2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "xfs_trans.h"
26 #include "xfs_dmapi.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_alloc_btree.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_dir2_sf.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_alloc.h"
36 #include "xfs_btree.h"
37 #include "xfs_error.h"
39 #include "xfs_iomap.h"
40 #include "xfs_vnodeops.h"
41 #include <linux/mpage.h>
42 #include <linux/pagevec.h>
43 #include <linux/writeback.h>
47 * Prime number of hash buckets since address is used as the key.
50 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
66 wait_queue_head_t *wq = to_ioend_wq(ip);
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
86 struct buffer_head *bh, *head;
88 *delalloc = *unmapped = *unwritten = 0;
90 bh = head = page_buffers(page);
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
94 else if (buffer_unwritten(bh))
96 else if (buffer_delay(bh))
98 } while ((bh = bh->b_this_page) != head);
101 #if defined(XFS_RW_TRACE)
110 loff_t isize = i_size_read(inode);
111 loff_t offset = page_offset(page);
112 int delalloc = -1, unmapped = -1, unwritten = -1;
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
136 (void *)((unsigned long)current_pid()),
140 #define xfs_page_trace(tag, inode, page, pgoff)
143 STATIC struct block_device *
144 xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
147 struct xfs_mount *mp = ip->i_mount;
149 if (XFS_IS_REALTIME_INODE(ip))
150 return mp->m_rtdev_targp->bt_bdev;
152 return mp->m_ddev_targp->bt_bdev;
156 * Schedule IO completion handling on a xfsdatad if this was
157 * the final hold on this ioend. If we are asked to wait,
158 * flush the workqueue.
165 if (atomic_dec_and_test(&ioend->io_remaining)) {
166 queue_work(xfsdatad_workqueue, &ioend->io_work);
168 flush_workqueue(xfsdatad_workqueue);
173 * We're now finished for good with this ioend structure.
174 * Update the page state via the associated buffer_heads,
175 * release holds on the inode and bio, and finally free
176 * up memory. Do not use the ioend after this.
182 struct buffer_head *bh, *next;
183 struct xfs_inode *ip = XFS_I(ioend->io_inode);
185 for (bh = ioend->io_buffer_head; bh; bh = next) {
186 next = bh->b_private;
187 bh->b_end_io(bh, !ioend->io_error);
191 * Volume managers supporting multiple paths can send back ENODEV
192 * when the final path disappears. In this case continuing to fill
193 * the page cache with dirty data which cannot be written out is
194 * evil, so prevent that.
196 if (unlikely(ioend->io_error == -ENODEV)) {
197 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
202 mempool_free(ioend, xfs_ioend_pool);
206 * Update on-disk file size now that data has been written to disk.
207 * The current in-memory file size is i_size. If a write is beyond
208 * eof i_new_size will be the intended file size until i_size is
209 * updated. If this write does not extend all the way to the valid
210 * file size then restrict this update to the end of the write.
216 xfs_inode_t *ip = XFS_I(ioend->io_inode);
220 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
221 ASSERT(ioend->io_type != IOMAP_READ);
223 if (unlikely(ioend->io_error))
226 bsize = ioend->io_offset + ioend->io_size;
228 xfs_ilock(ip, XFS_ILOCK_EXCL);
230 isize = MAX(ip->i_size, ip->i_new_size);
231 isize = MIN(isize, bsize);
233 if (ip->i_d.di_size < isize) {
234 ip->i_d.di_size = isize;
235 ip->i_update_core = 1;
236 ip->i_update_size = 1;
237 xfs_mark_inode_dirty_sync(ip);
240 xfs_iunlock(ip, XFS_ILOCK_EXCL);
244 * Buffered IO write completion for delayed allocate extents.
247 xfs_end_bio_delalloc(
248 struct work_struct *work)
251 container_of(work, xfs_ioend_t, io_work);
253 xfs_setfilesize(ioend);
254 xfs_destroy_ioend(ioend);
258 * Buffered IO write completion for regular, written extents.
262 struct work_struct *work)
265 container_of(work, xfs_ioend_t, io_work);
267 xfs_setfilesize(ioend);
268 xfs_destroy_ioend(ioend);
272 * IO write completion for unwritten extents.
274 * Issue transactions to convert a buffer range from unwritten
275 * to written extents.
278 xfs_end_bio_unwritten(
279 struct work_struct *work)
282 container_of(work, xfs_ioend_t, io_work);
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 xfs_off_t offset = ioend->io_offset;
285 size_t size = ioend->io_size;
287 if (likely(!ioend->io_error)) {
288 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
290 error = xfs_iomap_write_unwritten(ip, offset, size);
292 ioend->io_error = error;
294 xfs_setfilesize(ioend);
296 xfs_destroy_ioend(ioend);
300 * IO read completion for regular, written extents.
304 struct work_struct *work)
307 container_of(work, xfs_ioend_t, io_work);
309 xfs_destroy_ioend(ioend);
313 * Allocate and initialise an IO completion structure.
314 * We need to track unwritten extent write completion here initially.
315 * We'll need to extend this for updating the ondisk inode size later
325 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
328 * Set the count to 1 initially, which will prevent an I/O
329 * completion callback from happening before we have started
330 * all the I/O from calling the completion routine too early.
332 atomic_set(&ioend->io_remaining, 1);
334 ioend->io_list = NULL;
335 ioend->io_type = type;
336 ioend->io_inode = inode;
337 ioend->io_buffer_head = NULL;
338 ioend->io_buffer_tail = NULL;
339 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
340 ioend->io_offset = 0;
343 if (type == IOMAP_UNWRITTEN)
344 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
345 else if (type == IOMAP_DELAY)
346 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
347 else if (type == IOMAP_READ)
348 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
350 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
365 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
373 return offset >= iomapp->iomap_offset &&
374 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
378 * BIO completion handler for buffered IO.
385 xfs_ioend_t *ioend = bio->bi_private;
387 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
388 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
390 /* Toss bio and pass work off to an xfsdatad thread */
391 bio->bi_private = NULL;
392 bio->bi_end_io = NULL;
395 xfs_finish_ioend(ioend, 0);
399 xfs_submit_ioend_bio(
403 atomic_inc(&ioend->io_remaining);
405 bio->bi_private = ioend;
406 bio->bi_end_io = xfs_end_bio;
408 submit_bio(WRITE, bio);
409 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
415 struct buffer_head *bh)
418 int nvecs = bio_get_nr_vecs(bh->b_bdev);
421 bio = bio_alloc(GFP_NOIO, nvecs);
425 ASSERT(bio->bi_private == NULL);
426 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
427 bio->bi_bdev = bh->b_bdev;
433 xfs_start_buffer_writeback(
434 struct buffer_head *bh)
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
447 xfs_start_page_writeback(
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
458 /* If no buffers on the page are to be written, finish it here */
460 end_page_writeback(page);
463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
482 * The fix is two passes across the ioend list - one to start writeback on the
483 * buffer_heads, and then submit them for I/O on the second pass.
489 xfs_ioend_t *head = ioend;
491 struct buffer_head *bh;
493 sector_t lastblock = 0;
495 /* Pass 1 - start writeback */
497 next = ioend->io_list;
498 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
499 xfs_start_buffer_writeback(bh);
501 } while ((ioend = next) != NULL);
503 /* Pass 2 - submit I/O */
506 next = ioend->io_list;
509 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
513 bio = xfs_alloc_ioend_bio(bh);
514 } else if (bh->b_blocknr != lastblock + 1) {
515 xfs_submit_ioend_bio(ioend, bio);
519 if (bio_add_buffer(bio, bh) != bh->b_size) {
520 xfs_submit_ioend_bio(ioend, bio);
524 lastblock = bh->b_blocknr;
527 xfs_submit_ioend_bio(ioend, bio);
528 xfs_finish_ioend(ioend, 0);
529 } while ((ioend = next) != NULL);
533 * Cancel submission of all buffer_heads so far in this endio.
534 * Toss the endio too. Only ever called for the initial page
535 * in a writepage request, so only ever one page.
542 struct buffer_head *bh, *next_bh;
545 next = ioend->io_list;
546 bh = ioend->io_buffer_head;
548 next_bh = bh->b_private;
549 clear_buffer_async_write(bh);
551 } while ((bh = next_bh) != NULL);
553 xfs_ioend_wake(XFS_I(ioend->io_inode));
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
567 struct buffer_head *bh,
570 xfs_ioend_t **result,
573 xfs_ioend_t *ioend = *result;
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
583 previous->io_list = ioend;
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
596 struct buffer_head *bh,
603 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
605 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
606 ((offset - mp->iomap_offset) >> block_bits);
608 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
611 set_buffer_mapped(bh);
616 struct buffer_head *bh,
621 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
622 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
625 xfs_map_buffer(bh, iomapp, offset, block_bits);
626 bh->b_bdev = iomapp->iomap_target->bt_bdev;
627 set_buffer_mapped(bh);
628 clear_buffer_delay(bh);
629 clear_buffer_unwritten(bh);
633 * Look for a page at index that is suitable for clustering.
638 unsigned int pg_offset,
643 if (PageWriteback(page))
646 if (page->mapping && PageDirty(page)) {
647 if (page_has_buffers(page)) {
648 struct buffer_head *bh, *head;
650 bh = head = page_buffers(page);
652 if (!buffer_uptodate(bh))
654 if (mapped != buffer_mapped(bh))
657 if (ret >= pg_offset)
659 } while ((bh = bh->b_this_page) != head);
661 ret = mapped ? 0 : PAGE_CACHE_SIZE;
670 struct page *startpage,
671 struct buffer_head *bh,
672 struct buffer_head *head,
676 pgoff_t tindex, tlast, tloff;
680 /* First sum forwards in this page */
682 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
685 } while ((bh = bh->b_this_page) != head);
687 /* if we reached the end of the page, sum forwards in following pages */
688 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
689 tindex = startpage->index + 1;
691 /* Prune this back to avoid pathological behavior */
692 tloff = min(tlast, startpage->index + 64);
694 pagevec_init(&pvec, 0);
695 while (!done && tindex <= tloff) {
696 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
698 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
701 for (i = 0; i < pagevec_count(&pvec); i++) {
702 struct page *page = pvec.pages[i];
703 size_t pg_offset, pg_len = 0;
705 if (tindex == tlast) {
707 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
713 pg_offset = PAGE_CACHE_SIZE;
715 if (page->index == tindex && trylock_page(page)) {
716 pg_len = xfs_probe_page(page, pg_offset, mapped);
729 pagevec_release(&pvec);
737 * Test if a given page is suitable for writing as part of an unwritten
738 * or delayed allocate extent.
745 if (PageWriteback(page))
748 if (page->mapping && page_has_buffers(page)) {
749 struct buffer_head *bh, *head;
752 bh = head = page_buffers(page);
754 if (buffer_unwritten(bh))
755 acceptable = (type == IOMAP_UNWRITTEN);
756 else if (buffer_delay(bh))
757 acceptable = (type == IOMAP_DELAY);
758 else if (buffer_dirty(bh) && buffer_mapped(bh))
759 acceptable = (type == IOMAP_NEW);
762 } while ((bh = bh->b_this_page) != head);
772 * Allocate & map buffers for page given the extent map. Write it out.
773 * except for the original page of a writepage, this is called on
774 * delalloc/unwritten pages only, for the original page it is possible
775 * that the page has no mapping at all.
783 xfs_ioend_t **ioendp,
784 struct writeback_control *wbc,
788 struct buffer_head *bh, *head;
789 xfs_off_t end_offset;
790 unsigned long p_offset;
792 int bbits = inode->i_blkbits;
794 int count = 0, done = 0, uptodate = 1;
795 xfs_off_t offset = page_offset(page);
797 if (page->index != tindex)
799 if (!trylock_page(page))
801 if (PageWriteback(page))
802 goto fail_unlock_page;
803 if (page->mapping != inode->i_mapping)
804 goto fail_unlock_page;
805 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
806 goto fail_unlock_page;
809 * page_dirty is initially a count of buffers on the page before
810 * EOF and is decremented as we move each into a cleanable state.
814 * End offset is the highest offset that this page should represent.
815 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
816 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
817 * hence give us the correct page_dirty count. On any other page,
818 * it will be zero and in that case we need page_dirty to be the
819 * count of buffers on the page.
821 end_offset = min_t(unsigned long long,
822 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
825 len = 1 << inode->i_blkbits;
826 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
828 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
829 page_dirty = p_offset / len;
831 bh = head = page_buffers(page);
833 if (offset >= end_offset)
835 if (!buffer_uptodate(bh))
837 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
842 if (buffer_unwritten(bh) || buffer_delay(bh)) {
843 if (buffer_unwritten(bh))
844 type = IOMAP_UNWRITTEN;
848 if (!xfs_iomap_valid(mp, offset)) {
853 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
854 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
856 xfs_map_at_offset(bh, offset, bbits, mp);
858 xfs_add_to_ioend(inode, bh, offset,
861 set_buffer_dirty(bh);
863 mark_buffer_dirty(bh);
869 if (buffer_mapped(bh) && all_bh && startio) {
871 xfs_add_to_ioend(inode, bh, offset,
879 } while (offset += len, (bh = bh->b_this_page) != head);
881 if (uptodate && bh == head)
882 SetPageUptodate(page);
886 struct backing_dev_info *bdi;
888 bdi = inode->i_mapping->backing_dev_info;
890 if (bdi_write_congested(bdi)) {
891 wbc->encountered_congestion = 1;
893 } else if (wbc->nr_to_write <= 0) {
897 xfs_start_page_writeback(page, !page_dirty, count);
908 * Convert & write out a cluster of pages in the same extent as defined
909 * by mp and following the start page.
916 xfs_ioend_t **ioendp,
917 struct writeback_control *wbc,
925 pagevec_init(&pvec, 0);
926 while (!done && tindex <= tlast) {
927 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
929 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
932 for (i = 0; i < pagevec_count(&pvec); i++) {
933 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
934 iomapp, ioendp, wbc, startio, all_bh);
939 pagevec_release(&pvec);
945 * Calling this without startio set means we are being asked to make a dirty
946 * page ready for freeing it's buffers. When called with startio set then
947 * we are coming from writepage.
949 * When called with startio set it is important that we write the WHOLE
951 * The bh->b_state's cannot know if any of the blocks or which block for
952 * that matter are dirty due to mmap writes, and therefore bh uptodate is
953 * only valid if the page itself isn't completely uptodate. Some layers
954 * may clear the page dirty flag prior to calling write page, under the
955 * assumption the entire page will be written out; by not writing out the
956 * whole page the page can be reused before all valid dirty data is
957 * written out. Note: in the case of a page that has been dirty'd by
958 * mapwrite and but partially setup by block_prepare_write the
959 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
960 * valid state, thus the whole page must be written out thing.
964 xfs_page_state_convert(
967 struct writeback_control *wbc,
969 int unmapped) /* also implies page uptodate */
971 struct buffer_head *bh, *head;
973 xfs_ioend_t *ioend = NULL, *iohead = NULL;
975 unsigned long p_offset = 0;
977 __uint64_t end_offset;
978 pgoff_t end_index, last_index, tlast;
980 int flags, err, iomap_valid = 0, uptodate = 1;
981 int page_dirty, count = 0;
983 int all_bh = unmapped;
986 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
987 trylock |= BMAPI_TRYLOCK;
990 /* Is this page beyond the end of the file? */
991 offset = i_size_read(inode);
992 end_index = offset >> PAGE_CACHE_SHIFT;
993 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
994 if (page->index >= end_index) {
995 if ((page->index >= end_index + 1) ||
996 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
1004 * page_dirty is initially a count of buffers on the page before
1005 * EOF and is decremented as we move each into a cleanable state.
1009 * End offset is the highest offset that this page should represent.
1010 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1011 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1012 * hence give us the correct page_dirty count. On any other page,
1013 * it will be zero and in that case we need page_dirty to be the
1014 * count of buffers on the page.
1016 end_offset = min_t(unsigned long long,
1017 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
1018 len = 1 << inode->i_blkbits;
1019 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1021 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
1022 page_dirty = p_offset / len;
1024 bh = head = page_buffers(page);
1025 offset = page_offset(page);
1029 /* TODO: cleanup count and page_dirty */
1032 if (offset >= end_offset)
1034 if (!buffer_uptodate(bh))
1036 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1038 * the iomap is actually still valid, but the ioend
1039 * isn't. shouldn't happen too often.
1046 iomap_valid = xfs_iomap_valid(&iomap, offset);
1049 * First case, map an unwritten extent and prepare for
1050 * extent state conversion transaction on completion.
1052 * Second case, allocate space for a delalloc buffer.
1053 * We can return EAGAIN here in the release page case.
1055 * Third case, an unmapped buffer was found, and we are
1056 * in a path where we need to write the whole page out.
1058 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1059 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1060 !buffer_mapped(bh) && (unmapped || startio))) {
1064 * Make sure we don't use a read-only iomap
1066 if (flags == BMAPI_READ)
1069 if (buffer_unwritten(bh)) {
1070 type = IOMAP_UNWRITTEN;
1071 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
1072 } else if (buffer_delay(bh)) {
1074 flags = BMAPI_ALLOCATE | trylock;
1077 flags = BMAPI_WRITE | BMAPI_MMAP;
1082 * if we didn't have a valid mapping then we
1083 * need to ensure that we put the new mapping
1084 * in a new ioend structure. This needs to be
1085 * done to ensure that the ioends correctly
1086 * reflect the block mappings at io completion
1087 * for unwritten extent conversion.
1090 if (type == IOMAP_NEW) {
1091 size = xfs_probe_cluster(inode,
1097 err = xfs_map_blocks(inode, offset, size,
1101 iomap_valid = xfs_iomap_valid(&iomap, offset);
1104 xfs_map_at_offset(bh, offset,
1105 inode->i_blkbits, &iomap);
1107 xfs_add_to_ioend(inode, bh, offset,
1111 set_buffer_dirty(bh);
1113 mark_buffer_dirty(bh);
1118 } else if (buffer_uptodate(bh) && startio) {
1120 * we got here because the buffer is already mapped.
1121 * That means it must already have extents allocated
1122 * underneath it. Map the extent by reading it.
1124 if (!iomap_valid || flags != BMAPI_READ) {
1126 size = xfs_probe_cluster(inode, page, bh,
1128 err = xfs_map_blocks(inode, offset, size,
1132 iomap_valid = xfs_iomap_valid(&iomap, offset);
1136 * We set the type to IOMAP_NEW in case we are doing a
1137 * small write at EOF that is extending the file but
1138 * without needing an allocation. We need to update the
1139 * file size on I/O completion in this case so it is
1140 * the same case as having just allocated a new extent
1141 * that we are writing into for the first time.
1144 if (trylock_buffer(bh)) {
1145 ASSERT(buffer_mapped(bh));
1148 xfs_add_to_ioend(inode, bh, offset, type,
1149 &ioend, !iomap_valid);
1155 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1156 (unmapped || startio)) {
1163 } while (offset += len, ((bh = bh->b_this_page) != head));
1165 if (uptodate && bh == head)
1166 SetPageUptodate(page);
1169 xfs_start_page_writeback(page, 1, count);
1171 if (ioend && iomap_valid) {
1172 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1174 tlast = min_t(pgoff_t, offset, last_index);
1175 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
1176 wbc, startio, all_bh, tlast);
1180 xfs_submit_ioend(iohead);
1186 xfs_cancel_ioend(iohead);
1189 * If it's delalloc and we have nowhere to put it,
1190 * throw it away, unless the lower layers told
1193 if (err != -EAGAIN) {
1195 block_invalidatepage(page, 0);
1196 ClearPageUptodate(page);
1202 * writepage: Called from one of two places:
1204 * 1. we are flushing a delalloc buffer head.
1206 * 2. we are writing out a dirty page. Typically the page dirty
1207 * state is cleared before we get here. In this case is it
1208 * conceivable we have no buffer heads.
1210 * For delalloc space on the page we need to allocate space and
1211 * flush it. For unmapped buffer heads on the page we should
1212 * allocate space if the page is uptodate. For any other dirty
1213 * buffer heads on the page we should flush them.
1215 * If we detect that a transaction would be required to flush
1216 * the page, we have to check the process flags first, if we
1217 * are already in a transaction or disk I/O during allocations
1218 * is off, we need to fail the writepage and redirty the page.
1224 struct writeback_control *wbc)
1228 int delalloc, unmapped, unwritten;
1229 struct inode *inode = page->mapping->host;
1231 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1234 * We need a transaction if:
1235 * 1. There are delalloc buffers on the page
1236 * 2. The page is uptodate and we have unmapped buffers
1237 * 3. The page is uptodate and we have no buffers
1238 * 4. There are unwritten buffers on the page
1241 if (!page_has_buffers(page)) {
1245 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1246 if (!PageUptodate(page))
1248 need_trans = delalloc + unmapped + unwritten;
1252 * If we need a transaction and the process flags say
1253 * we are already in a transaction, or no IO is allowed
1254 * then mark the page dirty again and leave the page
1257 if (current_test_flags(PF_FSTRANS) && need_trans)
1261 * Delay hooking up buffer heads until we have
1262 * made our go/no-go decision.
1264 if (!page_has_buffers(page))
1265 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1268 * Convert delayed allocate, unwritten or unmapped space
1269 * to real space and flush out to disk.
1271 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1272 if (error == -EAGAIN)
1274 if (unlikely(error < 0))
1280 redirty_page_for_writepage(wbc, page);
1290 struct address_space *mapping,
1291 struct writeback_control *wbc)
1293 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1294 return generic_writepages(mapping, wbc);
1298 * Called to move a page into cleanable state - and from there
1299 * to be released. Possibly the page is already clean. We always
1300 * have buffer heads in this call.
1302 * Returns 0 if the page is ok to release, 1 otherwise.
1304 * Possible scenarios are:
1306 * 1. We are being called to release a page which has been written
1307 * to via regular I/O. buffer heads will be dirty and possibly
1308 * delalloc. If no delalloc buffer heads in this case then we
1309 * can just return zero.
1311 * 2. We are called to release a page which has been written via
1312 * mmap, all we need to do is ensure there is no delalloc
1313 * state in the buffer heads, if not we can let the caller
1314 * free them and we should come back later via writepage.
1321 struct inode *inode = page->mapping->host;
1322 int dirty, delalloc, unmapped, unwritten;
1323 struct writeback_control wbc = {
1324 .sync_mode = WB_SYNC_ALL,
1328 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
1330 if (!page_has_buffers(page))
1333 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1334 if (!delalloc && !unwritten)
1337 if (!(gfp_mask & __GFP_FS))
1340 /* If we are already inside a transaction or the thread cannot
1341 * do I/O, we cannot release this page.
1343 if (current_test_flags(PF_FSTRANS))
1347 * Convert delalloc space to real space, do not flush the
1348 * data out to disk, that will be done by the caller.
1349 * Never need to allocate space here - we will always
1350 * come back to writepage in that case.
1352 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1353 if (dirty == 0 && !unwritten)
1358 return try_to_free_buffers(page);
1363 struct inode *inode,
1365 struct buffer_head *bh_result,
1368 bmapi_flags_t flags)
1376 offset = (xfs_off_t)iblock << inode->i_blkbits;
1377 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1378 size = bh_result->b_size;
1380 if (!create && direct && offset >= i_size_read(inode))
1383 error = xfs_iomap(XFS_I(inode), offset, size,
1384 create ? flags : BMAPI_READ, &iomap, &niomap);
1390 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
1392 * For unwritten extents do not report a disk address on
1393 * the read case (treat as if we're reading into a hole).
1395 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1396 xfs_map_buffer(bh_result, &iomap, offset,
1399 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1401 bh_result->b_private = inode;
1402 set_buffer_unwritten(bh_result);
1407 * If this is a realtime file, data may be on a different device.
1408 * to that pointed to from the buffer_head b_bdev currently.
1410 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1413 * If we previously allocated a block out beyond eof and we are now
1414 * coming back to use it then we will need to flag it as new even if it
1415 * has a disk address.
1417 * With sub-block writes into unwritten extents we also need to mark
1418 * the buffer as new so that the unwritten parts of the buffer gets
1422 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1423 (offset >= i_size_read(inode)) ||
1424 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1425 set_buffer_new(bh_result);
1427 if (iomap.iomap_flags & IOMAP_DELAY) {
1430 set_buffer_uptodate(bh_result);
1431 set_buffer_mapped(bh_result);
1432 set_buffer_delay(bh_result);
1436 if (direct || size > (1 << inode->i_blkbits)) {
1437 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1438 offset = min_t(xfs_off_t,
1439 iomap.iomap_bsize - iomap.iomap_delta, size);
1440 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1448 struct inode *inode,
1450 struct buffer_head *bh_result,
1453 return __xfs_get_blocks(inode, iblock,
1454 bh_result, create, 0, BMAPI_WRITE);
1458 xfs_get_blocks_direct(
1459 struct inode *inode,
1461 struct buffer_head *bh_result,
1464 return __xfs_get_blocks(inode, iblock,
1465 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1475 xfs_ioend_t *ioend = iocb->private;
1478 * Non-NULL private data means we need to issue a transaction to
1479 * convert a range from unwritten to written extents. This needs
1480 * to happen from process context but aio+dio I/O completion
1481 * happens from irq context so we need to defer it to a workqueue.
1482 * This is not necessary for synchronous direct I/O, but we do
1483 * it anyway to keep the code uniform and simpler.
1485 * Well, if only it were that simple. Because synchronous direct I/O
1486 * requires extent conversion to occur *before* we return to userspace,
1487 * we have to wait for extent conversion to complete. Look at the
1488 * iocb that has been passed to us to determine if this is AIO or
1489 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1490 * workqueue and wait for it to complete.
1492 * The core direct I/O code might be changed to always call the
1493 * completion handler in the future, in which case all this can
1496 ioend->io_offset = offset;
1497 ioend->io_size = size;
1498 if (ioend->io_type == IOMAP_READ) {
1499 xfs_finish_ioend(ioend, 0);
1500 } else if (private && size > 0) {
1501 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
1504 * A direct I/O write ioend starts it's life in unwritten
1505 * state in case they map an unwritten extent. This write
1506 * didn't map an unwritten extent so switch it's completion
1509 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
1510 xfs_finish_ioend(ioend, 0);
1514 * blockdev_direct_IO can return an error even after the I/O
1515 * completion handler was called. Thus we need to protect
1516 * against double-freeing.
1518 iocb->private = NULL;
1525 const struct iovec *iov,
1527 unsigned long nr_segs)
1529 struct file *file = iocb->ki_filp;
1530 struct inode *inode = file->f_mapping->host;
1531 struct block_device *bdev;
1534 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1537 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
1538 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1539 bdev, iov, offset, nr_segs,
1540 xfs_get_blocks_direct,
1543 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
1544 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
1545 bdev, iov, offset, nr_segs,
1546 xfs_get_blocks_direct,
1550 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
1551 xfs_destroy_ioend(iocb->private);
1558 struct address_space *mapping,
1562 struct page **pagep,
1566 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1572 struct address_space *mapping,
1575 struct inode *inode = (struct inode *)mapping->host;
1576 struct xfs_inode *ip = XFS_I(inode);
1578 xfs_itrace_entry(XFS_I(inode));
1579 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1580 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1581 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1582 return generic_block_bmap(mapping, block, xfs_get_blocks);
1587 struct file *unused,
1590 return mpage_readpage(page, xfs_get_blocks);
1595 struct file *unused,
1596 struct address_space *mapping,
1597 struct list_head *pages,
1600 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1604 xfs_vm_invalidatepage(
1606 unsigned long offset)
1608 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1609 page->mapping->host, page, offset);
1610 block_invalidatepage(page, offset);
1613 const struct address_space_operations xfs_address_space_operations = {
1614 .readpage = xfs_vm_readpage,
1615 .readpages = xfs_vm_readpages,
1616 .writepage = xfs_vm_writepage,
1617 .writepages = xfs_vm_writepages,
1618 .sync_page = block_sync_page,
1619 .releasepage = xfs_vm_releasepage,
1620 .invalidatepage = xfs_vm_invalidatepage,
1621 .write_begin = xfs_vm_write_begin,
1622 .write_end = generic_write_end,
1623 .bmap = xfs_vm_bmap,
1624 .direct_IO = xfs_vm_direct_IO,
1625 .migratepage = buffer_migrate_page,