Merge branch 'linus' into x86/apic
[linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per block device queue structure
75  */
76 struct cfq_data {
77         struct request_queue *queue;
78
79         /*
80          * rr list of queues with requests and the count of them
81          */
82         struct cfq_rb_root service_tree;
83
84         /*
85          * Each priority tree is sorted by next_request position.  These
86          * trees are used when determining if two or more queues are
87          * interleaving requests (see cfq_close_cooperator).
88          */
89         struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
91         unsigned int busy_queues;
92         /*
93          * Used to track any pending rt requests so we can pre-empt current
94          * non-RT cfqq in service when this value is non-zero.
95          */
96         unsigned int busy_rt_queues;
97
98         int rq_in_driver;
99         int sync_flight;
100
101         /*
102          * queue-depth detection
103          */
104         int rq_queued;
105         int hw_tag;
106         int hw_tag_samples;
107         int rq_in_driver_peak;
108
109         /*
110          * idle window management
111          */
112         struct timer_list idle_slice_timer;
113         struct work_struct unplug_work;
114
115         struct cfq_queue *active_queue;
116         struct cfq_io_context *active_cic;
117
118         /*
119          * async queue for each priority case
120          */
121         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122         struct cfq_queue *async_idle_cfqq;
123
124         sector_t last_position;
125         unsigned long last_end_request;
126
127         /*
128          * tunables, see top of file
129          */
130         unsigned int cfq_quantum;
131         unsigned int cfq_fifo_expire[2];
132         unsigned int cfq_back_penalty;
133         unsigned int cfq_back_max;
134         unsigned int cfq_slice[2];
135         unsigned int cfq_slice_async_rq;
136         unsigned int cfq_slice_idle;
137
138         struct list_head cic_list;
139 };
140
141 /*
142  * Per process-grouping structure
143  */
144 struct cfq_queue {
145         /* reference count */
146         atomic_t ref;
147         /* various state flags, see below */
148         unsigned int flags;
149         /* parent cfq_data */
150         struct cfq_data *cfqd;
151         /* service_tree member */
152         struct rb_node rb_node;
153         /* service_tree key */
154         unsigned long rb_key;
155         /* prio tree member */
156         struct rb_node p_node;
157         /* sorted list of pending requests */
158         struct rb_root sort_list;
159         /* if fifo isn't expired, next request to serve */
160         struct request *next_rq;
161         /* requests queued in sort_list */
162         int queued[2];
163         /* currently allocated requests */
164         int allocated[2];
165         /* fifo list of requests in sort_list */
166         struct list_head fifo;
167
168         unsigned long slice_end;
169         long slice_resid;
170         unsigned int slice_dispatch;
171
172         /* pending metadata requests */
173         int meta_pending;
174         /* number of requests that are on the dispatch list or inside driver */
175         int dispatched;
176
177         /* io prio of this group */
178         unsigned short ioprio, org_ioprio;
179         unsigned short ioprio_class, org_ioprio_class;
180
181         pid_t pid;
182 };
183
184 enum cfqq_state_flags {
185         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
186         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
187         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
188         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
189         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
194         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
195         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
196 };
197
198 #define CFQ_CFQQ_FNS(name)                                              \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
200 {                                                                       \
201         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
202 }                                                                       \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
204 {                                                                       \
205         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
206 }                                                                       \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
208 {                                                                       \
209         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc);
216 CFQ_CFQQ_FNS(must_alloc_slice);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(slice_new);
221 CFQ_CFQQ_FNS(sync);
222 CFQ_CFQQ_FNS(coop);
223 #undef CFQ_CFQQ_FNS
224
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
226         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...)     \
228         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
229
230 static void cfq_dispatch_insert(struct request_queue *, struct request *);
231 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232                                        struct io_context *, gfp_t);
233 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234                                                 struct io_context *);
235
236 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237                                             int is_sync)
238 {
239         return cic->cfqq[!!is_sync];
240 }
241
242 static inline void cic_set_cfqq(struct cfq_io_context *cic,
243                                 struct cfq_queue *cfqq, int is_sync)
244 {
245         cic->cfqq[!!is_sync] = cfqq;
246 }
247
248 /*
249  * We regard a request as SYNC, if it's either a read or has the SYNC bit
250  * set (in which case it could also be direct WRITE).
251  */
252 static inline int cfq_bio_sync(struct bio *bio)
253 {
254         if (bio_data_dir(bio) == READ || bio_sync(bio))
255                 return 1;
256
257         return 0;
258 }
259
260 /*
261  * scheduler run of queue, if there are requests pending and no one in the
262  * driver that will restart queueing
263  */
264 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
265 {
266         if (cfqd->busy_queues) {
267                 cfq_log(cfqd, "schedule dispatch");
268                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
269         }
270 }
271
272 static int cfq_queue_empty(struct request_queue *q)
273 {
274         struct cfq_data *cfqd = q->elevator->elevator_data;
275
276         return !cfqd->busy_queues;
277 }
278
279 /*
280  * Scale schedule slice based on io priority. Use the sync time slice only
281  * if a queue is marked sync and has sync io queued. A sync queue with async
282  * io only, should not get full sync slice length.
283  */
284 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285                                  unsigned short prio)
286 {
287         const int base_slice = cfqd->cfq_slice[sync];
288
289         WARN_ON(prio >= IOPRIO_BE_NR);
290
291         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
292 }
293
294 static inline int
295 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
296 {
297         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
298 }
299
300 static inline void
301 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302 {
303         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
305 }
306
307 /*
308  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309  * isn't valid until the first request from the dispatch is activated
310  * and the slice time set.
311  */
312 static inline int cfq_slice_used(struct cfq_queue *cfqq)
313 {
314         if (cfq_cfqq_slice_new(cfqq))
315                 return 0;
316         if (time_before(jiffies, cfqq->slice_end))
317                 return 0;
318
319         return 1;
320 }
321
322 /*
323  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324  * We choose the request that is closest to the head right now. Distance
325  * behind the head is penalized and only allowed to a certain extent.
326  */
327 static struct request *
328 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
329 {
330         sector_t last, s1, s2, d1 = 0, d2 = 0;
331         unsigned long back_max;
332 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
334         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
335
336         if (rq1 == NULL || rq1 == rq2)
337                 return rq2;
338         if (rq2 == NULL)
339                 return rq1;
340
341         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342                 return rq1;
343         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344                 return rq2;
345         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346                 return rq1;
347         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348                 return rq2;
349
350         s1 = rq1->sector;
351         s2 = rq2->sector;
352
353         last = cfqd->last_position;
354
355         /*
356          * by definition, 1KiB is 2 sectors
357          */
358         back_max = cfqd->cfq_back_max * 2;
359
360         /*
361          * Strict one way elevator _except_ in the case where we allow
362          * short backward seeks which are biased as twice the cost of a
363          * similar forward seek.
364          */
365         if (s1 >= last)
366                 d1 = s1 - last;
367         else if (s1 + back_max >= last)
368                 d1 = (last - s1) * cfqd->cfq_back_penalty;
369         else
370                 wrap |= CFQ_RQ1_WRAP;
371
372         if (s2 >= last)
373                 d2 = s2 - last;
374         else if (s2 + back_max >= last)
375                 d2 = (last - s2) * cfqd->cfq_back_penalty;
376         else
377                 wrap |= CFQ_RQ2_WRAP;
378
379         /* Found required data */
380
381         /*
382          * By doing switch() on the bit mask "wrap" we avoid having to
383          * check two variables for all permutations: --> faster!
384          */
385         switch (wrap) {
386         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387                 if (d1 < d2)
388                         return rq1;
389                 else if (d2 < d1)
390                         return rq2;
391                 else {
392                         if (s1 >= s2)
393                                 return rq1;
394                         else
395                                 return rq2;
396                 }
397
398         case CFQ_RQ2_WRAP:
399                 return rq1;
400         case CFQ_RQ1_WRAP:
401                 return rq2;
402         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403         default:
404                 /*
405                  * Since both rqs are wrapped,
406                  * start with the one that's further behind head
407                  * (--> only *one* back seek required),
408                  * since back seek takes more time than forward.
409                  */
410                 if (s1 <= s2)
411                         return rq1;
412                 else
413                         return rq2;
414         }
415 }
416
417 /*
418  * The below is leftmost cache rbtree addon
419  */
420 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
421 {
422         if (!root->left)
423                 root->left = rb_first(&root->rb);
424
425         if (root->left)
426                 return rb_entry(root->left, struct cfq_queue, rb_node);
427
428         return NULL;
429 }
430
431 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
432 {
433         rb_erase(n, root);
434         RB_CLEAR_NODE(n);
435 }
436
437 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
438 {
439         if (root->left == n)
440                 root->left = NULL;
441         rb_erase_init(n, &root->rb);
442 }
443
444 /*
445  * would be nice to take fifo expire time into account as well
446  */
447 static struct request *
448 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449                   struct request *last)
450 {
451         struct rb_node *rbnext = rb_next(&last->rb_node);
452         struct rb_node *rbprev = rb_prev(&last->rb_node);
453         struct request *next = NULL, *prev = NULL;
454
455         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
456
457         if (rbprev)
458                 prev = rb_entry_rq(rbprev);
459
460         if (rbnext)
461                 next = rb_entry_rq(rbnext);
462         else {
463                 rbnext = rb_first(&cfqq->sort_list);
464                 if (rbnext && rbnext != &last->rb_node)
465                         next = rb_entry_rq(rbnext);
466         }
467
468         return cfq_choose_req(cfqd, next, prev);
469 }
470
471 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472                                       struct cfq_queue *cfqq)
473 {
474         /*
475          * just an approximation, should be ok.
476          */
477         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
479 }
480
481 /*
482  * The cfqd->service_tree holds all pending cfq_queue's that have
483  * requests waiting to be processed. It is sorted in the order that
484  * we will service the queues.
485  */
486 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487                                  int add_front)
488 {
489         struct rb_node **p, *parent;
490         struct cfq_queue *__cfqq;
491         unsigned long rb_key;
492         int left;
493
494         if (cfq_class_idle(cfqq)) {
495                 rb_key = CFQ_IDLE_DELAY;
496                 parent = rb_last(&cfqd->service_tree.rb);
497                 if (parent && parent != &cfqq->rb_node) {
498                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499                         rb_key += __cfqq->rb_key;
500                 } else
501                         rb_key += jiffies;
502         } else if (!add_front) {
503                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504                 rb_key += cfqq->slice_resid;
505                 cfqq->slice_resid = 0;
506         } else
507                 rb_key = 0;
508
509         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
510                 /*
511                  * same position, nothing more to do
512                  */
513                 if (rb_key == cfqq->rb_key)
514                         return;
515
516                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
517         }
518
519         left = 1;
520         parent = NULL;
521         p = &cfqd->service_tree.rb.rb_node;
522         while (*p) {
523                 struct rb_node **n;
524
525                 parent = *p;
526                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
527
528                 /*
529                  * sort RT queues first, we always want to give
530                  * preference to them. IDLE queues goes to the back.
531                  * after that, sort on the next service time.
532                  */
533                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534                         n = &(*p)->rb_left;
535                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536                         n = &(*p)->rb_right;
537                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538                         n = &(*p)->rb_left;
539                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540                         n = &(*p)->rb_right;
541                 else if (rb_key < __cfqq->rb_key)
542                         n = &(*p)->rb_left;
543                 else
544                         n = &(*p)->rb_right;
545
546                 if (n == &(*p)->rb_right)
547                         left = 0;
548
549                 p = n;
550         }
551
552         if (left)
553                 cfqd->service_tree.left = &cfqq->rb_node;
554
555         cfqq->rb_key = rb_key;
556         rb_link_node(&cfqq->rb_node, parent, p);
557         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
558 }
559
560 static struct cfq_queue *
561 cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562                      struct rb_node **ret_parent, struct rb_node ***rb_link)
563 {
564         struct rb_root *root = &cfqd->prio_trees[ioprio];
565         struct rb_node **p, *parent;
566         struct cfq_queue *cfqq = NULL;
567
568         parent = NULL;
569         p = &root->rb_node;
570         while (*p) {
571                 struct rb_node **n;
572
573                 parent = *p;
574                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
575
576                 /*
577                  * Sort strictly based on sector.  Smallest to the left,
578                  * largest to the right.
579                  */
580                 if (sector > cfqq->next_rq->sector)
581                         n = &(*p)->rb_right;
582                 else if (sector < cfqq->next_rq->sector)
583                         n = &(*p)->rb_left;
584                 else
585                         break;
586                 p = n;
587         }
588
589         *ret_parent = parent;
590         if (rb_link)
591                 *rb_link = p;
592         return NULL;
593 }
594
595 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
596 {
597         struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
598         struct rb_node **p, *parent;
599         struct cfq_queue *__cfqq;
600
601         if (!RB_EMPTY_NODE(&cfqq->p_node))
602                 rb_erase_init(&cfqq->p_node, root);
603
604         if (cfq_class_idle(cfqq))
605                 return;
606         if (!cfqq->next_rq)
607                 return;
608
609         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
610                                          &parent, &p);
611         BUG_ON(__cfqq);
612
613         rb_link_node(&cfqq->p_node, parent, p);
614         rb_insert_color(&cfqq->p_node, root);
615 }
616
617 /*
618  * Update cfqq's position in the service tree.
619  */
620 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
621 {
622         /*
623          * Resorting requires the cfqq to be on the RR list already.
624          */
625         if (cfq_cfqq_on_rr(cfqq)) {
626                 cfq_service_tree_add(cfqd, cfqq, 0);
627                 cfq_prio_tree_add(cfqd, cfqq);
628         }
629 }
630
631 /*
632  * add to busy list of queues for service, trying to be fair in ordering
633  * the pending list according to last request service
634  */
635 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
636 {
637         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
638         BUG_ON(cfq_cfqq_on_rr(cfqq));
639         cfq_mark_cfqq_on_rr(cfqq);
640         cfqd->busy_queues++;
641         if (cfq_class_rt(cfqq))
642                 cfqd->busy_rt_queues++;
643
644         cfq_resort_rr_list(cfqd, cfqq);
645 }
646
647 /*
648  * Called when the cfqq no longer has requests pending, remove it from
649  * the service tree.
650  */
651 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
652 {
653         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
654         BUG_ON(!cfq_cfqq_on_rr(cfqq));
655         cfq_clear_cfqq_on_rr(cfqq);
656
657         if (!RB_EMPTY_NODE(&cfqq->rb_node))
658                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
659         if (!RB_EMPTY_NODE(&cfqq->p_node))
660                 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
661
662         BUG_ON(!cfqd->busy_queues);
663         cfqd->busy_queues--;
664         if (cfq_class_rt(cfqq))
665                 cfqd->busy_rt_queues--;
666 }
667
668 /*
669  * rb tree support functions
670  */
671 static void cfq_del_rq_rb(struct request *rq)
672 {
673         struct cfq_queue *cfqq = RQ_CFQQ(rq);
674         struct cfq_data *cfqd = cfqq->cfqd;
675         const int sync = rq_is_sync(rq);
676
677         BUG_ON(!cfqq->queued[sync]);
678         cfqq->queued[sync]--;
679
680         elv_rb_del(&cfqq->sort_list, rq);
681
682         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
683                 cfq_del_cfqq_rr(cfqd, cfqq);
684 }
685
686 static void cfq_add_rq_rb(struct request *rq)
687 {
688         struct cfq_queue *cfqq = RQ_CFQQ(rq);
689         struct cfq_data *cfqd = cfqq->cfqd;
690         struct request *__alias, *prev;
691
692         cfqq->queued[rq_is_sync(rq)]++;
693
694         /*
695          * looks a little odd, but the first insert might return an alias.
696          * if that happens, put the alias on the dispatch list
697          */
698         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
699                 cfq_dispatch_insert(cfqd->queue, __alias);
700
701         if (!cfq_cfqq_on_rr(cfqq))
702                 cfq_add_cfqq_rr(cfqd, cfqq);
703
704         /*
705          * check if this request is a better next-serve candidate
706          */
707         prev = cfqq->next_rq;
708         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
709
710         /*
711          * adjust priority tree position, if ->next_rq changes
712          */
713         if (prev != cfqq->next_rq)
714                 cfq_prio_tree_add(cfqd, cfqq);
715
716         BUG_ON(!cfqq->next_rq);
717 }
718
719 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
720 {
721         elv_rb_del(&cfqq->sort_list, rq);
722         cfqq->queued[rq_is_sync(rq)]--;
723         cfq_add_rq_rb(rq);
724 }
725
726 static struct request *
727 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
728 {
729         struct task_struct *tsk = current;
730         struct cfq_io_context *cic;
731         struct cfq_queue *cfqq;
732
733         cic = cfq_cic_lookup(cfqd, tsk->io_context);
734         if (!cic)
735                 return NULL;
736
737         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
738         if (cfqq) {
739                 sector_t sector = bio->bi_sector + bio_sectors(bio);
740
741                 return elv_rb_find(&cfqq->sort_list, sector);
742         }
743
744         return NULL;
745 }
746
747 static void cfq_activate_request(struct request_queue *q, struct request *rq)
748 {
749         struct cfq_data *cfqd = q->elevator->elevator_data;
750
751         cfqd->rq_in_driver++;
752         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
753                                                 cfqd->rq_in_driver);
754
755         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
756 }
757
758 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
759 {
760         struct cfq_data *cfqd = q->elevator->elevator_data;
761
762         WARN_ON(!cfqd->rq_in_driver);
763         cfqd->rq_in_driver--;
764         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
765                                                 cfqd->rq_in_driver);
766 }
767
768 static void cfq_remove_request(struct request *rq)
769 {
770         struct cfq_queue *cfqq = RQ_CFQQ(rq);
771
772         if (cfqq->next_rq == rq)
773                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
774
775         list_del_init(&rq->queuelist);
776         cfq_del_rq_rb(rq);
777
778         cfqq->cfqd->rq_queued--;
779         if (rq_is_meta(rq)) {
780                 WARN_ON(!cfqq->meta_pending);
781                 cfqq->meta_pending--;
782         }
783 }
784
785 static int cfq_merge(struct request_queue *q, struct request **req,
786                      struct bio *bio)
787 {
788         struct cfq_data *cfqd = q->elevator->elevator_data;
789         struct request *__rq;
790
791         __rq = cfq_find_rq_fmerge(cfqd, bio);
792         if (__rq && elv_rq_merge_ok(__rq, bio)) {
793                 *req = __rq;
794                 return ELEVATOR_FRONT_MERGE;
795         }
796
797         return ELEVATOR_NO_MERGE;
798 }
799
800 static void cfq_merged_request(struct request_queue *q, struct request *req,
801                                int type)
802 {
803         if (type == ELEVATOR_FRONT_MERGE) {
804                 struct cfq_queue *cfqq = RQ_CFQQ(req);
805
806                 cfq_reposition_rq_rb(cfqq, req);
807         }
808 }
809
810 static void
811 cfq_merged_requests(struct request_queue *q, struct request *rq,
812                     struct request *next)
813 {
814         /*
815          * reposition in fifo if next is older than rq
816          */
817         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
818             time_before(next->start_time, rq->start_time))
819                 list_move(&rq->queuelist, &next->queuelist);
820
821         cfq_remove_request(next);
822 }
823
824 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
825                            struct bio *bio)
826 {
827         struct cfq_data *cfqd = q->elevator->elevator_data;
828         struct cfq_io_context *cic;
829         struct cfq_queue *cfqq;
830
831         /*
832          * Disallow merge of a sync bio into an async request.
833          */
834         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
835                 return 0;
836
837         /*
838          * Lookup the cfqq that this bio will be queued with. Allow
839          * merge only if rq is queued there.
840          */
841         cic = cfq_cic_lookup(cfqd, current->io_context);
842         if (!cic)
843                 return 0;
844
845         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
846         if (cfqq == RQ_CFQQ(rq))
847                 return 1;
848
849         return 0;
850 }
851
852 static void __cfq_set_active_queue(struct cfq_data *cfqd,
853                                    struct cfq_queue *cfqq)
854 {
855         if (cfqq) {
856                 cfq_log_cfqq(cfqd, cfqq, "set_active");
857                 cfqq->slice_end = 0;
858                 cfqq->slice_dispatch = 0;
859
860                 cfq_clear_cfqq_wait_request(cfqq);
861                 cfq_clear_cfqq_must_dispatch(cfqq);
862                 cfq_clear_cfqq_must_alloc_slice(cfqq);
863                 cfq_clear_cfqq_fifo_expire(cfqq);
864                 cfq_mark_cfqq_slice_new(cfqq);
865
866                 del_timer(&cfqd->idle_slice_timer);
867         }
868
869         cfqd->active_queue = cfqq;
870 }
871
872 /*
873  * current cfqq expired its slice (or was too idle), select new one
874  */
875 static void
876 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
877                     int timed_out)
878 {
879         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
880
881         if (cfq_cfqq_wait_request(cfqq))
882                 del_timer(&cfqd->idle_slice_timer);
883
884         cfq_clear_cfqq_wait_request(cfqq);
885
886         /*
887          * store what was left of this slice, if the queue idled/timed out
888          */
889         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
890                 cfqq->slice_resid = cfqq->slice_end - jiffies;
891                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
892         }
893
894         cfq_resort_rr_list(cfqd, cfqq);
895
896         if (cfqq == cfqd->active_queue)
897                 cfqd->active_queue = NULL;
898
899         if (cfqd->active_cic) {
900                 put_io_context(cfqd->active_cic->ioc);
901                 cfqd->active_cic = NULL;
902         }
903 }
904
905 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
906 {
907         struct cfq_queue *cfqq = cfqd->active_queue;
908
909         if (cfqq)
910                 __cfq_slice_expired(cfqd, cfqq, timed_out);
911 }
912
913 /*
914  * Get next queue for service. Unless we have a queue preemption,
915  * we'll simply select the first cfqq in the service tree.
916  */
917 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
918 {
919         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
920                 return NULL;
921
922         return cfq_rb_first(&cfqd->service_tree);
923 }
924
925 /*
926  * Get and set a new active queue for service.
927  */
928 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
929                                               struct cfq_queue *cfqq)
930 {
931         if (!cfqq) {
932                 cfqq = cfq_get_next_queue(cfqd);
933                 if (cfqq)
934                         cfq_clear_cfqq_coop(cfqq);
935         }
936
937         __cfq_set_active_queue(cfqd, cfqq);
938         return cfqq;
939 }
940
941 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
942                                           struct request *rq)
943 {
944         if (rq->sector >= cfqd->last_position)
945                 return rq->sector - cfqd->last_position;
946         else
947                 return cfqd->last_position - rq->sector;
948 }
949
950 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
951 {
952         struct cfq_io_context *cic = cfqd->active_cic;
953
954         if (!sample_valid(cic->seek_samples))
955                 return 0;
956
957         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
958 }
959
960 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
961                                     struct cfq_queue *cur_cfqq)
962 {
963         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
964         struct rb_node *parent, *node;
965         struct cfq_queue *__cfqq;
966         sector_t sector = cfqd->last_position;
967
968         if (RB_EMPTY_ROOT(root))
969                 return NULL;
970
971         /*
972          * First, if we find a request starting at the end of the last
973          * request, choose it.
974          */
975         __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
976                                       sector, &parent, NULL);
977         if (__cfqq)
978                 return __cfqq;
979
980         /*
981          * If the exact sector wasn't found, the parent of the NULL leaf
982          * will contain the closest sector.
983          */
984         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
985         if (cfq_rq_close(cfqd, __cfqq->next_rq))
986                 return __cfqq;
987
988         if (__cfqq->next_rq->sector < sector)
989                 node = rb_next(&__cfqq->p_node);
990         else
991                 node = rb_prev(&__cfqq->p_node);
992         if (!node)
993                 return NULL;
994
995         __cfqq = rb_entry(node, struct cfq_queue, p_node);
996         if (cfq_rq_close(cfqd, __cfqq->next_rq))
997                 return __cfqq;
998
999         return NULL;
1000 }
1001
1002 /*
1003  * cfqd - obvious
1004  * cur_cfqq - passed in so that we don't decide that the current queue is
1005  *            closely cooperating with itself.
1006  *
1007  * So, basically we're assuming that that cur_cfqq has dispatched at least
1008  * one request, and that cfqd->last_position reflects a position on the disk
1009  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1010  * assumption.
1011  */
1012 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1013                                               struct cfq_queue *cur_cfqq,
1014                                               int probe)
1015 {
1016         struct cfq_queue *cfqq;
1017
1018         /*
1019          * A valid cfq_io_context is necessary to compare requests against
1020          * the seek_mean of the current cfqq.
1021          */
1022         if (!cfqd->active_cic)
1023                 return NULL;
1024
1025         /*
1026          * We should notice if some of the queues are cooperating, eg
1027          * working closely on the same area of the disk. In that case,
1028          * we can group them together and don't waste time idling.
1029          */
1030         cfqq = cfqq_close(cfqd, cur_cfqq);
1031         if (!cfqq)
1032                 return NULL;
1033
1034         if (cfq_cfqq_coop(cfqq))
1035                 return NULL;
1036
1037         if (!probe)
1038                 cfq_mark_cfqq_coop(cfqq);
1039         return cfqq;
1040 }
1041
1042
1043 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
1044
1045 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1046 {
1047         struct cfq_queue *cfqq = cfqd->active_queue;
1048         struct cfq_io_context *cic;
1049         unsigned long sl;
1050
1051         /*
1052          * SSD device without seek penalty, disable idling. But only do so
1053          * for devices that support queuing, otherwise we still have a problem
1054          * with sync vs async workloads.
1055          */
1056         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1057                 return;
1058
1059         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1060         WARN_ON(cfq_cfqq_slice_new(cfqq));
1061
1062         /*
1063          * idle is disabled, either manually or by past process history
1064          */
1065         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1066                 return;
1067
1068         /*
1069          * still requests with the driver, don't idle
1070          */
1071         if (cfqd->rq_in_driver)
1072                 return;
1073
1074         /*
1075          * task has exited, don't wait
1076          */
1077         cic = cfqd->active_cic;
1078         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1079                 return;
1080
1081         cfq_mark_cfqq_wait_request(cfqq);
1082
1083         /*
1084          * we don't want to idle for seeks, but we do want to allow
1085          * fair distribution of slice time for a process doing back-to-back
1086          * seeks. so allow a little bit of time for him to submit a new rq
1087          */
1088         sl = cfqd->cfq_slice_idle;
1089         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1090                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1091
1092         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1093         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1094 }
1095
1096 /*
1097  * Move request from internal lists to the request queue dispatch list.
1098  */
1099 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1100 {
1101         struct cfq_data *cfqd = q->elevator->elevator_data;
1102         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1103
1104         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1105
1106         cfq_remove_request(rq);
1107         cfqq->dispatched++;
1108         elv_dispatch_sort(q, rq);
1109
1110         if (cfq_cfqq_sync(cfqq))
1111                 cfqd->sync_flight++;
1112 }
1113
1114 /*
1115  * return expired entry, or NULL to just start from scratch in rbtree
1116  */
1117 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1118 {
1119         struct cfq_data *cfqd = cfqq->cfqd;
1120         struct request *rq;
1121         int fifo;
1122
1123         if (cfq_cfqq_fifo_expire(cfqq))
1124                 return NULL;
1125
1126         cfq_mark_cfqq_fifo_expire(cfqq);
1127
1128         if (list_empty(&cfqq->fifo))
1129                 return NULL;
1130
1131         fifo = cfq_cfqq_sync(cfqq);
1132         rq = rq_entry_fifo(cfqq->fifo.next);
1133
1134         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1135                 rq = NULL;
1136
1137         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1138         return rq;
1139 }
1140
1141 static inline int
1142 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1143 {
1144         const int base_rq = cfqd->cfq_slice_async_rq;
1145
1146         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1147
1148         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1149 }
1150
1151 /*
1152  * Select a queue for service. If we have a current active queue,
1153  * check whether to continue servicing it, or retrieve and set a new one.
1154  */
1155 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1156 {
1157         struct cfq_queue *cfqq, *new_cfqq = NULL;
1158
1159         cfqq = cfqd->active_queue;
1160         if (!cfqq)
1161                 goto new_queue;
1162
1163         /*
1164          * The active queue has run out of time, expire it and select new.
1165          */
1166         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1167                 goto expire;
1168
1169         /*
1170          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1171          * cfqq.
1172          */
1173         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1174                 /*
1175                  * We simulate this as cfqq timed out so that it gets to bank
1176                  * the remaining of its time slice.
1177                  */
1178                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1179                 cfq_slice_expired(cfqd, 1);
1180                 goto new_queue;
1181         }
1182
1183         /*
1184          * The active queue has requests and isn't expired, allow it to
1185          * dispatch.
1186          */
1187         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1188                 goto keep_queue;
1189
1190         /*
1191          * If another queue has a request waiting within our mean seek
1192          * distance, let it run.  The expire code will check for close
1193          * cooperators and put the close queue at the front of the service
1194          * tree.
1195          */
1196         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1197         if (new_cfqq)
1198                 goto expire;
1199
1200         /*
1201          * No requests pending. If the active queue still has requests in
1202          * flight or is idling for a new request, allow either of these
1203          * conditions to happen (or time out) before selecting a new queue.
1204          */
1205         if (timer_pending(&cfqd->idle_slice_timer) ||
1206             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1207                 cfqq = NULL;
1208                 goto keep_queue;
1209         }
1210
1211 expire:
1212         cfq_slice_expired(cfqd, 0);
1213 new_queue:
1214         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1215 keep_queue:
1216         return cfqq;
1217 }
1218
1219 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1220 {
1221         int dispatched = 0;
1222
1223         while (cfqq->next_rq) {
1224                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1225                 dispatched++;
1226         }
1227
1228         BUG_ON(!list_empty(&cfqq->fifo));
1229         return dispatched;
1230 }
1231
1232 /*
1233  * Drain our current requests. Used for barriers and when switching
1234  * io schedulers on-the-fly.
1235  */
1236 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1237 {
1238         struct cfq_queue *cfqq;
1239         int dispatched = 0;
1240
1241         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1242                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1243
1244         cfq_slice_expired(cfqd, 0);
1245
1246         BUG_ON(cfqd->busy_queues);
1247
1248         cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1249         return dispatched;
1250 }
1251
1252 /*
1253  * Dispatch a request from cfqq, moving them to the request queue
1254  * dispatch list.
1255  */
1256 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1257 {
1258         struct request *rq;
1259
1260         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1261
1262         /*
1263          * follow expired path, else get first next available
1264          */
1265         rq = cfq_check_fifo(cfqq);
1266         if (!rq)
1267                 rq = cfqq->next_rq;
1268
1269         /*
1270          * insert request into driver dispatch list
1271          */
1272         cfq_dispatch_insert(cfqd->queue, rq);
1273
1274         if (!cfqd->active_cic) {
1275                 struct cfq_io_context *cic = RQ_CIC(rq);
1276
1277                 atomic_inc(&cic->ioc->refcount);
1278                 cfqd->active_cic = cic;
1279         }
1280 }
1281
1282 /*
1283  * Find the cfqq that we need to service and move a request from that to the
1284  * dispatch list
1285  */
1286 static int cfq_dispatch_requests(struct request_queue *q, int force)
1287 {
1288         struct cfq_data *cfqd = q->elevator->elevator_data;
1289         struct cfq_queue *cfqq;
1290         unsigned int max_dispatch;
1291
1292         if (!cfqd->busy_queues)
1293                 return 0;
1294
1295         if (unlikely(force))
1296                 return cfq_forced_dispatch(cfqd);
1297
1298         cfqq = cfq_select_queue(cfqd);
1299         if (!cfqq)
1300                 return 0;
1301
1302         /*
1303          * If this is an async queue and we have sync IO in flight, let it wait
1304          */
1305         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1306                 return 0;
1307
1308         max_dispatch = cfqd->cfq_quantum;
1309         if (cfq_class_idle(cfqq))
1310                 max_dispatch = 1;
1311
1312         /*
1313          * Does this cfqq already have too much IO in flight?
1314          */
1315         if (cfqq->dispatched >= max_dispatch) {
1316                 /*
1317                  * idle queue must always only have a single IO in flight
1318                  */
1319                 if (cfq_class_idle(cfqq))
1320                         return 0;
1321
1322                 /*
1323                  * We have other queues, don't allow more IO from this one
1324                  */
1325                 if (cfqd->busy_queues > 1)
1326                         return 0;
1327
1328                 /*
1329                  * we are the only queue, allow up to 4 times of 'quantum'
1330                  */
1331                 if (cfqq->dispatched >= 4 * max_dispatch)
1332                         return 0;
1333         }
1334
1335         /*
1336          * Dispatch a request from this cfqq
1337          */
1338         cfq_dispatch_request(cfqd, cfqq);
1339         cfqq->slice_dispatch++;
1340         cfq_clear_cfqq_must_dispatch(cfqq);
1341
1342         /*
1343          * expire an async queue immediately if it has used up its slice. idle
1344          * queue always expire after 1 dispatch round.
1345          */
1346         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1347             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1348             cfq_class_idle(cfqq))) {
1349                 cfqq->slice_end = jiffies + 1;
1350                 cfq_slice_expired(cfqd, 0);
1351         }
1352
1353         cfq_log(cfqd, "dispatched a request");
1354         return 1;
1355 }
1356
1357 /*
1358  * task holds one reference to the queue, dropped when task exits. each rq
1359  * in-flight on this queue also holds a reference, dropped when rq is freed.
1360  *
1361  * queue lock must be held here.
1362  */
1363 static void cfq_put_queue(struct cfq_queue *cfqq)
1364 {
1365         struct cfq_data *cfqd = cfqq->cfqd;
1366
1367         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1368
1369         if (!atomic_dec_and_test(&cfqq->ref))
1370                 return;
1371
1372         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1373         BUG_ON(rb_first(&cfqq->sort_list));
1374         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1375         BUG_ON(cfq_cfqq_on_rr(cfqq));
1376
1377         if (unlikely(cfqd->active_queue == cfqq)) {
1378                 __cfq_slice_expired(cfqd, cfqq, 0);
1379                 cfq_schedule_dispatch(cfqd);
1380         }
1381
1382         kmem_cache_free(cfq_pool, cfqq);
1383 }
1384
1385 /*
1386  * Must always be called with the rcu_read_lock() held
1387  */
1388 static void
1389 __call_for_each_cic(struct io_context *ioc,
1390                     void (*func)(struct io_context *, struct cfq_io_context *))
1391 {
1392         struct cfq_io_context *cic;
1393         struct hlist_node *n;
1394
1395         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1396                 func(ioc, cic);
1397 }
1398
1399 /*
1400  * Call func for each cic attached to this ioc.
1401  */
1402 static void
1403 call_for_each_cic(struct io_context *ioc,
1404                   void (*func)(struct io_context *, struct cfq_io_context *))
1405 {
1406         rcu_read_lock();
1407         __call_for_each_cic(ioc, func);
1408         rcu_read_unlock();
1409 }
1410
1411 static void cfq_cic_free_rcu(struct rcu_head *head)
1412 {
1413         struct cfq_io_context *cic;
1414
1415         cic = container_of(head, struct cfq_io_context, rcu_head);
1416
1417         kmem_cache_free(cfq_ioc_pool, cic);
1418         elv_ioc_count_dec(ioc_count);
1419
1420         if (ioc_gone) {
1421                 /*
1422                  * CFQ scheduler is exiting, grab exit lock and check
1423                  * the pending io context count. If it hits zero,
1424                  * complete ioc_gone and set it back to NULL
1425                  */
1426                 spin_lock(&ioc_gone_lock);
1427                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1428                         complete(ioc_gone);
1429                         ioc_gone = NULL;
1430                 }
1431                 spin_unlock(&ioc_gone_lock);
1432         }
1433 }
1434
1435 static void cfq_cic_free(struct cfq_io_context *cic)
1436 {
1437         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1438 }
1439
1440 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1441 {
1442         unsigned long flags;
1443
1444         BUG_ON(!cic->dead_key);
1445
1446         spin_lock_irqsave(&ioc->lock, flags);
1447         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1448         hlist_del_rcu(&cic->cic_list);
1449         spin_unlock_irqrestore(&ioc->lock, flags);
1450
1451         cfq_cic_free(cic);
1452 }
1453
1454 /*
1455  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1456  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1457  * and ->trim() which is called with the task lock held
1458  */
1459 static void cfq_free_io_context(struct io_context *ioc)
1460 {
1461         /*
1462          * ioc->refcount is zero here, or we are called from elv_unregister(),
1463          * so no more cic's are allowed to be linked into this ioc.  So it
1464          * should be ok to iterate over the known list, we will see all cic's
1465          * since no new ones are added.
1466          */
1467         __call_for_each_cic(ioc, cic_free_func);
1468 }
1469
1470 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1471 {
1472         if (unlikely(cfqq == cfqd->active_queue)) {
1473                 __cfq_slice_expired(cfqd, cfqq, 0);
1474                 cfq_schedule_dispatch(cfqd);
1475         }
1476
1477         cfq_put_queue(cfqq);
1478 }
1479
1480 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1481                                          struct cfq_io_context *cic)
1482 {
1483         struct io_context *ioc = cic->ioc;
1484
1485         list_del_init(&cic->queue_list);
1486
1487         /*
1488          * Make sure key == NULL is seen for dead queues
1489          */
1490         smp_wmb();
1491         cic->dead_key = (unsigned long) cic->key;
1492         cic->key = NULL;
1493
1494         if (ioc->ioc_data == cic)
1495                 rcu_assign_pointer(ioc->ioc_data, NULL);
1496
1497         if (cic->cfqq[BLK_RW_ASYNC]) {
1498                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1499                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1500         }
1501
1502         if (cic->cfqq[BLK_RW_SYNC]) {
1503                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1504                 cic->cfqq[BLK_RW_SYNC] = NULL;
1505         }
1506 }
1507
1508 static void cfq_exit_single_io_context(struct io_context *ioc,
1509                                        struct cfq_io_context *cic)
1510 {
1511         struct cfq_data *cfqd = cic->key;
1512
1513         if (cfqd) {
1514                 struct request_queue *q = cfqd->queue;
1515                 unsigned long flags;
1516
1517                 spin_lock_irqsave(q->queue_lock, flags);
1518
1519                 /*
1520                  * Ensure we get a fresh copy of the ->key to prevent
1521                  * race between exiting task and queue
1522                  */
1523                 smp_read_barrier_depends();
1524                 if (cic->key)
1525                         __cfq_exit_single_io_context(cfqd, cic);
1526
1527                 spin_unlock_irqrestore(q->queue_lock, flags);
1528         }
1529 }
1530
1531 /*
1532  * The process that ioc belongs to has exited, we need to clean up
1533  * and put the internal structures we have that belongs to that process.
1534  */
1535 static void cfq_exit_io_context(struct io_context *ioc)
1536 {
1537         call_for_each_cic(ioc, cfq_exit_single_io_context);
1538 }
1539
1540 static struct cfq_io_context *
1541 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1542 {
1543         struct cfq_io_context *cic;
1544
1545         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1546                                                         cfqd->queue->node);
1547         if (cic) {
1548                 cic->last_end_request = jiffies;
1549                 INIT_LIST_HEAD(&cic->queue_list);
1550                 INIT_HLIST_NODE(&cic->cic_list);
1551                 cic->dtor = cfq_free_io_context;
1552                 cic->exit = cfq_exit_io_context;
1553                 elv_ioc_count_inc(ioc_count);
1554         }
1555
1556         return cic;
1557 }
1558
1559 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1560 {
1561         struct task_struct *tsk = current;
1562         int ioprio_class;
1563
1564         if (!cfq_cfqq_prio_changed(cfqq))
1565                 return;
1566
1567         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1568         switch (ioprio_class) {
1569         default:
1570                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1571         case IOPRIO_CLASS_NONE:
1572                 /*
1573                  * no prio set, inherit CPU scheduling settings
1574                  */
1575                 cfqq->ioprio = task_nice_ioprio(tsk);
1576                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1577                 break;
1578         case IOPRIO_CLASS_RT:
1579                 cfqq->ioprio = task_ioprio(ioc);
1580                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1581                 break;
1582         case IOPRIO_CLASS_BE:
1583                 cfqq->ioprio = task_ioprio(ioc);
1584                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1585                 break;
1586         case IOPRIO_CLASS_IDLE:
1587                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1588                 cfqq->ioprio = 7;
1589                 cfq_clear_cfqq_idle_window(cfqq);
1590                 break;
1591         }
1592
1593         /*
1594          * keep track of original prio settings in case we have to temporarily
1595          * elevate the priority of this queue
1596          */
1597         cfqq->org_ioprio = cfqq->ioprio;
1598         cfqq->org_ioprio_class = cfqq->ioprio_class;
1599         cfq_clear_cfqq_prio_changed(cfqq);
1600 }
1601
1602 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1603 {
1604         struct cfq_data *cfqd = cic->key;
1605         struct cfq_queue *cfqq;
1606         unsigned long flags;
1607
1608         if (unlikely(!cfqd))
1609                 return;
1610
1611         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1612
1613         cfqq = cic->cfqq[BLK_RW_ASYNC];
1614         if (cfqq) {
1615                 struct cfq_queue *new_cfqq;
1616                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1617                                                 GFP_ATOMIC);
1618                 if (new_cfqq) {
1619                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1620                         cfq_put_queue(cfqq);
1621                 }
1622         }
1623
1624         cfqq = cic->cfqq[BLK_RW_SYNC];
1625         if (cfqq)
1626                 cfq_mark_cfqq_prio_changed(cfqq);
1627
1628         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1629 }
1630
1631 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1632 {
1633         call_for_each_cic(ioc, changed_ioprio);
1634         ioc->ioprio_changed = 0;
1635 }
1636
1637 static struct cfq_queue *
1638 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1639                      struct io_context *ioc, gfp_t gfp_mask)
1640 {
1641         struct cfq_queue *cfqq, *new_cfqq = NULL;
1642         struct cfq_io_context *cic;
1643
1644 retry:
1645         cic = cfq_cic_lookup(cfqd, ioc);
1646         /* cic always exists here */
1647         cfqq = cic_to_cfqq(cic, is_sync);
1648
1649         if (!cfqq) {
1650                 if (new_cfqq) {
1651                         cfqq = new_cfqq;
1652                         new_cfqq = NULL;
1653                 } else if (gfp_mask & __GFP_WAIT) {
1654                         /*
1655                          * Inform the allocator of the fact that we will
1656                          * just repeat this allocation if it fails, to allow
1657                          * the allocator to do whatever it needs to attempt to
1658                          * free memory.
1659                          */
1660                         spin_unlock_irq(cfqd->queue->queue_lock);
1661                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1662                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1663                                         cfqd->queue->node);
1664                         spin_lock_irq(cfqd->queue->queue_lock);
1665                         goto retry;
1666                 } else {
1667                         cfqq = kmem_cache_alloc_node(cfq_pool,
1668                                         gfp_mask | __GFP_ZERO,
1669                                         cfqd->queue->node);
1670                         if (!cfqq)
1671                                 goto out;
1672                 }
1673
1674                 RB_CLEAR_NODE(&cfqq->rb_node);
1675                 RB_CLEAR_NODE(&cfqq->p_node);
1676                 INIT_LIST_HEAD(&cfqq->fifo);
1677
1678                 atomic_set(&cfqq->ref, 0);
1679                 cfqq->cfqd = cfqd;
1680
1681                 cfq_mark_cfqq_prio_changed(cfqq);
1682
1683                 cfq_init_prio_data(cfqq, ioc);
1684
1685                 if (is_sync) {
1686                         if (!cfq_class_idle(cfqq))
1687                                 cfq_mark_cfqq_idle_window(cfqq);
1688                         cfq_mark_cfqq_sync(cfqq);
1689                 }
1690                 cfqq->pid = current->pid;
1691                 cfq_log_cfqq(cfqd, cfqq, "alloced");
1692         }
1693
1694         if (new_cfqq)
1695                 kmem_cache_free(cfq_pool, new_cfqq);
1696
1697 out:
1698         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1699         return cfqq;
1700 }
1701
1702 static struct cfq_queue **
1703 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1704 {
1705         switch (ioprio_class) {
1706         case IOPRIO_CLASS_RT:
1707                 return &cfqd->async_cfqq[0][ioprio];
1708         case IOPRIO_CLASS_BE:
1709                 return &cfqd->async_cfqq[1][ioprio];
1710         case IOPRIO_CLASS_IDLE:
1711                 return &cfqd->async_idle_cfqq;
1712         default:
1713                 BUG();
1714         }
1715 }
1716
1717 static struct cfq_queue *
1718 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1719               gfp_t gfp_mask)
1720 {
1721         const int ioprio = task_ioprio(ioc);
1722         const int ioprio_class = task_ioprio_class(ioc);
1723         struct cfq_queue **async_cfqq = NULL;
1724         struct cfq_queue *cfqq = NULL;
1725
1726         if (!is_sync) {
1727                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1728                 cfqq = *async_cfqq;
1729         }
1730
1731         if (!cfqq) {
1732                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1733                 if (!cfqq)
1734                         return NULL;
1735         }
1736
1737         /*
1738          * pin the queue now that it's allocated, scheduler exit will prune it
1739          */
1740         if (!is_sync && !(*async_cfqq)) {
1741                 atomic_inc(&cfqq->ref);
1742                 *async_cfqq = cfqq;
1743         }
1744
1745         atomic_inc(&cfqq->ref);
1746         return cfqq;
1747 }
1748
1749 /*
1750  * We drop cfq io contexts lazily, so we may find a dead one.
1751  */
1752 static void
1753 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754                   struct cfq_io_context *cic)
1755 {
1756         unsigned long flags;
1757
1758         WARN_ON(!list_empty(&cic->queue_list));
1759
1760         spin_lock_irqsave(&ioc->lock, flags);
1761
1762         BUG_ON(ioc->ioc_data == cic);
1763
1764         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1765         hlist_del_rcu(&cic->cic_list);
1766         spin_unlock_irqrestore(&ioc->lock, flags);
1767
1768         cfq_cic_free(cic);
1769 }
1770
1771 static struct cfq_io_context *
1772 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1773 {
1774         struct cfq_io_context *cic;
1775         unsigned long flags;
1776         void *k;
1777
1778         if (unlikely(!ioc))
1779                 return NULL;
1780
1781         rcu_read_lock();
1782
1783         /*
1784          * we maintain a last-hit cache, to avoid browsing over the tree
1785          */
1786         cic = rcu_dereference(ioc->ioc_data);
1787         if (cic && cic->key == cfqd) {
1788                 rcu_read_unlock();
1789                 return cic;
1790         }
1791
1792         do {
1793                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794                 rcu_read_unlock();
1795                 if (!cic)
1796                         break;
1797                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1798                 k = cic->key;
1799                 if (unlikely(!k)) {
1800                         cfq_drop_dead_cic(cfqd, ioc, cic);
1801                         rcu_read_lock();
1802                         continue;
1803                 }
1804
1805                 spin_lock_irqsave(&ioc->lock, flags);
1806                 rcu_assign_pointer(ioc->ioc_data, cic);
1807                 spin_unlock_irqrestore(&ioc->lock, flags);
1808                 break;
1809         } while (1);
1810
1811         return cic;
1812 }
1813
1814 /*
1815  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816  * the process specific cfq io context when entered from the block layer.
1817  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1818  */
1819 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820                         struct cfq_io_context *cic, gfp_t gfp_mask)
1821 {
1822         unsigned long flags;
1823         int ret;
1824
1825         ret = radix_tree_preload(gfp_mask);
1826         if (!ret) {
1827                 cic->ioc = ioc;
1828                 cic->key = cfqd;
1829
1830                 spin_lock_irqsave(&ioc->lock, flags);
1831                 ret = radix_tree_insert(&ioc->radix_root,
1832                                                 (unsigned long) cfqd, cic);
1833                 if (!ret)
1834                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1835                 spin_unlock_irqrestore(&ioc->lock, flags);
1836
1837                 radix_tree_preload_end();
1838
1839                 if (!ret) {
1840                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841                         list_add(&cic->queue_list, &cfqd->cic_list);
1842                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1843                 }
1844         }
1845
1846         if (ret)
1847                 printk(KERN_ERR "cfq: cic link failed!\n");
1848
1849         return ret;
1850 }
1851
1852 /*
1853  * Setup general io context and cfq io context. There can be several cfq
1854  * io contexts per general io context, if this process is doing io to more
1855  * than one device managed by cfq.
1856  */
1857 static struct cfq_io_context *
1858 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1859 {
1860         struct io_context *ioc = NULL;
1861         struct cfq_io_context *cic;
1862
1863         might_sleep_if(gfp_mask & __GFP_WAIT);
1864
1865         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1866         if (!ioc)
1867                 return NULL;
1868
1869         cic = cfq_cic_lookup(cfqd, ioc);
1870         if (cic)
1871                 goto out;
1872
1873         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874         if (cic == NULL)
1875                 goto err;
1876
1877         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878                 goto err_free;
1879
1880 out:
1881         smp_read_barrier_depends();
1882         if (unlikely(ioc->ioprio_changed))
1883                 cfq_ioc_set_ioprio(ioc);
1884
1885         return cic;
1886 err_free:
1887         cfq_cic_free(cic);
1888 err:
1889         put_io_context(ioc);
1890         return NULL;
1891 }
1892
1893 static void
1894 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1895 {
1896         unsigned long elapsed = jiffies - cic->last_end_request;
1897         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1898
1899         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1902 }
1903
1904 static void
1905 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906                        struct request *rq)
1907 {
1908         sector_t sdist;
1909         u64 total;
1910
1911         if (cic->last_request_pos < rq->sector)
1912                 sdist = rq->sector - cic->last_request_pos;
1913         else
1914                 sdist = cic->last_request_pos - rq->sector;
1915
1916         /*
1917          * Don't allow the seek distance to get too large from the
1918          * odd fragment, pagein, etc
1919          */
1920         if (cic->seek_samples <= 60) /* second&third seek */
1921                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1922         else
1923                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1924
1925         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1926         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1927         total = cic->seek_total + (cic->seek_samples/2);
1928         do_div(total, cic->seek_samples);
1929         cic->seek_mean = (sector_t)total;
1930 }
1931
1932 /*
1933  * Disable idle window if the process thinks too long or seeks so much that
1934  * it doesn't matter
1935  */
1936 static void
1937 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1938                        struct cfq_io_context *cic)
1939 {
1940         int old_idle, enable_idle;
1941
1942         /*
1943          * Don't idle for async or idle io prio class
1944          */
1945         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1946                 return;
1947
1948         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1949
1950         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1951             (cfqd->hw_tag && CIC_SEEKY(cic)))
1952                 enable_idle = 0;
1953         else if (sample_valid(cic->ttime_samples)) {
1954                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1955                         enable_idle = 0;
1956                 else
1957                         enable_idle = 1;
1958         }
1959
1960         if (old_idle != enable_idle) {
1961                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1962                 if (enable_idle)
1963                         cfq_mark_cfqq_idle_window(cfqq);
1964                 else
1965                         cfq_clear_cfqq_idle_window(cfqq);
1966         }
1967 }
1968
1969 /*
1970  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1971  * no or if we aren't sure, a 1 will cause a preempt.
1972  */
1973 static int
1974 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1975                    struct request *rq)
1976 {
1977         struct cfq_queue *cfqq;
1978
1979         cfqq = cfqd->active_queue;
1980         if (!cfqq)
1981                 return 0;
1982
1983         if (cfq_slice_used(cfqq))
1984                 return 1;
1985
1986         if (cfq_class_idle(new_cfqq))
1987                 return 0;
1988
1989         if (cfq_class_idle(cfqq))
1990                 return 1;
1991
1992         /*
1993          * if the new request is sync, but the currently running queue is
1994          * not, let the sync request have priority.
1995          */
1996         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1997                 return 1;
1998
1999         /*
2000          * So both queues are sync. Let the new request get disk time if
2001          * it's a metadata request and the current queue is doing regular IO.
2002          */
2003         if (rq_is_meta(rq) && !cfqq->meta_pending)
2004                 return 1;
2005
2006         /*
2007          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2008          */
2009         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2010                 return 1;
2011
2012         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2013                 return 0;
2014
2015         /*
2016          * if this request is as-good as one we would expect from the
2017          * current cfqq, let it preempt
2018          */
2019         if (cfq_rq_close(cfqd, rq))
2020                 return 1;
2021
2022         return 0;
2023 }
2024
2025 /*
2026  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2027  * let it have half of its nominal slice.
2028  */
2029 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2030 {
2031         cfq_log_cfqq(cfqd, cfqq, "preempt");
2032         cfq_slice_expired(cfqd, 1);
2033
2034         /*
2035          * Put the new queue at the front of the of the current list,
2036          * so we know that it will be selected next.
2037          */
2038         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2039
2040         cfq_service_tree_add(cfqd, cfqq, 1);
2041
2042         cfqq->slice_end = 0;
2043         cfq_mark_cfqq_slice_new(cfqq);
2044 }
2045
2046 /*
2047  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2048  * something we should do about it
2049  */
2050 static void
2051 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2052                 struct request *rq)
2053 {
2054         struct cfq_io_context *cic = RQ_CIC(rq);
2055
2056         cfqd->rq_queued++;
2057         if (rq_is_meta(rq))
2058                 cfqq->meta_pending++;
2059
2060         cfq_update_io_thinktime(cfqd, cic);
2061         cfq_update_io_seektime(cfqd, cic, rq);
2062         cfq_update_idle_window(cfqd, cfqq, cic);
2063
2064         cic->last_request_pos = rq->sector + rq->nr_sectors;
2065
2066         if (cfqq == cfqd->active_queue) {
2067                 /*
2068                  * Remember that we saw a request from this process, but
2069                  * don't start queuing just yet. Otherwise we risk seeing lots
2070                  * of tiny requests, because we disrupt the normal plugging
2071                  * and merging. If the request is already larger than a single
2072                  * page, let it rip immediately. For that case we assume that
2073                  * merging is already done. Ditto for a busy system that
2074                  * has other work pending, don't risk delaying until the
2075                  * idle timer unplug to continue working.
2076                  */
2077                 if (cfq_cfqq_wait_request(cfqq)) {
2078                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2079                             cfqd->busy_queues > 1) {
2080                                 del_timer(&cfqd->idle_slice_timer);
2081                                 blk_start_queueing(cfqd->queue);
2082                         }
2083                         cfq_mark_cfqq_must_dispatch(cfqq);
2084                 }
2085         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2086                 /*
2087                  * not the active queue - expire current slice if it is
2088                  * idle and has expired it's mean thinktime or this new queue
2089                  * has some old slice time left and is of higher priority or
2090                  * this new queue is RT and the current one is BE
2091                  */
2092                 cfq_preempt_queue(cfqd, cfqq);
2093                 blk_start_queueing(cfqd->queue);
2094         }
2095 }
2096
2097 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2098 {
2099         struct cfq_data *cfqd = q->elevator->elevator_data;
2100         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2101
2102         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2103         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2104
2105         cfq_add_rq_rb(rq);
2106
2107         list_add_tail(&rq->queuelist, &cfqq->fifo);
2108
2109         cfq_rq_enqueued(cfqd, cfqq, rq);
2110 }
2111
2112 /*
2113  * Update hw_tag based on peak queue depth over 50 samples under
2114  * sufficient load.
2115  */
2116 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2117 {
2118         if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2119                 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2120
2121         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2122             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2123                 return;
2124
2125         if (cfqd->hw_tag_samples++ < 50)
2126                 return;
2127
2128         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2129                 cfqd->hw_tag = 1;
2130         else
2131                 cfqd->hw_tag = 0;
2132
2133         cfqd->hw_tag_samples = 0;
2134         cfqd->rq_in_driver_peak = 0;
2135 }
2136
2137 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2138 {
2139         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2140         struct cfq_data *cfqd = cfqq->cfqd;
2141         const int sync = rq_is_sync(rq);
2142         unsigned long now;
2143
2144         now = jiffies;
2145         cfq_log_cfqq(cfqd, cfqq, "complete");
2146
2147         cfq_update_hw_tag(cfqd);
2148
2149         WARN_ON(!cfqd->rq_in_driver);
2150         WARN_ON(!cfqq->dispatched);
2151         cfqd->rq_in_driver--;
2152         cfqq->dispatched--;
2153
2154         if (cfq_cfqq_sync(cfqq))
2155                 cfqd->sync_flight--;
2156
2157         if (!cfq_class_idle(cfqq))
2158                 cfqd->last_end_request = now;
2159
2160         if (sync)
2161                 RQ_CIC(rq)->last_end_request = now;
2162
2163         /*
2164          * If this is the active queue, check if it needs to be expired,
2165          * or if we want to idle in case it has no pending requests.
2166          */
2167         if (cfqd->active_queue == cfqq) {
2168                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2169
2170                 if (cfq_cfqq_slice_new(cfqq)) {
2171                         cfq_set_prio_slice(cfqd, cfqq);
2172                         cfq_clear_cfqq_slice_new(cfqq);
2173                 }
2174                 /*
2175                  * If there are no requests waiting in this queue, and
2176                  * there are other queues ready to issue requests, AND
2177                  * those other queues are issuing requests within our
2178                  * mean seek distance, give them a chance to run instead
2179                  * of idling.
2180                  */
2181                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2182                         cfq_slice_expired(cfqd, 1);
2183                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2184                          sync && !rq_noidle(rq))
2185                         cfq_arm_slice_timer(cfqd);
2186         }
2187
2188         if (!cfqd->rq_in_driver)
2189                 cfq_schedule_dispatch(cfqd);
2190 }
2191
2192 /*
2193  * we temporarily boost lower priority queues if they are holding fs exclusive
2194  * resources. they are boosted to normal prio (CLASS_BE/4)
2195  */
2196 static void cfq_prio_boost(struct cfq_queue *cfqq)
2197 {
2198         if (has_fs_excl()) {
2199                 /*
2200                  * boost idle prio on transactions that would lock out other
2201                  * users of the filesystem
2202                  */
2203                 if (cfq_class_idle(cfqq))
2204                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2205                 if (cfqq->ioprio > IOPRIO_NORM)
2206                         cfqq->ioprio = IOPRIO_NORM;
2207         } else {
2208                 /*
2209                  * check if we need to unboost the queue
2210                  */
2211                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2212                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2213                 if (cfqq->ioprio != cfqq->org_ioprio)
2214                         cfqq->ioprio = cfqq->org_ioprio;
2215         }
2216 }
2217
2218 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2219 {
2220         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2221             !cfq_cfqq_must_alloc_slice(cfqq)) {
2222                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2223                 return ELV_MQUEUE_MUST;
2224         }
2225
2226         return ELV_MQUEUE_MAY;
2227 }
2228
2229 static int cfq_may_queue(struct request_queue *q, int rw)
2230 {
2231         struct cfq_data *cfqd = q->elevator->elevator_data;
2232         struct task_struct *tsk = current;
2233         struct cfq_io_context *cic;
2234         struct cfq_queue *cfqq;
2235
2236         /*
2237          * don't force setup of a queue from here, as a call to may_queue
2238          * does not necessarily imply that a request actually will be queued.
2239          * so just lookup a possibly existing queue, or return 'may queue'
2240          * if that fails
2241          */
2242         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2243         if (!cic)
2244                 return ELV_MQUEUE_MAY;
2245
2246         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2247         if (cfqq) {
2248                 cfq_init_prio_data(cfqq, cic->ioc);
2249                 cfq_prio_boost(cfqq);
2250
2251                 return __cfq_may_queue(cfqq);
2252         }
2253
2254         return ELV_MQUEUE_MAY;
2255 }
2256
2257 /*
2258  * queue lock held here
2259  */
2260 static void cfq_put_request(struct request *rq)
2261 {
2262         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2263
2264         if (cfqq) {
2265                 const int rw = rq_data_dir(rq);
2266
2267                 BUG_ON(!cfqq->allocated[rw]);
2268                 cfqq->allocated[rw]--;
2269
2270                 put_io_context(RQ_CIC(rq)->ioc);
2271
2272                 rq->elevator_private = NULL;
2273                 rq->elevator_private2 = NULL;
2274
2275                 cfq_put_queue(cfqq);
2276         }
2277 }
2278
2279 /*
2280  * Allocate cfq data structures associated with this request.
2281  */
2282 static int
2283 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2284 {
2285         struct cfq_data *cfqd = q->elevator->elevator_data;
2286         struct cfq_io_context *cic;
2287         const int rw = rq_data_dir(rq);
2288         const int is_sync = rq_is_sync(rq);
2289         struct cfq_queue *cfqq;
2290         unsigned long flags;
2291
2292         might_sleep_if(gfp_mask & __GFP_WAIT);
2293
2294         cic = cfq_get_io_context(cfqd, gfp_mask);
2295
2296         spin_lock_irqsave(q->queue_lock, flags);
2297
2298         if (!cic)
2299                 goto queue_fail;
2300
2301         cfqq = cic_to_cfqq(cic, is_sync);
2302         if (!cfqq) {
2303                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2304
2305                 if (!cfqq)
2306                         goto queue_fail;
2307
2308                 cic_set_cfqq(cic, cfqq, is_sync);
2309         }
2310
2311         cfqq->allocated[rw]++;
2312         cfq_clear_cfqq_must_alloc(cfqq);
2313         atomic_inc(&cfqq->ref);
2314
2315         spin_unlock_irqrestore(q->queue_lock, flags);
2316
2317         rq->elevator_private = cic;
2318         rq->elevator_private2 = cfqq;
2319         return 0;
2320
2321 queue_fail:
2322         if (cic)
2323                 put_io_context(cic->ioc);
2324
2325         cfq_schedule_dispatch(cfqd);
2326         spin_unlock_irqrestore(q->queue_lock, flags);
2327         cfq_log(cfqd, "set_request fail");
2328         return 1;
2329 }
2330
2331 static void cfq_kick_queue(struct work_struct *work)
2332 {
2333         struct cfq_data *cfqd =
2334                 container_of(work, struct cfq_data, unplug_work);
2335         struct request_queue *q = cfqd->queue;
2336
2337         spin_lock_irq(q->queue_lock);
2338         blk_start_queueing(q);
2339         spin_unlock_irq(q->queue_lock);
2340 }
2341
2342 /*
2343  * Timer running if the active_queue is currently idling inside its time slice
2344  */
2345 static void cfq_idle_slice_timer(unsigned long data)
2346 {
2347         struct cfq_data *cfqd = (struct cfq_data *) data;
2348         struct cfq_queue *cfqq;
2349         unsigned long flags;
2350         int timed_out = 1;
2351
2352         cfq_log(cfqd, "idle timer fired");
2353
2354         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2355
2356         cfqq = cfqd->active_queue;
2357         if (cfqq) {
2358                 timed_out = 0;
2359
2360                 /*
2361                  * We saw a request before the queue expired, let it through
2362                  */
2363                 if (cfq_cfqq_must_dispatch(cfqq))
2364                         goto out_kick;
2365
2366                 /*
2367                  * expired
2368                  */
2369                 if (cfq_slice_used(cfqq))
2370                         goto expire;
2371
2372                 /*
2373                  * only expire and reinvoke request handler, if there are
2374                  * other queues with pending requests
2375                  */
2376                 if (!cfqd->busy_queues)
2377                         goto out_cont;
2378
2379                 /*
2380                  * not expired and it has a request pending, let it dispatch
2381                  */
2382                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2383                         goto out_kick;
2384         }
2385 expire:
2386         cfq_slice_expired(cfqd, timed_out);
2387 out_kick:
2388         cfq_schedule_dispatch(cfqd);
2389 out_cont:
2390         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2391 }
2392
2393 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2394 {
2395         del_timer_sync(&cfqd->idle_slice_timer);
2396         cancel_work_sync(&cfqd->unplug_work);
2397 }
2398
2399 static void cfq_put_async_queues(struct cfq_data *cfqd)
2400 {
2401         int i;
2402
2403         for (i = 0; i < IOPRIO_BE_NR; i++) {
2404                 if (cfqd->async_cfqq[0][i])
2405                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2406                 if (cfqd->async_cfqq[1][i])
2407                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2408         }
2409
2410         if (cfqd->async_idle_cfqq)
2411                 cfq_put_queue(cfqd->async_idle_cfqq);
2412 }
2413
2414 static void cfq_exit_queue(struct elevator_queue *e)
2415 {
2416         struct cfq_data *cfqd = e->elevator_data;
2417         struct request_queue *q = cfqd->queue;
2418
2419         cfq_shutdown_timer_wq(cfqd);
2420
2421         spin_lock_irq(q->queue_lock);
2422
2423         if (cfqd->active_queue)
2424                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2425
2426         while (!list_empty(&cfqd->cic_list)) {
2427                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2428                                                         struct cfq_io_context,
2429                                                         queue_list);
2430
2431                 __cfq_exit_single_io_context(cfqd, cic);
2432         }
2433
2434         cfq_put_async_queues(cfqd);
2435
2436         spin_unlock_irq(q->queue_lock);
2437
2438         cfq_shutdown_timer_wq(cfqd);
2439
2440         kfree(cfqd);
2441 }
2442
2443 static void *cfq_init_queue(struct request_queue *q)
2444 {
2445         struct cfq_data *cfqd;
2446
2447         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2448         if (!cfqd)
2449                 return NULL;
2450
2451         cfqd->service_tree = CFQ_RB_ROOT;
2452         INIT_LIST_HEAD(&cfqd->cic_list);
2453
2454         cfqd->queue = q;
2455
2456         init_timer(&cfqd->idle_slice_timer);
2457         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2458         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2459
2460         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2461
2462         cfqd->last_end_request = jiffies;
2463         cfqd->cfq_quantum = cfq_quantum;
2464         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2465         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2466         cfqd->cfq_back_max = cfq_back_max;
2467         cfqd->cfq_back_penalty = cfq_back_penalty;
2468         cfqd->cfq_slice[0] = cfq_slice_async;
2469         cfqd->cfq_slice[1] = cfq_slice_sync;
2470         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2471         cfqd->cfq_slice_idle = cfq_slice_idle;
2472         cfqd->hw_tag = 1;
2473
2474         return cfqd;
2475 }
2476
2477 static void cfq_slab_kill(void)
2478 {
2479         /*
2480          * Caller already ensured that pending RCU callbacks are completed,
2481          * so we should have no busy allocations at this point.
2482          */
2483         if (cfq_pool)
2484                 kmem_cache_destroy(cfq_pool);
2485         if (cfq_ioc_pool)
2486                 kmem_cache_destroy(cfq_ioc_pool);
2487 }
2488
2489 static int __init cfq_slab_setup(void)
2490 {
2491         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2492         if (!cfq_pool)
2493                 goto fail;
2494
2495         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2496         if (!cfq_ioc_pool)
2497                 goto fail;
2498
2499         return 0;
2500 fail:
2501         cfq_slab_kill();
2502         return -ENOMEM;
2503 }
2504
2505 /*
2506  * sysfs parts below -->
2507  */
2508 static ssize_t
2509 cfq_var_show(unsigned int var, char *page)
2510 {
2511         return sprintf(page, "%d\n", var);
2512 }
2513
2514 static ssize_t
2515 cfq_var_store(unsigned int *var, const char *page, size_t count)
2516 {
2517         char *p = (char *) page;
2518
2519         *var = simple_strtoul(p, &p, 10);
2520         return count;
2521 }
2522
2523 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2524 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2525 {                                                                       \
2526         struct cfq_data *cfqd = e->elevator_data;                       \
2527         unsigned int __data = __VAR;                                    \
2528         if (__CONV)                                                     \
2529                 __data = jiffies_to_msecs(__data);                      \
2530         return cfq_var_show(__data, (page));                            \
2531 }
2532 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2533 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2534 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2535 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2536 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2537 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2538 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2539 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2540 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2541 #undef SHOW_FUNCTION
2542
2543 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2544 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2545 {                                                                       \
2546         struct cfq_data *cfqd = e->elevator_data;                       \
2547         unsigned int __data;                                            \
2548         int ret = cfq_var_store(&__data, (page), count);                \
2549         if (__data < (MIN))                                             \
2550                 __data = (MIN);                                         \
2551         else if (__data > (MAX))                                        \
2552                 __data = (MAX);                                         \
2553         if (__CONV)                                                     \
2554                 *(__PTR) = msecs_to_jiffies(__data);                    \
2555         else                                                            \
2556                 *(__PTR) = __data;                                      \
2557         return ret;                                                     \
2558 }
2559 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2560 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2561                 UINT_MAX, 1);
2562 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2563                 UINT_MAX, 1);
2564 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2565 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2566                 UINT_MAX, 0);
2567 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2568 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2569 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2570 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2571                 UINT_MAX, 0);
2572 #undef STORE_FUNCTION
2573
2574 #define CFQ_ATTR(name) \
2575         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2576
2577 static struct elv_fs_entry cfq_attrs[] = {
2578         CFQ_ATTR(quantum),
2579         CFQ_ATTR(fifo_expire_sync),
2580         CFQ_ATTR(fifo_expire_async),
2581         CFQ_ATTR(back_seek_max),
2582         CFQ_ATTR(back_seek_penalty),
2583         CFQ_ATTR(slice_sync),
2584         CFQ_ATTR(slice_async),
2585         CFQ_ATTR(slice_async_rq),
2586         CFQ_ATTR(slice_idle),
2587         __ATTR_NULL
2588 };
2589
2590 static struct elevator_type iosched_cfq = {
2591         .ops = {
2592                 .elevator_merge_fn =            cfq_merge,
2593                 .elevator_merged_fn =           cfq_merged_request,
2594                 .elevator_merge_req_fn =        cfq_merged_requests,
2595                 .elevator_allow_merge_fn =      cfq_allow_merge,
2596                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2597                 .elevator_add_req_fn =          cfq_insert_request,
2598                 .elevator_activate_req_fn =     cfq_activate_request,
2599                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2600                 .elevator_queue_empty_fn =      cfq_queue_empty,
2601                 .elevator_completed_req_fn =    cfq_completed_request,
2602                 .elevator_former_req_fn =       elv_rb_former_request,
2603                 .elevator_latter_req_fn =       elv_rb_latter_request,
2604                 .elevator_set_req_fn =          cfq_set_request,
2605                 .elevator_put_req_fn =          cfq_put_request,
2606                 .elevator_may_queue_fn =        cfq_may_queue,
2607                 .elevator_init_fn =             cfq_init_queue,
2608                 .elevator_exit_fn =             cfq_exit_queue,
2609                 .trim =                         cfq_free_io_context,
2610         },
2611         .elevator_attrs =       cfq_attrs,
2612         .elevator_name =        "cfq",
2613         .elevator_owner =       THIS_MODULE,
2614 };
2615
2616 static int __init cfq_init(void)
2617 {
2618         /*
2619          * could be 0 on HZ < 1000 setups
2620          */
2621         if (!cfq_slice_async)
2622                 cfq_slice_async = 1;
2623         if (!cfq_slice_idle)
2624                 cfq_slice_idle = 1;
2625
2626         if (cfq_slab_setup())
2627                 return -ENOMEM;
2628
2629         elv_register(&iosched_cfq);
2630
2631         return 0;
2632 }
2633
2634 static void __exit cfq_exit(void)
2635 {
2636         DECLARE_COMPLETION_ONSTACK(all_gone);
2637         elv_unregister(&iosched_cfq);
2638         ioc_gone = &all_gone;
2639         /* ioc_gone's update must be visible before reading ioc_count */
2640         smp_wmb();
2641
2642         /*
2643          * this also protects us from entering cfq_slab_kill() with
2644          * pending RCU callbacks
2645          */
2646         if (elv_ioc_count_read(ioc_count))
2647                 wait_for_completion(&all_gone);
2648         cfq_slab_kill();
2649 }
2650
2651 module_init(cfq_init);
2652 module_exit(cfq_exit);
2653
2654 MODULE_AUTHOR("Jens Axboe");
2655 MODULE_LICENSE("GPL");
2656 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");