912 }
6913
6914 /*
6915 * send IPW_CMD_WME_INFO to the firmware
6916 */
6917 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6918 {
6919         int ret = 0;
6920         struct ieee80211_qos_information_element qos_info;
6921
6922         if (priv == NULL)
6923                 return -1;
6924
6925         qos_info.elementID = QOS_ELEMENT_ID;
6926         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6927
6928         qos_info.version = QOS_VERSION_1;
6929         qos_info.ac_info = 0;
6930
6931         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6932         qos_info.qui_type = QOS_OUI_TYPE;
6933         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6934
6935         ret = ipw_send_qos_info_command(priv, &qos_info);
6936         if (ret != 0) {
6937                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6938         }
6939         return ret;
6940 }
6941
6942 /*
6943 * Set the QoS parameter with the association request structure
6944 */
6945 static int ipw_qos_association(struct ipw_priv *priv,
6946                                struct ieee80211_network *network)
6947 {
6948         int err = 0;
6949         struct ieee80211_qos_data *qos_data = NULL;
6950         struct ieee80211_qos_data ibss_data = {
6951                 .supported = 1,
6952                 .active = 1,
6953         };
6954
6955         switch (priv->ieee->iw_mode) {
6956         case IW_MODE_ADHOC:
6957                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6958
6959                 qos_data = &ibss_data;
6960                 break;
6961
6962         case IW_MODE_INFRA:
6963                 qos_data = &network->qos_data;
6964                 break;
6965
6966         default:
6967                 BUG();
6968                 break;
6969         }
6970
6971         err = ipw_qos_activate(priv, qos_data);
6972         if (err) {
6973                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6974                 return err;
6975         }
6976
6977         if (priv->qos_data.qos_enable && qos_data->supported) {
6978                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6979                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6980                 return ipw_qos_set_info_element(priv);
6981         }
6982
6983         return 0;
6984 }
6985
6986 /*
6987 * handling the beaconing responses. if we get different QoS setting
6988 * off the network from the associated setting, adjust the QoS
6989 * setting
6990 */
6991 static int ipw_qos_association_resp(struct ipw_priv *priv,
6992                                     struct ieee80211_network *network)
6993 {
6994         int ret = 0;
6995         unsigned long flags;
6996         u32 size = sizeof(struct ieee80211_qos_parameters);
6997         int set_qos_param = 0;
6998
6999         if ((priv == NULL) || (network == NULL) ||
7000             (priv->assoc_network == NULL))
7001                 return ret;
7002
7003         if (!(priv->status & STATUS_ASSOCIATED))
7004                 return ret;
7005
7006         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7007                 return ret;
7008
7009         spin_lock_irqsave(&priv->ieee->lock, flags);
7010         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7011                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7012                        sizeof(struct ieee80211_qos_data));
7013                 priv->assoc_network->qos_data.active = 1;
7014                 if ((network->qos_data.old_param_count !=
7015                      network->qos_data.param_count)) {
7016                         set_qos_param = 1;
7017                         network->qos_data.old_param_count =
7018                             network->qos_data.param_count;
7019                 }
7020
7021         } else {
7022                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7023                         memcpy(&priv->assoc_network->qos_data.parameters,
7024                                &def_parameters_CCK, size);
7025                 else
7026                         memcpy(&priv->assoc_network->qos_data.parameters,
7027                                &def_parameters_OFDM, size);
7028                 priv->assoc_network->qos_data.active = 0;
7029                 priv->assoc_network->qos_data.supported = 0;
7030                 set_qos_param = 1;
7031         }
7032
7033         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7034
7035         if (set_qos_param == 1)
7036                 schedule_work(&priv->qos_activate);
7037
7038         return ret;
7039 }
7040
7041 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7042 {
7043         u32 ret = 0;
7044
7045         if ((priv == NULL))
7046                 return 0;
7047
7048         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7049                 ret = priv->qos_data.burst_duration_CCK;
7050         else
7051                 ret = priv->qos_data.burst_duration_OFDM;
7052
7053         return ret;
7054 }
7055
7056 /*
7057 * Initialize the setting of QoS global
7058 */
7059 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7060                          int burst_enable, u32 burst_duration_CCK,
7061                          u32 burst_duration_OFDM)
7062 {
7063         priv->qos_data.qos_enable = enable;
7064
7065         if (priv->qos_data.qos_enable) {
7066                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7067                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7068                 IPW_DEBUG_QOS("QoS is enabled\n");
7069         } else {
7070                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7071                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7072                 IPW_DEBUG_QOS("QoS is not enabled\n");
7073         }
7074
7075         priv->qos_data.burst_enable = burst_enable;
7076
7077         if (burst_enable) {
7078                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7079                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7080         } else {
7081                 priv->qos_data.burst_duration_CCK = 0;
7082                 priv->qos_data.burst_duration_OFDM = 0;
7083         }
7084 }
7085
7086 /*
7087 * map the packet priority to the right TX Queue
7088 */
7089 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7090 {
7091         if (priority > 7 || !priv->qos_data.qos_enable)
7092                 priority = 0;
7093
7094         return from_priority_to_tx_queue[priority] - 1;
7095 }
7096
7097 static int ipw_is_qos_active(struct net_device *dev,
7098                              struct sk_buff *skb)
7099 {
7100         struct ipw_priv *priv = ieee80211_priv(dev);
7101         struct ieee80211_qos_data *qos_data = NULL;
7102         int active, supported;
7103         u8 *daddr = skb->data + ETH_ALEN;
7104         int unicast = !is_multicast_ether_addr(daddr);
7105
7106         if (!(priv->status & STATUS_ASSOCIATED))
7107                 return 0;
7108
7109         qos_data = &priv->assoc_network->qos_data;
7110
7111         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7112                 if (unicast == 0)
7113                         qos_data->active = 0;
7114                 else
7115                         qos_data->active = qos_data->supported;
7116         }
7117         active = qos_data->active;
7118         supported = qos_data->supported;
7119         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7120                       "unicast %d\n",
7121                       priv->qos_data.qos_enable, active, supported, unicast);
7122         if (active && priv->qos_data.qos_enable)
7123                 return 1;
7124
7125         return 0;
7126
7127 }
7128 /*
7129 * add QoS parameter to the TX command
7130 */
7131 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7132                                         u16 priority,
7133                                         struct tfd_data *tfd)
7134 {
7135         int tx_queue_id = 0;
7136
7137
7138         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7139         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7140
7141         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7142                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7143                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7144         }
7145         return 0;
7146 }
7147
7148 /*
7149 * background support to run QoS activate functionality
7150 */
7151 static void ipw_bg_qos_activate(struct work_struct *work)
7152 {
7153         struct ipw_priv *priv =
7154                 container_of(work, struct ipw_priv, qos_activate);
7155
7156         if (priv == NULL)
7157                 return;
7158
7159         mutex_lock(&priv->mutex);
7160
7161         if (priv->status & STATUS_ASSOCIATED)
7162                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7163
7164         mutex_unlock(&priv->mutex);
7165 }
7166
7167 static int ipw_handle_probe_response(struct net_device *dev,
7168                                      struct ieee80211_probe_response *resp,
7169                                      struct ieee80211_network *network)
7170 {
7171         struct ipw_priv *priv = ieee80211_priv(dev);
7172         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7173                               (network == priv->assoc_network));
7174
7175         ipw_qos_handle_probe_response(priv, active_network, network);
7176
7177         return 0;
7178 }
7179
7180 static int ipw_handle_beacon(struct net_device *dev,
7181                              struct ieee80211_beacon *resp,
7182                              struct ieee80211_network *network)
7183 {
7184         struct ipw_priv *priv = ieee80211_priv(dev);
7185         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7186                               (network == priv->assoc_network));
7187
7188         ipw_qos_handle_probe_response(priv, active_network, network);
7189
7190         return 0;
7191 }
7192
7193 static int ipw_handle_assoc_response(struct net_device *dev,
7194                                      struct ieee80211_assoc_response *resp,
7195                                      struct ieee80211_network *network)
7196 {
7197         struct ipw_priv *priv = ieee80211_priv(dev);
7198         ipw_qos_association_resp(priv, network);
7199         return 0;
7200 }
7201
7202 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7203                                        *qos_param)
7204 {
7205         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7206                                 sizeof(*qos_param) * 3, qos_param);
7207 }
7208
7209 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7210                                      *qos_param)
7211 {
7212         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7213                                 qos_param);
7214 }
7215
7216 #endif                          /* CONFIG_IPW2200_QOS */
7217
7218 static int ipw_associate_network(struct ipw_priv *priv,
7219                                  struct ieee80211_network *network,
7220                                  struct ipw_supported_rates *rates, int roaming)
7221 {
7222         int err;
7223
7224         if (priv->config & CFG_FIXED_RATE)
7225                 ipw_set_fixed_rate(priv, network->mode);
7226
7227         if (!(priv->config & CFG_STATIC_ESSID)) {
7228                 priv->essid_len = min(network->ssid_len,
7229                                       (u8) IW_ESSID_MAX_SIZE);
7230                 memcpy(priv->essid, network->ssid, priv->essid_len);
7231         }
7232
7233         network->last_associate = jiffies;
7234
7235         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7236         priv->assoc_request.channel = network->channel;
7237         priv->assoc_request.auth_key = 0;
7238
7239         if ((priv->capability & CAP_PRIVACY_ON) &&
7240             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7241                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7242                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7243
7244                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7245                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7246
7247         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7248                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7249                 priv->assoc_request.auth_type = AUTH_LEAP;
7250         else
7251                 priv->assoc_request.auth_type = AUTH_OPEN;
7252
7253         if (priv->ieee->wpa_ie_len) {
7254                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7255                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7256                                  priv->ieee->wpa_ie_len);
7257         }
7258
7259         /*
7260          * It is valid for our ieee device to support multiple modes, but
7261          * when it comes to associating to a given network we have to choose
7262          * just one mode.
7263          */
7264         if (network->mode & priv->ieee->mode & IEEE_A)
7265                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7266         else if (network->mode & priv->ieee->mode & IEEE_G)
7267                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7268         else if (network->mode & priv->ieee->mode & IEEE_B)
7269                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7270
7271         priv->assoc_request.capability = network->capability;
7272         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7273             && !(priv->config & CFG_PREAMBLE_LONG)) {
7274                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7275         } else {
7276                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7277
7278                 /* Clear the short preamble if we won't be supporting it */
7279                 priv->assoc_request.capability &=
7280                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7281         }
7282
7283         /* Clear capability bits that aren't used in Ad Hoc */
7284         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7285                 priv->assoc_request.capability &=
7286                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7287
7288         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7289                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7290                         roaming ? "Rea" : "A",
7291                         escape_essid(priv->essid, priv->essid_len),
7292                         network->channel,
7293                         ipw_modes[priv->assoc_request.ieee_mode],
7294                         rates->num_rates,
7295                         (priv->assoc_request.preamble_length ==
7296                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7297                         network->capability &
7298                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7299                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7300                         priv->capability & CAP_PRIVACY_ON ?
7301                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7302                          "(open)") : "",
7303                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7304                         priv->capability & CAP_PRIVACY_ON ?
7305                         '1' + priv->ieee->sec.active_key : '.',
7306                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7307
7308         priv->assoc_request.beacon_interval = network->beacon_interval;
7309         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7310             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7311                 priv->assoc_request.assoc_type = HC_IBSS_START;
7312                 priv->assoc_request.assoc_tsf_msw = 0;
7313                 priv->assoc_request.assoc_tsf_lsw = 0;
7314         } else {
7315                 if (unlikely(roaming))
7316                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7317                 else
7318                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7319                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7320                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7321         }
7322
7323         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7324
7325         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7326                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7327                 priv->assoc_request.atim_window = network->atim_window;
7328         } else {
7329                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7330                 priv->assoc_request.atim_window = 0;
7331         }
7332
7333         priv->assoc_request.listen_interval = network->listen_interval;
7334
7335         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7336         if (err) {
7337                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7338                 return err;
7339         }
7340
7341         rates->ieee_mode = priv->assoc_request.ieee_mode;
7342         rates->purpose = IPW_RATE_CONNECT;
7343         ipw_send_supported_rates(priv, rates);
7344
7345         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7346                 priv->sys_config.dot11g_auto_detection = 1;
7347         else
7348                 priv->sys_config.dot11g_auto_detection = 0;
7349
7350         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7351                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7352         else
7353                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7354
7355         err = ipw_send_system_config(priv);
7356         if (err) {
7357                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7358                 return err;
7359         }
7360
7361         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7362         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7363         if (err) {
7364                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7365                 return err;
7366         }
7367
7368         /*
7369          * If preemption is enabled, it is possible for the association
7370          * to complete before we return from ipw_send_associate.  Therefore
7371          * we have to be sure and update our priviate data first.
7372          */
7373         priv->channel = network->channel;
7374         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7375         priv->status |= STATUS_ASSOCIATING;
7376         priv->status &= ~STATUS_SECURITY_UPDATED;
7377
7378         priv->assoc_network = network;
7379
7380 #ifdef CONFIG_IPW2200_QOS
7381         ipw_qos_association(priv, network);
7382 #endif
7383
7384         err = ipw_send_associate(priv, &priv->assoc_request);
7385         if (err) {
7386                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7387                 return err;
7388         }
7389
7390         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7391                   escape_essid(priv->essid, priv->essid_len),
7392                   MAC_ARG(priv->bssid));
7393
7394         return 0;
7395 }
7396
7397 static void ipw_roam(void *data)
7398 {
7399         struct ipw_priv *priv = data;
7400         struct ieee80211_network *network = NULL;
7401         struct ipw_network_match match = {
7402                 .network = priv->assoc_network
7403         };
7404
7405         /* The roaming process is as follows:
7406          *
7407          * 1.  Missed beacon threshold triggers the roaming process by
7408          *     setting the status ROAM bit and requesting a scan.
7409          * 2.  When the scan completes, it schedules the ROAM work
7410          * 3.  The ROAM work looks at all of the known networks for one that
7411          *     is a better network than the currently associated.  If none
7412          *     found, the ROAM process is over (ROAM bit cleared)
7413          * 4.  If a better network is found, a disassociation request is
7414          *     sent.
7415          * 5.  When the disassociation completes, the roam work is again
7416          *     scheduled.  The second time through, the driver is no longer
7417          *     associated, and the newly selected network is sent an
7418          *     association request.
7419          * 6.  At this point ,the roaming process is complete and the ROAM
7420          *     status bit is cleared.
7421          */
7422
7423         /* If we are no longer associated, and the roaming bit is no longer
7424          * set, then we are not actively roaming, so just return */
7425         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7426                 return;
7427
7428         if (priv->status & STATUS_ASSOCIATED) {
7429                 /* First pass through ROAM process -- look for a better
7430                  * network */
7431                 unsigned long flags;
7432                 u8 rssi = priv->assoc_network->stats.rssi;
7433                 priv->assoc_network->stats.rssi = -128;
7434                 spin_lock_irqsave(&priv->ieee->lock, flags);
7435                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7436                         if (network != priv->assoc_network)
7437                                 ipw_best_network(priv, &match, network, 1);
7438                 }
7439                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7440                 priv->assoc_network->stats.rssi = rssi;
7441
7442                 if (match.network == priv->assoc_network) {
7443                         IPW_DEBUG_ASSOC("No better APs in this network to "
7444                                         "roam to.\n");
7445                         priv->status &= ~STATUS_ROAMING;
7446                         ipw_debug_config(priv);
7447                         return;
7448                 }
7449
7450                 ipw_send_disassociate(priv, 1);
7451                 priv->assoc_network = match.network;
7452
7453                 return;
7454         }
7455
7456         /* Second pass through ROAM process -- request association */
7457         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7458         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7459         priv->status &= ~STATUS_ROAMING;
7460 }
7461
7462 static void ipw_bg_roam(struct work_struct *work)
7463 {
7464         struct ipw_priv *priv =
7465                 container_of(work, struct ipw_priv, roam);
7466         mutex_lock(&priv->mutex);
7467         ipw_roam(priv);
7468         mutex_unlock(&priv->mutex);
7469 }
7470
7471 static int ipw_associate(void *data)
7472 {
7473         struct ipw_priv *priv = data;
7474
7475         struct ieee80211_network *network = NULL;
7476         struct ipw_network_match match = {
7477                 .network = NULL
7478         };
7479         struct ipw_supported_rates *rates;
7480         struct list_head *element;
7481         unsigned long flags;
7482
7483         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7484                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7485                 return 0;
7486         }
7487
7488         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7489                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7490                                 "progress)\n");
7491                 return 0;
7492         }
7493
7494         if (priv->status & STATUS_DISASSOCIATING) {
7495                 IPW_DEBUG_ASSOC("Not attempting association (in "
7496                                 "disassociating)\n ");
7497                 queue_work(priv->workqueue, &priv->associate);
7498                 return 0;
7499         }
7500
7501         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7503                                 "initialized)\n");
7504                 return 0;
7505         }
7506
7507         if (!(priv->config & CFG_ASSOCIATE) &&
7508             !(priv->config & (CFG_STATIC_ESSID |
7509                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7510                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7511                 return 0;
7512         }
7513
7514         /* Protect our use of the network_list */
7515         spin_lock_irqsave(&priv->ieee->lock, flags);
7516         list_for_each_entry(network, &priv->ieee->network_list, list)
7517             ipw_best_network(priv, &match, network, 0);
7518
7519         network = match.network;
7520         rates = &match.rates;
7521
7522         if (network == NULL &&
7523             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7524             priv->config & CFG_ADHOC_CREATE &&
7525             priv->config & CFG_STATIC_ESSID &&
7526             priv->config & CFG_STATIC_CHANNEL &&
7527             !list_empty(&priv->ieee->network_free_list)) {
7528                 element = priv->ieee->network_free_list.next;
7529                 network = list_entry(element, struct ieee80211_network, list);
7530                 ipw_adhoc_create(priv, network);
7531                 rates = &priv->rates;
7532                 list_del(element);
7533                 list_add_tail(&network->list, &priv->ieee->network_list);
7534         }
7535         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7536
7537         /* If we reached the end of the list, then we don't have any valid
7538          * matching APs */
7539         if (!network) {
7540                 ipw_debug_config(priv);
7541
7542                 if (!(priv->status & STATUS_SCANNING)) {
7543                         if (!(priv->config & CFG_SPEED_SCAN))
7544                                 queue_delayed_work(priv->workqueue,
7545                                                    &priv->request_scan,
7546                                                    SCAN_INTERVAL);
7547                         else
7548                                 queue_delayed_work(priv->workqueue,
7549                                                    &priv->request_scan, 0);
7550                 }
7551
7552                 return 0;
7553         }
7554
7555         ipw_associate_network(priv, network, rates, 0);
7556
7557         return 1;
7558 }
7559
7560 static void ipw_bg_associate(struct work_struct *work)
7561 {
7562         struct ipw_priv *priv =
7563                 container_of(work, struct ipw_priv, associate);
7564         mutex_lock(&priv->mutex);
7565         ipw_associate(priv);
7566         mutex_unlock(&priv->mutex);
7567 }
7568
7569 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7570                                       struct sk_buff *skb)
7571 {
7572         struct ieee80211_hdr *hdr;
7573         u16 fc;
7574
7575         hdr = (struct ieee80211_hdr *)skb->data;
7576         fc = le16_to_cpu(hdr->frame_ctl);
7577         if (!(fc & IEEE80211_FCTL_PROTECTED))
7578                 return;
7579
7580         fc &= ~IEEE80211_FCTL_PROTECTED;
7581         hdr->frame_ctl = cpu_to_le16(fc);
7582         switch (priv->ieee->sec.level) {
7583         case SEC_LEVEL_3:
7584                 /* Remove CCMP HDR */
7585                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7586                         skb->data + IEEE80211_3ADDR_LEN + 8,
7587                         skb->len - IEEE80211_3ADDR_LEN - 8);
7588                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7589                 break;
7590         case SEC_LEVEL_2:
7591                 break;
7592         case SEC_LEVEL_1:
7593                 /* Remove IV */
7594                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7595                         skb->data + IEEE80211_3ADDR_LEN + 4,
7596                         skb->len - IEEE80211_3ADDR_LEN - 4);
7597                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7598                 break;
7599         case SEC_LEVEL_0:
7600                 break;
7601         default:
7602                 printk(KERN_ERR "Unknow security level %d\n",
7603                        priv->ieee->sec.level);
7604                 break;
7605         }
7606 }
7607
7608 static void ipw_handle_data_packet(struct ipw_priv *priv,
7609                                    struct ipw_rx_mem_buffer *rxb,
7610                                    struct ieee80211_rx_stats *stats)
7611 {
7612         struct ieee80211_hdr_4addr *hdr;
7613         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7614
7615         /* We received data from the HW, so stop the watchdog */
7616         priv->net_dev->trans_start = jiffies;
7617
7618         /* We only process data packets if the
7619          * interface is open */
7620         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7621                      skb_tailroom(rxb->skb))) {
7622                 priv->ieee->stats.rx_errors++;
7623                 priv->wstats.discard.misc++;
7624                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7625                 return;
7626         } else if (unlikely(!netif_running(priv->net_dev))) {
7627                 priv->ieee->stats.rx_dropped++;
7628                 priv->wstats.discard.misc++;
7629                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7630                 return;
7631         }
7632
7633         /* Advance skb->data to the start of the actual payload */
7634         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7635
7636         /* Set the size of the skb to the size of the frame */
7637         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7638
7639         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7640
7641         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7642         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7643         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7644             (is_multicast_ether_addr(hdr->addr1) ?
7645              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7646                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7647
7648         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7649                 priv->ieee->stats.rx_errors++;
7650         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7651                 rxb->skb = NULL;
7652                 __ipw_led_activity_on(priv);
7653         }
7654 }
7655
7656 #ifdef CONFIG_IPW2200_RADIOTAP
7657 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7658                                            struct ipw_rx_mem_buffer *rxb,
7659                                            struct ieee80211_rx_stats *stats)
7660 {
7661         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7662         struct ipw_rx_frame *frame = &pkt->u.frame;
7663
7664         /* initial pull of some data */
7665         u16 received_channel = frame->received_channel;
7666         u8 antennaAndPhy = frame->antennaAndPhy;
7667         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7668         u16 pktrate = frame->rate;
7669
7670         /* Magic struct that slots into the radiotap header -- no reason
7671          * to build this manually element by element, we can write it much
7672          * more efficiently than we can parse it. ORDER MATTERS HERE */
7673         struct ipw_rt_hdr *ipw_rt;
7674
7675         short len = le16_to_cpu(pkt->u.frame.length);
7676
7677         /* We received data from the HW, so stop the watchdog */
7678         priv->net_dev->trans_start = jiffies;
7679
7680         /* We only process data packets if the
7681          * interface is open */
7682         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7683                      skb_tailroom(rxb->skb))) {
7684                 priv->ieee->stats.rx_errors++;
7685                 priv->wstats.discard.misc++;
7686                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7687                 return;
7688         } else if (unlikely(!netif_running(priv->net_dev))) {
7689                 priv->ieee->stats.rx_dropped++;
7690                 priv->wstats.discard.misc++;
7691                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7692                 return;
7693         }
7694
7695         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7696          * that now */
7697         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7698                 /* FIXME: Should alloc bigger skb instead */
7699                 priv->ieee->stats.rx_dropped++;
7700                 priv->wstats.discard.misc++;
7701                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7702                 return;
7703         }
7704
7705         /* copy the frame itself */
7706         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7707                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7708
7709         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7710          * part of our real header, saves a little time.
7711          *
7712          * No longer necessary since we fill in all our data.  Purge before merging
7713          * patch officially.
7714          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7715          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7716          */
7717
7718         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7719
7720         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7721         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7722         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7723
7724         /* Big bitfield of all the fields we provide in radiotap */
7725         ipw_rt->rt_hdr.it_present =
7726             ((1 << IEEE80211_RADIOTAP_TSFT) |
7727              (1 << IEEE80211_RADIOTAP_FLAGS) |
7728              (1 << IEEE80211_RADIOTAP_RATE) |
7729              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7730              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7731              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7732              (1 << IEEE80211_RADIOTAP_ANTENNA));
7733
7734         /* Zero the flags, we'll add to them as we go */
7735         ipw_rt->rt_flags = 0;
7736         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7737                                frame->parent_tsf[2] << 16 |
7738                                frame->parent_tsf[1] << 8  |
7739                                frame->parent_tsf[0]);
7740
7741         /* Convert signal to DBM */
7742         ipw_rt->rt_dbmsignal = antsignal;
7743         ipw_rt->rt_dbmnoise = frame->noise;
7744
7745         /* Convert the channel data and set the flags */
7746         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7747         if (received_channel > 14) {    /* 802.11a */
7748                 ipw_rt->rt_chbitmask =
7749                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7750         } else if (antennaAndPhy & 32) {        /* 802.11b */
7751                 ipw_rt->rt_chbitmask =
7752                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7753         } else {                /* 802.11g */
7754                 ipw_rt->rt_chbitmask =
7755                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7756         }
7757
7758         /* set the rate in multiples of 500k/s */
7759         switch (pktrate) {
7760         case IPW_TX_RATE_1MB:
7761                 ipw_rt->rt_rate = 2;
7762                 break;
7763         case IPW_TX_RATE_2MB:
7764                 ipw_rt->rt_rate = 4;
7765                 break;
7766         case IPW_TX_RATE_5MB:
7767                 ipw_rt->rt_rate = 10;
7768                 break;
7769         case IPW_TX_RATE_6MB:
7770                 ipw_rt->rt_rate = 12;
7771                 break;
7772         case IPW_TX_RATE_9MB:
7773                 ipw_rt->rt_rate = 18;
7774                 break;
7775         case IPW_TX_RATE_11MB:
7776                 ipw_rt->rt_rate = 22;
7777                 break;
7778         case IPW_TX_RATE_12MB:
7779                 ipw_rt->rt_rate = 24;
7780                 break;
7781         case IPW_TX_RATE_18MB:
7782                 ipw_rt->rt_rate = 36;
7783                 break;
7784         case IPW_TX_RATE_24MB:
7785                 ipw_rt->rt_rate = 48;
7786                 break;
7787         case IPW_TX_RATE_36MB:
7788                 ipw_rt->rt_rate = 72;
7789                 break;
7790         case IPW_TX_RATE_48MB:
7791                 ipw_rt->rt_rate = 96;
7792                 break;
7793         case IPW_TX_RATE_54MB:
7794                 ipw_rt->rt_rate = 108;
7795                 break;
7796         default:
7797                 ipw_rt->rt_rate = 0;
7798                 break;
7799         }
7800
7801         /* antenna number */
7802         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7803
7804         /* set the preamble flag if we have it */
7805         if ((antennaAndPhy & 64))
7806                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7807
7808         /* Set the size of the skb to the size of the frame */
7809         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7810
7811         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7812
7813         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7814                 priv->ieee->stats.rx_errors++;
7815         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7816                 rxb->skb = NULL;
7817                 /* no LED during capture */
7818         }
7819 }
7820 #endif
7821
7822 #ifdef CONFIG_IPW2200_PROMISCUOUS
7823 #define ieee80211_is_probe_response(fc) \
7824    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7825     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7826
7827 #define ieee80211_is_management(fc) \
7828    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7829
7830 #define ieee80211_is_control(fc) \
7831    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7832
7833 #define ieee80211_is_data(fc) \
7834    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7835
7836 #define ieee80211_is_assoc_request(fc) \
7837    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7838
7839 #define ieee80211_is_reassoc_request(fc) \
7840    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7841
7842 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7843                                       struct ipw_rx_mem_buffer *rxb,
7844                                       struct ieee80211_rx_stats *stats)
7845 {
7846         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7847         struct ipw_rx_frame *frame = &pkt->u.frame;
7848         struct ipw_rt_hdr *ipw_rt;
7849
7850         /* First cache any information we need before we overwrite
7851          * the information provided in the skb from the hardware */
7852         struct ieee80211_hdr *hdr;
7853         u16 channel = frame->received_channel;
7854         u8 phy_flags = frame->antennaAndPhy;
7855         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7856         s8 noise = frame->noise;
7857         u8 rate = frame->rate;
7858         short len = le16_to_cpu(pkt->u.frame.length);
7859         struct sk_buff *skb;
7860         int hdr_only = 0;
7861         u16 filter = priv->prom_priv->filter;
7862
7863         /* If the filter is set to not include Rx frames then return */
7864         if (filter & IPW_PROM_NO_RX)
7865                 return;
7866
7867         /* We received data from the HW, so stop the watchdog */
7868         priv->prom_net_dev->trans_start = jiffies;
7869
7870         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7871                 priv->prom_priv->ieee->stats.rx_errors++;
7872                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7873                 return;
7874         }
7875
7876         /* We only process data packets if the interface is open */
7877         if (unlikely(!netif_running(priv->prom_net_dev))) {
7878                 priv->prom_priv->ieee->stats.rx_dropped++;
7879                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880                 return;
7881         }
7882
7883         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7884          * that now */
7885         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886                 /* FIXME: Should alloc bigger skb instead */
7887                 priv->prom_priv->ieee->stats.rx_dropped++;
7888                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7889                 return;
7890         }
7891
7892         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7893         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7894                 if (filter & IPW_PROM_NO_MGMT)
7895                         return;
7896                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7897                         hdr_only = 1;
7898         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7899                 if (filter & IPW_PROM_NO_CTL)
7900                         return;
7901                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7902                         hdr_only = 1;
7903         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7904                 if (filter & IPW_PROM_NO_DATA)
7905                         return;
7906                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7907                         hdr_only = 1;
7908         }
7909
7910         /* Copy the SKB since this is for the promiscuous side */
7911         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7912         if (skb == NULL) {
7913                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7914                 return;
7915         }
7916
7917         /* copy the frame data to write after where the radiotap header goes */
7918         ipw_rt = (void *)skb->data;
7919
7920         if (hdr_only)
7921                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7922
7923         memcpy(ipw_rt->payload, hdr, len);
7924
7925         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7926          * NOT part of our real header, saves a little time.
7927          *
7928          * No longer necessary since we fill in all our data.  Purge before
7929          * merging patch officially.
7930          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7931          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7932          */
7933
7934         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7935         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7936         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7937
7938         /* Set the size of the skb to the size of the frame */
7939         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7940
7941         /* Big bitfield of all the fields we provide in radiotap */
7942         ipw_rt->rt_hdr.it_present =
7943             ((1 << IEEE80211_RADIOTAP_TSFT) |
7944              (1 << IEEE80211_RADIOTAP_FLAGS) |
7945              (1 << IEEE80211_RADIOTAP_RATE) |
7946              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7947              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7948              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7949              (1 << IEEE80211_RADIOTAP_ANTENNA));
7950
7951         /* Zero the flags, we'll add to them as we go */
7952         ipw_rt->rt_flags = 0;
7953         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7954                                frame->parent_tsf[2] << 16 |
7955                                frame->parent_tsf[1] << 8  |
7956                                frame->parent_tsf[0]);
7957
7958         /* Convert to DBM */
7959         ipw_rt->rt_dbmsignal = signal;
7960         ipw_rt->rt_dbmnoise = noise;
7961
7962         /* Convert the channel data and set the flags */
7963         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7964         if (channel > 14) {     /* 802.11a */
7965                 ipw_rt->rt_chbitmask =
7966                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7967         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7968                 ipw_rt->rt_chbitmask =
7969                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7970         } else {                /* 802.11g */
7971                 ipw_rt->rt_chbitmask =
7972                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7973         }
7974
7975         /* set the rate in multiples of 500k/s */
7976         switch (rate) {
7977         case IPW_TX_RATE_1MB:
7978                 ipw_rt->rt_rate = 2;
7979                 break;
7980         case IPW_TX_RATE_2MB:
7981                 ipw_rt->rt_rate = 4;
7982                 break;
7983         case IPW_TX_RATE_5MB:
7984                 ipw_rt->rt_rate = 10;
7985                 break;
7986         case IPW_TX_RATE_6MB:
7987                 ipw_rt->rt_rate = 12;
7988                 break;
7989         case IPW_TX_RATE_9MB:
7990                 ipw_rt->rt_rate = 18;
7991                 break;
7992         case IPW_TX_RATE_11MB:
7993                 ipw_rt->rt_rate = 22;
7994                 break;
7995         case IPW_TX_RATE_12MB:
7996                 ipw_rt->rt_rate = 24;
7997                 break;
7998         case IPW_TX_RATE_18MB:
7999                 ipw_rt->rt_rate = 36;
8000                 break;
8001         case IPW_TX_RATE_24MB:
8002                 ipw_rt->rt_rate = 48;
8003                 break;
8004         case IPW_TX_RATE_36MB:
8005                 ipw_rt->rt_rate = 72;
8006                 break;
8007         case IPW_TX_RATE_48MB:
8008                 ipw_rt->rt_rate = 96;
8009                 break;
8010         case IPW_TX_RATE_54MB:
8011                 ipw_rt->rt_rate = 108;
8012                 break;
8013         default:
8014                 ipw_rt->rt_rate = 0;
8015                 break;
8016         }
8017
8018         /* antenna number */
8019         ipw_rt->rt_antenna = (phy_flags & 3);
8020
8021         /* set the preamble flag if we have it */
8022         if (phy_flags & (1 << 6))
8023                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8024
8025         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8026
8027         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8028                 priv->prom_priv->ieee->stats.rx_errors++;
8029                 dev_kfree_skb_any(skb);
8030         }
8031 }
8032 #endif
8033
8034 static int is_network_packet(struct ipw_priv *priv,
8035                                     struct ieee80211_hdr_4addr *header)
8036 {
8037         /* Filter incoming packets to determine if they are targetted toward
8038          * this network, discarding packets coming from ourselves */
8039         switch (priv->ieee->iw_mode) {
8040         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8041                 /* packets from our adapter are dropped (echo) */
8042                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8043                         return 0;
8044
8045                 /* {broad,multi}cast packets to our BSSID go through */
8046                 if (is_multicast_ether_addr(header->addr1))
8047                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8048
8049                 /* packets to our adapter go through */
8050                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8051                                ETH_ALEN);
8052
8053         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8054                 /* packets from our adapter are dropped (echo) */
8055                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8056                         return 0;
8057
8058                 /* {broad,multi}cast packets to our BSS go through */
8059                 if (is_multicast_ether_addr(header->addr1))
8060                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8061
8062                 /* packets to our adapter go through */
8063                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8064                                ETH_ALEN);
8065         }
8066
8067         return 1;
8068 }
8069
8070 #define IPW_PACKET_RETRY_TIME HZ
8071
8072 static  int is_duplicate_packet(struct ipw_priv *priv,
8073                                       struct ieee80211_hdr_4addr *header)
8074 {
8075         u16 sc = le16_to_cpu(header->seq_ctl);
8076         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8077         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8078         u16 *last_seq, *last_frag;
8079         unsigned long *last_time;
8080
8081         switch (priv->ieee->iw_mode) {
8082         case IW_MODE_ADHOC:
8083                 {
8084                         struct list_head *p;
8085                         struct ipw_ibss_seq *entry = NULL;
8086                         u8 *mac = header->addr2;
8087                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8088
8089                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8090                                 entry =
8091                                     list_entry(p, struct ipw_ibss_seq, list);
8092                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8093                                         break;
8094                         }
8095                         if (p == &priv->ibss_mac_hash[index]) {
8096                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8097                                 if (!entry) {
8098                                         IPW_ERROR
8099                                             ("Cannot malloc new mac entry\n");
8100                                         return 0;
8101                                 }
8102                                 memcpy(entry->mac, mac, ETH_ALEN);
8103                                 entry->seq_num = seq;
8104                                 entry->frag_num = frag;
8105                                 entry->packet_time = jiffies;
8106                                 list_add(&entry->list,
8107                                          &priv->ibss_mac_hash[index]);
8108                                 return 0;
8109                         }
8110                         last_seq = &entry->seq_num;
8111                         last_frag = &entry->frag_num;
8112                         last_time = &entry->packet_time;
8113                         break;
8114                 }
8115         case IW_MODE_INFRA:
8116                 last_seq = &priv->last_seq_num;
8117                 last_frag = &priv->last_frag_num;
8118                 last_time = &priv->last_packet_time;
8119                 break;
8120         default:
8121                 return 0;
8122         }
8123         if ((*last_seq == seq) &&
8124             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8125                 if (*last_frag == frag)
8126                         goto drop;
8127                 if (*last_frag + 1 != frag)
8128                         /* out-of-order fragment */
8129                         goto drop;
8130         } else
8131                 *last_seq = seq;
8132
8133         *last_frag = frag;
8134         *last_time = jiffies;
8135         return 0;
8136
8137       drop:
8138         /* Comment this line now since we observed the card receives
8139          * duplicate packets but the FCTL_RETRY bit is not set in the
8140          * IBSS mode with fragmentation enabled.
8141          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8142         return 1;
8143 }
8144
8145 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8146                                    struct ipw_rx_mem_buffer *rxb,
8147                                    struct ieee80211_rx_stats *stats)
8148 {
8149         struct sk_buff *skb = rxb->skb;
8150         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8151         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8152             (skb->data + IPW_RX_FRAME_SIZE);
8153
8154         ieee80211_rx_mgt(priv->ieee, header, stats);
8155
8156         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8157             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8158               IEEE80211_STYPE_PROBE_RESP) ||
8159              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160               IEEE80211_STYPE_BEACON))) {
8161                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8162                         ipw_add_station(priv, header->addr2);
8163         }
8164
8165         if (priv->config & CFG_NET_STATS) {
8166                 IPW_DEBUG_HC("sending stat packet\n");
8167
8168                 /* Set the size of the skb to the size of the full
8169                  * ipw header and 802.11 frame */
8170                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8171                         IPW_RX_FRAME_SIZE);
8172
8173                 /* Advance past the ipw packet header to the 802.11 frame */
8174                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8175
8176                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8177                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8178
8179                 skb->dev = priv->ieee->dev;
8180
8181                 /* Point raw at the ieee80211_stats */
8182                 skb_reset_mac_header(skb);
8183
8184                 skb->pkt_type = PACKET_OTHERHOST;
8185                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8186                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8187                 netif_rx(skb);
8188                 rxb->skb = NULL;
8189         }
8190 }
8191
8192 /*
8193  * Main entry function for recieving a packet with 80211 headers.  This
8194  * should be called when ever the FW has notified us that there is a new
8195  * skb in the recieve queue.
8196  */
8197 static void ipw_rx(struct ipw_priv *priv)
8198 {
8199         struct ipw_rx_mem_buffer *rxb;
8200         struct ipw_rx_packet *pkt;
8201         struct ieee80211_hdr_4addr *header;
8202         u32 r, w, i;
8203         u8 network_packet;
8204
8205         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8206         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8207         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8208
8209         while (i != r) {
8210                 rxb = priv->rxq->queue[i];
8211                 if (unlikely(rxb == NULL)) {
8212                         printk(KERN_CRIT "Queue not allocated!\n");
8213                         break;
8214                 }
8215                 priv->rxq->queue[i] = NULL;
8216
8217                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8218                                             IPW_RX_BUF_SIZE,
8219                                             PCI_DMA_FROMDEVICE);
8220
8221                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8222                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8223                              pkt->header.message_type,
8224                              pkt->header.rx_seq_num, pkt->header.control_bits);
8225
8226                 switch (pkt->header.message_type) {
8227                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8228                                 struct ieee80211_rx_stats stats = {
8229                                         .rssi = pkt->u.frame.rssi_dbm -
8230                                             IPW_RSSI_TO_DBM,
8231                                         .signal =
8232                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8233                                             IPW_RSSI_TO_DBM + 0x100,
8234                                         .noise =
8235                                             le16_to_cpu(pkt->u.frame.noise),
8236                                         .rate = pkt->u.frame.rate,
8237                                         .mac_time = jiffies,
8238                                         .received_channel =
8239                                             pkt->u.frame.received_channel,
8240                                         .freq =
8241                                             (pkt->u.frame.
8242                                              control & (1 << 0)) ?
8243                                             IEEE80211_24GHZ_BAND :
8244                                             IEEE80211_52GHZ_BAND,
8245                                         .len = le16_to_cpu(pkt->u.frame.length),
8246                                 };
8247
8248                                 if (stats.rssi != 0)
8249                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8250                                 if (stats.signal != 0)
8251                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8252                                 if (stats.noise != 0)
8253                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8254                                 if (stats.rate != 0)
8255                                         stats.mask |= IEEE80211_STATMASK_RATE;
8256
8257                                 priv->rx_packets++;
8258
8259 #ifdef CONFIG_IPW2200_PROMISCUOUS
8260         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8261                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8262 #endif
8263
8264 #ifdef CONFIG_IPW2200_MONITOR
8265                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8266 #ifdef CONFIG_IPW2200_RADIOTAP
8267
8268                 ipw_handle_data_packet_monitor(priv,
8269                                                rxb,
8270                                                &stats);
8271 #else
8272                 ipw_handle_data_packet(priv, rxb,
8273                                        &stats);
8274 #endif
8275                                         break;
8276                                 }
8277 #endif
8278
8279                                 header =
8280                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8281                                                                    data +
8282                                                                    IPW_RX_FRAME_SIZE);
8283                                 /* TODO: Check Ad-Hoc dest/source and make sure
8284                                  * that we are actually parsing these packets
8285                                  * correctly -- we should probably use the
8286                                  * frame control of the packet and disregard
8287                                  * the current iw_mode */
8288
8289                                 network_packet =
8290                                     is_network_packet(priv, header);
8291                                 if (network_packet && priv->assoc_network) {
8292                                         priv->assoc_network->stats.rssi =
8293                                             stats.rssi;
8294                                         priv->exp_avg_rssi =
8295                                             exponential_average(priv->exp_avg_rssi,
8296                                             stats.rssi, DEPTH_RSSI);
8297                                 }
8298
8299                                 IPW_DEBUG_RX("Frame: len=%u\n",
8300                                              le16_to_cpu(pkt->u.frame.length));
8301
8302                                 if (le16_to_cpu(pkt->u.frame.length) <
8303                                     ieee80211_get_hdrlen(le16_to_cpu(
8304                                                     header->frame_ctl))) {
8305                                         IPW_DEBUG_DROP
8306                                             ("Received packet is too small. "
8307                                              "Dropping.\n");
8308                                         priv->ieee->stats.rx_errors++;
8309                                         priv->wstats.discard.misc++;
8310                                         break;
8311                                 }
8312
8313                                 switch (WLAN_FC_GET_TYPE
8314                                         (le16_to_cpu(header->frame_ctl))) {
8315
8316                                 case IEEE80211_FTYPE_MGMT:
8317                                         ipw_handle_mgmt_packet(priv, rxb,
8318                                                                &stats);
8319                                         break;
8320
8321                                 case IEEE80211_FTYPE_CTL:
8322                                         break;
8323
8324                                 case IEEE80211_FTYPE_DATA:
8325                                         if (unlikely(!network_packet ||
8326                                                      is_duplicate_packet(priv,
8327                                                                          header)))
8328                                         {
8329                                                 IPW_DEBUG_DROP("Dropping: "
8330                                                                MAC_FMT ", "
8331                                                                MAC_FMT ", "
8332                                                                MAC_FMT "\n",
8333                                                                MAC_ARG(header->
8334                                                                        addr1),
8335                                                                MAC_ARG(header->
8336                                                                        addr2),
8337                                                                MAC_ARG(header->
8338                                                                        addr3));
8339                                                 break;
8340                                         }
8341
8342                                         ipw_handle_data_packet(priv, rxb,
8343                                                                &stats);
8344
8345                                         break;
8346                                 }
8347                                 break;
8348                         }
8349
8350                 case RX_HOST_NOTIFICATION_TYPE:{
8351                                 IPW_DEBUG_RX
8352                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8353                                      pkt->u.notification.subtype,
8354                                      pkt->u.notification.flags,
8355                                      le16_to_cpu(pkt->u.notification.size));
8356                                 ipw_rx_notification(priv, &pkt->u.notification);
8357                                 break;
8358                         }
8359
8360                 default:
8361                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8362                                      pkt->header.message_type);
8363                         break;
8364                 }
8365
8366                 /* For now we just don't re-use anything.  We can tweak this
8367                  * later to try and re-use notification packets and SKBs that
8368                  * fail to Rx correctly */
8369                 if (rxb->skb != NULL) {
8370                         dev_kfree_skb_any(rxb->skb);
8371                         rxb->skb = NULL;
8372                 }
8373
8374                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8375                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8376                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8377
8378                 i = (i + 1) % RX_QUEUE_SIZE;
8379         }
8380
8381         /* Backtrack one entry */
8382         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8383
8384         ipw_rx_queue_restock(priv);
8385 }
8386
8387 #define DEFAULT_RTS_THRESHOLD     2304U
8388 #define MIN_RTS_THRESHOLD         1U
8389 #define MAX_RTS_THRESHOLD         2304U
8390 #define DEFAULT_BEACON_INTERVAL   100U
8391 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8392 #define DEFAULT_LONG_RETRY_LIMIT  4U
8393
8394 /**
8395  * ipw_sw_reset
8396  * @option: options to control different reset behaviour
8397  *          0 = reset everything except the 'disable' module_param
8398  *          1 = reset everything and print out driver info (for probe only)
8399  *          2 = reset everything
8400  */
8401 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8402 {
8403         int band, modulation;
8404         int old_mode = priv->ieee->iw_mode;
8405
8406         /* Initialize module parameter values here */
8407         priv->config = 0;
8408
8409         /* We default to disabling the LED code as right now it causes
8410          * too many systems to lock up... */
8411         if (!led)
8412                 priv->config |= CFG_NO_LED;
8413
8414         if (associate)
8415                 priv->config |= CFG_ASSOCIATE;
8416         else
8417                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8418
8419         if (auto_create)
8420                 priv->config |= CFG_ADHOC_CREATE;
8421         else
8422                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8423
8424         priv->config &= ~CFG_STATIC_ESSID;
8425         priv->essid_len = 0;
8426         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8427
8428         if (disable && option) {
8429                 priv->status |= STATUS_RF_KILL_SW;
8430                 IPW_DEBUG_INFO("Radio disabled.\n");
8431         }
8432
8433         if (channel != 0) {
8434                 priv->config |= CFG_STATIC_CHANNEL;
8435                 priv->channel = channel;
8436                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8437                 /* TODO: Validate that provided channel is in range */
8438         }
8439 #ifdef CONFIG_IPW2200_QOS
8440         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8441                      burst_duration_CCK, burst_duration_OFDM);
8442 #endif                          /* CONFIG_IPW2200_QOS */
8443
8444         switch (mode) {
8445         case 1:
8446                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8447                 priv->net_dev->type = ARPHRD_ETHER;
8448
8449                 break;
8450 #ifdef CONFIG_IPW2200_MONITOR
8451         case 2:
8452                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8453 #ifdef CONFIG_IPW2200_RADIOTAP
8454                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8455 #else
8456                 priv->net_dev->type = ARPHRD_IEEE80211;
8457 #endif
8458                 break;
8459 #endif
8460         default:
8461         case 0:
8462                 priv->net_dev->type = ARPHRD_ETHER;
8463                 priv->ieee->iw_mode = IW_MODE_INFRA;
8464                 break;
8465         }
8466
8467         if (hwcrypto) {
8468                 priv->ieee->host_encrypt = 0;
8469                 priv->ieee->host_encrypt_msdu = 0;
8470                 priv->ieee->host_decrypt = 0;
8471                 priv->ieee->host_mc_decrypt = 0;
8472         }
8473         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8474
8475         /* IPW2200/2915 is abled to do hardware fragmentation. */
8476         priv->ieee->host_open_frag = 0;
8477
8478         if ((priv->pci_dev->device == 0x4223) ||
8479             (priv->pci_dev->device == 0x4224)) {
8480                 if (option == 1)
8481                         printk(KERN_INFO DRV_NAME
8482                                ": Detected Intel PRO/Wireless 2915ABG Network "
8483                                "Connection\n");
8484                 priv->ieee->abg_true = 1;
8485                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8486                 modulation = IEEE80211_OFDM_MODULATION |
8487                     IEEE80211_CCK_MODULATION;
8488                 priv->adapter = IPW_2915ABG;
8489                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8490         } else {
8491                 if (option == 1)
8492                         printk(KERN_INFO DRV_NAME
8493                                ": Detected Intel PRO/Wireless 2200BG Network "
8494                                "Connection\n");
8495
8496                 priv->ieee->abg_true = 0;
8497                 band = IEEE80211_24GHZ_BAND;
8498                 modulation = IEEE80211_OFDM_MODULATION |
8499                     IEEE80211_CCK_MODULATION;
8500                 priv->adapter = IPW_2200BG;
8501                 priv->ieee->mode = IEEE_G | IEEE_B;
8502         }
8503
8504         priv->ieee->freq_band = band;
8505         priv->ieee->modulation = modulation;
8506
8507         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8508
8509         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8510         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8511
8512         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8513         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8514         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8515
8516         /* If power management is turned on, default to AC mode */
8517         priv->power_mode = IPW_POWER_AC;
8518         priv->tx_power = IPW_TX_POWER_DEFAULT;
8519
8520         return old_mode == priv->ieee->iw_mode;
8521 }
8522
8523 /*
8524  * This file defines the Wireless Extension handlers.  It does not
8525  * define any methods of hardware manipulation and relies on the
8526  * functions defined in ipw_main to provide the HW interaction.
8527  *
8528  * The exception to this is the use of the ipw_get_ordinal()
8529  * function used to poll the hardware vs. making unecessary calls.
8530  *
8531  */
8532
8533 static int ipw_wx_get_name(struct net_device *dev,
8534                            struct iw_request_info *info,
8535                            union iwreq_data *wrqu, char *extra)
8536 {
8537         struct ipw_priv *priv = ieee80211_priv(dev);
8538         mutex_lock(&priv->mutex);
8539         if (priv->status & STATUS_RF_KILL_MASK)
8540                 strcpy(wrqu->name, "radio off");
8541         else if (!(priv->status & STATUS_ASSOCIATED))
8542                 strcpy(wrqu->name, "unassociated");
8543         else
8544                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8545                          ipw_modes[priv->assoc_request.ieee_mode]);
8546         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8547         mutex_unlock(&priv->mutex);
8548         return 0;
8549 }
8550
8551 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8552 {
8553         if (channel == 0) {
8554                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8555                 priv->config &= ~CFG_STATIC_CHANNEL;
8556                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8557                                 "parameters.\n");
8558                 ipw_associate(priv);
8559                 return 0;
8560         }
8561
8562         priv->config |= CFG_STATIC_CHANNEL;
8563
8564         if (priv->channel == channel) {
8565                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8566                                channel);
8567                 return 0;
8568         }
8569
8570         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8571         priv->channel = channel;
8572
8573 #ifdef CONFIG_IPW2200_MONITOR
8574         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8575                 int i;
8576                 if (priv->status & STATUS_SCANNING) {
8577                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8578                                        "channel change.\n");
8579                         ipw_abort_scan(priv);
8580                 }
8581
8582                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8583                         udelay(10);
8584
8585                 if (priv->status & STATUS_SCANNING)
8586                         IPW_DEBUG_SCAN("Still scanning...\n");
8587                 else
8588                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8589                                        1000 - i);
8590
8591                 return 0;
8592         }
8593 #endif                          /* CONFIG_IPW2200_MONITOR */
8594
8595         /* Network configuration changed -- force [re]association */
8596         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8597         if (!ipw_disassociate(priv))
8598                 ipw_associate(priv);
8599
8600         return 0;
8601 }
8602
8603 static int ipw_wx_set_freq(struct net_device *dev,
8604                            struct iw_request_info *info,
8605                            union iwreq_data *wrqu, char *extra)
8606 {
8607         struct ipw_priv *priv = ieee80211_priv(dev);
8608         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8609         struct iw_freq *fwrq = &wrqu->freq;
8610         int ret = 0, i;
8611         u8 channel, flags;
8612         int band;
8613
8614         if (fwrq->m == 0) {
8615                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8616                 mutex_lock(&priv->mutex);
8617                 ret = ipw_set_channel(priv, 0);
8618                 mutex_unlock(&priv->mutex);
8619                 return ret;
8620         }
8621         /* if setting by freq convert to channel */
8622         if (fwrq->e == 1) {
8623                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8624                 if (channel == 0)
8625                         return -EINVAL;
8626         } else
8627                 channel = fwrq->m;
8628
8629         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8630                 return -EINVAL;
8631
8632         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8633                 i = ieee80211_channel_to_index(priv->ieee, channel);
8634                 if (i == -1)
8635                         return -EINVAL;
8636
8637                 flags = (band == IEEE80211_24GHZ_BAND) ?
8638                     geo->bg[i].flags : geo->a[i].flags;
8639                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8640                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8641                         return -EINVAL;
8642                 }
8643         }
8644
8645         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8646         mutex_lock(&priv->mutex);
8647         ret = ipw_set_channel(priv, channel);
8648         mutex_unlock(&priv->mutex);
8649         return ret;
8650 }
8651
8652 static int ipw_wx_get_freq(struct net_device *dev,
8653                            struct iw_request_info *info,
8654                            union iwreq_data *wrqu, char *extra)
8655 {
8656         struct ipw_priv *priv = ieee80211_priv(dev);
8657
8658         wrqu->freq.e = 0;
8659
8660         /* If we are associated, trying to associate, or have a statically
8661          * configured CHANNEL then return that; otherwise return ANY */
8662         mutex_lock(&priv->mutex);
8663         if (priv->config & CFG_STATIC_CHANNEL ||
8664             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8665                 int i;
8666
8667                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8668                 BUG_ON(i == -1);
8669                 wrqu->freq.e = 1;
8670
8671                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8672                 case IEEE80211_52GHZ_BAND:
8673                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8674                         break;
8675
8676                 case IEEE80211_24GHZ_BAND:
8677                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8678                         break;
8679
8680                 default:
8681                         BUG();
8682                 }
8683         } else
8684                 wrqu->freq.m = 0;
8685
8686         mutex_unlock(&priv->mutex);
8687         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8688         return 0;
8689 }
8690
8691 static int ipw_wx_set_mode(struct net_device *dev,
8692                            struct iw_request_info *info,
8693                            union iwreq_data *wrqu, char *extra)
8694 {
8695         struct ipw_priv *priv = ieee80211_priv(dev);
8696         int err = 0;
8697
8698         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8699
8700         switch (wrqu->mode) {
8701 #ifdef CONFIG_IPW2200_MONITOR
8702         case IW_MODE_MONITOR:
8703 #endif
8704         case IW_MODE_ADHOC:
8705         case IW_MODE_INFRA:
8706                 break;
8707         case IW_MODE_AUTO:
8708                 wrqu->mode = IW_MODE_INFRA;
8709                 break;
8710         default:
8711                 return -EINVAL;
8712         }
8713         if (wrqu->mode == priv->ieee->iw_mode)
8714                 return 0;
8715
8716         mutex_lock(&priv->mutex);
8717
8718         ipw_sw_reset(priv, 0);
8719
8720 #ifdef CONFIG_IPW2200_MONITOR
8721         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8722                 priv->net_dev->type = ARPHRD_ETHER;
8723
8724         if (wrqu->mode == IW_MODE_MONITOR)
8725 #ifdef CONFIG_IPW2200_RADIOTAP
8726                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8727 #else
8728                 priv->net_dev->type = ARPHRD_IEEE80211;
8729 #endif
8730 #endif                          /* CONFIG_IPW2200_MONITOR */
8731
8732         /* Free the existing firmware and reset the fw_loaded
8733          * flag so ipw_load() will bring in the new firmawre */
8734         free_firmware();
8735
8736         priv->ieee->iw_mode = wrqu->mode;
8737
8738         queue_work(priv->workqueue, &priv->adapter_restart);
8739         mutex_unlock(&priv->mutex);
8740         return err;
8741 }
8742
8743 static int ipw_wx_get_mode(struct net_device *dev,
8744                            struct iw_request_info *info,
8745                            union iwreq_data *wrqu, char *extra)
8746 {
8747         struct ipw_priv *priv = ieee80211_priv(dev);
8748         mutex_lock(&priv->mutex);
8749         wrqu->mode = priv->ieee->iw_mode;
8750         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8751         mutex_unlock(&priv->mutex);
8752         return 0;
8753 }
8754
8755 /* Values are in microsecond */
8756 static const s32 timeout_duration[] = {
8757         350000,
8758         250000,
8759         75000,
8760         37000,
8761         25000,
8762 };
8763
8764 static const s32 period_duration[] = {
8765         400000,
8766         700000,
8767         1000000,
8768         1000000,
8769         1000000
8770 };
8771
8772 static int ipw_wx_get_range(struct net_device *dev,
8773                             struct iw_request_info *info,
8774                             union iwreq_data *wrqu, char *extra)
8775 {
8776         struct ipw_priv *priv = ieee80211_priv(dev);
8777         struct iw_range *range = (struct iw_range *)extra;
8778         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8779         int i = 0, j;
8780
8781         wrqu->data.length = sizeof(*range);
8782         memset(range, 0, sizeof(*range));
8783
8784         /* 54Mbs == ~27 Mb/s real (802.11g) */
8785         range->throughput = 27 * 1000 * 1000;
8786
8787         range->max_qual.qual = 100;
8788         /* TODO: Find real max RSSI and stick here */
8789         range->max_qual.level = 0;
8790         range->max_qual.noise = 0;
8791         range->max_qual.updated = 7;    /* Updated all three */
8792
8793         range->avg_qual.qual = 70;
8794         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8795         range->avg_qual.level = 0;      /* FIXME to real average level */
8796         range->avg_qual.noise = 0;
8797         range->avg_qual.updated = 7;    /* Updated all three */
8798         mutex_lock(&priv->mutex);
8799         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8800
8801         for (i = 0; i < range->num_bitrates; i++)
8802                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8803                     500000;
8804
8805         range->max_rts = DEFAULT_RTS_THRESHOLD;
8806         range->min_frag = MIN_FRAG_THRESHOLD;
8807         range->max_frag = MAX_FRAG_THRESHOLD;
8808
8809         range->encoding_size[0] = 5;
8810         range->encoding_size[1] = 13;
8811         range->num_encoding_sizes = 2;
8812         range->max_encoding_tokens = WEP_KEYS;
8813
8814         /* Set the Wireless Extension versions */
8815         range->we_version_compiled = WIRELESS_EXT;
8816         range->we_version_source = 18;
8817
8818         i = 0;
8819         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8820                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8821                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8822                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8823                                 continue;
8824
8825                         range->freq[i].i = geo->bg[j].channel;
8826                         range->freq[i].m = geo->bg[j].freq * 100000;
8827                         range->freq[i].e = 1;
8828                         i++;
8829                 }
8830         }
8831
8832         if (priv->ieee->mode & IEEE_A) {
8833                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8834                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8835                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8836                                 continue;
8837
8838                         range->freq[i].i = geo->a[j].channel;
8839                         range->freq[i].m = geo->a[j].freq * 100000;
8840                         range->freq[i].e = 1;
8841                         i++;
8842                 }
8843         }
8844
8845         range->num_channels = i;
8846         range->num_frequency = i;
8847
8848         mutex_unlock(&priv->mutex);
8849
8850         /* Event capability (kernel + driver) */
8851         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8852                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8853                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8854                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8855         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8856
8857         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8858                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8859
8860         IPW_DEBUG_WX("GET Range\n");
8861         return 0;
8862 }
8863
8864 static int ipw_wx_set_wap(struct net_device *dev,
8865                           struct iw_request_info *info,
8866                           union iwreq_data *wrqu, char *extra)
8867 {
8868         struct ipw_priv *priv = ieee80211_priv(dev);
8869
8870         static const unsigned char any[] = {
8871                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8872         };
8873         static const unsigned char off[] = {
8874                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8875         };
8876
8877         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8878                 return -EINVAL;
8879         mutex_lock(&priv->mutex);
8880         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8881             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8882                 /* we disable mandatory BSSID association */
8883                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8884                 priv->config &= ~CFG_STATIC_BSSID;
8885                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8886                                 "parameters.\n");
8887                 ipw_associate(priv);
8888                 mutex_unlock(&priv->mutex);
8889                 return 0;
8890         }
8891
8892         priv->config |= CFG_STATIC_BSSID;
8893         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8894                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8895                 mutex_unlock(&priv->mutex);
8896                 return 0;
8897         }
8898
8899         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8900                      MAC_ARG(wrqu->ap_addr.sa_data));
8901
8902         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8903
8904         /* Network configuration changed -- force [re]association */
8905         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8906         if (!ipw_disassociate(priv))
8907                 ipw_associate(priv);
8908
8909         mutex_unlock(&priv->mutex);
8910         return 0;
8911 }
8912
8913 static int ipw_wx_get_wap(struct net_device *dev,
8914                           struct iw_request_info *info,
8915                           union iwreq_data *wrqu, char *extra)
8916 {
8917         struct ipw_priv *priv = ieee80211_priv(dev);
8918         /* If we are associated, trying to associate, or have a statically
8919          * configured BSSID then return that; otherwise return ANY */
8920         mutex_lock(&priv->mutex);
8921         if (priv->config & CFG_STATIC_BSSID ||
8922             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8923                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8924                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8925         } else
8926                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8927
8928         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8929                      MAC_ARG(wrqu->ap_addr.sa_data));
8930         mutex_unlock(&priv->mutex);
8931         return 0;
8932 }
8933
8934 static int ipw_wx_set_essid(struct net_device *dev,
8935                             struct iw_request_info *info,
8936                             union iwreq_data *wrqu, char *extra)
8937 {
8938         struct ipw_priv *priv = ieee80211_priv(dev);
8939         int length;
8940
8941         mutex_lock(&priv->mutex);
8942
8943         if (!wrqu->essid.flags)
8944         {
8945                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8946                 ipw_disassociate(priv);
8947                 priv->config &= ~CFG_STATIC_ESSID;
8948                 ipw_associate(priv);
8949                 mutex_unlock(&priv->mutex);
8950                 return 0;
8951         }
8952
8953         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8954
8955         priv->config |= CFG_STATIC_ESSID;
8956
8957         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8958             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8959                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8960                 mutex_unlock(&priv->mutex);
8961                 return 0;
8962         }
8963
8964         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8965                      length);
8966
8967         priv->essid_len = length;
8968         memcpy(priv->essid, extra, priv->essid_len);
8969
8970         /* Network configuration changed -- force [re]association */
8971         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8972         if (!ipw_disassociate(priv))
8973                 ipw_associate(priv);
8974
8975         mutex_unlock(&priv->mutex);
8976         return 0;
8977 }
8978
8979 static int ipw_wx_get_essid(struct net_device *dev,
8980                             struct iw_request_info *info,
8981                             union iwreq_data *wrqu, char *extra)
8982 {
8983         struct ipw_priv *priv = ieee80211_priv(dev);
8984
8985         /* If we are associated, trying to associate, or have a statically
8986          * configured ESSID then return that; otherwise return ANY */
8987         mutex_lock(&priv->mutex);
8988         if (priv->config & CFG_STATIC_ESSID ||
8989             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8990                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8991                              escape_essid(priv->essid, priv->essid_len));
8992                 memcpy(extra, priv->essid, priv->essid_len);
8993                 wrqu->essid.length = priv->essid_len;
8994                 wrqu->essid.flags = 1;  /* active */
8995         } else {
8996                 IPW_DEBUG_WX("Getting essid: ANY\n");
8997                 wrqu->essid.length = 0;
8998                 wrqu->essid.flags = 0;  /* active */
8999         }
9000         mutex_unlock(&priv->mutex);
9001         return 0;
9002 }
9003
9004 static int ipw_wx_set_nick(struct net_device *dev,
9005                            struct iw_request_info *info,
9006                            union iwreq_data *wrqu, char *extra)
9007 {
9008         struct ipw_priv *priv = ieee80211_priv(dev);
9009
9010         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9011         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9012                 return -E2BIG;
9013         mutex_lock(&priv->mutex);
9014         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9015         memset(priv->nick, 0, sizeof(priv->nick));
9016         memcpy(priv->nick, extra, wrqu->data.length);
9017         IPW_DEBUG_TRACE("<<\n");
9018         mutex_unlock(&priv->mutex);
9019         return 0;
9020
9021 }
9022
9023 static int ipw_wx_get_nick(struct net_device *dev,
9024                            struct iw_request_info *info,
9025                            union iwreq_data *wrqu, char *extra)
9026 {
9027         struct ipw_priv *priv = ieee80211_priv(dev);
9028         IPW_DEBUG_WX("Getting nick\n");
9029         mutex_lock(&priv->mutex);
9030         wrqu->data.length = strlen(priv->nick);
9031         memcpy(extra, priv->nick, wrqu->data.length);
9032         wrqu->data.flags = 1;   /* active */
9033         mutex_unlock(&priv->mutex);
9034         return 0;
9035 }
9036
9037 static int ipw_wx_set_sens(struct net_device *dev,
9038                             struct iw_request_info *info,
9039                             union iwreq_data *wrqu, char *extra)
9040 {
9041         struct ipw_priv *priv = ieee80211_priv(dev);
9042         int err = 0;
9043
9044         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9045         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9046         mutex_lock(&priv->mutex);
9047
9048         if (wrqu->sens.fixed == 0)
9049         {
9050                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9051                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9052                 goto out;
9053         }
9054         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9055             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9056                 err = -EINVAL;
9057                 goto out;
9058         }
9059
9060         priv->roaming_threshold = wrqu->sens.value;
9061         priv->disassociate_threshold = 3*wrqu->sens.value;
9062       out:
9063         mutex_unlock(&priv->mutex);
9064         return err;
9065 }
9066
9067 static int ipw_wx_get_sens(struct net_device *dev,
9068                             struct iw_request_info *info,
9069                             union iwreq_data *wrqu, char *extra)
9070 {
9071         struct ipw_priv *priv = ieee80211_priv(dev);
9072         mutex_lock(&priv->mutex);
9073         wrqu->sens.fixed = 1;
9074         wrqu->sens.value = priv->roaming_threshold;
9075         mutex_unlock(&priv->mutex);
9076
9077         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9078                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9079
9080         return 0;
9081 }
9082
9083 static int ipw_wx_set_rate(struct net_device *dev,
9084                            struct iw_request_info *info,
9085                            union iwreq_data *wrqu, char *extra)
9086 {
9087         /* TODO: We should use semaphores or locks for access to priv */
9088         struct ipw_priv *priv = ieee80211_priv(dev);
9089         u32 target_rate = wrqu->bitrate.value;
9090         u32 fixed, mask;
9091
9092         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9093         /* value = X, fixed = 1 means only rate X */
9094         /* value = X, fixed = 0 means all rates lower equal X */
9095
9096         if (target_rate == -1) {
9097                 fixed = 0;
9098                 mask = IEEE80211_DEFAULT_RATES_MASK;
9099                 /* Now we should reassociate */
9100                 goto apply;
9101         }
9102
9103         mask = 0;
9104         fixed = wrqu->bitrate.fixed;
9105
9106         if (target_rate == 1000000 || !fixed)
9107                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9108         if (target_rate == 1000000)
9109                 goto apply;
9110
9111         if (target_rate == 2000000 || !fixed)
9112                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9113         if (target_rate == 2000000)
9114                 goto apply;
9115
9116         if (target_rate == 5500000 || !fixed)
9117                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9118         if (target_rate == 5500000)
9119                 goto apply;
9120
9121         if (target_rate == 6000000 || !fixed)
9122                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9123         if (target_rate == 6000000)
9124                 goto apply;
9125
9126         if (target_rate == 9000000 || !fixed)
9127                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9128         if (target_rate == 9000000)
9129                 goto apply;
9130
9131         if (target_rate == 11000000 || !fixed)
9132                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9133         if (target_rate == 11000000)
9134                 goto apply;
9135
9136         if (target_rate == 12000000 || !fixed)
9137                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9138         if (target_rate == 12000000)
9139                 goto apply;
9140
9141         if (target_rate == 18000000 || !fixed)
9142                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9143         if (target_rate == 18000000)
9144                 goto apply;
9145
9146         if (target_rate == 24000000 || !fixed)
9147                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9148         if (target_rate == 24000000)
9149                 goto apply;
9150
9151         if (target_rate == 36000000 || !fixed)
9152                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9153         if (target_rate == 36000000)
9154                 goto apply;
9155
9156         if (target_rate == 48000000 || !fixed)
9157                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9158         if (target_rate == 48000000)
9159                 goto apply;
9160
9161         if (target_rate == 54000000 || !fixed)
9162                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9163         if (target_rate == 54000000)
9164                 goto apply;
9165
9166         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9167         return -EINVAL;
9168
9169       apply:
9170         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9171                      mask, fixed ? "fixed" : "sub-rates");
9172         mutex_lock(&priv->mutex);
9173         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9174                 priv->config &= ~CFG_FIXED_RATE;
9175                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9176         } else
9177                 priv->config |= CFG_FIXED_RATE;
9178
9179         if (priv->rates_mask == mask) {
9180                 IPW_DEBUG_WX("Mask set to current mask.\n");
9181                 mutex_unlock(&priv->mutex);
9182                 return 0;
9183         }
9184
9185         priv->rates_mask = mask;
9186
9187         /* Network configuration changed -- force [re]association */
9188         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9189         if (!ipw_disassociate(priv))
9190                 ipw_associate(priv);
9191
9192         mutex_unlock(&priv->mutex);
9193         return 0;
9194 }
9195
9196 static int ipw_wx_get_rate(struct net_device *dev,
9197                            struct iw_request_info *info,
9198                            union iwreq_data *wrqu, char *extra)
9199 {
9200         struct ipw_priv *priv = ieee80211_priv(dev);
9201         mutex_lock(&priv->mutex);
9202         wrqu->bitrate.value = priv->last_rate;
9203         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9204         mutex_unlock(&priv->mutex);
9205         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9206         return 0;
9207 }
9208
9209 static int ipw_wx_set_rts(struct net_device *dev,
9210                           struct iw_request_info *info,
9211                           union iwreq_data *wrqu, char *extra)
9212 {
9213         struct ipw_priv *priv = ieee80211_priv(dev);
9214         mutex_lock(&priv->mutex);
9215         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9216                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9217         else {
9218                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9219                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9220                         mutex_unlock(&priv->mutex);
9221                         return -EINVAL;
9222                 }
9223                 priv->rts_threshold = wrqu->rts.value;
9224         }
9225
9226         ipw_send_rts_threshold(priv, priv->rts_threshold);
9227         mutex_unlock(&priv->mutex);
9228         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9229         return 0;
9230 }
9231
9232 static int ipw_wx_get_rts(struct net_device *dev,
9233                           struct iw_request_info *info,
9234                           union iwreq_data *wrqu, char *extra)
9235 {
9236         struct ipw_priv *priv = ieee80211_priv(dev);
9237         mutex_lock(&priv->mutex);
9238         wrqu->rts.value = priv->rts_threshold;
9239         wrqu->rts.fixed = 0;    /* no auto select */
9240         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9241         mutex_unlock(&priv->mutex);
9242         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9243         return 0;
9244 }
9245
9246 static int ipw_wx_set_txpow(struct net_device *dev,
9247                             struct iw_request_info *info,
9248                             union iwreq_data *wrqu, char *extra)
9249 {
9250         struct ipw_priv *priv = ieee80211_priv(dev);
9251         int err = 0;
9252
9253         mutex_lock(&priv->mutex);
9254         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9255                 err = -EINPROGRESS;
9256                 goto out;
9257         }
9258
9259         if (!wrqu->power.fixed)
9260                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9261
9262         if (wrqu->power.flags != IW_TXPOW_DBM) {
9263                 err = -EINVAL;
9264                 goto out;
9265         }
9266
9267         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9268             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9269                 err = -EINVAL;
9270                 goto out;
9271         }
9272
9273         priv->tx_power = wrqu->power.value;
9274         err = ipw_set_tx_power(priv);
9275       out:
9276         mutex_unlock(&priv->mutex);
9277         return err;
9278 }
9279
9280 static int ipw_wx_get_txpow(struct net_device *dev,
9281                             struct iw_request_info *info,
9282                             union iwreq_data *wrqu, char *extra)
9283 {
9284         struct ipw_priv *priv = ieee80211_priv(dev);
9285         mutex_lock(&priv->mutex);
9286         wrqu->power.value = priv->tx_power;
9287         wrqu->power.fixed = 1;
9288         wrqu->power.flags = IW_TXPOW_DBM;
9289         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9290         mutex_unlock(&priv->mutex);
9291
9292         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9293                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9294
9295         return 0;
9296 }
9297
9298 static int ipw_wx_set_frag(struct net_device *dev,
9299                            struct iw_request_info *info,
9300                            union iwreq_data *wrqu, char *extra)
9301 {
9302         struct ipw_priv *priv = ieee80211_priv(dev);
9303         mutex_lock(&priv->mutex);
9304         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9305                 priv->ieee->fts = DEFAULT_FTS;
9306         else {
9307                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9308                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9309                         mutex_unlock(&priv->mutex);
9310                         return -EINVAL;
9311                 }
9312
9313                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9314         }
9315
9316         ipw_send_frag_threshold(priv, wrqu->frag.value);
9317         mutex_unlock(&priv->mutex);
9318         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9319         return 0;
9320 }
9321
9322 static int ipw_wx_get_frag(struct net_device *dev,
9323                            struct iw_request_info *info,
9324                            union iwreq_data *wrqu, char *extra)
9325 {
9326         struct ipw_priv *priv = ieee80211_priv(dev);
9327         mutex_lock(&priv->mutex);
9328         wrqu->frag.value = priv->ieee->fts;
9329         wrqu->frag.fixed = 0;   /* no auto select */
9330         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9331         mutex_unlock(&priv->mutex);
9332         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9333
9334         return 0;
9335 }
9336
9337 static int ipw_wx_set_retry(struct net_device *dev,
9338                             struct iw_request_info *info,
9339                             union iwreq_data *wrqu, char *extra)
9340 {
9341         struct ipw_priv *priv = ieee80211_priv(dev);
9342
9343         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9344                 return -EINVAL;
9345
9346         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9347                 return 0;
9348
9349         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9350                 return -EINVAL;
9351
9352         mutex_lock(&priv->mutex);
9353         if (wrqu->retry.flags & IW_RETRY_SHORT)
9354                 priv->short_retry_limit = (u8) wrqu->retry.value;
9355         else if (wrqu->retry.flags & IW_RETRY_LONG)
9356                 priv->long_retry_limit = (u8) wrqu->retry.value;
9357         else {
9358                 priv->short_retry_limit = (u8) wrqu->retry.value;
9359                 priv->long_retry_limit = (u8) wrqu->retry.value;
9360         }
9361
9362         ipw_send_retry_limit(priv, priv->short_retry_limit,
9363                              priv->long_retry_limit);
9364         mutex_unlock(&priv->mutex);
9365         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9366                      priv->short_retry_limit, priv->long_retry_limit);
9367         return 0;
9368 }
9369
9370 static int ipw_wx_get_retry(struct net_device *dev,
9371                             struct iw_request_info *info,
9372                             union iwreq_data *wrqu, char *extra)
9373 {
9374         struct ipw_priv *priv = ieee80211_priv(dev);
9375
9376         mutex_lock(&priv->mutex);
9377         wrqu->retry.disabled = 0;
9378
9379         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9380                 mutex_unlock(&priv->mutex);
9381                 return -EINVAL;
9382         }
9383
9384         if (wrqu->retry.flags & IW_RETRY_LONG) {
9385                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9386                 wrqu->retry.value = priv->long_retry_limit;
9387         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9388                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9389                 wrqu->retry.value = priv->short_retry_limit;
9390         } else {
9391                 wrqu->retry.flags = IW_RETRY_LIMIT;
9392                 wrqu->retry.value = priv->short_retry_limit;
9393         }
9394         mutex_unlock(&priv->mutex);
9395
9396         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9397
9398         return 0;
9399 }
9400
9401 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9402                                    int essid_len)
9403 {
9404         struct ipw_scan_request_ext scan;
9405         int err = 0, scan_type;
9406
9407         if (!(priv->status & STATUS_INIT) ||
9408             (priv->status & STATUS_EXIT_PENDING))
9409                 return 0;
9410
9411         mutex_lock(&priv->mutex);
9412
9413         if (priv->status & STATUS_RF_KILL_MASK) {
9414                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9415                 priv->status |= STATUS_SCAN_PENDING;
9416                 goto done;
9417         }
9418
9419         IPW_DEBUG_HC("starting request direct scan!\n");
9420
9421         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9422                 /* We should not sleep here; otherwise we will block most
9423                  * of the system (for instance, we hold rtnl_lock when we
9424                  * get here).
9425                  */
9426                 err = -EAGAIN;
9427                 goto done;
9428         }
9429         memset(&scan, 0, sizeof(scan));
9430
9431         if (priv->config & CFG_SPEED_SCAN)
9432                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9433                     cpu_to_le16(30);
9434         else
9435                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9436                     cpu_to_le16(20);
9437
9438         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9439             cpu_to_le16(20);
9440         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9441         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9442
9443         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9444
9445         err = ipw_send_ssid(priv, essid, essid_len);
9446         if (err) {
9447                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9448                 goto done;
9449         }
9450         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9451
9452         ipw_add_scan_channels(priv, &scan, scan_type);
9453
9454         err = ipw_send_scan_request_ext(priv, &scan);
9455         if (err) {
9456                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9457                 goto done;
9458         }
9459
9460         priv->status |= STATUS_SCANNING;
9461
9462       done:
9463         mutex_unlock(&priv->mutex);
9464         return err;
9465 }
9466
9467 static int ipw_wx_set_scan(struct net_device *dev,
9468                            struct iw_request_info *info,
9469                            union iwreq_data *wrqu, char *extra)
9470 {
9471         struct ipw_priv *priv = ieee80211_priv(dev);
9472         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9473
9474         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9475                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9476                         ipw_request_direct_scan(priv, req->essid,
9477                                                 req->essid_len);
9478                         return 0;
9479                 }
9480                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9481                         queue_work(priv->workqueue,
9482                                    &priv->request_passive_scan);
9483                         return 0;
9484                 }
9485         }
9486
9487         IPW_DEBUG_WX("Start scan\n");
9488
9489         queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
9490
9491         return 0;
9492 }
9493
9494 static int ipw_wx_get_scan(struct net_device *dev,
9495                            struct iw_request_info *info,
9496                            union iwreq_data *wrqu, char *extra)
9497 {
9498         struct ipw_priv *priv = ieee80211_priv(dev);
9499         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9500 }
9501
9502 static int ipw_wx_set_encode(struct net_device *dev,
9503                              struct iw_request_info *info,
9504                              union iwreq_data *wrqu, char *key)
9505 {
9506         struct ipw_priv *priv = ieee80211_priv(dev);
9507         int ret;
9508         u32 cap = priv->capability;
9509
9510         mutex_lock(&priv->mutex);
9511         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9512
9513         /* In IBSS mode, we need to notify the firmware to update
9514          * the beacon info after we changed the capability. */
9515         if (cap != priv->capability &&
9516             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9517             priv->status & STATUS_ASSOCIATED)
9518                 ipw_disassociate(priv);
9519
9520         mutex_unlock(&priv->mutex);
9521         return ret;
9522 }
9523
9524 static int ipw_wx_get_encode(struct net_device *dev,
9525                              struct iw_request_info *info,
9526                              union iwreq_data *wrqu, char *key)
9527 {
9528         struct ipw_priv *priv = ieee80211_priv(dev);
9529         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9530 }
9531
9532 static int ipw_wx_set_power(struct net_device *dev,
9533                             struct iw_request_info *info,
9534                             union iwreq_data *wrqu, char *extra)
9535 {
9536         struct ipw_priv *priv = ieee80211_priv(dev);
9537         int err;
9538         mutex_lock(&priv->mutex);
9539         if (wrqu->power.disabled) {
9540                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9541                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9542                 if (err) {
9543                         IPW_DEBUG_WX("failed setting power mode.\n");
9544                         mutex_unlock(&priv->mutex);
9545                         return err;
9546                 }
9547                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9548                 mutex_unlock(&priv->mutex);
9549                 return 0;
9550         }
9551
9552         switch (wrqu->power.flags & IW_POWER_MODE) {
9553         case IW_POWER_ON:       /* If not specified */
9554         case IW_POWER_MODE:     /* If set all mask */
9555         case IW_POWER_ALL_R:    /* If explicitely state all */
9556                 break;
9557         default:                /* Otherwise we don't support it */
9558                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9559                              wrqu->power.flags);
9560                 mutex_unlock(&priv->mutex);
9561                 return -EOPNOTSUPP;
9562         }
9563
9564         /* If the user hasn't specified a power management mode yet, default
9565          * to BATTERY */
9566         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9567                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9568         else
9569                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9570         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9571         if (err) {
9572                 IPW_DEBUG_WX("failed setting power mode.\n");
9573                 mutex_unlock(&priv->mutex);
9574                 return err;
9575         }
9576
9577         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9578         mutex_unlock(&priv->mutex);
9579         return 0;
9580 }
9581
9582 static int ipw_wx_get_power(struct net_device *dev,
9583                             struct iw_request_info *info,
9584                             union iwreq_data *wrqu, char *extra)
9585 {
9586         struct ipw_priv *priv = ieee80211_priv(dev);
9587         mutex_lock(&priv->mutex);
9588         if (!(priv->power_mode & IPW_POWER_ENABLED))
9589                 wrqu->power.disabled = 1;
9590         else
9591                 wrqu->power.disabled = 0;
9592
9593         mutex_unlock(&priv->mutex);
9594         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9595
9596         return 0;
9597 }
9598
9599 static int ipw_wx_set_powermode(struct net_device *dev,
9600                                 struct iw_request_info *info,
9601                                 union iwreq_data *wrqu, char *extra)
9602 {
9603         struct ipw_priv *priv = ieee80211_priv(dev);
9604         int mode = *(int *)extra;
9605         int err;
9606         mutex_lock(&priv->mutex);
9607         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9608                 mode = IPW_POWER_AC;
9609                 priv->power_mode = mode;
9610         } else {
9611                 priv->power_mode = IPW_POWER_ENABLED | mode;
9612         }
9613
9614         if (priv->power_mode != mode) {
9615                 err = ipw_send_power_mode(priv, mode);
9616
9617                 if (err) {
9618                         IPW_DEBUG_WX("failed setting power mode.\n");
9619                         mutex_unlock(&priv->mutex);
9620                         return err;
9621                 }
9622         }
9623         mutex_unlock(&priv->mutex);
9624         return 0;
9625 }
9626
9627 #define MAX_WX_STRING 80
9628 static int ipw_wx_get_powermode(struct net_device *dev,
9629                                 struct iw_request_info *info,
9630                                 union iwreq_data *wrqu, char *extra)
9631 {
9632         struct ipw_priv *priv = ieee80211_priv(dev);
9633         int level = IPW_POWER_LEVEL(priv->power_mode);
9634         char *p = extra;
9635
9636         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9637
9638         switch (level) {
9639         case IPW_POWER_AC:
9640                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9641                 break;
9642         case IPW_POWER_BATTERY:
9643                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9644                 break;
9645         default:
9646                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9647                               "(Timeout %dms, Period %dms)",
9648                               timeout_duration[level - 1] / 1000,
9649                               period_duration[level - 1] / 1000);
9650         }
9651
9652         if (!(priv->power_mode & IPW_POWER_ENABLED))
9653                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9654
9655         wrqu->data.length = p - extra + 1;
9656
9657         return 0;
9658 }
9659
9660 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9661                                     struct iw_request_info *info,
9662                                     union iwreq_data *wrqu, char *extra)
9663 {
9664         struct ipw_priv *priv = ieee80211_priv(dev);
9665         int mode = *(int *)extra;
9666         u8 band = 0, modulation = 0;
9667
9668         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9669                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9670                 return -EINVAL;
9671         }
9672         mutex_lock(&priv->mutex);
9673         if (priv->adapter == IPW_2915ABG) {
9674                 priv->ieee->abg_true = 1;
9675                 if (mode & IEEE_A) {
9676                         band |= IEEE80211_52GHZ_BAND;
9677                         modulation |= IEEE80211_OFDM_MODULATION;
9678                 } else
9679                         priv->ieee->abg_true = 0;
9680         } else {
9681                 if (mode & IEEE_A) {
9682                         IPW_WARNING("Attempt to set 2200BG into "
9683                                     "802.11a mode\n");
9684                         mutex_unlock(&priv->mutex);
9685                         return -EINVAL;
9686                 }
9687
9688                 priv->ieee->abg_true = 0;
9689         }
9690
9691         if (mode & IEEE_B) {
9692                 band |= IEEE80211_24GHZ_BAND;
9693                 modulation |= IEEE80211_CCK_MODULATION;
9694         } else
9695                 priv->ieee->abg_true = 0;
9696
9697         if (mode & IEEE_G) {
9698                 band |= IEEE80211_24GHZ_BAND;
9699                 modulation |= IEEE80211_OFDM_MODULATION;
9700         } else
9701                 priv->ieee->abg_true = 0;
9702
9703         priv->ieee->mode = mode;
9704         priv->ieee->freq_band = band;
9705         priv->ieee->modulation = modulation;
9706         init_supported_rates(priv, &priv->rates);
9707
9708         /* Network configuration changed -- force [re]association */
9709         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9710         if (!ipw_disassociate(priv)) {
9711                 ipw_send_supported_rates(priv, &priv->rates);
9712                 ipw_associate(priv);
9713         }
9714
9715         /* Update the band LEDs */
9716         ipw_led_band_on(priv);
9717
9718         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9719                      mode & IEEE_A ? 'a' : '.',
9720                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9721         mutex_unlock(&priv->mutex);
9722         return 0;
9723 }
9724
9725 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9726                                     struct iw_request_info *info,
9727                                     union iwreq_data *wrqu, char *extra)
9728 {
9729         struct ipw_priv *priv = ieee80211_priv(dev);
9730         mutex_lock(&priv->mutex);
9731         switch (priv->ieee->mode) {
9732         case IEEE_A:
9733                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9734                 break;
9735         case IEEE_B:
9736                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9737                 break;
9738         case IEEE_A | IEEE_B:
9739                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9740                 break;
9741         case IEEE_G:
9742                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9743                 break;
9744         case IEEE_A | IEEE_G:
9745                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9746                 break;
9747         case IEEE_B | IEEE_G:
9748                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9749                 break;
9750         case IEEE_A | IEEE_B | IEEE_G:
9751                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9752                 break;
9753         default:
9754                 strncpy(extra, "unknown", MAX_WX_STRING);
9755                 break;
9756         }
9757
9758         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9759
9760         wrqu->data.length = strlen(extra) + 1;
9761         mutex_unlock(&priv->mutex);
9762
9763         return 0;
9764 }
9765
9766 static int ipw_wx_set_preamble(struct net_device *dev,
9767                                struct iw_request_info *info,
9768                                union iwreq_data *wrqu, char *extra)
9769 {
9770         struct ipw_priv *priv = ieee80211_priv(dev);
9771         int mode = *(int *)extra;
9772         mutex_lock(&priv->mutex);
9773         /* Switching from SHORT -> LONG requires a disassociation */
9774         if (mode == 1) {
9775                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9776                         priv->config |= CFG_PREAMBLE_LONG;
9777
9778                         /* Network configuration changed -- force [re]association */
9779                         IPW_DEBUG_ASSOC
9780                             ("[re]association triggered due to preamble change.\n");
9781                         if (!ipw_disassociate(priv))
9782                                 ipw_associate(priv);
9783                 }
9784                 goto done;
9785         }
9786
9787         if (mode == 0) {
9788                 priv->config &= ~CFG_PREAMBLE_LONG;
9789                 goto done;
9790         }
9791         mutex_unlock(&priv->mutex);
9792         return -EINVAL;
9793
9794       done:
9795         mutex_unlock(&priv->mutex);
9796         return 0;
9797 }
9798
9799 static int ipw_wx_get_preamble(struct net_device *dev,
9800                                struct iw_request_info *info,
9801                                union iwreq_data *wrqu, char *extra)
9802 {
9803         struct ipw_priv *priv = ieee80211_priv(dev);
9804         mutex_lock(&priv->mutex);
9805         if (priv->config & CFG_PREAMBLE_LONG)
9806                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9807         else
9808                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9809         mutex_unlock(&priv->mutex);
9810         return 0;
9811 }
9812
9813 #ifdef CONFIG_IPW2200_MONITOR
9814 static int ipw_wx_set_monitor(struct net_device *dev,
9815                               struct iw_request_info *info,
9816                               union iwreq_data *wrqu, char *extra)
9817 {
9818         struct ipw_priv *priv = ieee80211_priv(dev);
9819         int *parms = (int *)extra;
9820         int enable = (parms[0] > 0);
9821         mutex_lock(&priv->mutex);
9822         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9823         if (enable) {
9824                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9825 #ifdef CONFIG_IPW2200_RADIOTAP
9826                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9827 #else
9828                         priv->net_dev->type = ARPHRD_IEEE80211;
9829 #endif
9830                         queue_work(priv->workqueue, &priv->adapter_restart);
9831                 }
9832
9833                 ipw_set_channel(priv, parms[1]);
9834         } else {
9835                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9836                         mutex_unlock(&priv->mutex);
9837                         return 0;
9838                 }
9839                 priv->net_dev->type = ARPHRD_ETHER;
9840                 queue_work(priv->workqueue, &priv->adapter_restart);
9841         }
9842         mutex_unlock(&priv->mutex);
9843         return 0;
9844 }
9845
9846 #endif                          /* CONFIG_IPW2200_MONITOR */
9847
9848 static int ipw_wx_reset(struct net_device *dev,
9849                         struct iw_request_info *info,
9850                         union iwreq_data *wrqu, char *extra)
9851 {
9852         struct ipw_priv *priv = ieee80211_priv(dev);
9853         IPW_DEBUG_WX("RESET\n");
9854         queue_work(priv->workqueue, &priv->adapter_restart);
9855         return 0;
9856 }
9857
9858 static int ipw_wx_sw_reset(struct net_device *dev,
9859                            struct iw_request_info *info,
9860                            union iwreq_data *wrqu, char *extra)
9861 {
9862         struct ipw_priv *priv = ieee80211_priv(dev);
9863         union iwreq_data wrqu_sec = {
9864                 .encoding = {
9865                              .flags = IW_ENCODE_DISABLED,
9866                              },
9867         };
9868         int ret;
9869
9870         IPW_DEBUG_WX("SW_RESET\n");
9871
9872         mutex_lock(&priv->mutex);
9873
9874         ret = ipw_sw_reset(priv, 2);
9875         if (!ret) {
9876                 free_firmware();
9877                 ipw_adapter_restart(priv);
9878         }
9879
9880         /* The SW reset bit might have been toggled on by the 'disable'
9881          * module parameter, so take appropriate action */
9882         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9883
9884         mutex_unlock(&priv->mutex);
9885         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9886         mutex_lock(&priv->mutex);
9887
9888         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9889                 /* Configuration likely changed -- force [re]association */
9890                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9891                                 "reset.\n");
9892                 if (!ipw_disassociate(priv))
9893                         ipw_associate(priv);
9894         }
9895
9896         mutex_unlock(&priv->mutex);
9897
9898         return 0;
9899 }
9900
9901 /* Rebase the WE IOCTLs to zero for the handler array */
9902 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9903 static iw_handler ipw_wx_handlers[] = {
9904         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9905         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9906         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9907         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9908         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9909         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9910         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9911         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9912         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9913         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9914         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9915         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9916         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9917         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9918         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9919         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9920         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9921         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9922         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9923         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9924         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9925         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9926         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9927         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9928         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9929         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9930         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9931         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9932         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9933         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9934         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9935         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9936         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9937         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9938         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9939         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9940         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9941         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9942         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9943         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9944         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9945 };
9946
9947 enum {
9948         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9949         IPW_PRIV_GET_POWER,
9950         IPW_PRIV_SET_MODE,
9951         IPW_PRIV_GET_MODE,
9952         IPW_PRIV_SET_PREAMBLE,
9953         IPW_PRIV_GET_PREAMBLE,
9954         IPW_PRIV_RESET,
9955         IPW_PRIV_SW_RESET,
9956 #ifdef CONFIG_IPW2200_MONITOR
9957         IPW_PRIV_SET_MONITOR,
9958 #endif
9959 };
9960
9961 static struct iw_priv_args ipw_priv_args[] = {
9962         {
9963          .cmd = IPW_PRIV_SET_POWER,
9964          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965          .name = "set_power"},
9966         {
9967          .cmd = IPW_PRIV_GET_POWER,
9968          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969          .name = "get_power"},
9970         {
9971          .cmd = IPW_PRIV_SET_MODE,
9972          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973          .name = "set_mode"},
9974         {
9975          .cmd = IPW_PRIV_GET_MODE,
9976          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9977          .name = "get_mode"},
9978         {
9979          .cmd = IPW_PRIV_SET_PREAMBLE,
9980          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9981          .name = "set_preamble"},
9982         {
9983          .cmd = IPW_PRIV_GET_PREAMBLE,
9984          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9985          .name = "get_preamble"},
9986         {
9987          IPW_PRIV_RESET,
9988          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9989         {
9990          IPW_PRIV_SW_RESET,
9991          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9992 #ifdef CONFIG_IPW2200_MONITOR
9993         {
9994          IPW_PRIV_SET_MONITOR,
9995          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9996 #endif                          /* CONFIG_IPW2200_MONITOR */
9997 };
9998
9999 static iw_handler ipw_priv_handler[] = {
10000         ipw_wx_set_powermode,
10001         ipw_wx_get_powermode,
10002         ipw_wx_set_wireless_mode,
10003         ipw_wx_get_wireless_mode,
10004         ipw_wx_set_preamble,
10005         ipw_wx_get_preamble,
10006         ipw_wx_reset,
10007         ipw_wx_sw_reset,
10008 #ifdef CONFIG_IPW2200_MONITOR
10009         ipw_wx_set_monitor,
10010 #endif
10011 };
10012
10013 static struct iw_handler_def ipw_wx_handler_def = {
10014         .standard = ipw_wx_handlers,
10015         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10016         .num_private = ARRAY_SIZE(ipw_priv_handler),
10017         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10018         .private = ipw_priv_handler,
10019         .private_args = ipw_priv_args,
10020         .get_wireless_stats = ipw_get_wireless_stats,
10021 };
10022
10023 /*
10024  * Get wireless statistics.
10025  * Called by /proc/net/wireless
10026  * Also called by SIOCGIWSTATS
10027  */
10028 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10029 {
10030         struct ipw_priv *priv = ieee80211_priv(dev);
10031         struct iw_statistics *wstats;
10032
10033         wstats = &priv->wstats;
10034
10035         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10036          * netdev->get_wireless_stats seems to be called before fw is
10037          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10038          * and associated; if not associcated, the values are all meaningless
10039          * anyway, so set them all to NULL and INVALID */
10040         if (!(priv->status & STATUS_ASSOCIATED)) {
10041                 wstats->miss.beacon = 0;
10042                 wstats->discard.retries = 0;
10043                 wstats->qual.qual = 0;
10044                 wstats->qual.level = 0;
10045                 wstats->qual.noise = 0;
10046                 wstats->qual.updated = 7;
10047                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10048                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10049                 return wstats;
10050         }
10051
10052         wstats->qual.qual = priv->quality;
10053         wstats->qual.level = priv->exp_avg_rssi;
10054         wstats->qual.noise = priv->exp_avg_noise;
10055         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10056             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10057
10058         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10059         wstats->discard.retries = priv->last_tx_failures;
10060         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10061
10062 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10063         goto fail_get_ordinal;
10064         wstats->discard.retries += tx_retry; */
10065
10066         return wstats;
10067 }
10068
10069 /* net device stuff */
10070
10071 static  void init_sys_config(struct ipw_sys_config *sys_config)
10072 {
10073         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10074         sys_config->bt_coexistence = 0;
10075         sys_config->answer_broadcast_ssid_probe = 0;
10076         sys_config->accept_all_data_frames = 0;
10077         sys_config->accept_non_directed_frames = 1;
10078         sys_config->exclude_unicast_unencrypted = 0;
10079         sys_config->disable_unicast_decryption = 1;
10080         sys_config->exclude_multicast_unencrypted = 0;
10081         sys_config->disable_multicast_decryption = 1;
10082         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10083                 antenna = CFG_SYS_ANTENNA_BOTH;
10084         sys_config->antenna_diversity = antenna;
10085         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10086         sys_config->dot11g_auto_detection = 0;
10087         sys_config->enable_cts_to_self = 0;
10088         sys_config->bt_coexist_collision_thr = 0;
10089         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10090         sys_config->silence_threshold = 0x1e;
10091 }
10092
10093 static int ipw_net_open(struct net_device *dev)
10094 {
10095         struct ipw_priv *priv = ieee80211_priv(dev);
10096         IPW_DEBUG_INFO("dev->open\n");
10097         /* we should be verifying the device is ready to be opened */
10098         mutex_lock(&priv->mutex);
10099         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10100             (priv->status & STATUS_ASSOCIATED))
10101                 netif_start_queue(dev);
10102         mutex_unlock(&priv->mutex);
10103         return 0;
10104 }
10105
10106 static int ipw_net_stop(struct net_device *dev)
10107 {
10108         IPW_DEBUG_INFO("dev->close\n");
10109         netif_stop_queue(dev);
10110         return 0;
10111 }
10112
10113 /*
10114 todo:
10115
10116 modify to send one tfd per fragment instead of using chunking.  otherwise
10117 we need to heavily modify the ieee80211_skb_to_txb.
10118 */
10119
10120 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10121                              int pri)
10122 {
10123         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10124             txb->fragments[0]->data;
10125         int i = 0;
10126         struct tfd_frame *tfd;
10127 #ifdef CONFIG_IPW2200_QOS
10128         int tx_id = ipw_get_tx_queue_number(priv, pri);
10129         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10130 #else
10131         struct clx2_tx_queue *txq = &priv->txq[0];
10132 #endif
10133         struct clx2_queue *q = &txq->q;
10134         u8 id, hdr_len, unicast;
10135         u16 remaining_bytes;
10136         int fc;
10137
10138         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10139         switch (priv->ieee->iw_mode) {
10140         case IW_MODE_ADHOC:
10141                 unicast = !is_multicast_ether_addr(hdr->addr1);
10142                 id = ipw_find_station(priv, hdr->addr1);
10143                 if (id == IPW_INVALID_STATION) {
10144                         id = ipw_add_station(priv, hdr->addr1);
10145                         if (id == IPW_INVALID_STATION) {
10146                                 IPW_WARNING("Attempt to send data to "
10147                                             "invalid cell: " MAC_FMT "\n",
10148                                             MAC_ARG(hdr->addr1));
10149                                 goto drop;
10150                         }
10151                 }
10152                 break;
10153
10154         case IW_MODE_INFRA:
10155         default:
10156                 unicast = !is_multicast_ether_addr(hdr->addr3);
10157                 id = 0;
10158                 break;
10159         }
10160
10161         tfd = &txq->bd[q->first_empty];
10162         txq->txb[q->first_empty] = txb;
10163         memset(tfd, 0, sizeof(*tfd));
10164         tfd->u.data.station_number = id;
10165
10166         tfd->control_flags.message_type = TX_FRAME_TYPE;
10167         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10168
10169         tfd->u.data.cmd_id = DINO_CMD_TX;
10170         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10171         remaining_bytes = txb->payload_size;
10172
10173         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10174                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10175         else
10176                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10177
10178         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10179                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10180
10181         fc = le16_to_cpu(hdr->frame_ctl);
10182         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10183
10184         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10185
10186         if (likely(unicast))
10187                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10188
10189         if (txb->encrypted && !priv->ieee->host_encrypt) {
10190                 switch (priv->ieee->sec.level) {
10191                 case SEC_LEVEL_3:
10192                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10193                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10194                         /* XXX: ACK flag must be set for CCMP even if it
10195                          * is a multicast/broadcast packet, because CCMP
10196                          * group communication encrypted by GTK is
10197                          * actually done by the AP. */
10198                         if (!unicast)
10199                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10200
10201                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10202                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10203                         tfd->u.data.key_index = 0;
10204                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10205                         break;
10206                 case SEC_LEVEL_2:
10207                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10208                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10209                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10210                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10211                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10212                         break;
10213                 case SEC_LEVEL_1:
10214                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10215                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10216                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10217                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10218                             40)
10219                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10220                         else
10221                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10222                         break;
10223                 case SEC_LEVEL_0:
10224                         break;
10225                 default:
10226                         printk(KERN_ERR "Unknow security level %d\n",
10227                                priv->ieee->sec.level);
10228                         break;
10229                 }
10230         } else
10231                 /* No hardware encryption */
10232                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10233
10234 #ifdef CONFIG_IPW2200_QOS
10235         if (fc & IEEE80211_STYPE_QOS_DATA)
10236                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10237 #endif                          /* CONFIG_IPW2200_QOS */
10238
10239         /* payload */
10240         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10241                                                  txb->nr_frags));
10242         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10243                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10244         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10245                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10246                                i, le32_to_cpu(tfd->u.data.num_chunks),
10247                                txb->fragments[i]->len - hdr_len);
10248                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10249                              i, tfd->u.data.num_chunks,
10250                              txb->fragments[i]->len - hdr_len);
10251                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10252                            txb->fragments[i]->len - hdr_len);
10253
10254                 tfd->u.data.chunk_ptr[i] =
10255                     cpu_to_le32(pci_map_single
10256                                 (priv->pci_dev,
10257                                  txb->fragments[i]->data + hdr_len,
10258                                  txb->fragments[i]->len - hdr_len,
10259                                  PCI_DMA_TODEVICE));
10260                 tfd->u.data.chunk_len[i] =
10261                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10262         }
10263
10264         if (i != txb->nr_frags) {
10265                 struct sk_buff *skb;
10266                 u16 remaining_bytes = 0;
10267                 int j;
10268
10269                 for (j = i; j < txb->nr_frags; j++)
10270                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10271
10272                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10273                        remaining_bytes);
10274                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10275                 if (skb != NULL) {
10276                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10277                         for (j = i; j < txb->nr_frags; j++) {
10278                                 int size = txb->fragments[j]->len - hdr_len;
10279
10280                                 printk(KERN_INFO "Adding frag %d %d...\n",
10281                                        j, size);
10282                                 memcpy(skb_put(skb, size),
10283                                        txb->fragments[j]->data + hdr_len, size);
10284                         }
10285                         dev_kfree_skb_any(txb->fragments[i]);
10286                         txb->fragments[i] = skb;
10287                         tfd->u.data.chunk_ptr[i] =
10288                             cpu_to_le32(pci_map_single
10289                                         (priv->pci_dev, skb->data,
10290                                          tfd->u.data.chunk_len[i],
10291                                          PCI_DMA_TODEVICE));
10292
10293                         tfd->u.data.num_chunks =
10294                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10295                                         1);
10296                 }
10297         }
10298
10299         /* kick DMA */
10300         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10301         ipw_write32(priv, q->reg_w, q->first_empty);
10302
10303         if (ipw_queue_space(q) < q->high_mark)
10304                 netif_stop_queue(priv->net_dev);
10305
10306         return NETDEV_TX_OK;
10307
10308       drop:
10309         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10310         ieee80211_txb_free(txb);
10311         return NETDEV_TX_OK;
10312 }
10313
10314 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10315 {
10316         struct ipw_priv *priv = ieee80211_priv(dev);
10317 #ifdef CONFIG_IPW2200_QOS
10318         int tx_id = ipw_get_tx_queue_number(priv, pri);
10319         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10320 #else
10321         struct clx2_tx_queue *txq = &priv->txq[0];
10322 #endif                          /* CONFIG_IPW2200_QOS */
10323
10324         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10325                 return 1;
10326
10327         return 0;
10328 }
10329
10330 #ifdef CONFIG_IPW2200_PROMISCUOUS
10331 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10332                                       struct ieee80211_txb *txb)
10333 {
10334         struct ieee80211_rx_stats dummystats;
10335         struct ieee80211_hdr *hdr;
10336         u8 n;
10337         u16 filter = priv->prom_priv->filter;
10338         int hdr_only = 0;
10339
10340         if (filter & IPW_PROM_NO_TX)
10341                 return;
10342
10343         memset(&dummystats, 0, sizeof(dummystats));
10344
10345         /* Filtering of fragment chains is done agains the first fragment */
10346         hdr = (void *)txb->fragments[0]->data;
10347         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10348                 if (filter & IPW_PROM_NO_MGMT)
10349                         return;
10350                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10351                         hdr_only = 1;
10352         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10353                 if (filter & IPW_PROM_NO_CTL)
10354                         return;
10355                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10356                         hdr_only = 1;
10357         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10358                 if (filter & IPW_PROM_NO_DATA)
10359                         return;
10360                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10361                         hdr_only = 1;
10362         }
10363
10364         for(n=0; n<txb->nr_frags; ++n) {
10365                 struct sk_buff *src = txb->fragments[n];
10366                 struct sk_buff *dst;
10367                 struct ieee80211_radiotap_header *rt_hdr;
10368                 int len;
10369
10370                 if (hdr_only) {
10371                         hdr = (void *)src->data;
10372                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10373                 } else
10374                         len = src->len;
10375
10376                 dst = alloc_skb(
10377                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10378                 if (!dst) continue;
10379
10380                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10381
10382                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10383                 rt_hdr->it_pad = 0;
10384                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10385                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10386
10387                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10388                         ieee80211chan2mhz(priv->channel));
10389                 if (priv->channel > 14)         /* 802.11a */
10390                         *(u16*)skb_put(dst, sizeof(u16)) =
10391                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10392                                              IEEE80211_CHAN_5GHZ);
10393                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10394                         *(u16*)skb_put(dst, sizeof(u16)) =
10395                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10396                                              IEEE80211_CHAN_2GHZ);
10397                 else            /* 802.11g */
10398                         *(u16*)skb_put(dst, sizeof(u16)) =
10399                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10400                                  IEEE80211_CHAN_2GHZ);
10401
10402                 rt_hdr->it_len = dst->len;
10403
10404                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10405
10406                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10407                         dev_kfree_skb_any(dst);
10408         }
10409 }
10410 #endif
10411
10412 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10413                                    struct net_device *dev, int pri)
10414 {
10415         struct ipw_priv *priv = ieee80211_priv(dev);
10416         unsigned long flags;
10417         int ret;
10418
10419         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10420         spin_lock_irqsave(&priv->lock, flags);
10421
10422         if (!(priv->status & STATUS_ASSOCIATED)) {
10423                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10424                 priv->ieee->stats.tx_carrier_errors++;
10425                 netif_stop_queue(dev);
10426                 goto fail_unlock;
10427         }
10428
10429 #ifdef CONFIG_IPW2200_PROMISCUOUS
10430         if (rtap_iface && netif_running(priv->prom_net_dev))
10431                 ipw_handle_promiscuous_tx(priv, txb);
10432 #endif
10433
10434         ret = ipw_tx_skb(priv, txb, pri);
10435         if (ret == NETDEV_TX_OK)
10436                 __ipw_led_activity_on(priv);
10437         spin_unlock_irqrestore(&priv->lock, flags);
10438
10439         return ret;
10440
10441       fail_unlock:
10442         spin_unlock_irqrestore(&priv->lock, flags);
10443         return 1;
10444 }
10445
10446 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10447 {
10448         struct ipw_priv *priv = ieee80211_priv(dev);
10449
10450         priv->ieee->stats.tx_packets = priv->tx_packets;
10451         priv->ieee->stats.rx_packets = priv->rx_packets;
10452         return &priv->ieee->stats;
10453 }
10454
10455 static void ipw_net_set_multicast_list(struct net_device *dev)
10456 {
10457
10458 }
10459
10460 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10461 {
10462         struct ipw_priv *priv = ieee80211_priv(dev);
10463         struct sockaddr *addr = p;
10464         if (!is_valid_ether_addr(addr->sa_data))
10465                 return -EADDRNOTAVAIL;
10466         mutex_lock(&priv->mutex);
10467         priv->config |= CFG_CUSTOM_MAC;
10468         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10469         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10470                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10471         queue_work(priv->workqueue, &priv->adapter_restart);
10472         mutex_unlock(&priv->mutex);
10473         return 0;
10474 }
10475
10476 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10477                                     struct ethtool_drvinfo *info)
10478 {
10479         struct ipw_priv *p = ieee80211_priv(dev);
10480         char vers[64];
10481         char date[32];
10482         u32 len;
10483
10484         strcpy(info->driver, DRV_NAME);
10485         strcpy(info->version, DRV_VERSION);
10486
10487         len = sizeof(vers);
10488         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10489         len = sizeof(date);
10490         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10491
10492         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10493                  vers, date);
10494         strcpy(info->bus_info, pci_name(p->pci_dev));
10495         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10496 }
10497
10498 static u32 ipw_ethtool_get_link(struct net_device *dev)
10499 {
10500         struct ipw_priv *priv = ieee80211_priv(dev);
10501         return (priv->status & STATUS_ASSOCIATED) != 0;
10502 }
10503
10504 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10505 {
10506         return IPW_EEPROM_IMAGE_SIZE;
10507 }
10508
10509 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10510                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10511 {
10512         struct ipw_priv *p = ieee80211_priv(dev);
10513
10514         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10515                 return -EINVAL;
10516         mutex_lock(&p->mutex);
10517         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10518         mutex_unlock(&p->mutex);
10519         return 0;
10520 }
10521
10522 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10523                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10524 {
10525         struct ipw_priv *p = ieee80211_priv(dev);
10526         int i;
10527
10528         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10529                 return -EINVAL;
10530         mutex_lock(&p->mutex);
10531         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10532         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10533                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10534         mutex_unlock(&p->mutex);
10535         return 0;
10536 }
10537
10538 static const struct ethtool_ops ipw_ethtool_ops = {
10539         .get_link = ipw_ethtool_get_link,
10540         .get_drvinfo = ipw_ethtool_get_drvinfo,
10541         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10542         .get_eeprom = ipw_ethtool_get_eeprom,
10543         .set_eeprom = ipw_ethtool_set_eeprom,
10544 };
10545
10546 static irqreturn_t ipw_isr(int irq, void *data)
10547 {
10548         struct ipw_priv *priv = data;
10549         u32 inta, inta_mask;
10550
10551         if (!priv)
10552                 return IRQ_NONE;
10553
10554         spin_lock(&priv->irq_lock);
10555
10556         if (!(priv->status & STATUS_INT_ENABLED)) {
10557                 /* Shared IRQ */
10558                 goto none;
10559         }
10560
10561         inta = ipw_read32(priv, IPW_INTA_RW);
10562         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10563
10564         if (inta == 0xFFFFFFFF) {
10565                 /* Hardware disappeared */
10566                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10567                 goto none;
10568         }
10569
10570         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10571                 /* Shared interrupt */
10572                 goto none;
10573         }
10574
10575         /* tell the device to stop sending interrupts */
10576         __ipw_disable_interrupts(priv);
10577
10578         /* ack current interrupts */
10579         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10580         ipw_write32(priv, IPW_INTA_RW, inta);
10581
10582         /* Cache INTA value for our tasklet */
10583         priv->isr_inta = inta;
10584
10585         tasklet_schedule(&priv->irq_tasklet);
10586
10587         spin_unlock(&priv->irq_lock);
10588
10589         return IRQ_HANDLED;
10590       none:
10591         spin_unlock(&priv->irq_lock);
10592         return IRQ_NONE;
10593 }
10594
10595 static void ipw_rf_kill(void *adapter)
10596 {
10597         struct ipw_priv *priv = adapter;
10598         unsigned long flags;
10599
10600         spin_lock_irqsave(&priv->lock, flags);
10601
10602         if (rf_kill_active(priv)) {
10603                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10604                 if (priv->workqueue)
10605                         queue_delayed_work(priv->workqueue,
10606                                            &priv->rf_kill, 2 * HZ);
10607                 goto exit_unlock;
10608         }
10609
10610         /* RF Kill is now disabled, so bring the device back up */
10611
10612         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10613                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10614                                   "device\n");
10615
10616                 /* we can not do an adapter restart while inside an irq lock */
10617                 queue_work(priv->workqueue, &priv->adapter_restart);
10618         } else
10619                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10620                                   "enabled\n");
10621
10622       exit_unlock:
10623         spin_unlock_irqrestore(&priv->lock, flags);
10624 }
10625
10626 static void ipw_bg_rf_kill(struct work_struct *work)
10627 {
10628         struct ipw_priv *priv =
10629                 container_of(work, struct ipw_priv, rf_kill.work);
10630         mutex_lock(&priv->mutex);
10631         ipw_rf_kill(priv);
10632         mutex_unlock(&priv->mutex);
10633 }
10634
10635 static void ipw_link_up(struct ipw_priv *priv)
10636 {
10637         priv->last_seq_num = -1;
10638         priv->last_frag_num = -1;
10639         priv->last_packet_time = 0;
10640
10641         netif_carrier_on(priv->net_dev);
10642         if (netif_queue_stopped(priv->net_dev)) {
10643                 IPW_DEBUG_NOTIF("waking queue\n");
10644                 netif_wake_queue(priv->net_dev);
10645         } else {
10646                 IPW_DEBUG_NOTIF("starting queue\n");
10647                 netif_start_queue(priv->net_dev);
10648         }
10649
10650         cancel_delayed_work(&priv->request_scan);
10651         ipw_reset_stats(priv);
10652         /* Ensure the rate is updated immediately */
10653         priv->last_rate = ipw_get_current_rate(priv);
10654         ipw_gather_stats(priv);
10655         ipw_led_link_up(priv);
10656         notify_wx_assoc_event(priv);
10657
10658         if (priv->config & CFG_BACKGROUND_SCAN)
10659                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10660 }
10661
10662 static void ipw_bg_link_up(struct work_struct *work)
10663 {
10664         struct ipw_priv *priv =
10665                 container_of(work, struct ipw_priv, link_up);
10666         mutex_lock(&priv->mutex);
10667         ipw_link_up(priv);
10668         mutex_unlock(&priv->mutex);
10669 }
10670
10671 static void ipw_link_down(struct ipw_priv *priv)
10672 {
10673         ipw_led_link_down(priv);
10674         netif_carrier_off(priv->net_dev);
10675         netif_stop_queue(priv->net_dev);
10676         notify_wx_assoc_event(priv);
10677
10678         /* Cancel any queued work ... */
10679         cancel_delayed_work(&priv->request_scan);
10680         cancel_delayed_work(&priv->adhoc_check);
10681         cancel_delayed_work(&priv->gather_stats);
10682
10683         ipw_reset_stats(priv);
10684
10685         if (!(priv->status & STATUS_EXIT_PENDING)) {
10686                 /* Queue up another scan... */
10687                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10688         }
10689 }
10690
10691 static void ipw_bg_link_down(struct work_struct *work)
10692 {
10693         struct ipw_priv *priv =
10694                 container_of(work, struct ipw_priv, link_down);
10695         mutex_lock(&priv->mutex);
10696         ipw_link_down(priv);
10697         mutex_unlock(&priv->mutex);
10698 }
10699
10700 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10701 {
10702         int ret = 0;
10703
10704         priv->workqueue = create_workqueue(DRV_NAME);
10705         init_waitqueue_head(&priv->wait_command_queue);
10706         init_waitqueue_head(&priv->wait_state);
10707
10708         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10709         INIT_WORK(&priv->associate, ipw_bg_associate);
10710         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10711         INIT_WORK(&priv->system_config, ipw_system_config);
10712         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10713         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10714         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10715         INIT_WORK(&priv->up, ipw_bg_up);
10716         INIT_WORK(&priv->down, ipw_bg_down);
10717         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10718         INIT_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10719         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10720         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10721         INIT_WORK(&priv->roam, ipw_bg_roam);
10722         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10723         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10724         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10725         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10726         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10727         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10728         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10729
10730 #ifdef CONFIG_IPW2200_QOS
10731         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10732 #endif                          /* CONFIG_IPW2200_QOS */
10733
10734         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10735                      ipw_irq_tasklet, (unsigned long)priv);
10736
10737         return ret;
10738 }
10739
10740 static void shim__set_security(struct net_device *dev,
10741                                struct ieee80211_security *sec)
10742 {
10743         struct ipw_priv *priv = ieee80211_priv(dev);
10744         int i;
10745         for (i = 0; i < 4; i++) {
10746                 if (sec->flags & (1 << i)) {
10747                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10748                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10749                         if (sec->key_sizes[i] == 0)
10750                                 priv->ieee->sec.flags &= ~(1 << i);
10751                         else {
10752                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10753                                        sec->key_sizes[i]);
10754                                 priv->ieee->sec.flags |= (1 << i);
10755                         }
10756                         priv->status |= STATUS_SECURITY_UPDATED;
10757                 } else if (sec->level != SEC_LEVEL_1)
10758                         priv->ieee->sec.flags &= ~(1 << i);
10759         }
10760
10761         if (sec->flags & SEC_ACTIVE_KEY) {
10762                 if (sec->active_key <= 3) {
10763                         priv->ieee->sec.active_key = sec->active_key;
10764                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10765                 } else
10766                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10767                 priv->status |= STATUS_SECURITY_UPDATED;
10768         } else
10769                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10770
10771         if ((sec->flags & SEC_AUTH_MODE) &&
10772             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10773                 priv->ieee->sec.auth_mode = sec->auth_mode;
10774                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10775                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10776                         priv->capability |= CAP_SHARED_KEY;
10777                 else
10778                         priv->capability &= ~CAP_SHARED_KEY;
10779                 priv->status |= STATUS_SECURITY_UPDATED;
10780         }
10781
10782         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10783                 priv->ieee->sec.flags |= SEC_ENABLED;
10784                 priv->ieee->sec.enabled = sec->enabled;
10785                 priv->status |= STATUS_SECURITY_UPDATED;
10786                 if (sec->enabled)
10787                         priv->capability |= CAP_PRIVACY_ON;
10788                 else
10789                         priv->capability &= ~CAP_PRIVACY_ON;
10790         }
10791
10792         if (sec->flags & SEC_ENCRYPT)
10793                 priv->ieee->sec.encrypt = sec->encrypt;
10794
10795         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10796                 priv->ieee->sec.level = sec->level;
10797                 priv->ieee->sec.flags |= SEC_LEVEL;
10798                 priv->status |= STATUS_SECURITY_UPDATED;
10799         }
10800
10801         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10802                 ipw_set_hwcrypto_keys(priv);
10803
10804         /* To match current functionality of ipw2100 (which works well w/
10805          * various supplicants, we don't force a disassociate if the
10806          * privacy capability changes ... */
10807 #if 0
10808         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10809             (((priv->assoc_request.capability &
10810                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10811              (!(priv->assoc_request.capability &
10812                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10813                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10814                                 "change.\n");
10815                 ipw_disassociate(priv);
10816         }
10817 #endif
10818 }
10819
10820 static int init_supported_rates(struct ipw_priv *priv,
10821                                 struct ipw_supported_rates *rates)
10822 {
10823         /* TODO: Mask out rates based on priv->rates_mask */
10824
10825         memset(rates, 0, sizeof(*rates));
10826         /* configure supported rates */
10827         switch (priv->ieee->freq_band) {
10828         case IEEE80211_52GHZ_BAND:
10829                 rates->ieee_mode = IPW_A_MODE;
10830                 rates->purpose = IPW_RATE_CAPABILITIES;
10831                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10832                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10833                 break;
10834
10835         default:                /* Mixed or 2.4Ghz */
10836                 rates->ieee_mode = IPW_G_MODE;
10837                 rates->purpose = IPW_RATE_CAPABILITIES;
10838                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10839                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10840                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10841                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10842                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10843                 }
10844                 break;
10845         }
10846
10847         return 0;
10848 }
10849
10850 static int ipw_config(struct ipw_priv *priv)
10851 {
10852         /* This is only called from ipw_up, which resets/reloads the firmware
10853            so, we don't need to first disable the card before we configure
10854            it */
10855         if (ipw_set_tx_power(priv))
10856                 goto error;
10857
10858         /* initialize adapter address */
10859         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10860                 goto error;
10861
10862         /* set basic system config settings */
10863         init_sys_config(&priv->sys_config);
10864
10865         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10866          * Does not support BT priority yet (don't abort or defer our Tx) */
10867         if (bt_coexist) {
10868                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10869
10870                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10871                         priv->sys_config.bt_coexistence
10872                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10873                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10874                         priv->sys_config.bt_coexistence
10875                             |= CFG_BT_COEXISTENCE_OOB;
10876         }
10877
10878 #ifdef CONFIG_IPW2200_PROMISCUOUS
10879         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10880                 priv->sys_config.accept_all_data_frames = 1;
10881                 priv->sys_config.accept_non_directed_frames = 1;
10882                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10883                 priv->sys_config.accept_all_mgmt_frames = 1;
10884         }
10885 #endif
10886
10887         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10888                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10889         else
10890                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10891
10892         if (ipw_send_system_config(priv))
10893                 goto error;
10894
10895         init_supported_rates(priv, &priv->rates);
10896         if (ipw_send_supported_rates(priv, &priv->rates))
10897                 goto error;
10898
10899         /* Set request-to-send threshold */
10900         if (priv->rts_threshold) {
10901                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10902                         goto error;
10903         }
10904 #ifdef CONFIG_IPW2200_QOS
10905         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10906         ipw_qos_activate(priv, NULL);
10907 #endif                          /* CONFIG_IPW2200_QOS */
10908
10909         if (ipw_set_random_seed(priv))
10910                 goto error;
10911
10912         /* final state transition to the RUN state */
10913         if (ipw_send_host_complete(priv))
10914                 goto error;
10915
10916         priv->status |= STATUS_INIT;
10917
10918         ipw_led_init(priv);
10919         ipw_led_radio_on(priv);
10920         priv->notif_missed_beacons = 0;
10921
10922         /* Set hardware WEP key if it is configured. */
10923         if ((priv->capability & CAP_PRIVACY_ON) &&
10924             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10925             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10926                 ipw_set_hwcrypto_keys(priv);
10927
10928         return 0;
10929
10930       error:
10931         return -EIO;
10932 }
10933
10934 /*
10935  * NOTE:
10936  *
10937  * These tables have been tested in conjunction with the
10938  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10939  *
10940  * Altering this values, using it on other hardware, or in geographies
10941  * not intended for resale of the above mentioned Intel adapters has
10942  * not been tested.
10943  *
10944  * Remember to update the table in README.ipw2200 when changing this
10945  * table.
10946  *
10947  */
10948 static const struct ieee80211_geo ipw_geos[] = {
10949         {                       /* Restricted */
10950          "---",
10951          .bg_channels = 11,
10952          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10953                 {2427, 4}, {2432, 5}, {2437, 6},
10954                 {2442, 7}, {2447, 8}, {2452, 9},
10955                 {2457, 10}, {2462, 11}},
10956          },
10957
10958         {                       /* Custom US/Canada */
10959          "ZZF",
10960          .bg_channels = 11,
10961          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962                 {2427, 4}, {2432, 5}, {2437, 6},
10963                 {2442, 7}, {2447, 8}, {2452, 9},
10964                 {2457, 10}, {2462, 11}},
10965          .a_channels = 8,
10966          .a = {{5180, 36},
10967                {5200, 40},
10968                {5220, 44},
10969                {5240, 48},
10970                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10971                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10972                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10973                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10974          },
10975
10976         {                       /* Rest of World */
10977          "ZZD",
10978          .bg_channels = 13,
10979          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10980                 {2427, 4}, {2432, 5}, {2437, 6},
10981                 {2442, 7}, {2447, 8}, {2452, 9},
10982                 {2457, 10}, {2462, 11}, {2467, 12},
10983                 {2472, 13}},
10984          },
10985
10986         {                       /* Custom USA & Europe & High */
10987          "ZZA",
10988          .bg_channels = 11,
10989          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990                 {2427, 4}, {2432, 5}, {2437, 6},
10991                 {2442, 7}, {2447, 8}, {2452, 9},
10992                 {2457, 10}, {2462, 11}},
10993          .a_channels = 13,
10994          .a = {{5180, 36},
10995                {5200, 40},
10996                {5220, 44},
10997                {5240, 48},
10998                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10999                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11000                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11001                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11002                {5745, 149},
11003                {5765, 153},
11004                {5785, 157},
11005                {5805, 161},
11006                {5825, 165}},
11007          },
11008
11009         {                       /* Custom NA & Europe */
11010          "ZZB",
11011          .bg_channels = 11,
11012          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11013                 {2427, 4}, {2432, 5}, {2437, 6},
11014                 {2442, 7}, {2447, 8}, {2452, 9},
11015                 {2457, 10}, {2462, 11}},
11016          .a_channels = 13,
11017          .a = {{5180, 36},
11018                {5200, 40},
11019                {5220, 44},
11020                {5240, 48},
11021                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11022                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11023                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11024                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11025                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11026                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11027                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11028                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11029                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11030          },
11031
11032         {                       /* Custom Japan */
11033          "ZZC",
11034          .bg_channels = 11,
11035          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036                 {2427, 4}, {2432, 5}, {2437, 6},
11037                 {2442, 7}, {2447, 8}, {2452, 9},
11038                 {2457, 10}, {2462, 11}},
11039          .a_channels = 4,
11040          .a = {{5170, 34}, {5190, 38},
11041                {5210, 42}, {5230, 46}},
11042          },
11043
11044         {                       /* Custom */
11045          "ZZM",
11046          .bg_channels = 11,
11047          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11048                 {2427, 4}, {2432, 5}, {2437, 6},
11049                 {2442, 7}, {2447, 8}, {2452, 9},
11050                 {2457, 10}, {2462, 11}},
11051          },
11052
11053         {                       /* Europe */
11054          "ZZE",
11055          .bg_channels = 13,
11056          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057                 {2427, 4}, {2432, 5}, {2437, 6},
11058                 {2442, 7}, {2447, 8}, {2452, 9},
11059                 {2457, 10}, {2462, 11}, {2467, 12},
11060                 {2472, 13}},
11061          .a_channels = 19,
11062          .a = {{5180, 36},
11063                {5200, 40},
11064                {5220, 44},
11065                {5240, 48},
11066                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11067                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11068                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11069                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11070                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11071                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11072                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11073                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11074                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11075                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11076                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11077                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11078                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11079                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11080                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11081          },
11082
11083         {                       /* Custom Japan */
11084          "ZZJ",
11085          .bg_channels = 14,
11086          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11087                 {2427, 4}, {2432, 5}, {2437, 6},
11088                 {2442, 7}, {2447, 8}, {2452, 9},
11089                 {2457, 10}, {2462, 11}, {2467, 12},
11090                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11091          .a_channels = 4,
11092          .a = {{5170, 34}, {5190, 38},
11093                {5210, 42}, {5230, 46}},
11094          },
11095
11096         {                       /* Rest of World */
11097          "ZZR",
11098          .bg_channels = 14,
11099          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11100                 {2427, 4}, {2432, 5}, {2437, 6},
11101                 {2442, 7}, {2447, 8}, {2452, 9},
11102                 {2457, 10}, {2462, 11}, {2467, 12},
11103                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11104                              IEEE80211_CH_PASSIVE_ONLY}},
11105          },
11106
11107         {                       /* High Band */
11108          "ZZH",
11109          .bg_channels = 13,
11110          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11111                 {2427, 4}, {2432, 5}, {2437, 6},
11112                 {2442, 7}, {2447, 8}, {2452, 9},
11113                 {2457, 10}, {2462, 11},
11114                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11115                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11116          .a_channels = 4,
11117          .a = {{5745, 149}, {5765, 153},
11118                {5785, 157}, {5805, 161}},
11119          },
11120
11121         {                       /* Custom Europe */
11122          "ZZG",
11123          .bg_channels = 13,
11124          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125                 {2427, 4}, {2432, 5}, {2437, 6},
11126                 {2442, 7}, {2447, 8}, {2452, 9},
11127                 {2457, 10}, {2462, 11},
11128                 {2467, 12}, {2472, 13}},
11129          .a_channels = 4,
11130          .a = {{5180, 36}, {5200, 40},
11131                {5220, 44}, {5240, 48}},
11132          },
11133
11134         {                       /* Europe */
11135          "ZZK",
11136          .bg_channels = 13,
11137          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138                 {2427, 4}, {2432, 5}, {2437, 6},
11139                 {2442, 7}, {2447, 8}, {2452, 9},
11140                 {2457, 10}, {2462, 11},
11141                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11142                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11143          .a_channels = 24,
11144          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11145                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11146                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11147                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11148                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11149                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11150                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11151                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11152                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11153                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11154                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11155                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11156                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11157                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11158                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11159                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11160                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11161                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11162                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11163                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11164                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11165                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11166                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11167                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11168          },
11169
11170         {                       /* Europe */
11171          "ZZL",
11172          .bg_channels = 11,
11173          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11174                 {2427, 4}, {2432, 5}, {2437, 6},
11175                 {2442, 7}, {2447, 8}, {2452, 9},
11176                 {2457, 10}, {2462, 11}},
11177          .a_channels = 13,
11178          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11179                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11180                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11181                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11182                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11183                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11184                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11185                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11186                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11187                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11188                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11189                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11190                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11191          }
11192 };
11193
11194 #define MAX_HW_RESTARTS 5
11195 static int ipw_up(struct ipw_priv *priv)
11196 {
11197         int rc, i, j;
11198
11199         if (priv->status & STATUS_EXIT_PENDING)
11200                 return -EIO;
11201
11202         if (cmdlog && !priv->cmdlog) {
11203                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11204                                        GFP_KERNEL);
11205                 if (priv->cmdlog == NULL) {
11206                         IPW_ERROR("Error allocating %d command log entries.\n",
11207                                   cmdlog);
11208                         return -ENOMEM;
11209                 } else {
11210                         priv->cmdlog_len = cmdlog;
11211                 }
11212         }
11213
11214         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11215                 /* Load the microcode, firmware, and eeprom.
11216                  * Also start the clocks. */
11217                 rc = ipw_load(priv);
11218                 if (rc) {
11219                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11220                         return rc;
11221                 }
11222
11223                 ipw_init_ordinals(priv);
11224                 if (!(priv->config & CFG_CUSTOM_MAC))
11225                         eeprom_parse_mac(priv, priv->mac_addr);
11226                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11227
11228                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11229                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11230                                     ipw_geos[j].name, 3))
11231                                 break;
11232                 }
11233                 if (j == ARRAY_SIZE(ipw_geos)) {
11234                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11235                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11236                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11237                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11238                         j = 0;
11239                 }
11240                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11241                         IPW_WARNING("Could not set geography.");
11242                         return 0;
11243                 }
11244
11245                 if (priv->status & STATUS_RF_KILL_SW) {
11246                         IPW_WARNING("Radio disabled by module parameter.\n");
11247                         return 0;
11248                 } else if (rf_kill_active(priv)) {
11249                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11250                                     "Kill switch must be turned off for "
11251                                     "wireless networking to work.\n");
11252                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11253                                            2 * HZ);
11254                         return 0;
11255                 }
11256
11257                 rc = ipw_config(priv);
11258                 if (!rc) {
11259                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11260
11261                         /* If configure to try and auto-associate, kick
11262                          * off a scan. */
11263                         queue_delayed_work(priv->workqueue,
11264                                            &priv->request_scan, 0);
11265
11266                         return 0;
11267                 }
11268
11269                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11270                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11271                                i, MAX_HW_RESTARTS);
11272
11273                 /* We had an error bringing up the hardware, so take it
11274                  * all the way back down so we can try again */
11275                 ipw_down(priv);
11276         }
11277
11278         /* tried to restart and config the device for as long as our
11279          * patience could withstand */
11280         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11281
11282         return -EIO;
11283 }
11284
11285 static void ipw_bg_up(struct work_struct *work)
11286 {
11287         struct ipw_priv *priv =
11288                 container_of(work, struct ipw_priv, up);
11289         mutex_lock(&priv->mutex);
11290         ipw_up(priv);
11291         mutex_unlock(&priv->mutex);
11292 }
11293
11294 static void ipw_deinit(struct ipw_priv *priv)
11295 {
11296         int i;
11297
11298         if (priv->status & STATUS_SCANNING) {
11299                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11300                 ipw_abort_scan(priv);
11301         }
11302
11303         if (priv->status & STATUS_ASSOCIATED) {
11304                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11305                 ipw_disassociate(priv);
11306         }
11307
11308         ipw_led_shutdown(priv);
11309
11310         /* Wait up to 1s for status to change to not scanning and not
11311          * associated (disassociation can take a while for a ful 802.11
11312          * exchange */
11313         for (i = 1000; i && (priv->status &
11314                              (STATUS_DISASSOCIATING |
11315                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11316                 udelay(10);
11317
11318         if (priv->status & (STATUS_DISASSOCIATING |
11319                             STATUS_ASSOCIATED | STATUS_SCANNING))
11320                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11321         else
11322                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11323
11324         /* Attempt to disable the card */
11325         ipw_send_card_disable(priv, 0);
11326
11327         priv->status &= ~STATUS_INIT;
11328 }
11329
11330 static void ipw_down(struct ipw_priv *priv)
11331 {
11332         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11333
11334         priv->status |= STATUS_EXIT_PENDING;
11335
11336         if (ipw_is_init(priv))
11337                 ipw_deinit(priv);
11338
11339         /* Wipe out the EXIT_PENDING status bit if we are not actually
11340          * exiting the module */
11341         if (!exit_pending)
11342                 priv->status &= ~STATUS_EXIT_PENDING;
11343
11344         /* tell the device to stop sending interrupts */
11345         ipw_disable_interrupts(priv);
11346
11347         /* Clear all bits but the RF Kill */
11348         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11349         netif_carrier_off(priv->net_dev);
11350         netif_stop_queue(priv->net_dev);
11351
11352         ipw_stop_nic(priv);
11353
11354         ipw_led_radio_off(priv);
11355 }
11356
11357 static void ipw_bg_down(struct work_struct *work)
11358 {
11359         struct ipw_priv *priv =
11360                 container_of(work, struct ipw_priv, down);
11361         mutex_lock(&priv->mutex);
11362         ipw_down(priv);
11363         mutex_unlock(&priv->mutex);
11364 }
11365
11366 /* Called by register_netdev() */
11367 static int ipw_net_init(struct net_device *dev)
11368 {
11369         struct ipw_priv *priv = ieee80211_priv(dev);
11370         mutex_lock(&priv->mutex);
11371
11372         if (ipw_up(priv)) {
11373                 mutex_unlock(&priv->mutex);
11374                 return -EIO;
11375         }
11376
11377         mutex_unlock(&priv->mutex);
11378         return 0;
11379 }
11380
11381 /* PCI driver stuff */
11382 static struct pci_device_id card_ids[] = {
11383         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11384         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11385         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11386         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11387         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11388         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11389         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11390         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11391         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11392         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11393         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11394         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11395         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11396         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11397         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11398         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11399         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11400         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11401         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11402         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11403         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11404         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11405
11406         /* required last entry */
11407         {0,}
11408 };
11409
11410 MODULE_DEVICE_TABLE(pci, card_ids);
11411
11412 static struct attribute *ipw_sysfs_entries[] = {
11413         &dev_attr_rf_kill.attr,
11414         &dev_attr_direct_dword.attr,
11415         &dev_attr_indirect_byte.attr,
11416         &dev_attr_indirect_dword.attr,
11417         &dev_attr_mem_gpio_reg.attr,
11418         &dev_attr_command_event_reg.attr,
11419         &dev_attr_nic_type.attr,
11420         &dev_attr_status.attr,
11421         &dev_attr_cfg.attr,
11422         &dev_attr_error.attr,
11423         &dev_attr_event_log.attr,
11424         &dev_attr_cmd_log.attr,
11425         &dev_attr_eeprom_delay.attr,
11426         &dev_attr_ucode_version.attr,
11427         &dev_attr_rtc.attr,
11428         &dev_attr_scan_age.attr,
11429         &dev_attr_led.attr,
11430         &dev_attr_speed_scan.attr,
11431         &dev_attr_net_stats.attr,
11432         &dev_attr_channels.attr,
11433 #ifdef CONFIG_IPW2200_PROMISCUOUS
11434         &dev_attr_rtap_iface.attr,
11435         &dev_attr_rtap_filter.attr,
11436 #endif
11437         NULL
11438 };
11439
11440 static struct attribute_group ipw_attribute_group = {
11441         .name = NULL,           /* put in device directory */
11442         .attrs = ipw_sysfs_entries,
11443 };
11444
11445 #ifdef CONFIG_IPW2200_PROMISCUOUS
11446 static int ipw_prom_open(struct net_device *dev)
11447 {
11448         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11449         struct ipw_priv *priv = prom_priv->priv;
11450
11451         IPW_DEBUG_INFO("prom dev->open\n");
11452         netif_carrier_off(dev);
11453         netif_stop_queue(dev);
11454
11455         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11456                 priv->sys_config.accept_all_data_frames = 1;
11457                 priv->sys_config.accept_non_directed_frames = 1;
11458                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11459                 priv->sys_config.accept_all_mgmt_frames = 1;
11460
11461                 ipw_send_system_config(priv);
11462         }
11463
11464         return 0;
11465 }
11466
11467 static int ipw_prom_stop(struct net_device *dev)
11468 {
11469         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11470         struct ipw_priv *priv = prom_priv->priv;
11471
11472         IPW_DEBUG_INFO("prom dev->stop\n");
11473
11474         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11475                 priv->sys_config.accept_all_data_frames = 0;
11476                 priv->sys_config.accept_non_directed_frames = 0;
11477                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11478                 priv->sys_config.accept_all_mgmt_frames = 0;
11479
11480                 ipw_send_system_config(priv);
11481         }
11482
11483         return 0;
11484 }
11485
11486 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11487 {
11488         IPW_DEBUG_INFO("prom dev->xmit\n");
11489         netif_stop_queue(dev);
11490         return -EOPNOTSUPP;
11491 }
11492
11493 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11494 {
11495         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11496         return &prom_priv->ieee->stats;
11497 }
11498
11499 static int ipw_prom_alloc(struct ipw_priv *priv)
11500 {
11501         int rc = 0;
11502
11503         if (priv->prom_net_dev)
11504                 return -EPERM;
11505
11506         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11507         if (priv->prom_net_dev == NULL)
11508                 return -ENOMEM;
11509
11510         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11511         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11512         priv->prom_priv->priv = priv;
11513
11514         strcpy(priv->prom_net_dev->name, "rtap%d");
11515
11516         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11517         priv->prom_net_dev->open = ipw_prom_open;
11518         priv->prom_net_dev->stop = ipw_prom_stop;
11519         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11520         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11521
11522         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11523
11524         rc = register_netdev(priv->prom_net_dev);
11525         if (rc) {
11526                 free_ieee80211(priv->prom_net_dev);
11527                 priv->prom_net_dev = NULL;
11528                 return rc;
11529         }
11530
11531         return 0;
11532 }
11533
11534 static void ipw_prom_free(struct ipw_priv *priv)
11535 {
11536         if (!priv->prom_net_dev)
11537                 return;
11538
11539         unregister_netdev(priv->prom_net_dev);
11540         free_ieee80211(priv->prom_net_dev);
11541
11542         priv->prom_net_dev = NULL;
11543 }
11544
11545 #endif
11546
11547
11548 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11549 {
11550         int err = 0;
11551         struct net_device *net_dev;
11552         void __iomem *base;
11553         u32 length, val;
11554         struct ipw_priv *priv;
11555         int i;
11556
11557         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11558         if (net_dev == NULL) {
11559                 err = -ENOMEM;
11560                 goto out;
11561         }
11562
11563         priv = ieee80211_priv(net_dev);
11564         priv->ieee = netdev_priv(net_dev);
11565
11566         priv->net_dev = net_dev;
11567         priv->pci_dev = pdev;
11568         ipw_debug_level = debug;
11569         spin_lock_init(&priv->irq_lock);
11570         spin_lock_init(&priv->lock);
11571         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11572                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11573
11574         mutex_init(&priv->mutex);
11575         if (pci_enable_device(pdev)) {
11576                 err = -ENODEV;
11577                 goto out_free_ieee80211;
11578         }
11579
11580         pci_set_master(pdev);
11581
11582         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11583         if (!err)
11584                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11585         if (err) {
11586                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11587                 goto out_pci_disable_device;
11588         }
11589
11590         pci_set_drvdata(pdev, priv);
11591
11592         err = pci_request_regions(pdev, DRV_NAME);
11593         if (err)
11594                 goto out_pci_disable_device;
11595
11596         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11597          * PCI Tx retries from interfering with C3 CPU state */
11598         pci_read_config_dword(pdev, 0x40, &val);
11599         if ((val & 0x0000ff00) != 0)
11600                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11601
11602         length = pci_resource_len(pdev, 0);
11603         priv->hw_len = length;
11604
11605         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11606         if (!base) {
11607                 err = -ENODEV;
11608                 goto out_pci_release_regions;
11609         }
11610
11611         priv->hw_base = base;
11612         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11613         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11614
11615         err = ipw_setup_deferred_work(priv);
11616         if (err) {
11617                 IPW_ERROR("Unable to setup deferred work\n");
11618                 goto out_iounmap;
11619         }
11620
11621         ipw_sw_reset(priv, 1);
11622
11623         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11624         if (err) {
11625                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11626                 goto out_destroy_workqueue;
11627         }
11628
11629         SET_MODULE_OWNER(net_dev);
11630         SET_NETDEV_DEV(net_dev, &pdev->dev);
11631
11632         mutex_lock(&priv->mutex);
11633
11634         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11635         priv->ieee->set_security = shim__set_security;
11636         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11637
11638 #ifdef CONFIG_IPW2200_QOS
11639         priv->ieee->is_qos_active = ipw_is_qos_active;
11640         priv->ieee->handle_probe_response = ipw_handle_beacon;
11641         priv->ieee->handle_beacon = ipw_handle_probe_response;
11642         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11643 #endif                          /* CONFIG_IPW2200_QOS */
11644
11645         priv->ieee->perfect_rssi = -20;
11646         priv->ieee->worst_rssi = -85;
11647
11648         net_dev->open = ipw_net_open;
11649         net_dev->stop = ipw_net_stop;
11650         net_dev->init = ipw_net_init;
11651         net_dev->get_stats = ipw_net_get_stats;
11652         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11653         net_dev->set_mac_address = ipw_net_set_mac_address;
11654         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11655         net_dev->wireless_data = &priv->wireless_data;
11656         net_dev->wireless_handlers = &ipw_wx_handler_def;
11657         net_dev->ethtool_ops = &ipw_ethtool_ops;
11658         net_dev->irq = pdev->irq;
11659         net_dev->base_addr = (unsigned long)priv->hw_base;
11660         net_dev->mem_start = pci_resource_start(pdev, 0);
11661         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11662
11663         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11664         if (err) {
11665                 IPW_ERROR("failed to create sysfs device attributes\n");
11666                 mutex_unlock(&priv->mutex);
11667                 goto out_release_irq;
11668         }
11669
11670         mutex_unlock(&priv->mutex);
11671         err = register_netdev(net_dev);
11672         if (err) {
11673                 IPW_ERROR("failed to register network device\n");
11674                 goto out_remove_sysfs;
11675         }
11676
11677 #ifdef CONFIG_IPW2200_PROMISCUOUS
11678         if (rtap_iface) {
11679                 err = ipw_prom_alloc(priv);
11680                 if (err) {
11681                         IPW_ERROR("Failed to register promiscuous network "
11682                                   "device (error %d).\n", err);
11683                         unregister_netdev(priv->net_dev);
11684                         goto out_remove_sysfs;
11685                 }
11686         }
11687 #endif
11688
11689         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11690                "channels, %d 802.11a channels)\n",
11691                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11692                priv->ieee->geo.a_channels);
11693
11694         return 0;
11695
11696       out_remove_sysfs:
11697         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11698       out_release_irq:
11699         free_irq(pdev->irq, priv);
11700       out_destroy_workqueue:
11701         destroy_workqueue(priv->workqueue);
11702         priv->workqueue = NULL;
11703       out_iounmap:
11704         iounmap(priv->hw_base);
11705       out_pci_release_regions:
11706         pci_release_regions(pdev);
11707       out_pci_disable_device:
11708         pci_disable_device(pdev);
11709         pci_set_drvdata(pdev, NULL);
11710       out_free_ieee80211:
11711         free_ieee80211(priv->net_dev);
11712       out:
11713         return err;
11714 }
11715
11716 static void ipw_pci_remove(struct pci_dev *pdev)
11717 {
11718         struct ipw_priv *priv = pci_get_drvdata(pdev);
11719         struct list_head *p, *q;
11720         int i;
11721
11722         if (!priv)
11723                 return;
11724
11725         mutex_lock(&priv->mutex);
11726
11727         priv->status |= STATUS_EXIT_PENDING;
11728         ipw_down(priv);
11729         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11730
11731         mutex_unlock(&priv->mutex);
11732
11733         unregister_netdev(priv->net_dev);
11734
11735         if (priv->rxq) {
11736                 ipw_rx_queue_free(priv, priv->rxq);
11737                 priv->rxq = NULL;
11738         }
11739         ipw_tx_queue_free(priv);
11740
11741         if (priv->cmdlog) {
11742                 kfree(priv->cmdlog);
11743                 priv->cmdlog = NULL;
11744         }
11745         /* ipw_down will ensure that there is no more pending work
11746          * in the workqueue's, so we can safely remove them now. */
11747         cancel_delayed_work(&priv->adhoc_check);
11748         cancel_delayed_work(&priv->gather_stats);
11749         cancel_delayed_work(&priv->request_scan);
11750         cancel_delayed_work(&priv->rf_kill);
11751         cancel_delayed_work(&priv->scan_check);
11752         destroy_workqueue(priv->workqueue);
11753         priv->workqueue = NULL;
11754
11755         /* Free MAC hash list for ADHOC */
11756         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11757                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11758                         list_del(p);
11759                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11760                 }
11761         }
11762
11763         kfree(priv->error);
11764         priv->error = NULL;
11765
11766 #ifdef CONFIG_IPW2200_PROMISCUOUS
11767         ipw_prom_free(priv);
11768 #endif
11769
11770         free_irq(pdev->irq, priv);
11771         iounmap(priv->hw_base);
11772         pci_release_regions(pdev);
11773         pci_disable_device(pdev);
11774         pci_set_drvdata(pdev, NULL);
11775         free_ieee80211(priv->net_dev);
11776         free_firmware();
11777 }
11778
11779 #ifdef CONFIG_PM
11780 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11781 {
11782         struct ipw_priv *priv = pci_get_drvdata(pdev);
11783         struct net_device *dev = priv->net_dev;
11784
11785         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11786
11787         /* Take down the device; powers it off, etc. */
11788         ipw_down(priv);
11789
11790         /* Remove the PRESENT state of the device */
11791         netif_device_detach(dev);
11792
11793         pci_save_state(pdev);
11794         pci_disable_device(pdev);
11795         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11796
11797         return 0;
11798 }
11799
11800 static int ipw_pci_resume(struct pci_dev *pdev)
11801 {
11802         struct ipw_priv *priv = pci_get_drvdata(pdev);
11803         struct net_device *dev = priv->net_dev;
11804         int err;
11805         u32 val;
11806
11807         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11808
11809         pci_set_power_state(pdev, PCI_D0);
11810         err = pci_enable_device(pdev);
11811         if (err) {
11812                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11813                        dev->name);
11814                 return err;
11815         }
11816         pci_restore_state(pdev);
11817
11818         /*
11819          * Suspend/Resume resets the PCI configuration space, so we have to
11820          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11821          * from interfering with C3 CPU state. pci_restore_state won't help
11822          * here since it only restores the first 64 bytes pci config header.
11823          */
11824         pci_read_config_dword(pdev, 0x40, &val);
11825         if ((val & 0x0000ff00) != 0)
11826                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11827
11828         /* Set the device back into the PRESENT state; this will also wake
11829          * the queue of needed */
11830         netif_device_attach(dev);
11831
11832         /* Bring the device back up */
11833         queue_work(priv->workqueue, &priv->up);
11834
11835         return 0;
11836 }
11837 #endif
11838
11839 static void ipw_pci_shutdown(struct pci_dev *pdev)
11840 {
11841         struct ipw_priv *priv = pci_get_drvdata(pdev);
11842
11843         /* Take down the device; powers it off, etc. */
11844         ipw_down(priv);
11845
11846         pci_disable_device(pdev);
11847 }
11848
11849 /* driver initialization stuff */
11850 static struct pci_driver ipw_driver = {
11851         .name = DRV_NAME,
11852         .id_table = card_ids,
11853         .probe = ipw_pci_probe,
11854         .remove = __devexit_p(ipw_pci_remove),
11855 #ifdef CONFIG_PM
11856         .suspend = ipw_pci_suspend,
11857         .resume = ipw_pci_resume,
11858 #endif
11859         .shutdown = ipw_pci_shutdown,
11860 };
11861
11862 static int __init ipw_init(void)
11863 {
11864         int ret;
11865
11866         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11867         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11868
11869         ret = pci_register_driver(&ipw_driver);
11870         if (ret) {
11871                 IPW_ERROR("Unable to initialize PCI module\n");
11872                 return ret;
11873         }
11874
11875         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11876         if (ret) {
11877                 IPW_ERROR("Unable to create driver sysfs file\n");
11878                 pci_unregister_driver(&ipw_driver);
11879                 return ret;
11880         }
11881
11882         return ret;
11883 }
11884
11885 static void __exit ipw_exit(void)
11886 {
11887         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11888         pci_unregister_driver(&ipw_driver);
11889 }
11890
11891 module_param(disable, int, 0444);
11892 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11893
11894 module_param(associate, int, 0444);
11895 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11896
11897 module_param(auto_create, int, 0444);
11898 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11899
11900 module_param(led, int, 0444);
11901 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11902
11903 module_param(debug, int, 0444);
11904 MODULE_PARM_DESC(debug, "debug output mask");
11905
11906 module_param(channel, int, 0444);
11907 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11908
11909 #ifdef CONFIG_IPW2200_PROMISCUOUS
11910 module_param(rtap_iface, int, 0444);
11911 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11912 #endif
11913
11914 #ifdef CONFIG_IPW2200_QOS
11915 module_param(qos_enable, int, 0444);
11916 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11917
11918 module_param(qos_burst_enable, int, 0444);
11919 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11920
11921 module_param(qos_no_ack_mask, int, 0444);
11922 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11923
11924 module_param(burst_duration_CCK, int, 0444);
11925 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11926
11927 module_param(burst_duration_OFDM, int, 0444);
11928 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11929 #endif                          /* CONFIG_IPW2200_QOS */
11930
11931 #ifdef CONFIG_IPW2200_MONITOR
11932 module_param(mode, int, 0444);
11933 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11934 #else
11935 module_param(mode, int, 0444);
11936 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11937 #endif
11938
11939 module_param(bt_coexist, int, 0444);
11940 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11941
11942 module_param(hwcrypto, int, 0444);
11943 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11944
11945 module_param(cmdlog, int, 0444);
11946 MODULE_PARM_DESC(cmdlog,
11947                  "allocate a ring buffer for logging firmware commands");
11948
11949 module_param(roaming, int, 0444);
11950 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11951
11952 module_param(antenna, int, 0444);
11953 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11954
11955 module_exit(ipw_exit);
11956 module_init(ipw_init);