1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/clockchips.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/cpumask.h>
7 #include <linux/interrupt.h>
8 #include <linux/kernel_stat.h>
9 #include <linux/module.h>
12 #include <asm/processor.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
15 #include <asm/hardirq.h>
16 #include <asm/hazards.h>
18 #include <asm/mmu_context.h>
20 #include <asm/mipsregs.h>
21 #include <asm/cacheflush.h>
23 #include <asm/addrspace.h>
25 #include <asm/smtc_ipi.h>
26 #include <asm/smtc_proc.h>
29 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
30 * in do_IRQ. These are passed in setup_irq_smtc() and stored
33 unsigned long irq_hwmask[NR_IRQS];
35 #define LOCK_MT_PRA() \
36 local_irq_save(flags); \
39 #define UNLOCK_MT_PRA() \
41 local_irq_restore(flags)
43 #define LOCK_CORE_PRA() \
44 local_irq_save(flags); \
47 #define UNLOCK_CORE_PRA() \
49 local_irq_restore(flags)
52 * Data structures purely associated with SMTC parallelism
57 * Table for tracking ASIDs whose lifetime is prolonged.
60 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
63 * Clock interrupt "latch" buffers, per "CPU"
66 static atomic_t ipi_timer_latch[NR_CPUS];
69 * Number of InterProcessor Interupt (IPI) message buffers to allocate
72 #define IPIBUF_PER_CPU 4
74 static struct smtc_ipi_q IPIQ[NR_CPUS];
75 static struct smtc_ipi_q freeIPIq;
78 /* Forward declarations */
80 void ipi_decode(struct smtc_ipi *);
81 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
82 static void setup_cross_vpe_interrupts(unsigned int nvpe);
83 void init_smtc_stats(void);
85 /* Global SMTC Status */
87 unsigned int smtc_status = 0;
89 /* Boot command line configuration overrides */
91 static int ipibuffers = 0;
92 static int nostlb = 0;
93 static int asidmask = 0;
94 unsigned long smtc_asid_mask = 0xff;
96 static int __init ipibufs(char *str)
98 get_option(&str, &ipibuffers);
102 static int __init stlb_disable(char *s)
108 static int __init asidmask_set(char *str)
110 get_option(&str, &asidmask);
120 smtc_asid_mask = (unsigned long)asidmask;
123 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
128 __setup("ipibufs=", ipibufs);
129 __setup("nostlb", stlb_disable);
130 __setup("asidmask=", asidmask_set);
132 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
134 static int hang_trig = 0;
136 static int __init hangtrig_enable(char *s)
143 __setup("hangtrig", hangtrig_enable);
145 #define DEFAULT_BLOCKED_IPI_LIMIT 32
147 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
149 static int __init tintq(char *str)
151 get_option(&str, &timerq_limit);
155 __setup("tintq=", tintq);
157 static int imstuckcount[2][8];
158 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
159 static int vpemask[2][8] = {
160 {0, 0, 1, 0, 0, 0, 0, 1},
161 {0, 0, 0, 0, 0, 0, 0, 1}
163 int tcnoprog[NR_CPUS];
164 static atomic_t idle_hook_initialized = {0};
165 static int clock_hang_reported[NR_CPUS];
167 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
169 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
171 void __init sanitize_tlb_entries(void)
173 printk("Deprecated sanitize_tlb_entries() invoked\n");
178 * Configure shared TLB - VPC configuration bit must be set by caller
181 static void smtc_configure_tlb(void)
184 unsigned long mvpconf0;
185 unsigned long config1val;
187 /* Set up ASID preservation table */
188 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
189 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
190 smtc_live_asid[vpes][i] = 0;
193 mvpconf0 = read_c0_mvpconf0();
195 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
196 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
197 /* If we have multiple VPEs, try to share the TLB */
198 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
200 * If TLB sizing is programmable, shared TLB
201 * size is the total available complement.
202 * Otherwise, we have to take the sum of all
203 * static VPE TLB entries.
205 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
206 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
208 * If there's more than one VPE, there had better
209 * be more than one TC, because we need one to bind
210 * to each VPE in turn to be able to read
211 * its configuration state!
214 /* Stop the TC from doing anything foolish */
215 write_tc_c0_tchalt(TCHALT_H);
217 /* No need to un-Halt - that happens later anyway */
218 for (i=0; i < vpes; i++) {
219 write_tc_c0_tcbind(i);
221 * To be 100% sure we're really getting the right
222 * information, we exit the configuration state
223 * and do an IHB after each rebinding.
226 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
229 * Only count if the MMU Type indicated is TLB
231 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
232 config1val = read_vpe_c0_config1();
233 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
236 /* Put core back in configuration state */
238 read_c0_mvpcontrol() | MVPCONTROL_VPC );
242 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
246 * Setup kernel data structures to use software total,
247 * rather than read the per-VPE Config1 value. The values
248 * for "CPU 0" gets copied to all the other CPUs as part
249 * of their initialization in smtc_cpu_setup().
252 /* MIPS32 limits TLB indices to 64 */
255 cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
256 smtc_status |= SMTC_TLB_SHARED;
257 local_flush_tlb_all();
259 printk("TLB of %d entry pairs shared by %d VPEs\n",
262 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
269 * Incrementally build the CPU map out of constituent MIPS MT cores,
270 * using the specified available VPEs and TCs. Plaform code needs
271 * to ensure that each MIPS MT core invokes this routine on reset,
274 * This version of the build_cpu_map and prepare_cpus routines assumes
275 * that *all* TCs of a MIPS MT core will be used for Linux, and that
276 * they will be spread across *all* available VPEs (to minimise the
277 * loss of efficiency due to exception service serialization).
278 * An improved version would pick up configuration information and
279 * possibly leave some TCs/VPEs as "slave" processors.
281 * Use c0_MVPConf0 to find out how many TCs are available, setting up
282 * phys_cpu_present_map and the logical/physical mappings.
285 int __init mipsmt_build_cpu_map(int start_cpu_slot)
290 * The CPU map isn't actually used for anything at this point,
291 * so it's not clear what else we should do apart from set
292 * everything up so that "logical" = "physical".
294 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
295 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
296 cpu_set(i, phys_cpu_present_map);
297 __cpu_number_map[i] = i;
298 __cpu_logical_map[i] = i;
300 #ifdef CONFIG_MIPS_MT_FPAFF
301 /* Initialize map of CPUs with FPUs */
302 cpus_clear(mt_fpu_cpumask);
305 /* One of those TC's is the one booting, and not a secondary... */
306 printk("%i available secondary CPU TC(s)\n", i - 1);
312 * Common setup before any secondaries are started
313 * Make sure all CPU's are in a sensible state before we boot any of the
316 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
317 * as possible across the available VPEs.
320 static void smtc_tc_setup(int vpe, int tc, int cpu)
323 write_tc_c0_tchalt(TCHALT_H);
325 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
326 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
328 write_tc_c0_tccontext(0);
330 write_tc_c0_tcbind(vpe);
331 /* In general, all TCs should have the same cpu_data indications */
332 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
333 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
334 if (cpu_data[0].cputype == CPU_34K)
335 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
336 cpu_data[cpu].vpe_id = vpe;
337 cpu_data[cpu].tc_id = tc;
341 void mipsmt_prepare_cpus(void)
343 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
347 struct smtc_ipi *pipi;
349 /* disable interrupts so we can disable MT */
350 local_irq_save(flags);
351 /* disable MT so we can configure */
355 spin_lock_init(&freeIPIq.lock);
358 * We probably don't have as many VPEs as we do SMP "CPUs",
359 * but it's possible - and in any case we'll never use more!
361 for (i=0; i<NR_CPUS; i++) {
362 IPIQ[i].head = IPIQ[i].tail = NULL;
363 spin_lock_init(&IPIQ[i].lock);
365 atomic_set(&ipi_timer_latch[i], 0);
368 /* cpu_data index starts at zero */
370 cpu_data[cpu].vpe_id = 0;
371 cpu_data[cpu].tc_id = 0;
374 /* Report on boot-time options */
375 mips_mt_set_cpuoptions();
377 printk("Limit of %d VPEs set\n", vpelimit);
379 printk("Limit of %d TCs set\n", tclimit);
381 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
384 printk("ASID mask value override to 0x%x\n", asidmask);
387 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
389 printk("Logic Analyser Trigger on suspected TC hang\n");
390 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
392 /* Put MVPE's into 'configuration state' */
393 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
395 val = read_c0_mvpconf0();
396 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
397 if (vpelimit > 0 && nvpe > vpelimit)
399 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
402 if (tclimit > 0 && ntc > tclimit)
404 tcpervpe = ntc / nvpe;
405 slop = ntc % nvpe; /* Residual TCs, < NVPE */
407 /* Set up shared TLB */
408 smtc_configure_tlb();
410 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
415 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
418 printk("VPE %d: TC", vpe);
419 for (i = 0; i < tcpervpe; i++) {
421 * TC 0 is bound to VPE 0 at reset,
422 * and is presumably executing this
423 * code. Leave it alone!
426 smtc_tc_setup(vpe, tc, cpu);
434 smtc_tc_setup(vpe, tc, cpu);
443 * Clear any stale software interrupts from VPE's Cause
445 write_vpe_c0_cause(0);
448 * Clear ERL/EXL of VPEs other than 0
449 * and set restricted interrupt enable/mask.
451 write_vpe_c0_status((read_vpe_c0_status()
452 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
453 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
456 * set config to be the same as vpe0,
457 * particularly kseg0 coherency alg
459 write_vpe_c0_config(read_c0_config());
460 /* Clear any pending timer interrupt */
461 write_vpe_c0_compare(0);
462 /* Propagate Config7 */
463 write_vpe_c0_config7(read_c0_config7());
464 write_vpe_c0_count(read_c0_count());
466 /* enable multi-threading within VPE */
467 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
469 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
473 * Pull any physically present but unused TCs out of circulation.
475 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
476 cpu_clear(tc, phys_cpu_present_map);
477 cpu_clear(tc, cpu_present_map);
481 /* release config state */
482 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
486 /* Set up coprocessor affinity CPU mask(s) */
488 #ifdef CONFIG_MIPS_MT_FPAFF
489 for (tc = 0; tc < ntc; tc++) {
490 if (cpu_data[tc].options & MIPS_CPU_FPU)
491 cpu_set(tc, mt_fpu_cpumask);
495 /* set up ipi interrupts... */
497 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
499 setup_cross_vpe_interrupts(nvpe);
501 /* Set up queue of free IPI "messages". */
502 nipi = NR_CPUS * IPIBUF_PER_CPU;
506 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
508 panic("kmalloc of IPI message buffers failed\n");
510 printk("IPI buffer pool of %d buffers\n", nipi);
511 for (i = 0; i < nipi; i++) {
512 smtc_ipi_nq(&freeIPIq, pipi);
516 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
519 local_irq_restore(flags);
520 /* Initialize SMTC /proc statistics/diagnostics */
526 * Setup the PC, SP, and GP of a secondary processor and start it
528 * smp_bootstrap is the place to resume from
529 * __KSTK_TOS(idle) is apparently the stack pointer
530 * (unsigned long)idle->thread_info the gp
533 void __cpuinit smtc_boot_secondary(int cpu, struct task_struct *idle)
535 extern u32 kernelsp[NR_CPUS];
540 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
543 settc(cpu_data[cpu].tc_id);
546 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
549 kernelsp[cpu] = __KSTK_TOS(idle);
550 write_tc_gpr_sp(__KSTK_TOS(idle));
553 write_tc_gpr_gp((unsigned long)task_thread_info(idle));
555 smtc_status |= SMTC_MTC_ACTIVE;
556 write_tc_c0_tchalt(0);
557 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
563 void smtc_init_secondary(void)
566 * Start timer on secondary VPEs if necessary.
567 * plat_timer_setup has already have been invoked by init/main
568 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
569 * SMTC init code assigns TCs consdecutively and in ascending order
570 * to across available VPEs.
572 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
573 ((read_c0_tcbind() & TCBIND_CURVPE)
574 != cpu_data[smp_processor_id() - 1].vpe_id)){
575 write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ);
581 void smtc_smp_finish(void)
583 printk("TC %d going on-line as CPU %d\n",
584 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
587 void smtc_cpus_done(void)
592 * Support for SMTC-optimized driver IRQ registration
596 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
597 * in do_IRQ. These are passed in setup_irq_smtc() and stored
601 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
602 unsigned long hwmask)
604 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
605 unsigned int vpe = current_cpu_data.vpe_id;
607 vpemask[vpe][irq - MIPS_CPU_IRQ_BASE] = 1;
609 irq_hwmask[irq] = hwmask;
611 return setup_irq(irq, new);
614 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
616 * Support for IRQ affinity to TCs
619 void smtc_set_irq_affinity(unsigned int irq, cpumask_t affinity)
622 * If a "fast path" cache of quickly decodable affinity state
623 * is maintained, this is where it gets done, on a call up
624 * from the platform affinity code.
628 void smtc_forward_irq(unsigned int irq)
633 * OK wise guy, now figure out how to get the IRQ
634 * to be serviced on an authorized "CPU".
636 * Ideally, to handle the situation where an IRQ has multiple
637 * eligible CPUS, we would maintain state per IRQ that would
638 * allow a fair distribution of service requests. Since the
639 * expected use model is any-or-only-one, for simplicity
640 * and efficiency, we just pick the easiest one to find.
643 target = first_cpu(irq_desc[irq].affinity);
646 * We depend on the platform code to have correctly processed
647 * IRQ affinity change requests to ensure that the IRQ affinity
648 * mask has been purged of bits corresponding to nonexistent and
649 * offline "CPUs", and to TCs bound to VPEs other than the VPE
650 * connected to the physical interrupt input for the interrupt
651 * in question. Otherwise we have a nasty problem with interrupt
652 * mask management. This is best handled in non-performance-critical
653 * platform IRQ affinity setting code, to minimize interrupt-time
657 /* If no one is eligible, service locally */
658 if (target >= NR_CPUS) {
659 do_IRQ_no_affinity(irq);
663 smtc_send_ipi(target, IRQ_AFFINITY_IPI, irq);
666 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
669 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
670 * Within a VPE one TC can interrupt another by different approaches.
671 * The easiest to get right would probably be to make all TCs except
672 * the target IXMT and set a software interrupt, but an IXMT-based
673 * scheme requires that a handler must run before a new IPI could
674 * be sent, which would break the "broadcast" loops in MIPS MT.
675 * A more gonzo approach within a VPE is to halt the TC, extract
676 * its Restart, Status, and a couple of GPRs, and program the Restart
677 * address to emulate an interrupt.
679 * Within a VPE, one can be confident that the target TC isn't in
680 * a critical EXL state when halted, since the write to the Halt
681 * register could not have issued on the writing thread if the
682 * halting thread had EXL set. So k0 and k1 of the target TC
683 * can be used by the injection code. Across VPEs, one can't
684 * be certain that the target TC isn't in a critical exception
685 * state. So we try a two-step process of sending a software
686 * interrupt to the target VPE, which either handles the event
687 * itself (if it was the target) or injects the event within
691 static void smtc_ipi_qdump(void)
695 for (i = 0; i < NR_CPUS ;i++) {
696 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
697 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
703 * The standard atomic.h primitives don't quite do what we want
704 * here: We need an atomic add-and-return-previous-value (which
705 * could be done with atomic_add_return and a decrement) and an
706 * atomic set/zero-and-return-previous-value (which can't really
707 * be done with the atomic.h primitives). And since this is
708 * MIPS MT, we can assume that we have LL/SC.
710 static inline int atomic_postincrement(atomic_t *v)
712 unsigned long result;
716 __asm__ __volatile__(
722 : "=&r" (result), "=&r" (temp), "=m" (v->counter)
729 void smtc_send_ipi(int cpu, int type, unsigned int action)
732 struct smtc_ipi *pipi;
736 if (cpu == smp_processor_id()) {
737 printk("Cannot Send IPI to self!\n");
740 /* Set up a descriptor, to be delivered either promptly or queued */
741 pipi = smtc_ipi_dq(&freeIPIq);
744 mips_mt_regdump(dvpe());
745 panic("IPI Msg. Buffers Depleted\n");
748 pipi->arg = (void *)action;
750 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
751 if (type == SMTC_CLOCK_TICK)
752 atomic_inc(&ipi_timer_latch[cpu]);
753 /* If not on same VPE, enqueue and send cross-VPE interupt */
754 smtc_ipi_nq(&IPIQ[cpu], pipi);
756 settc(cpu_data[cpu].tc_id);
757 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
761 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
762 * since ASID shootdown on the other VPE may
763 * collide with this operation.
766 settc(cpu_data[cpu].tc_id);
767 /* Halt the targeted TC */
768 write_tc_c0_tchalt(TCHALT_H);
772 * Inspect TCStatus - if IXMT is set, we have to queue
773 * a message. Otherwise, we set up the "interrupt"
776 tcstatus = read_tc_c0_tcstatus();
778 if ((tcstatus & TCSTATUS_IXMT) != 0) {
780 * Spin-waiting here can deadlock,
781 * so we queue the message for the target TC.
783 write_tc_c0_tchalt(0);
785 /* Try to reduce redundant timer interrupt messages */
786 if (type == SMTC_CLOCK_TICK) {
787 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
788 smtc_ipi_nq(&freeIPIq, pipi);
792 smtc_ipi_nq(&IPIQ[cpu], pipi);
794 if (type == SMTC_CLOCK_TICK)
795 atomic_inc(&ipi_timer_latch[cpu]);
796 post_direct_ipi(cpu, pipi);
797 write_tc_c0_tchalt(0);
804 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
806 static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
808 struct pt_regs *kstack;
809 unsigned long tcstatus;
810 unsigned long tcrestart;
811 extern u32 kernelsp[NR_CPUS];
812 extern void __smtc_ipi_vector(void);
813 //printk("%s: on %d for %d\n", __func__, smp_processor_id(), cpu);
815 /* Extract Status, EPC from halted TC */
816 tcstatus = read_tc_c0_tcstatus();
817 tcrestart = read_tc_c0_tcrestart();
818 /* If TCRestart indicates a WAIT instruction, advance the PC */
819 if ((tcrestart & 0x80000000)
820 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
824 * Save on TC's future kernel stack
826 * CU bit of Status is indicator that TC was
827 * already running on a kernel stack...
829 if (tcstatus & ST0_CU0) {
830 /* Note that this "- 1" is pointer arithmetic */
831 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
833 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
836 kstack->cp0_epc = (long)tcrestart;
838 kstack->cp0_tcstatus = tcstatus;
839 /* Pass token of operation to be performed kernel stack pad area */
840 kstack->pad0[4] = (unsigned long)pipi;
841 /* Pass address of function to be called likewise */
842 kstack->pad0[5] = (unsigned long)&ipi_decode;
843 /* Set interrupt exempt and kernel mode */
844 tcstatus |= TCSTATUS_IXMT;
845 tcstatus &= ~TCSTATUS_TKSU;
846 write_tc_c0_tcstatus(tcstatus);
848 /* Set TC Restart address to be SMTC IPI vector */
849 write_tc_c0_tcrestart(__smtc_ipi_vector);
852 static void ipi_resched_interrupt(void)
854 /* Return from interrupt should be enough to cause scheduler check */
858 static void ipi_call_interrupt(void)
860 /* Invoke generic function invocation code in smp.c */
861 smp_call_function_interrupt();
864 DECLARE_PER_CPU(struct clock_event_device, smtc_dummy_clockevent_device);
866 void ipi_decode(struct smtc_ipi *pipi)
868 unsigned int cpu = smp_processor_id();
869 struct clock_event_device *cd;
870 void *arg_copy = pipi->arg;
871 int type_copy = pipi->type;
874 smtc_ipi_nq(&freeIPIq, pipi);
876 case SMTC_CLOCK_TICK:
878 kstat_this_cpu.irqs[MIPS_CPU_IRQ_BASE + 1]++;
879 cd = &per_cpu(smtc_dummy_clockevent_device, cpu);
880 ticks = atomic_read(&ipi_timer_latch[cpu]);
881 atomic_sub(ticks, &ipi_timer_latch[cpu]);
883 cd->event_handler(cd);
890 switch ((int)arg_copy) {
891 case SMP_RESCHEDULE_YOURSELF:
892 ipi_resched_interrupt();
894 case SMP_CALL_FUNCTION:
895 ipi_call_interrupt();
898 printk("Impossible SMTC IPI Argument 0x%x\n",
903 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
904 case IRQ_AFFINITY_IPI:
906 * Accept a "forwarded" interrupt that was initially
907 * taken by a TC who doesn't have affinity for the IRQ.
909 do_IRQ_no_affinity((int)arg_copy);
911 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */
913 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
918 void deferred_smtc_ipi(void)
920 struct smtc_ipi *pipi;
923 int q = smp_processor_id();
926 * Test is not atomic, but much faster than a dequeue,
927 * and the vast majority of invocations will have a null queue.
929 if (IPIQ[q].head != NULL) {
930 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
931 /* ipi_decode() should be called with interrupts off */
932 local_irq_save(flags);
934 local_irq_restore(flags);
940 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
941 * set via cross-VPE MTTR manipulation of the Cause register. It would be
942 * in some regards preferable to have external logic for "doorbell" hardware
946 static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
948 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
950 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
951 int my_tc = cpu_data[smp_processor_id()].tc_id;
953 struct smtc_ipi *pipi;
954 unsigned long tcstatus;
957 unsigned int mtflags;
958 unsigned int vpflags;
961 * So long as cross-VPE interrupts are done via
962 * MFTR/MTTR read-modify-writes of Cause, we need
963 * to stop other VPEs whenever the local VPE does
966 local_irq_save(flags);
968 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
969 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
972 local_irq_restore(flags);
975 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
976 * queued for TCs on this VPE other than the current one.
977 * Return-from-interrupt should cause us to drain the queue
978 * for the current TC, so we ought not to have to do it explicitly here.
981 for_each_online_cpu(cpu) {
982 if (cpu_data[cpu].vpe_id != my_vpe)
985 pipi = smtc_ipi_dq(&IPIQ[cpu]);
987 if (cpu_data[cpu].tc_id != my_tc) {
990 settc(cpu_data[cpu].tc_id);
991 write_tc_c0_tchalt(TCHALT_H);
993 tcstatus = read_tc_c0_tcstatus();
994 if ((tcstatus & TCSTATUS_IXMT) == 0) {
995 post_direct_ipi(cpu, pipi);
998 write_tc_c0_tchalt(0);
1001 smtc_ipi_req(&IPIQ[cpu], pipi);
1005 * ipi_decode() should be called
1006 * with interrupts off
1008 local_irq_save(flags);
1010 local_irq_restore(flags);
1018 static void ipi_irq_dispatch(void)
1020 do_IRQ(cpu_ipi_irq);
1023 static struct irqaction irq_ipi = {
1024 .handler = ipi_interrupt,
1025 .flags = IRQF_DISABLED,
1027 .flags = IRQF_PERCPU
1030 static void setup_cross_vpe_interrupts(unsigned int nvpe)
1036 panic("SMTC Kernel requires Vectored Interupt support");
1038 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1040 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1042 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
1046 * SMTC-specific hacks invoked from elsewhere in the kernel.
1048 * smtc_ipi_replay is called from raw_local_irq_restore which is only ever
1049 * called with interrupts disabled. We do rely on interrupts being disabled
1050 * here because using spin_lock_irqsave()/spin_unlock_irqrestore() would
1051 * result in a recursive call to raw_local_irq_restore().
1054 static void __smtc_ipi_replay(void)
1056 unsigned int cpu = smp_processor_id();
1059 * To the extent that we've ever turned interrupts off,
1060 * we may have accumulated deferred IPIs. This is subtle.
1061 * If we use the smtc_ipi_qdepth() macro, we'll get an
1062 * exact number - but we'll also disable interrupts
1063 * and create a window of failure where a new IPI gets
1064 * queued after we test the depth but before we re-enable
1065 * interrupts. So long as IXMT never gets set, however,
1066 * we should be OK: If we pick up something and dispatch
1067 * it here, that's great. If we see nothing, but concurrent
1068 * with this operation, another TC sends us an IPI, IXMT
1069 * is clear, and we'll handle it as a real pseudo-interrupt
1070 * and not a pseudo-pseudo interrupt.
1072 if (IPIQ[cpu].depth > 0) {
1074 struct smtc_ipi_q *q = &IPIQ[cpu];
1075 struct smtc_ipi *pipi;
1076 extern void self_ipi(struct smtc_ipi *);
1078 spin_lock(&q->lock);
1079 pipi = __smtc_ipi_dq(q);
1080 spin_unlock(&q->lock);
1085 smtc_cpu_stats[cpu].selfipis++;
1090 void smtc_ipi_replay(void)
1092 raw_local_irq_disable();
1093 __smtc_ipi_replay();
1096 EXPORT_SYMBOL(smtc_ipi_replay);
1098 void smtc_idle_loop_hook(void)
1100 #ifdef CONFIG_SMTC_IDLE_HOOK_DEBUG
1109 * printk within DMT-protected regions can deadlock,
1110 * so buffer diagnostic messages for later output.
1113 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1115 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1116 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1118 /* Tedious stuff to just do once */
1119 mvpconf0 = read_c0_mvpconf0();
1120 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1121 if (hook_ntcs > NR_CPUS)
1122 hook_ntcs = NR_CPUS;
1123 for (tc = 0; tc < hook_ntcs; tc++) {
1125 clock_hang_reported[tc] = 0;
1127 for (vpe = 0; vpe < 2; vpe++)
1128 for (im = 0; im < 8; im++)
1129 imstuckcount[vpe][im] = 0;
1130 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1131 atomic_set(&idle_hook_initialized, 1000);
1133 /* Someone else is initializing in parallel - let 'em finish */
1134 while (atomic_read(&idle_hook_initialized) < 1000)
1139 /* Have we stupidly left IXMT set somewhere? */
1140 if (read_c0_tcstatus() & 0x400) {
1141 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1143 printk("Dangling IXMT in cpu_idle()\n");
1146 /* Have we stupidly left an IM bit turned off? */
1147 #define IM_LIMIT 2000
1148 local_irq_save(flags);
1150 pdb_msg = &id_ho_db_msg[0];
1151 im = read_c0_status();
1152 vpe = current_cpu_data.vpe_id;
1153 for (bit = 0; bit < 8; bit++) {
1155 * In current prototype, I/O interrupts
1156 * are masked for VPE > 0
1158 if (vpemask[vpe][bit]) {
1159 if (!(im & (0x100 << bit)))
1160 imstuckcount[vpe][bit]++;
1162 imstuckcount[vpe][bit] = 0;
1163 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1164 set_c0_status(0x100 << bit);
1166 imstuckcount[vpe][bit] = 0;
1167 pdb_msg += sprintf(pdb_msg,
1168 "Dangling IM %d fixed for VPE %d\n", bit,
1175 * Now that we limit outstanding timer IPIs, check for hung TC
1177 for (tc = 0; tc < NR_CPUS; tc++) {
1178 /* Don't check ourself - we'll dequeue IPIs just below */
1179 if ((tc != smp_processor_id()) &&
1180 atomic_read(&ipi_timer_latch[tc]) > timerq_limit) {
1181 if (clock_hang_reported[tc] == 0) {
1182 pdb_msg += sprintf(pdb_msg,
1183 "TC %d looks hung with timer latch at %d\n",
1184 tc, atomic_read(&ipi_timer_latch[tc]));
1185 clock_hang_reported[tc]++;
1190 local_irq_restore(flags);
1191 if (pdb_msg != &id_ho_db_msg[0])
1192 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1193 #endif /* CONFIG_SMTC_IDLE_HOOK_DEBUG */
1196 * Replay any accumulated deferred IPIs. If "Instant Replay"
1197 * is in use, there should never be any.
1199 #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1201 unsigned long flags;
1203 local_irq_save(flags);
1204 __smtc_ipi_replay();
1205 local_irq_restore(flags);
1207 #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
1210 void smtc_soft_dump(void)
1214 printk("Counter Interrupts taken per CPU (TC)\n");
1215 for (i=0; i < NR_CPUS; i++) {
1216 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1218 printk("Self-IPI invocations:\n");
1219 for (i=0; i < NR_CPUS; i++) {
1220 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1223 printk("Timer IPI Backlogs:\n");
1224 for (i=0; i < NR_CPUS; i++) {
1225 printk("%d: %d\n", i, atomic_read(&ipi_timer_latch[i]));
1227 printk("%d Recoveries of \"stolen\" FPU\n",
1228 atomic_read(&smtc_fpu_recoveries));
1233 * TLB management routines special to SMTC
1236 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1238 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1242 * It would be nice to be able to use a spinlock here,
1243 * but this is invoked from within TLB flush routines
1244 * that protect themselves with DVPE, so if a lock is
1245 * held by another TC, it'll never be freed.
1247 * DVPE/DMT must not be done with interrupts enabled,
1248 * so even so most callers will already have disabled
1249 * them, let's be really careful...
1252 local_irq_save(flags);
1253 if (smtc_status & SMTC_TLB_SHARED) {
1258 tlb = cpu_data[cpu].vpe_id;
1260 asid = asid_cache(cpu);
1263 if (!((asid += ASID_INC) & ASID_MASK) ) {
1264 if (cpu_has_vtag_icache)
1266 /* Traverse all online CPUs (hack requires contigous range) */
1267 for_each_online_cpu(i) {
1269 * We don't need to worry about our own CPU, nor those of
1270 * CPUs who don't share our TLB.
1272 if ((i != smp_processor_id()) &&
1273 ((smtc_status & SMTC_TLB_SHARED) ||
1274 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1275 settc(cpu_data[i].tc_id);
1276 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1278 write_tc_c0_tchalt(TCHALT_H);
1281 tcstat = read_tc_c0_tcstatus();
1282 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1284 write_tc_c0_tchalt(0);
1287 if (!asid) /* fix version if needed */
1288 asid = ASID_FIRST_VERSION;
1289 local_flush_tlb_all(); /* start new asid cycle */
1291 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1294 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1296 for_each_online_cpu(i) {
1297 if ((smtc_status & SMTC_TLB_SHARED) ||
1298 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1299 cpu_context(i, mm) = asid_cache(i) = asid;
1302 if (smtc_status & SMTC_TLB_SHARED)
1306 local_irq_restore(flags);
1310 * Invoked from macros defined in mmu_context.h
1311 * which must already have disabled interrupts
1312 * and done a DVPE or DMT as appropriate.
1315 void smtc_flush_tlb_asid(unsigned long asid)
1320 entry = read_c0_wired();
1322 /* Traverse all non-wired entries */
1323 while (entry < current_cpu_data.tlbsize) {
1324 write_c0_index(entry);
1328 ehi = read_c0_entryhi();
1329 if ((ehi & ASID_MASK) == asid) {
1331 * Invalidate only entries with specified ASID,
1332 * makiing sure all entries differ.
1334 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1335 write_c0_entrylo0(0);
1336 write_c0_entrylo1(0);
1338 tlb_write_indexed();
1342 write_c0_index(PARKED_INDEX);
1347 * Support for single-threading cache flush operations.
1350 static int halt_state_save[NR_CPUS];
1353 * To really, really be sure that nothing is being done
1354 * by other TCs, halt them all. This code assumes that
1355 * a DVPE has already been done, so while their Halted
1356 * state is theoretically architecturally unstable, in
1357 * practice, it's not going to change while we're looking
1361 void smtc_cflush_lockdown(void)
1365 for_each_online_cpu(cpu) {
1366 if (cpu != smp_processor_id()) {
1367 settc(cpu_data[cpu].tc_id);
1368 halt_state_save[cpu] = read_tc_c0_tchalt();
1369 write_tc_c0_tchalt(TCHALT_H);
1375 /* It would be cheating to change the cpu_online states during a flush! */
1377 void smtc_cflush_release(void)
1382 * Start with a hazard barrier to ensure
1383 * that all CACHE ops have played through.
1387 for_each_online_cpu(cpu) {
1388 if (cpu != smp_processor_id()) {
1389 settc(cpu_data[cpu].tc_id);
1390 write_tc_c0_tchalt(halt_state_save[cpu]);