Merge master.kernel.org:/home/rmk/linux-2.6-mmc
[linux-2.6] / sound / ppc / pmac.c
1 /*
2  * PMac DBDMA lowlevel functions
3  *
4  * Copyright (c) by Takashi Iwai <tiwai@suse.de>
5  * code based on dmasound.c.
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <asm/irq.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/dma-mapping.h>
32 #include <sound/core.h>
33 #include "pmac.h"
34 #include <sound/pcm_params.h>
35 #include <asm/pmac_feature.h>
36 #include <asm/pci-bridge.h>
37
38
39 /* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
40 static int awacs_freqs[8] = {
41         44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
42 };
43 /* fixed frequency table for tumbler */
44 static int tumbler_freqs[1] = {
45         44100
46 };
47
48 /*
49  * allocate DBDMA command arrays
50  */
51 static int snd_pmac_dbdma_alloc(struct snd_pmac *chip, struct pmac_dbdma *rec, int size)
52 {
53         unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
54
55         rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
56                                         &rec->dma_base, GFP_KERNEL);
57         if (rec->space == NULL)
58                 return -ENOMEM;
59         rec->size = size;
60         memset(rec->space, 0, rsize);
61         rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
62         rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
63
64         return 0;
65 }
66
67 static void snd_pmac_dbdma_free(struct snd_pmac *chip, struct pmac_dbdma *rec)
68 {
69         if (rec->space) {
70                 unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
71
72                 dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
73         }
74 }
75
76
77 /*
78  * pcm stuff
79  */
80
81 /*
82  * look up frequency table
83  */
84
85 unsigned int snd_pmac_rate_index(struct snd_pmac *chip, struct pmac_stream *rec, unsigned int rate)
86 {
87         int i, ok, found;
88
89         ok = rec->cur_freqs;
90         if (rate > chip->freq_table[0])
91                 return 0;
92         found = 0;
93         for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
94                 if (! (ok & 1)) continue;
95                 found = i;
96                 if (rate >= chip->freq_table[i])
97                         break;
98         }
99         return found;
100 }
101
102 /*
103  * check whether another stream is active
104  */
105 static inline int another_stream(int stream)
106 {
107         return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
108                 SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
109 }
110
111 /*
112  * allocate buffers
113  */
114 static int snd_pmac_pcm_hw_params(struct snd_pcm_substream *subs,
115                                   struct snd_pcm_hw_params *hw_params)
116 {
117         return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
118 }
119
120 /*
121  * release buffers
122  */
123 static int snd_pmac_pcm_hw_free(struct snd_pcm_substream *subs)
124 {
125         snd_pcm_lib_free_pages(subs);
126         return 0;
127 }
128
129 /*
130  * get a stream of the opposite direction
131  */
132 static struct pmac_stream *snd_pmac_get_stream(struct snd_pmac *chip, int stream)
133 {
134         switch (stream) {
135         case SNDRV_PCM_STREAM_PLAYBACK:
136                 return &chip->playback;
137         case SNDRV_PCM_STREAM_CAPTURE:
138                 return &chip->capture;
139         default:
140                 snd_BUG();
141                 return NULL;
142         }
143 }
144
145 /*
146  * wait while run status is on
147  */
148 static inline void
149 snd_pmac_wait_ack(struct pmac_stream *rec)
150 {
151         int timeout = 50000;
152         while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
153                 udelay(1);
154 }
155
156 /*
157  * set the format and rate to the chip.
158  * call the lowlevel function if defined (e.g. for AWACS).
159  */
160 static void snd_pmac_pcm_set_format(struct snd_pmac *chip)
161 {
162         /* set up frequency and format */
163         out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
164         out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
165         if (chip->set_format)
166                 chip->set_format(chip);
167 }
168
169 /*
170  * stop the DMA transfer
171  */
172 static inline void snd_pmac_dma_stop(struct pmac_stream *rec)
173 {
174         out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
175         snd_pmac_wait_ack(rec);
176 }
177
178 /*
179  * set the command pointer address
180  */
181 static inline void snd_pmac_dma_set_command(struct pmac_stream *rec, struct pmac_dbdma *cmd)
182 {
183         out_le32(&rec->dma->cmdptr, cmd->addr);
184 }
185
186 /*
187  * start the DMA
188  */
189 static inline void snd_pmac_dma_run(struct pmac_stream *rec, int status)
190 {
191         out_le32(&rec->dma->control, status | (status << 16));
192 }
193
194
195 /*
196  * prepare playback/capture stream
197  */
198 static int snd_pmac_pcm_prepare(struct snd_pmac *chip, struct pmac_stream *rec, struct snd_pcm_substream *subs)
199 {
200         int i;
201         volatile struct dbdma_cmd __iomem *cp;
202         struct snd_pcm_runtime *runtime = subs->runtime;
203         int rate_index;
204         long offset;
205         struct pmac_stream *astr;
206         
207         rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
208         rec->period_size = snd_pcm_lib_period_bytes(subs);
209         rec->nperiods = rec->dma_size / rec->period_size;
210         rec->cur_period = 0;
211         rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
212
213         /* set up constraints */
214         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
215         if (! astr)
216                 return -EINVAL;
217         astr->cur_freqs = 1 << rate_index;
218         astr->cur_formats = 1 << runtime->format;
219         chip->rate_index = rate_index;
220         chip->format = runtime->format;
221
222         /* We really want to execute a DMA stop command, after the AWACS
223          * is initialized.
224          * For reasons I don't understand, it stops the hissing noise
225          * common to many PowerBook G3 systems and random noise otherwise
226          * captured on iBook2's about every third time. -ReneR
227          */
228         spin_lock_irq(&chip->reg_lock);
229         snd_pmac_dma_stop(rec);
230         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
231         snd_pmac_dma_set_command(rec, &chip->extra_dma);
232         snd_pmac_dma_run(rec, RUN);
233         spin_unlock_irq(&chip->reg_lock);
234         mdelay(5);
235         spin_lock_irq(&chip->reg_lock);
236         /* continuous DMA memory type doesn't provide the physical address,
237          * so we need to resolve the address here...
238          */
239         offset = runtime->dma_addr;
240         for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
241                 st_le32(&cp->phy_addr, offset);
242                 st_le16(&cp->req_count, rec->period_size);
243                 /*st_le16(&cp->res_count, 0);*/
244                 st_le16(&cp->xfer_status, 0);
245                 offset += rec->period_size;
246         }
247         /* make loop */
248         st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
249         st_le32(&cp->cmd_dep, rec->cmd.addr);
250
251         snd_pmac_dma_stop(rec);
252         snd_pmac_dma_set_command(rec, &rec->cmd);
253         spin_unlock_irq(&chip->reg_lock);
254
255         return 0;
256 }
257
258
259 /*
260  * PCM trigger/stop
261  */
262 static int snd_pmac_pcm_trigger(struct snd_pmac *chip, struct pmac_stream *rec,
263                                 struct snd_pcm_substream *subs, int cmd)
264 {
265         volatile struct dbdma_cmd __iomem *cp;
266         int i, command;
267
268         switch (cmd) {
269         case SNDRV_PCM_TRIGGER_START:
270         case SNDRV_PCM_TRIGGER_RESUME:
271                 if (rec->running)
272                         return -EBUSY;
273                 command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
274                            OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
275                 spin_lock(&chip->reg_lock);
276                 snd_pmac_beep_stop(chip);
277                 snd_pmac_pcm_set_format(chip);
278                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
279                         out_le16(&cp->command, command);
280                 snd_pmac_dma_set_command(rec, &rec->cmd);
281                 (void)in_le32(&rec->dma->status);
282                 snd_pmac_dma_run(rec, RUN|WAKE);
283                 rec->running = 1;
284                 spin_unlock(&chip->reg_lock);
285                 break;
286
287         case SNDRV_PCM_TRIGGER_STOP:
288         case SNDRV_PCM_TRIGGER_SUSPEND:
289                 spin_lock(&chip->reg_lock);
290                 rec->running = 0;
291                 /*printk("stopped!!\n");*/
292                 snd_pmac_dma_stop(rec);
293                 for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
294                         out_le16(&cp->command, DBDMA_STOP);
295                 spin_unlock(&chip->reg_lock);
296                 break;
297
298         default:
299                 return -EINVAL;
300         }
301
302         return 0;
303 }
304
305 /*
306  * return the current pointer
307  */
308 inline
309 static snd_pcm_uframes_t snd_pmac_pcm_pointer(struct snd_pmac *chip,
310                                               struct pmac_stream *rec,
311                                               struct snd_pcm_substream *subs)
312 {
313         int count = 0;
314
315 #if 1 /* hmm.. how can we get the current dma pointer?? */
316         int stat;
317         volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
318         stat = ld_le16(&cp->xfer_status);
319         if (stat & (ACTIVE|DEAD)) {
320                 count = in_le16(&cp->res_count);
321                 if (count)
322                         count = rec->period_size - count;
323         }
324 #endif
325         count += rec->cur_period * rec->period_size;
326         /*printk("pointer=%d\n", count);*/
327         return bytes_to_frames(subs->runtime, count);
328 }
329
330 /*
331  * playback
332  */
333
334 static int snd_pmac_playback_prepare(struct snd_pcm_substream *subs)
335 {
336         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
337         return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
338 }
339
340 static int snd_pmac_playback_trigger(struct snd_pcm_substream *subs,
341                                      int cmd)
342 {
343         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
344         return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
345 }
346
347 static snd_pcm_uframes_t snd_pmac_playback_pointer(struct snd_pcm_substream *subs)
348 {
349         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
350         return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
351 }
352
353
354 /*
355  * capture
356  */
357
358 static int snd_pmac_capture_prepare(struct snd_pcm_substream *subs)
359 {
360         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
361         return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
362 }
363
364 static int snd_pmac_capture_trigger(struct snd_pcm_substream *subs,
365                                     int cmd)
366 {
367         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
368         return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
369 }
370
371 static snd_pcm_uframes_t snd_pmac_capture_pointer(struct snd_pcm_substream *subs)
372 {
373         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
374         return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
375 }
376
377
378 /*
379  * update playback/capture pointer from interrupts
380  */
381 static void snd_pmac_pcm_update(struct snd_pmac *chip, struct pmac_stream *rec)
382 {
383         volatile struct dbdma_cmd __iomem *cp;
384         int c;
385         int stat;
386
387         spin_lock(&chip->reg_lock);
388         if (rec->running) {
389                 cp = &rec->cmd.cmds[rec->cur_period];
390                 for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
391                         stat = ld_le16(&cp->xfer_status);
392                         if (! (stat & ACTIVE))
393                                 break;
394                         /*printk("update frag %d\n", rec->cur_period);*/
395                         st_le16(&cp->xfer_status, 0);
396                         st_le16(&cp->req_count, rec->period_size);
397                         /*st_le16(&cp->res_count, 0);*/
398                         rec->cur_period++;
399                         if (rec->cur_period >= rec->nperiods) {
400                                 rec->cur_period = 0;
401                                 cp = rec->cmd.cmds;
402                         } else
403                                 cp++;
404                         spin_unlock(&chip->reg_lock);
405                         snd_pcm_period_elapsed(rec->substream);
406                         spin_lock(&chip->reg_lock);
407                 }
408         }
409         spin_unlock(&chip->reg_lock);
410 }
411
412
413 /*
414  * hw info
415  */
416
417 static struct snd_pcm_hardware snd_pmac_playback =
418 {
419         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
420                                  SNDRV_PCM_INFO_MMAP |
421                                  SNDRV_PCM_INFO_MMAP_VALID |
422                                  SNDRV_PCM_INFO_RESUME),
423         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
424         .rates =                SNDRV_PCM_RATE_8000_44100,
425         .rate_min =             7350,
426         .rate_max =             44100,
427         .channels_min =         2,
428         .channels_max =         2,
429         .buffer_bytes_max =     131072,
430         .period_bytes_min =     256,
431         .period_bytes_max =     16384,
432         .periods_min =          3,
433         .periods_max =          PMAC_MAX_FRAGS,
434 };
435
436 static struct snd_pcm_hardware snd_pmac_capture =
437 {
438         .info =                 (SNDRV_PCM_INFO_INTERLEAVED |
439                                  SNDRV_PCM_INFO_MMAP |
440                                  SNDRV_PCM_INFO_MMAP_VALID |
441                                  SNDRV_PCM_INFO_RESUME),
442         .formats =              SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
443         .rates =                SNDRV_PCM_RATE_8000_44100,
444         .rate_min =             7350,
445         .rate_max =             44100,
446         .channels_min =         2,
447         .channels_max =         2,
448         .buffer_bytes_max =     131072,
449         .period_bytes_min =     256,
450         .period_bytes_max =     16384,
451         .periods_min =          3,
452         .periods_max =          PMAC_MAX_FRAGS,
453 };
454
455
456 #if 0 // NYI
457 static int snd_pmac_hw_rule_rate(struct snd_pcm_hw_params *params,
458                                  struct snd_pcm_hw_rule *rule)
459 {
460         struct snd_pmac *chip = rule->private;
461         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
462         int i, freq_table[8], num_freqs;
463
464         if (! rec)
465                 return -EINVAL;
466         num_freqs = 0;
467         for (i = chip->num_freqs - 1; i >= 0; i--) {
468                 if (rec->cur_freqs & (1 << i))
469                         freq_table[num_freqs++] = chip->freq_table[i];
470         }
471
472         return snd_interval_list(hw_param_interval(params, rule->var),
473                                  num_freqs, freq_table, 0);
474 }
475
476 static int snd_pmac_hw_rule_format(struct snd_pcm_hw_params *params,
477                                    struct snd_pcm_hw_rule *rule)
478 {
479         struct snd_pmac *chip = rule->private;
480         struct pmac_stream *rec = snd_pmac_get_stream(chip, rule->deps[0]);
481
482         if (! rec)
483                 return -EINVAL;
484         return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
485                                    rec->cur_formats);
486 }
487 #endif // NYI
488
489 static int snd_pmac_pcm_open(struct snd_pmac *chip, struct pmac_stream *rec,
490                              struct snd_pcm_substream *subs)
491 {
492         struct snd_pcm_runtime *runtime = subs->runtime;
493         int i, j, fflags;
494         static int typical_freqs[] = {
495                 44100,
496                 22050,
497                 11025,
498                 0,
499         };
500         static int typical_freq_flags[] = {
501                 SNDRV_PCM_RATE_44100,
502                 SNDRV_PCM_RATE_22050,
503                 SNDRV_PCM_RATE_11025,
504                 0,
505         };
506
507         /* look up frequency table and fill bit mask */
508         runtime->hw.rates = 0;
509         fflags = chip->freqs_ok;
510         for (i = 0; typical_freqs[i]; i++) {
511                 for (j = 0; j < chip->num_freqs; j++) {
512                         if ((chip->freqs_ok & (1 << j)) &&
513                             chip->freq_table[j] == typical_freqs[i]) {
514                                 runtime->hw.rates |= typical_freq_flags[i];
515                                 fflags &= ~(1 << j);
516                                 break;
517                         }
518                 }
519         }
520         if (fflags) /* rest */
521                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
522
523         /* check for minimum and maximum rates */
524         for (i = 0; i < chip->num_freqs; i++) {
525                 if (chip->freqs_ok & (1 << i)) {
526                         runtime->hw.rate_max = chip->freq_table[i];
527                         break;
528                 }
529         }
530         for (i = chip->num_freqs - 1; i >= 0; i--) {
531                 if (chip->freqs_ok & (1 << i)) {
532                         runtime->hw.rate_min = chip->freq_table[i];
533                         break;
534                 }
535         }
536         runtime->hw.formats = chip->formats_ok;
537         if (chip->can_capture) {
538                 if (! chip->can_duplex)
539                         runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
540                 runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
541         }
542         runtime->private_data = rec;
543         rec->substream = subs;
544
545 #if 0 /* FIXME: still under development.. */
546         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
547                             snd_pmac_hw_rule_rate, chip, rec->stream, -1);
548         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
549                             snd_pmac_hw_rule_format, chip, rec->stream, -1);
550 #endif
551
552         runtime->hw.periods_max = rec->cmd.size - 1;
553
554         if (chip->can_duplex)
555                 snd_pcm_set_sync(subs);
556
557         /* constraints to fix choppy sound */
558         snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
559         return 0;
560 }
561
562 static int snd_pmac_pcm_close(struct snd_pmac *chip, struct pmac_stream *rec,
563                               struct snd_pcm_substream *subs)
564 {
565         struct pmac_stream *astr;
566
567         snd_pmac_dma_stop(rec);
568
569         astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
570         if (! astr)
571                 return -EINVAL;
572
573         /* reset constraints */
574         astr->cur_freqs = chip->freqs_ok;
575         astr->cur_formats = chip->formats_ok;
576         
577         return 0;
578 }
579
580 static int snd_pmac_playback_open(struct snd_pcm_substream *subs)
581 {
582         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
583
584         subs->runtime->hw = snd_pmac_playback;
585         return snd_pmac_pcm_open(chip, &chip->playback, subs);
586 }
587
588 static int snd_pmac_capture_open(struct snd_pcm_substream *subs)
589 {
590         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
591
592         subs->runtime->hw = snd_pmac_capture;
593         return snd_pmac_pcm_open(chip, &chip->capture, subs);
594 }
595
596 static int snd_pmac_playback_close(struct snd_pcm_substream *subs)
597 {
598         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
599
600         return snd_pmac_pcm_close(chip, &chip->playback, subs);
601 }
602
603 static int snd_pmac_capture_close(struct snd_pcm_substream *subs)
604 {
605         struct snd_pmac *chip = snd_pcm_substream_chip(subs);
606
607         return snd_pmac_pcm_close(chip, &chip->capture, subs);
608 }
609
610 /*
611  */
612
613 static struct snd_pcm_ops snd_pmac_playback_ops = {
614         .open =         snd_pmac_playback_open,
615         .close =        snd_pmac_playback_close,
616         .ioctl =        snd_pcm_lib_ioctl,
617         .hw_params =    snd_pmac_pcm_hw_params,
618         .hw_free =      snd_pmac_pcm_hw_free,
619         .prepare =      snd_pmac_playback_prepare,
620         .trigger =      snd_pmac_playback_trigger,
621         .pointer =      snd_pmac_playback_pointer,
622 };
623
624 static struct snd_pcm_ops snd_pmac_capture_ops = {
625         .open =         snd_pmac_capture_open,
626         .close =        snd_pmac_capture_close,
627         .ioctl =        snd_pcm_lib_ioctl,
628         .hw_params =    snd_pmac_pcm_hw_params,
629         .hw_free =      snd_pmac_pcm_hw_free,
630         .prepare =      snd_pmac_capture_prepare,
631         .trigger =      snd_pmac_capture_trigger,
632         .pointer =      snd_pmac_capture_pointer,
633 };
634
635 int __init snd_pmac_pcm_new(struct snd_pmac *chip)
636 {
637         struct snd_pcm *pcm;
638         int err;
639         int num_captures = 1;
640
641         if (! chip->can_capture)
642                 num_captures = 0;
643         err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
644         if (err < 0)
645                 return err;
646
647         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
648         if (chip->can_capture)
649                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
650
651         pcm->private_data = chip;
652         pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
653         strcpy(pcm->name, chip->card->shortname);
654         chip->pcm = pcm;
655
656         chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
657         if (chip->can_byte_swap)
658                 chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
659
660         chip->playback.cur_formats = chip->formats_ok;
661         chip->capture.cur_formats = chip->formats_ok;
662         chip->playback.cur_freqs = chip->freqs_ok;
663         chip->capture.cur_freqs = chip->freqs_ok;
664
665         /* preallocate 64k buffer */
666         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
667                                               &chip->pdev->dev,
668                                               64 * 1024, 64 * 1024);
669
670         return 0;
671 }
672
673
674 static void snd_pmac_dbdma_reset(struct snd_pmac *chip)
675 {
676         out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
677         snd_pmac_wait_ack(&chip->playback);
678         out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
679         snd_pmac_wait_ack(&chip->capture);
680 }
681
682
683 /*
684  * handling beep
685  */
686 void snd_pmac_beep_dma_start(struct snd_pmac *chip, int bytes, unsigned long addr, int speed)
687 {
688         struct pmac_stream *rec = &chip->playback;
689
690         snd_pmac_dma_stop(rec);
691         st_le16(&chip->extra_dma.cmds->req_count, bytes);
692         st_le16(&chip->extra_dma.cmds->xfer_status, 0);
693         st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
694         st_le32(&chip->extra_dma.cmds->phy_addr, addr);
695         st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
696         out_le32(&chip->awacs->control,
697                  (in_le32(&chip->awacs->control) & ~0x1f00)
698                  | (speed << 8));
699         out_le32(&chip->awacs->byteswap, 0);
700         snd_pmac_dma_set_command(rec, &chip->extra_dma);
701         snd_pmac_dma_run(rec, RUN);
702 }
703
704 void snd_pmac_beep_dma_stop(struct snd_pmac *chip)
705 {
706         snd_pmac_dma_stop(&chip->playback);
707         st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
708         snd_pmac_pcm_set_format(chip); /* reset format */
709 }
710
711
712 /*
713  * interrupt handlers
714  */
715 static irqreturn_t
716 snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
717 {
718         struct snd_pmac *chip = devid;
719         snd_pmac_pcm_update(chip, &chip->playback);
720         return IRQ_HANDLED;
721 }
722
723
724 static irqreturn_t
725 snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
726 {
727         struct snd_pmac *chip = devid;
728         snd_pmac_pcm_update(chip, &chip->capture);
729         return IRQ_HANDLED;
730 }
731
732
733 static irqreturn_t
734 snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
735 {
736         struct snd_pmac *chip = devid;
737         int ctrl = in_le32(&chip->awacs->control);
738
739         /*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
740         if (ctrl & MASK_PORTCHG) {
741                 /* do something when headphone is plugged/unplugged? */
742                 if (chip->update_automute)
743                         chip->update_automute(chip, 1);
744         }
745         if (ctrl & MASK_CNTLERR) {
746                 int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
747                 if (err && chip->model <= PMAC_SCREAMER)
748                         snd_printk(KERN_DEBUG "error %x\n", err);
749         }
750         /* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
751         out_le32(&chip->awacs->control, ctrl);
752         return IRQ_HANDLED;
753 }
754
755
756 /*
757  * a wrapper to feature call for compatibility
758  */
759 static void snd_pmac_sound_feature(struct snd_pmac *chip, int enable)
760 {
761         if (ppc_md.feature_call)
762                 ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
763 }
764
765 /*
766  * release resources
767  */
768
769 static int snd_pmac_free(struct snd_pmac *chip)
770 {
771         /* stop sounds */
772         if (chip->initialized) {
773                 snd_pmac_dbdma_reset(chip);
774                 /* disable interrupts from awacs interface */
775                 out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
776         }
777
778         snd_pmac_sound_feature(chip, 0);
779
780         /* clean up mixer if any */
781         if (chip->mixer_free)
782                 chip->mixer_free(chip);
783
784         snd_pmac_detach_beep(chip);
785
786         /* release resources */
787         if (chip->irq >= 0)
788                 free_irq(chip->irq, (void*)chip);
789         if (chip->tx_irq >= 0)
790                 free_irq(chip->tx_irq, (void*)chip);
791         if (chip->rx_irq >= 0)
792                 free_irq(chip->rx_irq, (void*)chip);
793         snd_pmac_dbdma_free(chip, &chip->playback.cmd);
794         snd_pmac_dbdma_free(chip, &chip->capture.cmd);
795         snd_pmac_dbdma_free(chip, &chip->extra_dma);
796         if (chip->macio_base)
797                 iounmap(chip->macio_base);
798         if (chip->latch_base)
799                 iounmap(chip->latch_base);
800         if (chip->awacs)
801                 iounmap(chip->awacs);
802         if (chip->playback.dma)
803                 iounmap(chip->playback.dma);
804         if (chip->capture.dma)
805                 iounmap(chip->capture.dma);
806
807         if (chip->node) {
808                 int i;
809                 for (i = 0; i < 3; i++) {
810                         if (chip->requested & (1 << i))
811                                 release_mem_region(chip->rsrc[i].start,
812                                                    chip->rsrc[i].end -
813                                                    chip->rsrc[i].start + 1);
814                 }
815         }
816
817         if (chip->pdev)
818                 pci_dev_put(chip->pdev);
819         kfree(chip);
820         return 0;
821 }
822
823
824 /*
825  * free the device
826  */
827 static int snd_pmac_dev_free(struct snd_device *device)
828 {
829         struct snd_pmac *chip = device->device_data;
830         return snd_pmac_free(chip);
831 }
832
833
834 /*
835  * check the machine support byteswap (little-endian)
836  */
837
838 static void __init detect_byte_swap(struct snd_pmac *chip)
839 {
840         struct device_node *mio;
841
842         /* if seems that Keylargo can't byte-swap  */
843         for (mio = chip->node->parent; mio; mio = mio->parent) {
844                 if (strcmp(mio->name, "mac-io") == 0) {
845                         if (device_is_compatible(mio, "Keylargo"))
846                                 chip->can_byte_swap = 0;
847                         break;
848                 }
849         }
850
851         /* it seems the Pismo & iBook can't byte-swap in hardware. */
852         if (machine_is_compatible("PowerBook3,1") ||
853             machine_is_compatible("PowerBook2,1"))
854                 chip->can_byte_swap = 0 ;
855
856         if (machine_is_compatible("PowerBook2,1"))
857                 chip->can_duplex = 0;
858 }
859
860
861 /*
862  * detect a sound chip
863  */
864 static int __init snd_pmac_detect(struct snd_pmac *chip)
865 {
866         struct device_node *sound = NULL;
867         unsigned int *prop, l;
868         struct macio_chip* macio;
869
870         u32 layout_id = 0;
871
872         if (!machine_is(powermac))
873                 return -ENODEV;
874
875         chip->subframe = 0;
876         chip->revision = 0;
877         chip->freqs_ok = 0xff; /* all ok */
878         chip->model = PMAC_AWACS;
879         chip->can_byte_swap = 1;
880         chip->can_duplex = 1;
881         chip->can_capture = 1;
882         chip->num_freqs = ARRAY_SIZE(awacs_freqs);
883         chip->freq_table = awacs_freqs;
884         chip->pdev = NULL;
885
886         chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
887
888         /* check machine type */
889         if (machine_is_compatible("AAPL,3400/2400")
890             || machine_is_compatible("AAPL,3500"))
891                 chip->is_pbook_3400 = 1;
892         else if (machine_is_compatible("PowerBook1,1")
893                  || machine_is_compatible("AAPL,PowerBook1998"))
894                 chip->is_pbook_G3 = 1;
895         chip->node = find_devices("awacs");
896         if (chip->node)
897                 sound = chip->node;
898
899         /*
900          * powermac G3 models have a node called "davbus"
901          * with a child called "sound".
902          */
903         if (!chip->node)
904                 chip->node = find_devices("davbus");
905         /*
906          * if we didn't find a davbus device, try 'i2s-a' since
907          * this seems to be what iBooks have
908          */
909         if (! chip->node) {
910                 chip->node = find_devices("i2s-a");
911                 if (chip->node && chip->node->parent &&
912                     chip->node->parent->parent) {
913                         if (device_is_compatible(chip->node->parent->parent,
914                                                  "K2-Keylargo"))
915                                 chip->is_k2 = 1;
916                 }
917         }
918         if (! chip->node)
919                 return -ENODEV;
920
921         if (!sound) {
922                 sound = find_devices("sound");
923                 while (sound && sound->parent != chip->node)
924                         sound = sound->next;
925         }
926         if (! sound)
927                 return -ENODEV;
928         prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
929         if (prop && *prop < 16)
930                 chip->subframe = *prop;
931         prop = (unsigned int *) get_property(sound, "layout-id", NULL);
932         if (prop)
933                 layout_id = *prop;
934         /* This should be verified on older screamers */
935         if (device_is_compatible(sound, "screamer")) {
936                 chip->model = PMAC_SCREAMER;
937                 // chip->can_byte_swap = 0; /* FIXME: check this */
938         }
939         if (device_is_compatible(sound, "burgundy")) {
940                 chip->model = PMAC_BURGUNDY;
941                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
942         }
943         if (device_is_compatible(sound, "daca")) {
944                 chip->model = PMAC_DACA;
945                 chip->can_capture = 0;  /* no capture */
946                 chip->can_duplex = 0;
947                 // chip->can_byte_swap = 0; /* FIXME: check this */
948                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
949         }
950         if (device_is_compatible(sound, "tumbler")) {
951                 chip->model = PMAC_TUMBLER;
952                 chip->can_capture = 0;  /* no capture */
953                 chip->can_duplex = 0;
954                 // chip->can_byte_swap = 0; /* FIXME: check this */
955                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
956                 chip->freq_table = tumbler_freqs;
957                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
958         }
959         if (device_is_compatible(sound, "snapper")) {
960                 chip->model = PMAC_SNAPPER;
961                 // chip->can_byte_swap = 0; /* FIXME: check this */
962                 chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
963                 chip->freq_table = tumbler_freqs;
964                 chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
965         }
966         if (device_is_compatible(sound, "AOAKeylargo") ||
967             device_is_compatible(sound, "AOAbase") ||
968             device_is_compatible(sound, "AOAK2")) {
969                 /* For now, only support very basic TAS3004 based machines with
970                  * single frequency until proper i2s control is implemented
971                  */
972                 switch(layout_id) {
973                 case 0x24:
974                 case 0x29:
975                 case 0x33:
976                 case 0x46:
977                 case 0x48:
978                 case 0x50:
979                 case 0x5c:
980                         chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
981                         chip->model = PMAC_SNAPPER;
982                         chip->can_byte_swap = 0; /* FIXME: check this */
983                         chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
984                         break;
985                 case 0x3a:
986                         chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
987                         chip->model = PMAC_TOONIE;
988                         chip->can_byte_swap = 0; /* FIXME: check this */
989                         chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
990                         break;
991                 default:
992                         printk(KERN_ERR "snd: Unknown layout ID 0x%x\n",
993                                layout_id);
994                         return -ENODEV;
995
996                 }
997         }
998         prop = (unsigned int *)get_property(sound, "device-id", NULL);
999         if (prop)
1000                 chip->device_id = *prop;
1001         chip->has_iic = (find_devices("perch") != NULL);
1002
1003         /* We need the PCI device for DMA allocations, let's use a crude method
1004          * for now ...
1005          */
1006         macio = macio_find(chip->node, macio_unknown);
1007         if (macio == NULL)
1008                 printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
1009         else {
1010                 struct pci_dev *pdev = NULL;
1011
1012                 for_each_pci_dev(pdev) {
1013                         struct device_node *np = pci_device_to_OF_node(pdev);
1014                         if (np && np == macio->of_node) {
1015                                 chip->pdev = pdev;
1016                                 break;
1017                         }
1018                 }
1019         }
1020         if (chip->pdev == NULL)
1021                 printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
1022                        " device !\n");
1023
1024         detect_byte_swap(chip);
1025
1026         /* look for a property saying what sample rates
1027            are available */
1028         prop = (unsigned int *) get_property(sound, "sample-rates", &l);
1029         if (! prop)
1030                 prop = (unsigned int *) get_property(sound,
1031                                                      "output-frame-rates", &l);
1032         if (prop) {
1033                 int i;
1034                 chip->freqs_ok = 0;
1035                 for (l /= sizeof(int); l > 0; --l) {
1036                         unsigned int r = *prop++;
1037                         /* Apple 'Fixed' format */
1038                         if (r >= 0x10000)
1039                                 r >>= 16;
1040                         for (i = 0; i < chip->num_freqs; ++i) {
1041                                 if (r == chip->freq_table[i]) {
1042                                         chip->freqs_ok |= (1 << i);
1043                                         break;
1044                                 }
1045                         }
1046                 }
1047         } else {
1048                 /* assume only 44.1khz */
1049                 chip->freqs_ok = 1;
1050         }
1051
1052         return 0;
1053 }
1054
1055 /*
1056  * exported - boolean info callbacks for ease of programming
1057  */
1058 int snd_pmac_boolean_stereo_info(struct snd_kcontrol *kcontrol,
1059                                  struct snd_ctl_elem_info *uinfo)
1060 {
1061         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1062         uinfo->count = 2;
1063         uinfo->value.integer.min = 0;
1064         uinfo->value.integer.max = 1;
1065         return 0;
1066 }
1067
1068 int snd_pmac_boolean_mono_info(struct snd_kcontrol *kcontrol,
1069                                struct snd_ctl_elem_info *uinfo)
1070 {
1071         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1072         uinfo->count = 1;
1073         uinfo->value.integer.min = 0;
1074         uinfo->value.integer.max = 1;
1075         return 0;
1076 }
1077
1078 #ifdef PMAC_SUPPORT_AUTOMUTE
1079 /*
1080  * auto-mute
1081  */
1082 static int pmac_auto_mute_get(struct snd_kcontrol *kcontrol,
1083                               struct snd_ctl_elem_value *ucontrol)
1084 {
1085         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1086         ucontrol->value.integer.value[0] = chip->auto_mute;
1087         return 0;
1088 }
1089
1090 static int pmac_auto_mute_put(struct snd_kcontrol *kcontrol,
1091                               struct snd_ctl_elem_value *ucontrol)
1092 {
1093         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1094         if (ucontrol->value.integer.value[0] != chip->auto_mute) {
1095                 chip->auto_mute = ucontrol->value.integer.value[0];
1096                 if (chip->update_automute)
1097                         chip->update_automute(chip, 1);
1098                 return 1;
1099         }
1100         return 0;
1101 }
1102
1103 static int pmac_hp_detect_get(struct snd_kcontrol *kcontrol,
1104                               struct snd_ctl_elem_value *ucontrol)
1105 {
1106         struct snd_pmac *chip = snd_kcontrol_chip(kcontrol);
1107         if (chip->detect_headphone)
1108                 ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
1109         else
1110                 ucontrol->value.integer.value[0] = 0;
1111         return 0;
1112 }
1113
1114 static struct snd_kcontrol_new auto_mute_controls[] __initdata = {
1115         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1116           .name = "Auto Mute Switch",
1117           .info = snd_pmac_boolean_mono_info,
1118           .get = pmac_auto_mute_get,
1119           .put = pmac_auto_mute_put,
1120         },
1121         { .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1122           .name = "Headphone Detection",
1123           .access = SNDRV_CTL_ELEM_ACCESS_READ,
1124           .info = snd_pmac_boolean_mono_info,
1125           .get = pmac_hp_detect_get,
1126         },
1127 };
1128
1129 int __init snd_pmac_add_automute(struct snd_pmac *chip)
1130 {
1131         int err;
1132         chip->auto_mute = 1;
1133         err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
1134         if (err < 0) {
1135                 printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
1136                 return err;
1137         }
1138         chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
1139         return snd_ctl_add(chip->card, chip->hp_detect_ctl);
1140 }
1141 #endif /* PMAC_SUPPORT_AUTOMUTE */
1142
1143 /*
1144  * create and detect a pmac chip record
1145  */
1146 int __init snd_pmac_new(struct snd_card *card, struct snd_pmac **chip_return)
1147 {
1148         struct snd_pmac *chip;
1149         struct device_node *np;
1150         int i, err;
1151         unsigned long ctrl_addr, txdma_addr, rxdma_addr;
1152         static struct snd_device_ops ops = {
1153                 .dev_free =     snd_pmac_dev_free,
1154         };
1155
1156         *chip_return = NULL;
1157
1158         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1159         if (chip == NULL)
1160                 return -ENOMEM;
1161         chip->card = card;
1162
1163         spin_lock_init(&chip->reg_lock);
1164         chip->irq = chip->tx_irq = chip->rx_irq = -1;
1165
1166         chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
1167         chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
1168
1169         if ((err = snd_pmac_detect(chip)) < 0)
1170                 goto __error;
1171
1172         if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1173             snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
1174             snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
1175                 err = -ENOMEM;
1176                 goto __error;
1177         }
1178
1179         np = chip->node;
1180         chip->requested = 0;
1181         if (chip->is_k2) {
1182                 static char *rnames[] = {
1183                         "Sound Control", "Sound DMA" };
1184                 if (np->n_intrs < 3) {
1185                         err = -ENODEV;
1186                         goto __error;
1187                 }
1188                 for (i = 0; i < 2; i ++) {
1189                         if (of_address_to_resource(np->parent, i,
1190                                                    &chip->rsrc[i])) {
1191                                 printk(KERN_ERR "snd: can't translate rsrc "
1192                                        " %d (%s)\n", i, rnames[i]);
1193                                 err = -ENODEV;
1194                                 goto __error;
1195                         }
1196                         if (request_mem_region(chip->rsrc[i].start,
1197                                                chip->rsrc[i].end -
1198                                                chip->rsrc[i].start + 1,
1199                                                rnames[i]) == NULL) {
1200                                 printk(KERN_ERR "snd: can't request rsrc "
1201                                        " %d (%s: 0x%08lx:%08lx)\n",
1202                                        i, rnames[i], chip->rsrc[i].start,
1203                                        chip->rsrc[i].end);
1204                                 err = -ENODEV;
1205                                 goto __error;
1206                         }
1207                         chip->requested |= (1 << i);
1208                 }
1209                 ctrl_addr = chip->rsrc[0].start;
1210                 txdma_addr = chip->rsrc[1].start;
1211                 rxdma_addr = txdma_addr + 0x100;
1212         } else {
1213                 static char *rnames[] = {
1214                         "Sound Control", "Sound Tx DMA", "Sound Rx DMA" };
1215                 if (np->n_intrs < 3) {
1216                         err = -ENODEV;
1217                         goto __error;
1218                 }
1219                 for (i = 0; i < 3; i ++) {
1220                         if (of_address_to_resource(np, i,
1221                                                    &chip->rsrc[i])) {
1222                                 printk(KERN_ERR "snd: can't translate rsrc "
1223                                        " %d (%s)\n", i, rnames[i]);
1224                                 err = -ENODEV;
1225                                 goto __error;
1226                         }
1227                         if (request_mem_region(chip->rsrc[i].start,
1228                                                chip->rsrc[i].end -
1229                                                chip->rsrc[i].start + 1,
1230                                                rnames[i]) == NULL) {
1231                                 printk(KERN_ERR "snd: can't request rsrc "
1232                                        " %d (%s: 0x%08lx:%08lx)\n",
1233                                        i, rnames[i], chip->rsrc[i].start,
1234                                        chip->rsrc[i].end);
1235                                 err = -ENODEV;
1236                                 goto __error;
1237                         }
1238                         chip->requested |= (1 << i);
1239                 }
1240                 ctrl_addr = chip->rsrc[0].start;
1241                 txdma_addr = chip->rsrc[1].start;
1242                 rxdma_addr = chip->rsrc[2].start;
1243         }
1244
1245         chip->awacs = ioremap(ctrl_addr, 0x1000);
1246         chip->playback.dma = ioremap(txdma_addr, 0x100);
1247         chip->capture.dma = ioremap(rxdma_addr, 0x100);
1248         if (chip->model <= PMAC_BURGUNDY) {
1249                 if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
1250                                 "PMac", (void*)chip)) {
1251                         snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
1252                         err = -EBUSY;
1253                         goto __error;
1254                 }
1255                 chip->irq = np->intrs[0].line;
1256         }
1257         if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
1258                         "PMac Output", (void*)chip)) {
1259                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
1260                 err = -EBUSY;
1261                 goto __error;
1262         }
1263         chip->tx_irq = np->intrs[1].line;
1264         if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
1265                         "PMac Input", (void*)chip)) {
1266                 snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
1267                 err = -EBUSY;
1268                 goto __error;
1269         }
1270         chip->rx_irq = np->intrs[2].line;
1271
1272         snd_pmac_sound_feature(chip, 1);
1273
1274         /* reset */
1275         if (chip->model == PMAC_AWACS)
1276                 out_le32(&chip->awacs->control, 0x11);
1277
1278         /* Powerbooks have odd ways of enabling inputs such as
1279            an expansion-bay CD or sound from an internal modem
1280            or a PC-card modem. */
1281         if (chip->is_pbook_3400) {
1282                 /* Enable CD and PC-card sound inputs. */
1283                 /* This is done by reading from address
1284                  * f301a000, + 0x10 to enable the expansion-bay
1285                  * CD sound input, + 0x80 to enable the PC-card
1286                  * sound input.  The 0x100 enables the SCSI bus
1287                  * terminator power.
1288                  */
1289                 chip->latch_base = ioremap (0xf301a000, 0x1000);
1290                 in_8(chip->latch_base + 0x190);
1291         } else if (chip->is_pbook_G3) {
1292                 struct device_node* mio;
1293                 for (mio = chip->node->parent; mio; mio = mio->parent) {
1294                         if (strcmp(mio->name, "mac-io") == 0) {
1295                                 struct resource r;
1296                                 if (of_address_to_resource(mio, 0, &r) == 0)
1297                                         chip->macio_base =
1298                                                 ioremap(r.start, 0x40);
1299                                 break;
1300                         }
1301                 }
1302                 /* Enable CD sound input. */
1303                 /* The relevant bits for writing to this byte are 0x8f.
1304                  * I haven't found out what the 0x80 bit does.
1305                  * For the 0xf bits, writing 3 or 7 enables the CD
1306                  * input, any other value disables it.  Values
1307                  * 1, 3, 5, 7 enable the microphone.  Values 0, 2,
1308                  * 4, 6, 8 - f enable the input from the modem.
1309                  */
1310                 if (chip->macio_base)
1311                         out_8(chip->macio_base + 0x37, 3);
1312         }
1313
1314         /* Reset dbdma channels */
1315         snd_pmac_dbdma_reset(chip);
1316
1317         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
1318                 goto __error;
1319
1320         *chip_return = chip;
1321         return 0;
1322
1323  __error:
1324         if (chip->pdev)
1325                 pci_dev_put(chip->pdev);
1326         snd_pmac_free(chip);
1327         return err;
1328 }
1329
1330
1331 /*
1332  * sleep notify for powerbook
1333  */
1334
1335 #ifdef CONFIG_PM
1336
1337 /*
1338  * Save state when going to sleep, restore it afterwards.
1339  */
1340
1341 void snd_pmac_suspend(struct snd_pmac *chip)
1342 {
1343         unsigned long flags;
1344
1345         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot);
1346         if (chip->suspend)
1347                 chip->suspend(chip);
1348         snd_pcm_suspend_all(chip->pcm);
1349         spin_lock_irqsave(&chip->reg_lock, flags);
1350         snd_pmac_beep_stop(chip);
1351         spin_unlock_irqrestore(&chip->reg_lock, flags);
1352         if (chip->irq >= 0)
1353                 disable_irq(chip->irq);
1354         if (chip->tx_irq >= 0)
1355                 disable_irq(chip->tx_irq);
1356         if (chip->rx_irq >= 0)
1357                 disable_irq(chip->rx_irq);
1358         snd_pmac_sound_feature(chip, 0);
1359 }
1360
1361 void snd_pmac_resume(struct snd_pmac *chip)
1362 {
1363         snd_pmac_sound_feature(chip, 1);
1364         if (chip->resume)
1365                 chip->resume(chip);
1366         /* enable CD sound input */
1367         if (chip->macio_base && chip->is_pbook_G3)
1368                 out_8(chip->macio_base + 0x37, 3);
1369         else if (chip->is_pbook_3400)
1370                 in_8(chip->latch_base + 0x190);
1371
1372         snd_pmac_pcm_set_format(chip);
1373
1374         if (chip->irq >= 0)
1375                 enable_irq(chip->irq);
1376         if (chip->tx_irq >= 0)
1377                 enable_irq(chip->tx_irq);
1378         if (chip->rx_irq >= 0)
1379                 enable_irq(chip->rx_irq);
1380
1381         snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0);
1382 }
1383
1384 #endif /* CONFIG_PM */
1385