Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, reserved_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 /*
31  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32  */
33 static DEFINE_SPINLOCK(hugetlb_lock);
34
35 static void clear_huge_page(struct page *page, unsigned long addr)
36 {
37         int i;
38
39         might_sleep();
40         for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41                 cond_resched();
42                 clear_user_highpage(page + i, addr);
43         }
44 }
45
46 static void copy_huge_page(struct page *dst, struct page *src,
47                            unsigned long addr)
48 {
49         int i;
50
51         might_sleep();
52         for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53                 cond_resched();
54                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
55         }
56 }
57
58 static void enqueue_huge_page(struct page *page)
59 {
60         int nid = page_to_nid(page);
61         list_add(&page->lru, &hugepage_freelists[nid]);
62         free_huge_pages++;
63         free_huge_pages_node[nid]++;
64 }
65
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67                                 unsigned long address)
68 {
69         int nid = numa_node_id();
70         struct page *page = NULL;
71         struct zonelist *zonelist = huge_zonelist(vma, address);
72         struct zone **z;
73
74         for (z = zonelist->zones; *z; z++) {
75                 nid = (*z)->zone_pgdat->node_id;
76                 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
77                     !list_empty(&hugepage_freelists[nid]))
78                         break;
79         }
80
81         if (*z) {
82                 page = list_entry(hugepage_freelists[nid].next,
83                                   struct page, lru);
84                 list_del(&page->lru);
85                 free_huge_pages--;
86                 free_huge_pages_node[nid]--;
87         }
88         return page;
89 }
90
91 static void free_huge_page(struct page *page)
92 {
93         BUG_ON(page_count(page));
94
95         INIT_LIST_HEAD(&page->lru);
96
97         spin_lock(&hugetlb_lock);
98         enqueue_huge_page(page);
99         spin_unlock(&hugetlb_lock);
100 }
101
102 static int alloc_fresh_huge_page(void)
103 {
104         static int nid = 0;
105         struct page *page;
106         page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
107                                         HUGETLB_PAGE_ORDER);
108         nid = next_node(nid, node_online_map);
109         if (nid == MAX_NUMNODES)
110                 nid = first_node(node_online_map);
111         if (page) {
112                 page[1].lru.next = (void *)free_huge_page;      /* dtor */
113                 spin_lock(&hugetlb_lock);
114                 nr_huge_pages++;
115                 nr_huge_pages_node[page_to_nid(page)]++;
116                 spin_unlock(&hugetlb_lock);
117                 put_page(page); /* free it into the hugepage allocator */
118                 return 1;
119         }
120         return 0;
121 }
122
123 static struct page *alloc_huge_page(struct vm_area_struct *vma,
124                                     unsigned long addr)
125 {
126         struct inode *inode = vma->vm_file->f_dentry->d_inode;
127         struct page *page;
128         int use_reserve = 0;
129         unsigned long idx;
130
131         spin_lock(&hugetlb_lock);
132
133         if (vma->vm_flags & VM_MAYSHARE) {
134
135                 /* idx = radix tree index, i.e. offset into file in
136                  * HPAGE_SIZE units */
137                 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
138                         + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
139
140                 /* The hugetlbfs specific inode info stores the number
141                  * of "guaranteed available" (huge) pages.  That is,
142                  * the first 'prereserved_hpages' pages of the inode
143                  * are either already instantiated, or have been
144                  * pre-reserved (by hugetlb_reserve_for_inode()). Here
145                  * we're in the process of instantiating the page, so
146                  * we use this to determine whether to draw from the
147                  * pre-reserved pool or the truly free pool. */
148                 if (idx < HUGETLBFS_I(inode)->prereserved_hpages)
149                         use_reserve = 1;
150         }
151
152         if (!use_reserve) {
153                 if (free_huge_pages <= reserved_huge_pages)
154                         goto fail;
155         } else {
156                 BUG_ON(reserved_huge_pages == 0);
157                 reserved_huge_pages--;
158         }
159
160         page = dequeue_huge_page(vma, addr);
161         if (!page)
162                 goto fail;
163
164         spin_unlock(&hugetlb_lock);
165         set_page_refcounted(page);
166         return page;
167
168  fail:
169         WARN_ON(use_reserve); /* reserved allocations shouldn't fail */
170         spin_unlock(&hugetlb_lock);
171         return NULL;
172 }
173
174 /* hugetlb_extend_reservation()
175  *
176  * Ensure that at least 'atleast' hugepages are, and will remain,
177  * available to instantiate the first 'atleast' pages of the given
178  * inode.  If the inode doesn't already have this many pages reserved
179  * or instantiated, set aside some hugepages in the reserved pool to
180  * satisfy later faults (or fail now if there aren't enough, rather
181  * than getting the SIGBUS later).
182  */
183 int hugetlb_extend_reservation(struct hugetlbfs_inode_info *info,
184                                unsigned long atleast)
185 {
186         struct inode *inode = &info->vfs_inode;
187         unsigned long change_in_reserve = 0;
188         int ret = 0;
189
190         spin_lock(&hugetlb_lock);
191         read_lock_irq(&inode->i_mapping->tree_lock);
192
193         if (info->prereserved_hpages >= atleast)
194                 goto out;
195
196         /* Because we always call this on shared mappings, none of the
197          * pages beyond info->prereserved_hpages can have been
198          * instantiated, so we need to reserve all of them now. */
199         change_in_reserve = atleast - info->prereserved_hpages;
200
201         if ((reserved_huge_pages + change_in_reserve) > free_huge_pages) {
202                 ret = -ENOMEM;
203                 goto out;
204         }
205
206         reserved_huge_pages += change_in_reserve;
207         info->prereserved_hpages = atleast;
208
209  out:
210         read_unlock_irq(&inode->i_mapping->tree_lock);
211         spin_unlock(&hugetlb_lock);
212
213         return ret;
214 }
215
216 /* hugetlb_truncate_reservation()
217  *
218  * This returns pages reserved for the given inode to the general free
219  * hugepage pool.  If the inode has any pages prereserved, but not
220  * instantiated, beyond offset (atmost << HPAGE_SIZE), then release
221  * them.
222  */
223 void hugetlb_truncate_reservation(struct hugetlbfs_inode_info *info,
224                                   unsigned long atmost)
225 {
226         struct inode *inode = &info->vfs_inode;
227         struct address_space *mapping = inode->i_mapping;
228         unsigned long idx;
229         unsigned long change_in_reserve = 0;
230         struct page *page;
231
232         spin_lock(&hugetlb_lock);
233         read_lock_irq(&inode->i_mapping->tree_lock);
234
235         if (info->prereserved_hpages <= atmost)
236                 goto out;
237
238         /* Count pages which were reserved, but not instantiated, and
239          * which we can now release. */
240         for (idx = atmost; idx < info->prereserved_hpages; idx++) {
241                 page = radix_tree_lookup(&mapping->page_tree, idx);
242                 if (!page)
243                         /* Pages which are already instantiated can't
244                          * be unreserved (and in fact have already
245                          * been removed from the reserved pool) */
246                         change_in_reserve++;
247         }
248
249         BUG_ON(reserved_huge_pages < change_in_reserve);
250         reserved_huge_pages -= change_in_reserve;
251         info->prereserved_hpages = atmost;
252
253  out:
254         read_unlock_irq(&inode->i_mapping->tree_lock);
255         spin_unlock(&hugetlb_lock);
256 }
257
258 static int __init hugetlb_init(void)
259 {
260         unsigned long i;
261
262         if (HPAGE_SHIFT == 0)
263                 return 0;
264
265         for (i = 0; i < MAX_NUMNODES; ++i)
266                 INIT_LIST_HEAD(&hugepage_freelists[i]);
267
268         for (i = 0; i < max_huge_pages; ++i) {
269                 if (!alloc_fresh_huge_page())
270                         break;
271         }
272         max_huge_pages = free_huge_pages = nr_huge_pages = i;
273         printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
274         return 0;
275 }
276 module_init(hugetlb_init);
277
278 static int __init hugetlb_setup(char *s)
279 {
280         if (sscanf(s, "%lu", &max_huge_pages) <= 0)
281                 max_huge_pages = 0;
282         return 1;
283 }
284 __setup("hugepages=", hugetlb_setup);
285
286 #ifdef CONFIG_SYSCTL
287 static void update_and_free_page(struct page *page)
288 {
289         int i;
290         nr_huge_pages--;
291         nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
292         for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
293                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
294                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
295                                 1 << PG_private | 1<< PG_writeback);
296         }
297         page[1].lru.next = NULL;
298         set_page_refcounted(page);
299         __free_pages(page, HUGETLB_PAGE_ORDER);
300 }
301
302 #ifdef CONFIG_HIGHMEM
303 static void try_to_free_low(unsigned long count)
304 {
305         int i, nid;
306         for (i = 0; i < MAX_NUMNODES; ++i) {
307                 struct page *page, *next;
308                 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
309                         if (PageHighMem(page))
310                                 continue;
311                         list_del(&page->lru);
312                         update_and_free_page(page);
313                         nid = page_zone(page)->zone_pgdat->node_id;
314                         free_huge_pages--;
315                         free_huge_pages_node[nid]--;
316                         if (count >= nr_huge_pages)
317                                 return;
318                 }
319         }
320 }
321 #else
322 static inline void try_to_free_low(unsigned long count)
323 {
324 }
325 #endif
326
327 static unsigned long set_max_huge_pages(unsigned long count)
328 {
329         while (count > nr_huge_pages) {
330                 if (!alloc_fresh_huge_page())
331                         return nr_huge_pages;
332         }
333         if (count >= nr_huge_pages)
334                 return nr_huge_pages;
335
336         spin_lock(&hugetlb_lock);
337         count = max(count, reserved_huge_pages);
338         try_to_free_low(count);
339         while (count < nr_huge_pages) {
340                 struct page *page = dequeue_huge_page(NULL, 0);
341                 if (!page)
342                         break;
343                 update_and_free_page(page);
344         }
345         spin_unlock(&hugetlb_lock);
346         return nr_huge_pages;
347 }
348
349 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
350                            struct file *file, void __user *buffer,
351                            size_t *length, loff_t *ppos)
352 {
353         proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
354         max_huge_pages = set_max_huge_pages(max_huge_pages);
355         return 0;
356 }
357 #endif /* CONFIG_SYSCTL */
358
359 int hugetlb_report_meminfo(char *buf)
360 {
361         return sprintf(buf,
362                         "HugePages_Total: %5lu\n"
363                         "HugePages_Free:  %5lu\n"
364                         "HugePages_Rsvd:  %5lu\n"
365                         "Hugepagesize:    %5lu kB\n",
366                         nr_huge_pages,
367                         free_huge_pages,
368                         reserved_huge_pages,
369                         HPAGE_SIZE/1024);
370 }
371
372 int hugetlb_report_node_meminfo(int nid, char *buf)
373 {
374         return sprintf(buf,
375                 "Node %d HugePages_Total: %5u\n"
376                 "Node %d HugePages_Free:  %5u\n",
377                 nid, nr_huge_pages_node[nid],
378                 nid, free_huge_pages_node[nid]);
379 }
380
381 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
382 unsigned long hugetlb_total_pages(void)
383 {
384         return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
385 }
386
387 /*
388  * We cannot handle pagefaults against hugetlb pages at all.  They cause
389  * handle_mm_fault() to try to instantiate regular-sized pages in the
390  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
391  * this far.
392  */
393 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
394                                 unsigned long address, int *unused)
395 {
396         BUG();
397         return NULL;
398 }
399
400 struct vm_operations_struct hugetlb_vm_ops = {
401         .nopage = hugetlb_nopage,
402 };
403
404 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
405                                 int writable)
406 {
407         pte_t entry;
408
409         if (writable) {
410                 entry =
411                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
412         } else {
413                 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
414         }
415         entry = pte_mkyoung(entry);
416         entry = pte_mkhuge(entry);
417
418         return entry;
419 }
420
421 static void set_huge_ptep_writable(struct vm_area_struct *vma,
422                                    unsigned long address, pte_t *ptep)
423 {
424         pte_t entry;
425
426         entry = pte_mkwrite(pte_mkdirty(*ptep));
427         ptep_set_access_flags(vma, address, ptep, entry, 1);
428         update_mmu_cache(vma, address, entry);
429         lazy_mmu_prot_update(entry);
430 }
431
432
433 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
434                             struct vm_area_struct *vma)
435 {
436         pte_t *src_pte, *dst_pte, entry;
437         struct page *ptepage;
438         unsigned long addr;
439         int cow;
440
441         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442
443         for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
444                 src_pte = huge_pte_offset(src, addr);
445                 if (!src_pte)
446                         continue;
447                 dst_pte = huge_pte_alloc(dst, addr);
448                 if (!dst_pte)
449                         goto nomem;
450                 spin_lock(&dst->page_table_lock);
451                 spin_lock(&src->page_table_lock);
452                 if (!pte_none(*src_pte)) {
453                         if (cow)
454                                 ptep_set_wrprotect(src, addr, src_pte);
455                         entry = *src_pte;
456                         ptepage = pte_page(entry);
457                         get_page(ptepage);
458                         add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
459                         set_huge_pte_at(dst, addr, dst_pte, entry);
460                 }
461                 spin_unlock(&src->page_table_lock);
462                 spin_unlock(&dst->page_table_lock);
463         }
464         return 0;
465
466 nomem:
467         return -ENOMEM;
468 }
469
470 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
471                           unsigned long end)
472 {
473         struct mm_struct *mm = vma->vm_mm;
474         unsigned long address;
475         pte_t *ptep;
476         pte_t pte;
477         struct page *page;
478
479         WARN_ON(!is_vm_hugetlb_page(vma));
480         BUG_ON(start & ~HPAGE_MASK);
481         BUG_ON(end & ~HPAGE_MASK);
482
483         spin_lock(&mm->page_table_lock);
484
485         /* Update high watermark before we lower rss */
486         update_hiwater_rss(mm);
487
488         for (address = start; address < end; address += HPAGE_SIZE) {
489                 ptep = huge_pte_offset(mm, address);
490                 if (!ptep)
491                         continue;
492
493                 pte = huge_ptep_get_and_clear(mm, address, ptep);
494                 if (pte_none(pte))
495                         continue;
496
497                 page = pte_page(pte);
498                 put_page(page);
499                 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
500         }
501
502         spin_unlock(&mm->page_table_lock);
503         flush_tlb_range(vma, start, end);
504 }
505
506 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
507                         unsigned long address, pte_t *ptep, pte_t pte)
508 {
509         struct page *old_page, *new_page;
510         int avoidcopy;
511
512         old_page = pte_page(pte);
513
514         /* If no-one else is actually using this page, avoid the copy
515          * and just make the page writable */
516         avoidcopy = (page_count(old_page) == 1);
517         if (avoidcopy) {
518                 set_huge_ptep_writable(vma, address, ptep);
519                 return VM_FAULT_MINOR;
520         }
521
522         page_cache_get(old_page);
523         new_page = alloc_huge_page(vma, address);
524
525         if (!new_page) {
526                 page_cache_release(old_page);
527                 return VM_FAULT_OOM;
528         }
529
530         spin_unlock(&mm->page_table_lock);
531         copy_huge_page(new_page, old_page, address);
532         spin_lock(&mm->page_table_lock);
533
534         ptep = huge_pte_offset(mm, address & HPAGE_MASK);
535         if (likely(pte_same(*ptep, pte))) {
536                 /* Break COW */
537                 set_huge_pte_at(mm, address, ptep,
538                                 make_huge_pte(vma, new_page, 1));
539                 /* Make the old page be freed below */
540                 new_page = old_page;
541         }
542         page_cache_release(new_page);
543         page_cache_release(old_page);
544         return VM_FAULT_MINOR;
545 }
546
547 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
548                         unsigned long address, pte_t *ptep, int write_access)
549 {
550         int ret = VM_FAULT_SIGBUS;
551         unsigned long idx;
552         unsigned long size;
553         struct page *page;
554         struct address_space *mapping;
555         pte_t new_pte;
556
557         mapping = vma->vm_file->f_mapping;
558         idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
559                 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
560
561         /*
562          * Use page lock to guard against racing truncation
563          * before we get page_table_lock.
564          */
565 retry:
566         page = find_lock_page(mapping, idx);
567         if (!page) {
568                 if (hugetlb_get_quota(mapping))
569                         goto out;
570                 page = alloc_huge_page(vma, address);
571                 if (!page) {
572                         hugetlb_put_quota(mapping);
573                         ret = VM_FAULT_OOM;
574                         goto out;
575                 }
576                 clear_huge_page(page, address);
577
578                 if (vma->vm_flags & VM_SHARED) {
579                         int err;
580
581                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
582                         if (err) {
583                                 put_page(page);
584                                 hugetlb_put_quota(mapping);
585                                 if (err == -EEXIST)
586                                         goto retry;
587                                 goto out;
588                         }
589                 } else
590                         lock_page(page);
591         }
592
593         spin_lock(&mm->page_table_lock);
594         size = i_size_read(mapping->host) >> HPAGE_SHIFT;
595         if (idx >= size)
596                 goto backout;
597
598         ret = VM_FAULT_MINOR;
599         if (!pte_none(*ptep))
600                 goto backout;
601
602         add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
603         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
604                                 && (vma->vm_flags & VM_SHARED)));
605         set_huge_pte_at(mm, address, ptep, new_pte);
606
607         if (write_access && !(vma->vm_flags & VM_SHARED)) {
608                 /* Optimization, do the COW without a second fault */
609                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
610         }
611
612         spin_unlock(&mm->page_table_lock);
613         unlock_page(page);
614 out:
615         return ret;
616
617 backout:
618         spin_unlock(&mm->page_table_lock);
619         hugetlb_put_quota(mapping);
620         unlock_page(page);
621         put_page(page);
622         goto out;
623 }
624
625 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
626                         unsigned long address, int write_access)
627 {
628         pte_t *ptep;
629         pte_t entry;
630         int ret;
631         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
632
633         ptep = huge_pte_alloc(mm, address);
634         if (!ptep)
635                 return VM_FAULT_OOM;
636
637         /*
638          * Serialize hugepage allocation and instantiation, so that we don't
639          * get spurious allocation failures if two CPUs race to instantiate
640          * the same page in the page cache.
641          */
642         mutex_lock(&hugetlb_instantiation_mutex);
643         entry = *ptep;
644         if (pte_none(entry)) {
645                 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
646                 mutex_unlock(&hugetlb_instantiation_mutex);
647                 return ret;
648         }
649
650         ret = VM_FAULT_MINOR;
651
652         spin_lock(&mm->page_table_lock);
653         /* Check for a racing update before calling hugetlb_cow */
654         if (likely(pte_same(entry, *ptep)))
655                 if (write_access && !pte_write(entry))
656                         ret = hugetlb_cow(mm, vma, address, ptep, entry);
657         spin_unlock(&mm->page_table_lock);
658         mutex_unlock(&hugetlb_instantiation_mutex);
659
660         return ret;
661 }
662
663 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
664                         struct page **pages, struct vm_area_struct **vmas,
665                         unsigned long *position, int *length, int i)
666 {
667         unsigned long pfn_offset;
668         unsigned long vaddr = *position;
669         int remainder = *length;
670
671         spin_lock(&mm->page_table_lock);
672         while (vaddr < vma->vm_end && remainder) {
673                 pte_t *pte;
674                 struct page *page;
675
676                 /*
677                  * Some archs (sparc64, sh*) have multiple pte_ts to
678                  * each hugepage.  We have to make * sure we get the
679                  * first, for the page indexing below to work.
680                  */
681                 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
682
683                 if (!pte || pte_none(*pte)) {
684                         int ret;
685
686                         spin_unlock(&mm->page_table_lock);
687                         ret = hugetlb_fault(mm, vma, vaddr, 0);
688                         spin_lock(&mm->page_table_lock);
689                         if (ret == VM_FAULT_MINOR)
690                                 continue;
691
692                         remainder = 0;
693                         if (!i)
694                                 i = -EFAULT;
695                         break;
696                 }
697
698                 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
699                 page = pte_page(*pte);
700 same_page:
701                 if (pages) {
702                         get_page(page);
703                         pages[i] = page + pfn_offset;
704                 }
705
706                 if (vmas)
707                         vmas[i] = vma;
708
709                 vaddr += PAGE_SIZE;
710                 ++pfn_offset;
711                 --remainder;
712                 ++i;
713                 if (vaddr < vma->vm_end && remainder &&
714                                 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
715                         /*
716                          * We use pfn_offset to avoid touching the pageframes
717                          * of this compound page.
718                          */
719                         goto same_page;
720                 }
721         }
722         spin_unlock(&mm->page_table_lock);
723         *length = remainder;
724         *position = vaddr;
725
726         return i;
727 }
728
729 void hugetlb_change_protection(struct vm_area_struct *vma,
730                 unsigned long address, unsigned long end, pgprot_t newprot)
731 {
732         struct mm_struct *mm = vma->vm_mm;
733         unsigned long start = address;
734         pte_t *ptep;
735         pte_t pte;
736
737         BUG_ON(address >= end);
738         flush_cache_range(vma, address, end);
739
740         spin_lock(&mm->page_table_lock);
741         for (; address < end; address += HPAGE_SIZE) {
742                 ptep = huge_pte_offset(mm, address);
743                 if (!ptep)
744                         continue;
745                 if (!pte_none(*ptep)) {
746                         pte = huge_ptep_get_and_clear(mm, address, ptep);
747                         pte = pte_mkhuge(pte_modify(pte, newprot));
748                         set_huge_pte_at(mm, address, ptep, pte);
749                         lazy_mmu_prot_update(pte);
750                 }
751         }
752         spin_unlock(&mm->page_table_lock);
753
754         flush_tlb_range(vma, start, end);
755 }
756