2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
41 * Debugging: see timer_list.c
43 struct tick_device *tick_get_broadcast_device(void)
45 return &tick_broadcast_device;
48 cpumask_t *tick_get_broadcast_mask(void)
50 return &tick_broadcast_mask;
54 * Start the device in periodic mode
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 tick_setup_periodic(bc, 1);
63 * Check, if the device can be utilized as broadcast device:
65 int tick_check_broadcast_device(struct clock_event_device *dev)
67 if ((tick_broadcast_device.evtdev &&
68 tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 (dev->features & CLOCK_EVT_FEAT_C3STOP))
72 clockevents_exchange_device(NULL, dev);
73 tick_broadcast_device.evtdev = dev;
74 if (!cpus_empty(tick_broadcast_mask))
75 tick_broadcast_start_periodic(dev);
80 * Check, if the device is the broadcast device
82 int tick_is_broadcast_device(struct clock_event_device *dev)
84 return (dev && tick_broadcast_device.evtdev == dev);
88 * Check, if the device is disfunctional and a place holder, which
89 * needs to be handled by the broadcast device.
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
96 spin_lock_irqsave(&tick_broadcast_lock, flags);
99 * Devices might be registered with both periodic and oneshot
100 * mode disabled. This signals, that the device needs to be
101 * operated from the broadcast device and is a placeholder for
102 * the cpu local device.
104 if (!tick_device_is_functional(dev)) {
105 dev->event_handler = tick_handle_periodic;
106 cpu_set(cpu, tick_broadcast_mask);
107 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
111 * When the new device is not affected by the stop
112 * feature and the cpu is marked in the broadcast mask
113 * then clear the broadcast bit.
115 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 int cpu = smp_processor_id();
118 cpu_clear(cpu, tick_broadcast_mask);
119 tick_broadcast_clear_oneshot(cpu);
122 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
127 * Broadcast the event to the cpus, which are set in the mask
129 static void tick_do_broadcast(cpumask_t mask)
131 int cpu = smp_processor_id();
132 struct tick_device *td;
135 * Check, if the current cpu is in the mask
137 if (cpu_isset(cpu, mask)) {
138 cpu_clear(cpu, mask);
139 td = &per_cpu(tick_cpu_device, cpu);
140 td->evtdev->event_handler(td->evtdev);
143 if (!cpus_empty(mask)) {
145 * It might be necessary to actually check whether the devices
146 * have different broadcast functions. For now, just use the
147 * one of the first device. This works as long as we have this
148 * misfeature only on x86 (lapic)
150 cpu = first_cpu(mask);
151 td = &per_cpu(tick_cpu_device, cpu);
152 td->evtdev->broadcast(mask);
157 * Periodic broadcast:
158 * - invoke the broadcast handlers
160 static void tick_do_periodic_broadcast(void)
164 spin_lock(&tick_broadcast_lock);
166 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
167 tick_do_broadcast(mask);
169 spin_unlock(&tick_broadcast_lock);
173 * Event handler for periodic broadcast ticks
175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
177 tick_do_periodic_broadcast();
180 * The device is in periodic mode. No reprogramming necessary:
182 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 * Setup the next period for devices, which do not have
190 ktime_t next = ktime_add(dev->next_event, tick_period);
192 if (!clockevents_program_event(dev, next, ktime_get()))
194 tick_do_periodic_broadcast();
199 * Powerstate information: The system enters/leaves a state, where
200 * affected devices might stop
202 static void tick_do_broadcast_on_off(void *why)
204 struct clock_event_device *bc, *dev;
205 struct tick_device *td;
206 unsigned long flags, *reason = why;
209 spin_lock_irqsave(&tick_broadcast_lock, flags);
211 cpu = smp_processor_id();
212 td = &per_cpu(tick_cpu_device, cpu);
214 bc = tick_broadcast_device.evtdev;
217 * Is the device not affected by the powerstate ?
219 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
222 if (!tick_device_is_functional(dev))
226 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
227 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
228 if (!cpu_isset(cpu, tick_broadcast_mask)) {
229 cpu_set(cpu, tick_broadcast_mask);
230 if (td->mode == TICKDEV_MODE_PERIODIC)
231 clockevents_set_mode(dev,
232 CLOCK_EVT_MODE_SHUTDOWN);
234 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
235 dev->features |= CLOCK_EVT_FEAT_DUMMY;
237 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
238 if (cpu_isset(cpu, tick_broadcast_mask)) {
239 cpu_clear(cpu, tick_broadcast_mask);
240 if (td->mode == TICKDEV_MODE_PERIODIC)
241 tick_setup_periodic(dev, 0);
246 if (cpus_empty(tick_broadcast_mask))
247 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
249 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
250 tick_broadcast_start_periodic(bc);
252 tick_broadcast_setup_oneshot(bc);
255 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
259 * Powerstate information: The system enters/leaves a state, where
260 * affected devices might stop.
262 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
264 if (!cpu_isset(*oncpu, cpu_online_map))
265 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
266 "offline CPU #%d\n", *oncpu);
268 smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
273 * Set the periodic handler depending on broadcast on/off
275 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
278 dev->event_handler = tick_handle_periodic;
280 dev->event_handler = tick_handle_periodic_broadcast;
284 * Remove a CPU from broadcasting
286 void tick_shutdown_broadcast(unsigned int *cpup)
288 struct clock_event_device *bc;
290 unsigned int cpu = *cpup;
292 spin_lock_irqsave(&tick_broadcast_lock, flags);
294 bc = tick_broadcast_device.evtdev;
295 cpu_clear(cpu, tick_broadcast_mask);
297 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
298 if (bc && cpus_empty(tick_broadcast_mask))
299 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
302 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
305 void tick_suspend_broadcast(void)
307 struct clock_event_device *bc;
310 spin_lock_irqsave(&tick_broadcast_lock, flags);
312 bc = tick_broadcast_device.evtdev;
314 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
316 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
319 int tick_resume_broadcast(void)
321 struct clock_event_device *bc;
325 spin_lock_irqsave(&tick_broadcast_lock, flags);
327 bc = tick_broadcast_device.evtdev;
330 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
332 switch (tick_broadcast_device.mode) {
333 case TICKDEV_MODE_PERIODIC:
334 if(!cpus_empty(tick_broadcast_mask))
335 tick_broadcast_start_periodic(bc);
336 broadcast = cpu_isset(smp_processor_id(),
337 tick_broadcast_mask);
339 case TICKDEV_MODE_ONESHOT:
340 broadcast = tick_resume_broadcast_oneshot(bc);
344 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
350 #ifdef CONFIG_TICK_ONESHOT
352 static cpumask_t tick_broadcast_oneshot_mask;
355 * Debugging: see timer_list.c
357 cpumask_t *tick_get_broadcast_oneshot_mask(void)
359 return &tick_broadcast_oneshot_mask;
362 static int tick_broadcast_set_event(ktime_t expires, int force)
364 struct clock_event_device *bc = tick_broadcast_device.evtdev;
365 ktime_t now = ktime_get();
369 res = clockevents_program_event(bc, expires, now);
373 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
377 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
379 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
384 * Handle oneshot mode broadcasting
386 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
388 struct tick_device *td;
390 ktime_t now, next_event;
393 spin_lock(&tick_broadcast_lock);
395 dev->next_event.tv64 = KTIME_MAX;
396 next_event.tv64 = KTIME_MAX;
397 mask = CPU_MASK_NONE;
399 /* Find all expired events */
400 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
401 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
402 td = &per_cpu(tick_cpu_device, cpu);
403 if (td->evtdev->next_event.tv64 <= now.tv64)
405 else if (td->evtdev->next_event.tv64 < next_event.tv64)
406 next_event.tv64 = td->evtdev->next_event.tv64;
410 * Wakeup the cpus which have an expired event.
412 tick_do_broadcast(mask);
415 * Two reasons for reprogram:
417 * - The global event did not expire any CPU local
418 * events. This happens in dyntick mode, as the maximum PIT
419 * delta is quite small.
421 * - There are pending events on sleeping CPUs which were not
424 if (next_event.tv64 != KTIME_MAX) {
426 * Rearm the broadcast device. If event expired,
429 if (tick_broadcast_set_event(next_event, 0))
432 spin_unlock(&tick_broadcast_lock);
436 * Powerstate information: The system enters/leaves a state, where
437 * affected devices might stop
439 void tick_broadcast_oneshot_control(unsigned long reason)
441 struct clock_event_device *bc, *dev;
442 struct tick_device *td;
446 spin_lock_irqsave(&tick_broadcast_lock, flags);
449 * Periodic mode does not care about the enter/exit of power
452 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
455 bc = tick_broadcast_device.evtdev;
456 cpu = smp_processor_id();
457 td = &per_cpu(tick_cpu_device, cpu);
460 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
463 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
464 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
465 cpu_set(cpu, tick_broadcast_oneshot_mask);
466 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
467 if (dev->next_event.tv64 < bc->next_event.tv64)
468 tick_broadcast_set_event(dev->next_event, 1);
471 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
472 cpu_clear(cpu, tick_broadcast_oneshot_mask);
473 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
474 if (dev->next_event.tv64 != KTIME_MAX)
475 tick_program_event(dev->next_event, 1);
480 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 * Reset the one shot broadcast for a cpu
486 * Called with tick_broadcast_lock held
488 static void tick_broadcast_clear_oneshot(int cpu)
490 cpu_clear(cpu, tick_broadcast_oneshot_mask);
494 * tick_broadcast_setup_oneshot - setup the broadcast device
496 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
498 bc->event_handler = tick_handle_oneshot_broadcast;
499 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
500 bc->next_event.tv64 = KTIME_MAX;
504 * Select oneshot operating mode for the broadcast device
506 void tick_broadcast_switch_to_oneshot(void)
508 struct clock_event_device *bc;
511 spin_lock_irqsave(&tick_broadcast_lock, flags);
513 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
514 bc = tick_broadcast_device.evtdev;
516 tick_broadcast_setup_oneshot(bc);
517 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
522 * Remove a dead CPU from broadcasting
524 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
527 unsigned int cpu = *cpup;
529 spin_lock_irqsave(&tick_broadcast_lock, flags);
532 * Clear the broadcast mask flag for the dead cpu, but do not
533 * stop the broadcast device!
535 cpu_clear(cpu, tick_broadcast_oneshot_mask);
537 spin_unlock_irqrestore(&tick_broadcast_lock, flags);