[PATCH] forcedeth: mac address corrected
[linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
113  *
114  * Known bugs:
115  * We suspect that on some hardware no TX done interrupts are generated.
116  * This means recovery from netif_stop_queue only happens if the hw timer
117  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
118  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
119  * If your hardware reliably generates tx done interrupts, then you can remove
120  * DEV_NEED_TIMERIRQ from the driver_data flags.
121  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
122  * superfluous timer interrupts from the nic.
123  */
124 #define FORCEDETH_VERSION               "0.57"
125 #define DRV_NAME                        "forcedeth"
126
127 #include <linux/module.h>
128 #include <linux/types.h>
129 #include <linux/pci.h>
130 #include <linux/interrupt.h>
131 #include <linux/netdevice.h>
132 #include <linux/etherdevice.h>
133 #include <linux/delay.h>
134 #include <linux/spinlock.h>
135 #include <linux/ethtool.h>
136 #include <linux/timer.h>
137 #include <linux/skbuff.h>
138 #include <linux/mii.h>
139 #include <linux/random.h>
140 #include <linux/init.h>
141 #include <linux/if_vlan.h>
142 #include <linux/dma-mapping.h>
143
144 #include <asm/irq.h>
145 #include <asm/io.h>
146 #include <asm/uaccess.h>
147 #include <asm/system.h>
148
149 #if 0
150 #define dprintk                 printk
151 #else
152 #define dprintk(x...)           do { } while (0)
153 #endif
154
155
156 /*
157  * Hardware access:
158  */
159
160 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
161 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
162 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
163 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
164 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
165 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
166 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
167 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
168 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
169 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
170 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
171 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
172
173 enum {
174         NvRegIrqStatus = 0x000,
175 #define NVREG_IRQSTAT_MIIEVENT  0x040
176 #define NVREG_IRQSTAT_MASK              0x1ff
177         NvRegIrqMask = 0x004,
178 #define NVREG_IRQ_RX_ERROR              0x0001
179 #define NVREG_IRQ_RX                    0x0002
180 #define NVREG_IRQ_RX_NOBUF              0x0004
181 #define NVREG_IRQ_TX_ERR                0x0008
182 #define NVREG_IRQ_TX_OK                 0x0010
183 #define NVREG_IRQ_TIMER                 0x0020
184 #define NVREG_IRQ_LINK                  0x0040
185 #define NVREG_IRQ_RX_FORCED             0x0080
186 #define NVREG_IRQ_TX_FORCED             0x0100
187 #define NVREG_IRQMASK_THROUGHPUT        0x00df
188 #define NVREG_IRQMASK_CPU               0x0040
189 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
190 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
191 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
192
193 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
194                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
195                                         NVREG_IRQ_TX_FORCED))
196
197         NvRegUnknownSetupReg6 = 0x008,
198 #define NVREG_UNKSETUP6_VAL             3
199
200 /*
201  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
202  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
203  */
204         NvRegPollingInterval = 0x00c,
205 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
206 #define NVREG_POLL_DEFAULT_CPU  13
207         NvRegMSIMap0 = 0x020,
208         NvRegMSIMap1 = 0x024,
209         NvRegMSIIrqMask = 0x030,
210 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
211         NvRegMisc1 = 0x080,
212 #define NVREG_MISC1_PAUSE_TX    0x01
213 #define NVREG_MISC1_HD          0x02
214 #define NVREG_MISC1_FORCE       0x3b0f3c
215
216         NvRegMacReset = 0x3c,
217 #define NVREG_MAC_RESET_ASSERT  0x0F3
218         NvRegTransmitterControl = 0x084,
219 #define NVREG_XMITCTL_START     0x01
220         NvRegTransmitterStatus = 0x088,
221 #define NVREG_XMITSTAT_BUSY     0x01
222
223         NvRegPacketFilterFlags = 0x8c,
224 #define NVREG_PFF_PAUSE_RX      0x08
225 #define NVREG_PFF_ALWAYS        0x7F0000
226 #define NVREG_PFF_PROMISC       0x80
227 #define NVREG_PFF_MYADDR        0x20
228 #define NVREG_PFF_LOOPBACK      0x10
229
230         NvRegOffloadConfig = 0x90,
231 #define NVREG_OFFLOAD_HOMEPHY   0x601
232 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
233         NvRegReceiverControl = 0x094,
234 #define NVREG_RCVCTL_START      0x01
235         NvRegReceiverStatus = 0x98,
236 #define NVREG_RCVSTAT_BUSY      0x01
237
238         NvRegRandomSeed = 0x9c,
239 #define NVREG_RNDSEED_MASK      0x00ff
240 #define NVREG_RNDSEED_FORCE     0x7f00
241 #define NVREG_RNDSEED_FORCE2    0x2d00
242 #define NVREG_RNDSEED_FORCE3    0x7400
243
244         NvRegTxDeferral = 0xA0,
245 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
246 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
247 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
248         NvRegRxDeferral = 0xA4,
249 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
250         NvRegMacAddrA = 0xA8,
251         NvRegMacAddrB = 0xAC,
252         NvRegMulticastAddrA = 0xB0,
253 #define NVREG_MCASTADDRA_FORCE  0x01
254         NvRegMulticastAddrB = 0xB4,
255         NvRegMulticastMaskA = 0xB8,
256         NvRegMulticastMaskB = 0xBC,
257
258         NvRegPhyInterface = 0xC0,
259 #define PHY_RGMII               0x10000000
260
261         NvRegTxRingPhysAddr = 0x100,
262         NvRegRxRingPhysAddr = 0x104,
263         NvRegRingSizes = 0x108,
264 #define NVREG_RINGSZ_TXSHIFT 0
265 #define NVREG_RINGSZ_RXSHIFT 16
266         NvRegTransmitPoll = 0x10c,
267 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
268         NvRegLinkSpeed = 0x110,
269 #define NVREG_LINKSPEED_FORCE 0x10000
270 #define NVREG_LINKSPEED_10      1000
271 #define NVREG_LINKSPEED_100     100
272 #define NVREG_LINKSPEED_1000    50
273 #define NVREG_LINKSPEED_MASK    (0xFFF)
274         NvRegUnknownSetupReg5 = 0x130,
275 #define NVREG_UNKSETUP5_BIT31   (1<<31)
276         NvRegTxWatermark = 0x13c,
277 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
278 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
279 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
280         NvRegTxRxControl = 0x144,
281 #define NVREG_TXRXCTL_KICK      0x0001
282 #define NVREG_TXRXCTL_BIT1      0x0002
283 #define NVREG_TXRXCTL_BIT2      0x0004
284 #define NVREG_TXRXCTL_IDLE      0x0008
285 #define NVREG_TXRXCTL_RESET     0x0010
286 #define NVREG_TXRXCTL_RXCHECK   0x0400
287 #define NVREG_TXRXCTL_DESC_1    0
288 #define NVREG_TXRXCTL_DESC_2    0x02100
289 #define NVREG_TXRXCTL_DESC_3    0x02200
290 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
291 #define NVREG_TXRXCTL_VLANINS   0x00080
292         NvRegTxRingPhysAddrHigh = 0x148,
293         NvRegRxRingPhysAddrHigh = 0x14C,
294         NvRegTxPauseFrame = 0x170,
295 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
296 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
297         NvRegMIIStatus = 0x180,
298 #define NVREG_MIISTAT_ERROR             0x0001
299 #define NVREG_MIISTAT_LINKCHANGE        0x0008
300 #define NVREG_MIISTAT_MASK              0x000f
301 #define NVREG_MIISTAT_MASK2             0x000f
302         NvRegUnknownSetupReg4 = 0x184,
303 #define NVREG_UNKSETUP4_VAL     8
304
305         NvRegAdapterControl = 0x188,
306 #define NVREG_ADAPTCTL_START    0x02
307 #define NVREG_ADAPTCTL_LINKUP   0x04
308 #define NVREG_ADAPTCTL_PHYVALID 0x40000
309 #define NVREG_ADAPTCTL_RUNNING  0x100000
310 #define NVREG_ADAPTCTL_PHYSHIFT 24
311         NvRegMIISpeed = 0x18c,
312 #define NVREG_MIISPEED_BIT8     (1<<8)
313 #define NVREG_MIIDELAY  5
314         NvRegMIIControl = 0x190,
315 #define NVREG_MIICTL_INUSE      0x08000
316 #define NVREG_MIICTL_WRITE      0x00400
317 #define NVREG_MIICTL_ADDRSHIFT  5
318         NvRegMIIData = 0x194,
319         NvRegWakeUpFlags = 0x200,
320 #define NVREG_WAKEUPFLAGS_VAL           0x7770
321 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
322 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
323 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
324 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
325 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
326 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
327 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
328 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
329 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
330 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
331
332         NvRegPatternCRC = 0x204,
333         NvRegPatternMask = 0x208,
334         NvRegPowerCap = 0x268,
335 #define NVREG_POWERCAP_D3SUPP   (1<<30)
336 #define NVREG_POWERCAP_D2SUPP   (1<<26)
337 #define NVREG_POWERCAP_D1SUPP   (1<<25)
338         NvRegPowerState = 0x26c,
339 #define NVREG_POWERSTATE_POWEREDUP      0x8000
340 #define NVREG_POWERSTATE_VALID          0x0100
341 #define NVREG_POWERSTATE_MASK           0x0003
342 #define NVREG_POWERSTATE_D0             0x0000
343 #define NVREG_POWERSTATE_D1             0x0001
344 #define NVREG_POWERSTATE_D2             0x0002
345 #define NVREG_POWERSTATE_D3             0x0003
346         NvRegTxCnt = 0x280,
347         NvRegTxZeroReXmt = 0x284,
348         NvRegTxOneReXmt = 0x288,
349         NvRegTxManyReXmt = 0x28c,
350         NvRegTxLateCol = 0x290,
351         NvRegTxUnderflow = 0x294,
352         NvRegTxLossCarrier = 0x298,
353         NvRegTxExcessDef = 0x29c,
354         NvRegTxRetryErr = 0x2a0,
355         NvRegRxFrameErr = 0x2a4,
356         NvRegRxExtraByte = 0x2a8,
357         NvRegRxLateCol = 0x2ac,
358         NvRegRxRunt = 0x2b0,
359         NvRegRxFrameTooLong = 0x2b4,
360         NvRegRxOverflow = 0x2b8,
361         NvRegRxFCSErr = 0x2bc,
362         NvRegRxFrameAlignErr = 0x2c0,
363         NvRegRxLenErr = 0x2c4,
364         NvRegRxUnicast = 0x2c8,
365         NvRegRxMulticast = 0x2cc,
366         NvRegRxBroadcast = 0x2d0,
367         NvRegTxDef = 0x2d4,
368         NvRegTxFrame = 0x2d8,
369         NvRegRxCnt = 0x2dc,
370         NvRegTxPause = 0x2e0,
371         NvRegRxPause = 0x2e4,
372         NvRegRxDropFrame = 0x2e8,
373         NvRegVlanControl = 0x300,
374 #define NVREG_VLANCONTROL_ENABLE        0x2000
375         NvRegMSIXMap0 = 0x3e0,
376         NvRegMSIXMap1 = 0x3e4,
377         NvRegMSIXIrqStatus = 0x3f0,
378
379         NvRegPowerState2 = 0x600,
380 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
381 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
382 };
383
384 /* Big endian: should work, but is untested */
385 struct ring_desc {
386         __le32 buf;
387         __le32 flaglen;
388 };
389
390 struct ring_desc_ex {
391         __le32 bufhigh;
392         __le32 buflow;
393         __le32 txvlan;
394         __le32 flaglen;
395 };
396
397 union ring_type {
398         struct ring_desc* orig;
399         struct ring_desc_ex* ex;
400 };
401
402 #define FLAG_MASK_V1 0xffff0000
403 #define FLAG_MASK_V2 0xffffc000
404 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
405 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
406
407 #define NV_TX_LASTPACKET        (1<<16)
408 #define NV_TX_RETRYERROR        (1<<19)
409 #define NV_TX_FORCED_INTERRUPT  (1<<24)
410 #define NV_TX_DEFERRED          (1<<26)
411 #define NV_TX_CARRIERLOST       (1<<27)
412 #define NV_TX_LATECOLLISION     (1<<28)
413 #define NV_TX_UNDERFLOW         (1<<29)
414 #define NV_TX_ERROR             (1<<30)
415 #define NV_TX_VALID             (1<<31)
416
417 #define NV_TX2_LASTPACKET       (1<<29)
418 #define NV_TX2_RETRYERROR       (1<<18)
419 #define NV_TX2_FORCED_INTERRUPT (1<<30)
420 #define NV_TX2_DEFERRED         (1<<25)
421 #define NV_TX2_CARRIERLOST      (1<<26)
422 #define NV_TX2_LATECOLLISION    (1<<27)
423 #define NV_TX2_UNDERFLOW        (1<<28)
424 /* error and valid are the same for both */
425 #define NV_TX2_ERROR            (1<<30)
426 #define NV_TX2_VALID            (1<<31)
427 #define NV_TX2_TSO              (1<<28)
428 #define NV_TX2_TSO_SHIFT        14
429 #define NV_TX2_TSO_MAX_SHIFT    14
430 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
431 #define NV_TX2_CHECKSUM_L3      (1<<27)
432 #define NV_TX2_CHECKSUM_L4      (1<<26)
433
434 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
435
436 #define NV_RX_DESCRIPTORVALID   (1<<16)
437 #define NV_RX_MISSEDFRAME       (1<<17)
438 #define NV_RX_SUBSTRACT1        (1<<18)
439 #define NV_RX_ERROR1            (1<<23)
440 #define NV_RX_ERROR2            (1<<24)
441 #define NV_RX_ERROR3            (1<<25)
442 #define NV_RX_ERROR4            (1<<26)
443 #define NV_RX_CRCERR            (1<<27)
444 #define NV_RX_OVERFLOW          (1<<28)
445 #define NV_RX_FRAMINGERR        (1<<29)
446 #define NV_RX_ERROR             (1<<30)
447 #define NV_RX_AVAIL             (1<<31)
448
449 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
450 #define NV_RX2_CHECKSUMOK1      (0x10000000)
451 #define NV_RX2_CHECKSUMOK2      (0x14000000)
452 #define NV_RX2_CHECKSUMOK3      (0x18000000)
453 #define NV_RX2_DESCRIPTORVALID  (1<<29)
454 #define NV_RX2_SUBSTRACT1       (1<<25)
455 #define NV_RX2_ERROR1           (1<<18)
456 #define NV_RX2_ERROR2           (1<<19)
457 #define NV_RX2_ERROR3           (1<<20)
458 #define NV_RX2_ERROR4           (1<<21)
459 #define NV_RX2_CRCERR           (1<<22)
460 #define NV_RX2_OVERFLOW         (1<<23)
461 #define NV_RX2_FRAMINGERR       (1<<24)
462 /* error and avail are the same for both */
463 #define NV_RX2_ERROR            (1<<30)
464 #define NV_RX2_AVAIL            (1<<31)
465
466 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
467 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
468
469 /* Miscelaneous hardware related defines: */
470 #define NV_PCI_REGSZ_VER1       0x270
471 #define NV_PCI_REGSZ_VER2       0x604
472
473 /* various timeout delays: all in usec */
474 #define NV_TXRX_RESET_DELAY     4
475 #define NV_TXSTOP_DELAY1        10
476 #define NV_TXSTOP_DELAY1MAX     500000
477 #define NV_TXSTOP_DELAY2        100
478 #define NV_RXSTOP_DELAY1        10
479 #define NV_RXSTOP_DELAY1MAX     500000
480 #define NV_RXSTOP_DELAY2        100
481 #define NV_SETUP5_DELAY         5
482 #define NV_SETUP5_DELAYMAX      50000
483 #define NV_POWERUP_DELAY        5
484 #define NV_POWERUP_DELAYMAX     5000
485 #define NV_MIIBUSY_DELAY        50
486 #define NV_MIIPHY_DELAY 10
487 #define NV_MIIPHY_DELAYMAX      10000
488 #define NV_MAC_RESET_DELAY      64
489
490 #define NV_WAKEUPPATTERNS       5
491 #define NV_WAKEUPMASKENTRIES    4
492
493 /* General driver defaults */
494 #define NV_WATCHDOG_TIMEO       (5*HZ)
495
496 #define RX_RING_DEFAULT         128
497 #define TX_RING_DEFAULT         256
498 #define RX_RING_MIN             128
499 #define TX_RING_MIN             64
500 #define RING_MAX_DESC_VER_1     1024
501 #define RING_MAX_DESC_VER_2_3   16384
502 /*
503  * Difference between the get and put pointers for the tx ring.
504  * This is used to throttle the amount of data outstanding in the
505  * tx ring.
506  */
507 #define TX_LIMIT_DIFFERENCE     1
508
509 /* rx/tx mac addr + type + vlan + align + slack*/
510 #define NV_RX_HEADERS           (64)
511 /* even more slack. */
512 #define NV_RX_ALLOC_PAD         (64)
513
514 /* maximum mtu size */
515 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
516 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
517
518 #define OOM_REFILL      (1+HZ/20)
519 #define POLL_WAIT       (1+HZ/100)
520 #define LINK_TIMEOUT    (3*HZ)
521 #define STATS_INTERVAL  (10*HZ)
522
523 /*
524  * desc_ver values:
525  * The nic supports three different descriptor types:
526  * - DESC_VER_1: Original
527  * - DESC_VER_2: support for jumbo frames.
528  * - DESC_VER_3: 64-bit format.
529  */
530 #define DESC_VER_1      1
531 #define DESC_VER_2      2
532 #define DESC_VER_3      3
533
534 /* PHY defines */
535 #define PHY_OUI_MARVELL 0x5043
536 #define PHY_OUI_CICADA  0x03f1
537 #define PHYID1_OUI_MASK 0x03ff
538 #define PHYID1_OUI_SHFT 6
539 #define PHYID2_OUI_MASK 0xfc00
540 #define PHYID2_OUI_SHFT 10
541 #define PHY_INIT1       0x0f000
542 #define PHY_INIT2       0x0e00
543 #define PHY_INIT3       0x01000
544 #define PHY_INIT4       0x0200
545 #define PHY_INIT5       0x0004
546 #define PHY_INIT6       0x02000
547 #define PHY_GIGABIT     0x0100
548
549 #define PHY_TIMEOUT     0x1
550 #define PHY_ERROR       0x2
551
552 #define PHY_100 0x1
553 #define PHY_1000        0x2
554 #define PHY_HALF        0x100
555
556 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
557 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
558 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
559 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
560 #define NV_PAUSEFRAME_RX_REQ     0x0010
561 #define NV_PAUSEFRAME_TX_REQ     0x0020
562 #define NV_PAUSEFRAME_AUTONEG    0x0040
563
564 /* MSI/MSI-X defines */
565 #define NV_MSI_X_MAX_VECTORS  8
566 #define NV_MSI_X_VECTORS_MASK 0x000f
567 #define NV_MSI_CAPABLE        0x0010
568 #define NV_MSI_X_CAPABLE      0x0020
569 #define NV_MSI_ENABLED        0x0040
570 #define NV_MSI_X_ENABLED      0x0080
571
572 #define NV_MSI_X_VECTOR_ALL   0x0
573 #define NV_MSI_X_VECTOR_RX    0x0
574 #define NV_MSI_X_VECTOR_TX    0x1
575 #define NV_MSI_X_VECTOR_OTHER 0x2
576
577 /* statistics */
578 struct nv_ethtool_str {
579         char name[ETH_GSTRING_LEN];
580 };
581
582 static const struct nv_ethtool_str nv_estats_str[] = {
583         { "tx_bytes" },
584         { "tx_zero_rexmt" },
585         { "tx_one_rexmt" },
586         { "tx_many_rexmt" },
587         { "tx_late_collision" },
588         { "tx_fifo_errors" },
589         { "tx_carrier_errors" },
590         { "tx_excess_deferral" },
591         { "tx_retry_error" },
592         { "tx_deferral" },
593         { "tx_packets" },
594         { "tx_pause" },
595         { "rx_frame_error" },
596         { "rx_extra_byte" },
597         { "rx_late_collision" },
598         { "rx_runt" },
599         { "rx_frame_too_long" },
600         { "rx_over_errors" },
601         { "rx_crc_errors" },
602         { "rx_frame_align_error" },
603         { "rx_length_error" },
604         { "rx_unicast" },
605         { "rx_multicast" },
606         { "rx_broadcast" },
607         { "rx_bytes" },
608         { "rx_pause" },
609         { "rx_drop_frame" },
610         { "rx_packets" },
611         { "rx_errors_total" }
612 };
613
614 struct nv_ethtool_stats {
615         u64 tx_bytes;
616         u64 tx_zero_rexmt;
617         u64 tx_one_rexmt;
618         u64 tx_many_rexmt;
619         u64 tx_late_collision;
620         u64 tx_fifo_errors;
621         u64 tx_carrier_errors;
622         u64 tx_excess_deferral;
623         u64 tx_retry_error;
624         u64 tx_deferral;
625         u64 tx_packets;
626         u64 tx_pause;
627         u64 rx_frame_error;
628         u64 rx_extra_byte;
629         u64 rx_late_collision;
630         u64 rx_runt;
631         u64 rx_frame_too_long;
632         u64 rx_over_errors;
633         u64 rx_crc_errors;
634         u64 rx_frame_align_error;
635         u64 rx_length_error;
636         u64 rx_unicast;
637         u64 rx_multicast;
638         u64 rx_broadcast;
639         u64 rx_bytes;
640         u64 rx_pause;
641         u64 rx_drop_frame;
642         u64 rx_packets;
643         u64 rx_errors_total;
644 };
645
646 /* diagnostics */
647 #define NV_TEST_COUNT_BASE 3
648 #define NV_TEST_COUNT_EXTENDED 4
649
650 static const struct nv_ethtool_str nv_etests_str[] = {
651         { "link      (online/offline)" },
652         { "register  (offline)       " },
653         { "interrupt (offline)       " },
654         { "loopback  (offline)       " }
655 };
656
657 struct register_test {
658         __le32 reg;
659         __le32 mask;
660 };
661
662 static const struct register_test nv_registers_test[] = {
663         { NvRegUnknownSetupReg6, 0x01 },
664         { NvRegMisc1, 0x03c },
665         { NvRegOffloadConfig, 0x03ff },
666         { NvRegMulticastAddrA, 0xffffffff },
667         { NvRegTxWatermark, 0x0ff },
668         { NvRegWakeUpFlags, 0x07777 },
669         { 0,0 }
670 };
671
672 /*
673  * SMP locking:
674  * All hardware access under dev->priv->lock, except the performance
675  * critical parts:
676  * - rx is (pseudo-) lockless: it relies on the single-threading provided
677  *      by the arch code for interrupts.
678  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
679  *      needs dev->priv->lock :-(
680  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
681  */
682
683 /* in dev: base, irq */
684 struct fe_priv {
685         spinlock_t lock;
686
687         /* General data:
688          * Locking: spin_lock(&np->lock); */
689         struct net_device_stats stats;
690         struct nv_ethtool_stats estats;
691         int in_shutdown;
692         u32 linkspeed;
693         int duplex;
694         int autoneg;
695         int fixed_mode;
696         int phyaddr;
697         int wolenabled;
698         unsigned int phy_oui;
699         u16 gigabit;
700         int intr_test;
701
702         /* General data: RO fields */
703         dma_addr_t ring_addr;
704         struct pci_dev *pci_dev;
705         u32 orig_mac[2];
706         u32 irqmask;
707         u32 desc_ver;
708         u32 txrxctl_bits;
709         u32 vlanctl_bits;
710         u32 driver_data;
711         u32 register_size;
712
713         void __iomem *base;
714
715         /* rx specific fields.
716          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
717          */
718         union ring_type rx_ring;
719         unsigned int cur_rx, refill_rx;
720         struct sk_buff **rx_skbuff;
721         dma_addr_t *rx_dma;
722         unsigned int rx_buf_sz;
723         unsigned int pkt_limit;
724         struct timer_list oom_kick;
725         struct timer_list nic_poll;
726         struct timer_list stats_poll;
727         u32 nic_poll_irq;
728         int rx_ring_size;
729
730         /* media detection workaround.
731          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
732          */
733         int need_linktimer;
734         unsigned long link_timeout;
735         /*
736          * tx specific fields.
737          */
738         union ring_type tx_ring;
739         unsigned int next_tx, nic_tx;
740         struct sk_buff **tx_skbuff;
741         dma_addr_t *tx_dma;
742         unsigned int *tx_dma_len;
743         u32 tx_flags;
744         int tx_ring_size;
745         int tx_limit_start;
746         int tx_limit_stop;
747
748         /* vlan fields */
749         struct vlan_group *vlangrp;
750
751         /* msi/msi-x fields */
752         u32 msi_flags;
753         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
754
755         /* flow control */
756         u32 pause_flags;
757 };
758
759 /*
760  * Maximum number of loops until we assume that a bit in the irq mask
761  * is stuck. Overridable with module param.
762  */
763 static int max_interrupt_work = 5;
764
765 /*
766  * Optimization can be either throuput mode or cpu mode
767  *
768  * Throughput Mode: Every tx and rx packet will generate an interrupt.
769  * CPU Mode: Interrupts are controlled by a timer.
770  */
771 enum {
772         NV_OPTIMIZATION_MODE_THROUGHPUT,
773         NV_OPTIMIZATION_MODE_CPU
774 };
775 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
776
777 /*
778  * Poll interval for timer irq
779  *
780  * This interval determines how frequent an interrupt is generated.
781  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
782  * Min = 0, and Max = 65535
783  */
784 static int poll_interval = -1;
785
786 /*
787  * MSI interrupts
788  */
789 enum {
790         NV_MSI_INT_DISABLED,
791         NV_MSI_INT_ENABLED
792 };
793 static int msi = NV_MSI_INT_ENABLED;
794
795 /*
796  * MSIX interrupts
797  */
798 enum {
799         NV_MSIX_INT_DISABLED,
800         NV_MSIX_INT_ENABLED
801 };
802 static int msix = NV_MSIX_INT_ENABLED;
803
804 /*
805  * DMA 64bit
806  */
807 enum {
808         NV_DMA_64BIT_DISABLED,
809         NV_DMA_64BIT_ENABLED
810 };
811 static int dma_64bit = NV_DMA_64BIT_ENABLED;
812
813 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
814 {
815         return netdev_priv(dev);
816 }
817
818 static inline u8 __iomem *get_hwbase(struct net_device *dev)
819 {
820         return ((struct fe_priv *)netdev_priv(dev))->base;
821 }
822
823 static inline void pci_push(u8 __iomem *base)
824 {
825         /* force out pending posted writes */
826         readl(base);
827 }
828
829 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
830 {
831         return le32_to_cpu(prd->flaglen)
832                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
833 }
834
835 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
836 {
837         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
838 }
839
840 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
841                                 int delay, int delaymax, const char *msg)
842 {
843         u8 __iomem *base = get_hwbase(dev);
844
845         pci_push(base);
846         do {
847                 udelay(delay);
848                 delaymax -= delay;
849                 if (delaymax < 0) {
850                         if (msg)
851                                 printk(msg);
852                         return 1;
853                 }
854         } while ((readl(base + offset) & mask) != target);
855         return 0;
856 }
857
858 #define NV_SETUP_RX_RING 0x01
859 #define NV_SETUP_TX_RING 0x02
860
861 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
862 {
863         struct fe_priv *np = get_nvpriv(dev);
864         u8 __iomem *base = get_hwbase(dev);
865
866         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
867                 if (rxtx_flags & NV_SETUP_RX_RING) {
868                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
869                 }
870                 if (rxtx_flags & NV_SETUP_TX_RING) {
871                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
872                 }
873         } else {
874                 if (rxtx_flags & NV_SETUP_RX_RING) {
875                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
876                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
877                 }
878                 if (rxtx_flags & NV_SETUP_TX_RING) {
879                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
880                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
881                 }
882         }
883 }
884
885 static void free_rings(struct net_device *dev)
886 {
887         struct fe_priv *np = get_nvpriv(dev);
888
889         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
890                 if (np->rx_ring.orig)
891                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
892                                             np->rx_ring.orig, np->ring_addr);
893         } else {
894                 if (np->rx_ring.ex)
895                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
896                                             np->rx_ring.ex, np->ring_addr);
897         }
898         if (np->rx_skbuff)
899                 kfree(np->rx_skbuff);
900         if (np->rx_dma)
901                 kfree(np->rx_dma);
902         if (np->tx_skbuff)
903                 kfree(np->tx_skbuff);
904         if (np->tx_dma)
905                 kfree(np->tx_dma);
906         if (np->tx_dma_len)
907                 kfree(np->tx_dma_len);
908 }
909
910 static int using_multi_irqs(struct net_device *dev)
911 {
912         struct fe_priv *np = get_nvpriv(dev);
913
914         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
915             ((np->msi_flags & NV_MSI_X_ENABLED) &&
916              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
917                 return 0;
918         else
919                 return 1;
920 }
921
922 static void nv_enable_irq(struct net_device *dev)
923 {
924         struct fe_priv *np = get_nvpriv(dev);
925
926         if (!using_multi_irqs(dev)) {
927                 if (np->msi_flags & NV_MSI_X_ENABLED)
928                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
929                 else
930                         enable_irq(dev->irq);
931         } else {
932                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
933                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
934                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
935         }
936 }
937
938 static void nv_disable_irq(struct net_device *dev)
939 {
940         struct fe_priv *np = get_nvpriv(dev);
941
942         if (!using_multi_irqs(dev)) {
943                 if (np->msi_flags & NV_MSI_X_ENABLED)
944                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
945                 else
946                         disable_irq(dev->irq);
947         } else {
948                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
949                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
950                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
951         }
952 }
953
954 /* In MSIX mode, a write to irqmask behaves as XOR */
955 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
956 {
957         u8 __iomem *base = get_hwbase(dev);
958
959         writel(mask, base + NvRegIrqMask);
960 }
961
962 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
963 {
964         struct fe_priv *np = get_nvpriv(dev);
965         u8 __iomem *base = get_hwbase(dev);
966
967         if (np->msi_flags & NV_MSI_X_ENABLED) {
968                 writel(mask, base + NvRegIrqMask);
969         } else {
970                 if (np->msi_flags & NV_MSI_ENABLED)
971                         writel(0, base + NvRegMSIIrqMask);
972                 writel(0, base + NvRegIrqMask);
973         }
974 }
975
976 #define MII_READ        (-1)
977 /* mii_rw: read/write a register on the PHY.
978  *
979  * Caller must guarantee serialization
980  */
981 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
982 {
983         u8 __iomem *base = get_hwbase(dev);
984         u32 reg;
985         int retval;
986
987         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
988
989         reg = readl(base + NvRegMIIControl);
990         if (reg & NVREG_MIICTL_INUSE) {
991                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
992                 udelay(NV_MIIBUSY_DELAY);
993         }
994
995         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
996         if (value != MII_READ) {
997                 writel(value, base + NvRegMIIData);
998                 reg |= NVREG_MIICTL_WRITE;
999         }
1000         writel(reg, base + NvRegMIIControl);
1001
1002         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1003                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1004                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1005                                 dev->name, miireg, addr);
1006                 retval = -1;
1007         } else if (value != MII_READ) {
1008                 /* it was a write operation - fewer failures are detectable */
1009                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1010                                 dev->name, value, miireg, addr);
1011                 retval = 0;
1012         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1013                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1014                                 dev->name, miireg, addr);
1015                 retval = -1;
1016         } else {
1017                 retval = readl(base + NvRegMIIData);
1018                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1019                                 dev->name, miireg, addr, retval);
1020         }
1021
1022         return retval;
1023 }
1024
1025 static int phy_reset(struct net_device *dev)
1026 {
1027         struct fe_priv *np = netdev_priv(dev);
1028         u32 miicontrol;
1029         unsigned int tries = 0;
1030
1031         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1032         miicontrol |= BMCR_RESET;
1033         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1034                 return -1;
1035         }
1036
1037         /* wait for 500ms */
1038         msleep(500);
1039
1040         /* must wait till reset is deasserted */
1041         while (miicontrol & BMCR_RESET) {
1042                 msleep(10);
1043                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1044                 /* FIXME: 100 tries seem excessive */
1045                 if (tries++ > 100)
1046                         return -1;
1047         }
1048         return 0;
1049 }
1050
1051 static int phy_init(struct net_device *dev)
1052 {
1053         struct fe_priv *np = get_nvpriv(dev);
1054         u8 __iomem *base = get_hwbase(dev);
1055         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1056
1057         /* set advertise register */
1058         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1059         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1060         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1061                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1062                 return PHY_ERROR;
1063         }
1064
1065         /* get phy interface type */
1066         phyinterface = readl(base + NvRegPhyInterface);
1067
1068         /* see if gigabit phy */
1069         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1070         if (mii_status & PHY_GIGABIT) {
1071                 np->gigabit = PHY_GIGABIT;
1072                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1073                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1074                 if (phyinterface & PHY_RGMII)
1075                         mii_control_1000 |= ADVERTISE_1000FULL;
1076                 else
1077                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1078
1079                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1080                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1081                         return PHY_ERROR;
1082                 }
1083         }
1084         else
1085                 np->gigabit = 0;
1086
1087         /* reset the phy */
1088         if (phy_reset(dev)) {
1089                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1090                 return PHY_ERROR;
1091         }
1092
1093         /* phy vendor specific configuration */
1094         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1095                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1096                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1097                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1098                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1099                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1100                         return PHY_ERROR;
1101                 }
1102                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1103                 phy_reserved |= PHY_INIT5;
1104                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1105                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1106                         return PHY_ERROR;
1107                 }
1108         }
1109         if (np->phy_oui == PHY_OUI_CICADA) {
1110                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1111                 phy_reserved |= PHY_INIT6;
1112                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1113                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1114                         return PHY_ERROR;
1115                 }
1116         }
1117         /* some phys clear out pause advertisment on reset, set it back */
1118         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1119
1120         /* restart auto negotiation */
1121         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1122         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1123         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1124                 return PHY_ERROR;
1125         }
1126
1127         return 0;
1128 }
1129
1130 static void nv_start_rx(struct net_device *dev)
1131 {
1132         struct fe_priv *np = netdev_priv(dev);
1133         u8 __iomem *base = get_hwbase(dev);
1134
1135         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1136         /* Already running? Stop it. */
1137         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1138                 writel(0, base + NvRegReceiverControl);
1139                 pci_push(base);
1140         }
1141         writel(np->linkspeed, base + NvRegLinkSpeed);
1142         pci_push(base);
1143         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1144         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1145                                 dev->name, np->duplex, np->linkspeed);
1146         pci_push(base);
1147 }
1148
1149 static void nv_stop_rx(struct net_device *dev)
1150 {
1151         u8 __iomem *base = get_hwbase(dev);
1152
1153         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1154         writel(0, base + NvRegReceiverControl);
1155         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1156                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1157                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1158
1159         udelay(NV_RXSTOP_DELAY2);
1160         writel(0, base + NvRegLinkSpeed);
1161 }
1162
1163 static void nv_start_tx(struct net_device *dev)
1164 {
1165         u8 __iomem *base = get_hwbase(dev);
1166
1167         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1168         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1169         pci_push(base);
1170 }
1171
1172 static void nv_stop_tx(struct net_device *dev)
1173 {
1174         u8 __iomem *base = get_hwbase(dev);
1175
1176         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1177         writel(0, base + NvRegTransmitterControl);
1178         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1179                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1180                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1181
1182         udelay(NV_TXSTOP_DELAY2);
1183         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
1184 }
1185
1186 static void nv_txrx_reset(struct net_device *dev)
1187 {
1188         struct fe_priv *np = netdev_priv(dev);
1189         u8 __iomem *base = get_hwbase(dev);
1190
1191         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1192         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1193         pci_push(base);
1194         udelay(NV_TXRX_RESET_DELAY);
1195         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1196         pci_push(base);
1197 }
1198
1199 static void nv_mac_reset(struct net_device *dev)
1200 {
1201         struct fe_priv *np = netdev_priv(dev);
1202         u8 __iomem *base = get_hwbase(dev);
1203
1204         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1205         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1206         pci_push(base);
1207         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1208         pci_push(base);
1209         udelay(NV_MAC_RESET_DELAY);
1210         writel(0, base + NvRegMacReset);
1211         pci_push(base);
1212         udelay(NV_MAC_RESET_DELAY);
1213         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1214         pci_push(base);
1215 }
1216
1217 /*
1218  * nv_get_stats: dev->get_stats function
1219  * Get latest stats value from the nic.
1220  * Called with read_lock(&dev_base_lock) held for read -
1221  * only synchronized against unregister_netdevice.
1222  */
1223 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1224 {
1225         struct fe_priv *np = netdev_priv(dev);
1226
1227         /* It seems that the nic always generates interrupts and doesn't
1228          * accumulate errors internally. Thus the current values in np->stats
1229          * are already up to date.
1230          */
1231         return &np->stats;
1232 }
1233
1234 /*
1235  * nv_alloc_rx: fill rx ring entries.
1236  * Return 1 if the allocations for the skbs failed and the
1237  * rx engine is without Available descriptors
1238  */
1239 static int nv_alloc_rx(struct net_device *dev)
1240 {
1241         struct fe_priv *np = netdev_priv(dev);
1242         unsigned int refill_rx = np->refill_rx;
1243         int nr;
1244
1245         while (np->cur_rx != refill_rx) {
1246                 struct sk_buff *skb;
1247
1248                 nr = refill_rx % np->rx_ring_size;
1249                 if (np->rx_skbuff[nr] == NULL) {
1250
1251                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1252                         if (!skb)
1253                                 break;
1254
1255                         skb->dev = dev;
1256                         np->rx_skbuff[nr] = skb;
1257                 } else {
1258                         skb = np->rx_skbuff[nr];
1259                 }
1260                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1261                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1262                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1263                         np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
1264                         wmb();
1265                         np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1266                 } else {
1267                         np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1268                         np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1269                         wmb();
1270                         np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1271                 }
1272                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1273                                         dev->name, refill_rx);
1274                 refill_rx++;
1275         }
1276         np->refill_rx = refill_rx;
1277         if (np->cur_rx - refill_rx == np->rx_ring_size)
1278                 return 1;
1279         return 0;
1280 }
1281
1282 static void nv_do_rx_refill(unsigned long data)
1283 {
1284         struct net_device *dev = (struct net_device *) data;
1285         struct fe_priv *np = netdev_priv(dev);
1286
1287         if (!using_multi_irqs(dev)) {
1288                 if (np->msi_flags & NV_MSI_X_ENABLED)
1289                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1290                 else
1291                         disable_irq(dev->irq);
1292         } else {
1293                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1294         }
1295         if (nv_alloc_rx(dev)) {
1296                 spin_lock_irq(&np->lock);
1297                 if (!np->in_shutdown)
1298                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1299                 spin_unlock_irq(&np->lock);
1300         }
1301         if (!using_multi_irqs(dev)) {
1302                 if (np->msi_flags & NV_MSI_X_ENABLED)
1303                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1304                 else
1305                         enable_irq(dev->irq);
1306         } else {
1307                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1308         }
1309 }
1310
1311 static void nv_init_rx(struct net_device *dev)
1312 {
1313         struct fe_priv *np = netdev_priv(dev);
1314         int i;
1315
1316         np->cur_rx = np->rx_ring_size;
1317         np->refill_rx = 0;
1318         for (i = 0; i < np->rx_ring_size; i++)
1319                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1320                         np->rx_ring.orig[i].flaglen = 0;
1321                 else
1322                         np->rx_ring.ex[i].flaglen = 0;
1323 }
1324
1325 static void nv_init_tx(struct net_device *dev)
1326 {
1327         struct fe_priv *np = netdev_priv(dev);
1328         int i;
1329
1330         np->next_tx = np->nic_tx = 0;
1331         for (i = 0; i < np->tx_ring_size; i++) {
1332                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1333                         np->tx_ring.orig[i].flaglen = 0;
1334                 else
1335                         np->tx_ring.ex[i].flaglen = 0;
1336                 np->tx_skbuff[i] = NULL;
1337                 np->tx_dma[i] = 0;
1338         }
1339 }
1340
1341 static int nv_init_ring(struct net_device *dev)
1342 {
1343         nv_init_tx(dev);
1344         nv_init_rx(dev);
1345         return nv_alloc_rx(dev);
1346 }
1347
1348 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1349 {
1350         struct fe_priv *np = netdev_priv(dev);
1351
1352         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1353                 dev->name, skbnr);
1354
1355         if (np->tx_dma[skbnr]) {
1356                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1357                                np->tx_dma_len[skbnr],
1358                                PCI_DMA_TODEVICE);
1359                 np->tx_dma[skbnr] = 0;
1360         }
1361
1362         if (np->tx_skbuff[skbnr]) {
1363                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1364                 np->tx_skbuff[skbnr] = NULL;
1365                 return 1;
1366         } else {
1367                 return 0;
1368         }
1369 }
1370
1371 static void nv_drain_tx(struct net_device *dev)
1372 {
1373         struct fe_priv *np = netdev_priv(dev);
1374         unsigned int i;
1375
1376         for (i = 0; i < np->tx_ring_size; i++) {
1377                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1378                         np->tx_ring.orig[i].flaglen = 0;
1379                 else
1380                         np->tx_ring.ex[i].flaglen = 0;
1381                 if (nv_release_txskb(dev, i))
1382                         np->stats.tx_dropped++;
1383         }
1384 }
1385
1386 static void nv_drain_rx(struct net_device *dev)
1387 {
1388         struct fe_priv *np = netdev_priv(dev);
1389         int i;
1390         for (i = 0; i < np->rx_ring_size; i++) {
1391                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1392                         np->rx_ring.orig[i].flaglen = 0;
1393                 else
1394                         np->rx_ring.ex[i].flaglen = 0;
1395                 wmb();
1396                 if (np->rx_skbuff[i]) {
1397                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1398                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1399                                                 PCI_DMA_FROMDEVICE);
1400                         dev_kfree_skb(np->rx_skbuff[i]);
1401                         np->rx_skbuff[i] = NULL;
1402                 }
1403         }
1404 }
1405
1406 static void drain_ring(struct net_device *dev)
1407 {
1408         nv_drain_tx(dev);
1409         nv_drain_rx(dev);
1410 }
1411
1412 /*
1413  * nv_start_xmit: dev->hard_start_xmit function
1414  * Called with netif_tx_lock held.
1415  */
1416 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1417 {
1418         struct fe_priv *np = netdev_priv(dev);
1419         u32 tx_flags = 0;
1420         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1421         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1422         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1423         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1424         unsigned int i;
1425         u32 offset = 0;
1426         u32 bcnt;
1427         u32 size = skb->len-skb->data_len;
1428         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1429         u32 tx_flags_vlan = 0;
1430
1431         /* add fragments to entries count */
1432         for (i = 0; i < fragments; i++) {
1433                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1434                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1435         }
1436
1437         spin_lock_irq(&np->lock);
1438
1439         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1440                 spin_unlock_irq(&np->lock);
1441                 netif_stop_queue(dev);
1442                 return NETDEV_TX_BUSY;
1443         }
1444
1445         /* setup the header buffer */
1446         do {
1447                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1448                 nr = (nr + 1) % np->tx_ring_size;
1449
1450                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1451                                                 PCI_DMA_TODEVICE);
1452                 np->tx_dma_len[nr] = bcnt;
1453
1454                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1455                         np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1456                         np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1457                 } else {
1458                         np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1459                         np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1460                         np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1461                 }
1462                 tx_flags = np->tx_flags;
1463                 offset += bcnt;
1464                 size -= bcnt;
1465         } while (size);
1466
1467         /* setup the fragments */
1468         for (i = 0; i < fragments; i++) {
1469                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1470                 u32 size = frag->size;
1471                 offset = 0;
1472
1473                 do {
1474                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1475                         nr = (nr + 1) % np->tx_ring_size;
1476
1477                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1478                                                       PCI_DMA_TODEVICE);
1479                         np->tx_dma_len[nr] = bcnt;
1480
1481                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1482                                 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1483                                 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1484                         } else {
1485                                 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1486                                 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1487                                 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1488                         }
1489                         offset += bcnt;
1490                         size -= bcnt;
1491                 } while (size);
1492         }
1493
1494         /* set last fragment flag  */
1495         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1496                 np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1497         } else {
1498                 np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1499         }
1500
1501         np->tx_skbuff[nr] = skb;
1502
1503 #ifdef NETIF_F_TSO
1504         if (skb_is_gso(skb))
1505                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1506         else
1507 #endif
1508         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1509
1510         /* vlan tag */
1511         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1512                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1513         }
1514
1515         /* set tx flags */
1516         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1517                 np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1518         } else {
1519                 np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
1520                 np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1521         }
1522
1523         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1524                 dev->name, np->next_tx, entries, tx_flags_extra);
1525         {
1526                 int j;
1527                 for (j=0; j<64; j++) {
1528                         if ((j%16) == 0)
1529                                 dprintk("\n%03x:", j);
1530                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1531                 }
1532                 dprintk("\n");
1533         }
1534
1535         np->next_tx += entries;
1536
1537         dev->trans_start = jiffies;
1538         spin_unlock_irq(&np->lock);
1539         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1540         pci_push(get_hwbase(dev));
1541         return NETDEV_TX_OK;
1542 }
1543
1544 /*
1545  * nv_tx_done: check for completed packets, release the skbs.
1546  *
1547  * Caller must own np->lock.
1548  */
1549 static void nv_tx_done(struct net_device *dev)
1550 {
1551         struct fe_priv *np = netdev_priv(dev);
1552         u32 flags;
1553         unsigned int i;
1554         struct sk_buff *skb;
1555
1556         while (np->nic_tx != np->next_tx) {
1557                 i = np->nic_tx % np->tx_ring_size;
1558
1559                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1560                         flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
1561                 else
1562                         flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
1563
1564                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
1565                                         dev->name, np->nic_tx, flags);
1566                 if (flags & NV_TX_VALID)
1567                         break;
1568                 if (np->desc_ver == DESC_VER_1) {
1569                         if (flags & NV_TX_LASTPACKET) {
1570                                 skb = np->tx_skbuff[i];
1571                                 if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1572                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1573                                         if (flags & NV_TX_UNDERFLOW)
1574                                                 np->stats.tx_fifo_errors++;
1575                                         if (flags & NV_TX_CARRIERLOST)
1576                                                 np->stats.tx_carrier_errors++;
1577                                         np->stats.tx_errors++;
1578                                 } else {
1579                                         np->stats.tx_packets++;
1580                                         np->stats.tx_bytes += skb->len;
1581                                 }
1582                         }
1583                 } else {
1584                         if (flags & NV_TX2_LASTPACKET) {
1585                                 skb = np->tx_skbuff[i];
1586                                 if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1587                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1588                                         if (flags & NV_TX2_UNDERFLOW)
1589                                                 np->stats.tx_fifo_errors++;
1590                                         if (flags & NV_TX2_CARRIERLOST)
1591                                                 np->stats.tx_carrier_errors++;
1592                                         np->stats.tx_errors++;
1593                                 } else {
1594                                         np->stats.tx_packets++;
1595                                         np->stats.tx_bytes += skb->len;
1596                                 }
1597                         }
1598                 }
1599                 nv_release_txskb(dev, i);
1600                 np->nic_tx++;
1601         }
1602         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1603                 netif_wake_queue(dev);
1604 }
1605
1606 /*
1607  * nv_tx_timeout: dev->tx_timeout function
1608  * Called with netif_tx_lock held.
1609  */
1610 static void nv_tx_timeout(struct net_device *dev)
1611 {
1612         struct fe_priv *np = netdev_priv(dev);
1613         u8 __iomem *base = get_hwbase(dev);
1614         u32 status;
1615
1616         if (np->msi_flags & NV_MSI_X_ENABLED)
1617                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1618         else
1619                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1620
1621         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1622
1623         {
1624                 int i;
1625
1626                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1627                                 dev->name, (unsigned long)np->ring_addr,
1628                                 np->next_tx, np->nic_tx);
1629                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1630                 for (i=0;i<=np->register_size;i+= 32) {
1631                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1632                                         i,
1633                                         readl(base + i + 0), readl(base + i + 4),
1634                                         readl(base + i + 8), readl(base + i + 12),
1635                                         readl(base + i + 16), readl(base + i + 20),
1636                                         readl(base + i + 24), readl(base + i + 28));
1637                 }
1638                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1639                 for (i=0;i<np->tx_ring_size;i+= 4) {
1640                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1641                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1642                                        i,
1643                                        le32_to_cpu(np->tx_ring.orig[i].buf),
1644                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
1645                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
1646                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1647                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
1648                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1649                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
1650                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1651                         } else {
1652                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1653                                        i,
1654                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1655                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
1656                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
1657                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1658                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1659                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1660                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1661                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1662                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1663                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1664                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1665                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1666                         }
1667                 }
1668         }
1669
1670         spin_lock_irq(&np->lock);
1671
1672         /* 1) stop tx engine */
1673         nv_stop_tx(dev);
1674
1675         /* 2) check that the packets were not sent already: */
1676         nv_tx_done(dev);
1677
1678         /* 3) if there are dead entries: clear everything */
1679         if (np->next_tx != np->nic_tx) {
1680                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1681                 nv_drain_tx(dev);
1682                 np->next_tx = np->nic_tx = 0;
1683                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1684                 netif_wake_queue(dev);
1685         }
1686
1687         /* 4) restart tx engine */
1688         nv_start_tx(dev);
1689         spin_unlock_irq(&np->lock);
1690 }
1691
1692 /*
1693  * Called when the nic notices a mismatch between the actual data len on the
1694  * wire and the len indicated in the 802 header
1695  */
1696 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1697 {
1698         int hdrlen;     /* length of the 802 header */
1699         int protolen;   /* length as stored in the proto field */
1700
1701         /* 1) calculate len according to header */
1702         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
1703                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1704                 hdrlen = VLAN_HLEN;
1705         } else {
1706                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1707                 hdrlen = ETH_HLEN;
1708         }
1709         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1710                                 dev->name, datalen, protolen, hdrlen);
1711         if (protolen > ETH_DATA_LEN)
1712                 return datalen; /* Value in proto field not a len, no checks possible */
1713
1714         protolen += hdrlen;
1715         /* consistency checks: */
1716         if (datalen > ETH_ZLEN) {
1717                 if (datalen >= protolen) {
1718                         /* more data on wire than in 802 header, trim of
1719                          * additional data.
1720                          */
1721                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1722                                         dev->name, protolen);
1723                         return protolen;
1724                 } else {
1725                         /* less data on wire than mentioned in header.
1726                          * Discard the packet.
1727                          */
1728                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1729                                         dev->name);
1730                         return -1;
1731                 }
1732         } else {
1733                 /* short packet. Accept only if 802 values are also short */
1734                 if (protolen > ETH_ZLEN) {
1735                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1736                                         dev->name);
1737                         return -1;
1738                 }
1739                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1740                                 dev->name, datalen);
1741                 return datalen;
1742         }
1743 }
1744
1745 static void nv_rx_process(struct net_device *dev)
1746 {
1747         struct fe_priv *np = netdev_priv(dev);
1748         u32 flags;
1749         u32 vlanflags = 0;
1750
1751         for (;;) {
1752                 struct sk_buff *skb;
1753                 int len;
1754                 int i;
1755                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1756                         break;  /* we scanned the whole ring - do not continue */
1757
1758                 i = np->cur_rx % np->rx_ring_size;
1759                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1760                         flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
1761                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1762                 } else {
1763                         flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
1764                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1765                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
1766                 }
1767
1768                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
1769                                         dev->name, np->cur_rx, flags);
1770
1771                 if (flags & NV_RX_AVAIL)
1772                         break;  /* still owned by hardware, */
1773
1774                 /*
1775                  * the packet is for us - immediately tear down the pci mapping.
1776                  * TODO: check if a prefetch of the first cacheline improves
1777                  * the performance.
1778                  */
1779                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1780                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1781                                 PCI_DMA_FROMDEVICE);
1782
1783                 {
1784                         int j;
1785                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
1786                         for (j=0; j<64; j++) {
1787                                 if ((j%16) == 0)
1788                                         dprintk("\n%03x:", j);
1789                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1790                         }
1791                         dprintk("\n");
1792                 }
1793                 /* look at what we actually got: */
1794                 if (np->desc_ver == DESC_VER_1) {
1795                         if (!(flags & NV_RX_DESCRIPTORVALID))
1796                                 goto next_pkt;
1797
1798                         if (flags & NV_RX_ERROR) {
1799                                 if (flags & NV_RX_MISSEDFRAME) {
1800                                         np->stats.rx_missed_errors++;
1801                                         np->stats.rx_errors++;
1802                                         goto next_pkt;
1803                                 }
1804                                 if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1805                                         np->stats.rx_errors++;
1806                                         goto next_pkt;
1807                                 }
1808                                 if (flags & NV_RX_CRCERR) {
1809                                         np->stats.rx_crc_errors++;
1810                                         np->stats.rx_errors++;
1811                                         goto next_pkt;
1812                                 }
1813                                 if (flags & NV_RX_OVERFLOW) {
1814                                         np->stats.rx_over_errors++;
1815                                         np->stats.rx_errors++;
1816                                         goto next_pkt;
1817                                 }
1818                                 if (flags & NV_RX_ERROR4) {
1819                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1820                                         if (len < 0) {
1821                                                 np->stats.rx_errors++;
1822                                                 goto next_pkt;
1823                                         }
1824                                 }
1825                                 /* framing errors are soft errors. */
1826                                 if (flags & NV_RX_FRAMINGERR) {
1827                                         if (flags & NV_RX_SUBSTRACT1) {
1828                                                 len--;
1829                                         }
1830                                 }
1831                         }
1832                 } else {
1833                         if (!(flags & NV_RX2_DESCRIPTORVALID))
1834                                 goto next_pkt;
1835
1836                         if (flags & NV_RX2_ERROR) {
1837                                 if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1838                                         np->stats.rx_errors++;
1839                                         goto next_pkt;
1840                                 }
1841                                 if (flags & NV_RX2_CRCERR) {
1842                                         np->stats.rx_crc_errors++;
1843                                         np->stats.rx_errors++;
1844                                         goto next_pkt;
1845                                 }
1846                                 if (flags & NV_RX2_OVERFLOW) {
1847                                         np->stats.rx_over_errors++;
1848                                         np->stats.rx_errors++;
1849                                         goto next_pkt;
1850                                 }
1851                                 if (flags & NV_RX2_ERROR4) {
1852                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1853                                         if (len < 0) {
1854                                                 np->stats.rx_errors++;
1855                                                 goto next_pkt;
1856                                         }
1857                                 }
1858                                 /* framing errors are soft errors */
1859                                 if (flags & NV_RX2_FRAMINGERR) {
1860                                         if (flags & NV_RX2_SUBSTRACT1) {
1861                                                 len--;
1862                                         }
1863                                 }
1864                         }
1865                         if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1866                                 flags &= NV_RX2_CHECKSUMMASK;
1867                                 if (flags == NV_RX2_CHECKSUMOK1 ||
1868                                     flags == NV_RX2_CHECKSUMOK2 ||
1869                                     flags == NV_RX2_CHECKSUMOK3) {
1870                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1871                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1872                                 } else {
1873                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1874                                 }
1875                         }
1876                 }
1877                 /* got a valid packet - forward it to the network core */
1878                 skb = np->rx_skbuff[i];
1879                 np->rx_skbuff[i] = NULL;
1880
1881                 skb_put(skb, len);
1882                 skb->protocol = eth_type_trans(skb, dev);
1883                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1884                                         dev->name, np->cur_rx, len, skb->protocol);
1885                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1886                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1887                 } else {
1888                         netif_rx(skb);
1889                 }
1890                 dev->last_rx = jiffies;
1891                 np->stats.rx_packets++;
1892                 np->stats.rx_bytes += len;
1893 next_pkt:
1894                 np->cur_rx++;
1895         }
1896 }
1897
1898 static void set_bufsize(struct net_device *dev)
1899 {
1900         struct fe_priv *np = netdev_priv(dev);
1901
1902         if (dev->mtu <= ETH_DATA_LEN)
1903                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1904         else
1905                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1906 }
1907
1908 /*
1909  * nv_change_mtu: dev->change_mtu function
1910  * Called with dev_base_lock held for read.
1911  */
1912 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1913 {
1914         struct fe_priv *np = netdev_priv(dev);
1915         int old_mtu;
1916
1917         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1918                 return -EINVAL;
1919
1920         old_mtu = dev->mtu;
1921         dev->mtu = new_mtu;
1922
1923         /* return early if the buffer sizes will not change */
1924         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1925                 return 0;
1926         if (old_mtu == new_mtu)
1927                 return 0;
1928
1929         /* synchronized against open : rtnl_lock() held by caller */
1930         if (netif_running(dev)) {
1931                 u8 __iomem *base = get_hwbase(dev);
1932                 /*
1933                  * It seems that the nic preloads valid ring entries into an
1934                  * internal buffer. The procedure for flushing everything is
1935                  * guessed, there is probably a simpler approach.
1936                  * Changing the MTU is a rare event, it shouldn't matter.
1937                  */
1938                 nv_disable_irq(dev);
1939                 netif_tx_lock_bh(dev);
1940                 spin_lock(&np->lock);
1941                 /* stop engines */
1942                 nv_stop_rx(dev);
1943                 nv_stop_tx(dev);
1944                 nv_txrx_reset(dev);
1945                 /* drain rx queue */
1946                 nv_drain_rx(dev);
1947                 nv_drain_tx(dev);
1948                 /* reinit driver view of the rx queue */
1949                 set_bufsize(dev);
1950                 if (nv_init_ring(dev)) {
1951                         if (!np->in_shutdown)
1952                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1953                 }
1954                 /* reinit nic view of the rx queue */
1955                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1956                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1957                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1958                         base + NvRegRingSizes);
1959                 pci_push(base);
1960                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1961                 pci_push(base);
1962
1963                 /* restart rx engine */
1964                 nv_start_rx(dev);
1965                 nv_start_tx(dev);
1966                 spin_unlock(&np->lock);
1967                 netif_tx_unlock_bh(dev);
1968                 nv_enable_irq(dev);
1969         }
1970         return 0;
1971 }
1972
1973 static void nv_copy_mac_to_hw(struct net_device *dev)
1974 {
1975         u8 __iomem *base = get_hwbase(dev);
1976         u32 mac[2];
1977
1978         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1979                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1980         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1981
1982         writel(mac[0], base + NvRegMacAddrA);
1983         writel(mac[1], base + NvRegMacAddrB);
1984 }
1985
1986 /*
1987  * nv_set_mac_address: dev->set_mac_address function
1988  * Called with rtnl_lock() held.
1989  */
1990 static int nv_set_mac_address(struct net_device *dev, void *addr)
1991 {
1992         struct fe_priv *np = netdev_priv(dev);
1993         struct sockaddr *macaddr = (struct sockaddr*)addr;
1994
1995         if (!is_valid_ether_addr(macaddr->sa_data))
1996                 return -EADDRNOTAVAIL;
1997
1998         /* synchronized against open : rtnl_lock() held by caller */
1999         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2000
2001         if (netif_running(dev)) {
2002                 netif_tx_lock_bh(dev);
2003                 spin_lock_irq(&np->lock);
2004
2005                 /* stop rx engine */
2006                 nv_stop_rx(dev);
2007
2008                 /* set mac address */
2009                 nv_copy_mac_to_hw(dev);
2010
2011                 /* restart rx engine */
2012                 nv_start_rx(dev);
2013                 spin_unlock_irq(&np->lock);
2014                 netif_tx_unlock_bh(dev);
2015         } else {
2016                 nv_copy_mac_to_hw(dev);
2017         }
2018         return 0;
2019 }
2020
2021 /*
2022  * nv_set_multicast: dev->set_multicast function
2023  * Called with netif_tx_lock held.
2024  */
2025 static void nv_set_multicast(struct net_device *dev)
2026 {
2027         struct fe_priv *np = netdev_priv(dev);
2028         u8 __iomem *base = get_hwbase(dev);
2029         u32 addr[2];
2030         u32 mask[2];
2031         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2032
2033         memset(addr, 0, sizeof(addr));
2034         memset(mask, 0, sizeof(mask));
2035
2036         if (dev->flags & IFF_PROMISC) {
2037                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2038                 pff |= NVREG_PFF_PROMISC;
2039         } else {
2040                 pff |= NVREG_PFF_MYADDR;
2041
2042                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2043                         u32 alwaysOff[2];
2044                         u32 alwaysOn[2];
2045
2046                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2047                         if (dev->flags & IFF_ALLMULTI) {
2048                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2049                         } else {
2050                                 struct dev_mc_list *walk;
2051
2052                                 walk = dev->mc_list;
2053                                 while (walk != NULL) {
2054                                         u32 a, b;
2055                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2056                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2057                                         alwaysOn[0] &= a;
2058                                         alwaysOff[0] &= ~a;
2059                                         alwaysOn[1] &= b;
2060                                         alwaysOff[1] &= ~b;
2061                                         walk = walk->next;
2062                                 }
2063                         }
2064                         addr[0] = alwaysOn[0];
2065                         addr[1] = alwaysOn[1];
2066                         mask[0] = alwaysOn[0] | alwaysOff[0];
2067                         mask[1] = alwaysOn[1] | alwaysOff[1];
2068                 }
2069         }
2070         addr[0] |= NVREG_MCASTADDRA_FORCE;
2071         pff |= NVREG_PFF_ALWAYS;
2072         spin_lock_irq(&np->lock);
2073         nv_stop_rx(dev);
2074         writel(addr[0], base + NvRegMulticastAddrA);
2075         writel(addr[1], base + NvRegMulticastAddrB);
2076         writel(mask[0], base + NvRegMulticastMaskA);
2077         writel(mask[1], base + NvRegMulticastMaskB);
2078         writel(pff, base + NvRegPacketFilterFlags);
2079         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2080                 dev->name);
2081         nv_start_rx(dev);
2082         spin_unlock_irq(&np->lock);
2083 }
2084
2085 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2086 {
2087         struct fe_priv *np = netdev_priv(dev);
2088         u8 __iomem *base = get_hwbase(dev);
2089
2090         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2091
2092         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2093                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2094                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2095                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2096                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2097                 } else {
2098                         writel(pff, base + NvRegPacketFilterFlags);
2099                 }
2100         }
2101         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2102                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2103                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2104                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2105                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2106                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2107                 } else {
2108                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2109                         writel(regmisc, base + NvRegMisc1);
2110                 }
2111         }
2112 }
2113
2114 /**
2115  * nv_update_linkspeed: Setup the MAC according to the link partner
2116  * @dev: Network device to be configured
2117  *
2118  * The function queries the PHY and checks if there is a link partner.
2119  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2120  * set to 10 MBit HD.
2121  *
2122  * The function returns 0 if there is no link partner and 1 if there is
2123  * a good link partner.
2124  */
2125 static int nv_update_linkspeed(struct net_device *dev)
2126 {
2127         struct fe_priv *np = netdev_priv(dev);
2128         u8 __iomem *base = get_hwbase(dev);
2129         int adv = 0;
2130         int lpa = 0;
2131         int adv_lpa, adv_pause, lpa_pause;
2132         int newls = np->linkspeed;
2133         int newdup = np->duplex;
2134         int mii_status;
2135         int retval = 0;
2136         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2137
2138         /* BMSR_LSTATUS is latched, read it twice:
2139          * we want the current value.
2140          */
2141         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2142         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2143
2144         if (!(mii_status & BMSR_LSTATUS)) {
2145                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2146                                 dev->name);
2147                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2148                 newdup = 0;
2149                 retval = 0;
2150                 goto set_speed;
2151         }
2152
2153         if (np->autoneg == 0) {
2154                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2155                                 dev->name, np->fixed_mode);
2156                 if (np->fixed_mode & LPA_100FULL) {
2157                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2158                         newdup = 1;
2159                 } else if (np->fixed_mode & LPA_100HALF) {
2160                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2161                         newdup = 0;
2162                 } else if (np->fixed_mode & LPA_10FULL) {
2163                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2164                         newdup = 1;
2165                 } else {
2166                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2167                         newdup = 0;
2168                 }
2169                 retval = 1;
2170                 goto set_speed;
2171         }
2172         /* check auto negotiation is complete */
2173         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2174                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2175                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2176                 newdup = 0;
2177                 retval = 0;
2178                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2179                 goto set_speed;
2180         }
2181
2182         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2183         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2184         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2185                                 dev->name, adv, lpa);
2186
2187         retval = 1;
2188         if (np->gigabit == PHY_GIGABIT) {
2189                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2190                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2191
2192                 if ((control_1000 & ADVERTISE_1000FULL) &&
2193                         (status_1000 & LPA_1000FULL)) {
2194                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2195                                 dev->name);
2196                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2197                         newdup = 1;
2198                         goto set_speed;
2199                 }
2200         }
2201
2202         /* FIXME: handle parallel detection properly */
2203         adv_lpa = lpa & adv;
2204         if (adv_lpa & LPA_100FULL) {
2205                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2206                 newdup = 1;
2207         } else if (adv_lpa & LPA_100HALF) {
2208                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2209                 newdup = 0;
2210         } else if (adv_lpa & LPA_10FULL) {
2211                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2212                 newdup = 1;
2213         } else if (adv_lpa & LPA_10HALF) {
2214                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2215                 newdup = 0;
2216         } else {
2217                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2218                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2219                 newdup = 0;
2220         }
2221
2222 set_speed:
2223         if (np->duplex == newdup && np->linkspeed == newls)
2224                 return retval;
2225
2226         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2227                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2228
2229         np->duplex = newdup;
2230         np->linkspeed = newls;
2231
2232         if (np->gigabit == PHY_GIGABIT) {
2233                 phyreg = readl(base + NvRegRandomSeed);
2234                 phyreg &= ~(0x3FF00);
2235                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2236                         phyreg |= NVREG_RNDSEED_FORCE3;
2237                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2238                         phyreg |= NVREG_RNDSEED_FORCE2;
2239                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2240                         phyreg |= NVREG_RNDSEED_FORCE;
2241                 writel(phyreg, base + NvRegRandomSeed);
2242         }
2243
2244         phyreg = readl(base + NvRegPhyInterface);
2245         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2246         if (np->duplex == 0)
2247                 phyreg |= PHY_HALF;
2248         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2249                 phyreg |= PHY_100;
2250         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2251                 phyreg |= PHY_1000;
2252         writel(phyreg, base + NvRegPhyInterface);
2253
2254         if (phyreg & PHY_RGMII) {
2255                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2256                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2257                 else
2258                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2259         } else {
2260                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2261         }
2262         writel(txreg, base + NvRegTxDeferral);
2263
2264         if (np->desc_ver == DESC_VER_1) {
2265                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2266         } else {
2267                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2268                         txreg = NVREG_TX_WM_DESC2_3_1000;
2269                 else
2270                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2271         }
2272         writel(txreg, base + NvRegTxWatermark);
2273
2274         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2275                 base + NvRegMisc1);
2276         pci_push(base);
2277         writel(np->linkspeed, base + NvRegLinkSpeed);
2278         pci_push(base);
2279
2280         pause_flags = 0;
2281         /* setup pause frame */
2282         if (np->duplex != 0) {
2283                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2284                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2285                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2286
2287                         switch (adv_pause) {
2288                         case ADVERTISE_PAUSE_CAP:
2289                                 if (lpa_pause & LPA_PAUSE_CAP) {
2290                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2291                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2292                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2293                                 }
2294                                 break;
2295                         case ADVERTISE_PAUSE_ASYM:
2296                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2297                                 {
2298                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2299                                 }
2300                                 break;
2301                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2302                                 if (lpa_pause & LPA_PAUSE_CAP)
2303                                 {
2304                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2305                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2306                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2307                                 }
2308                                 if (lpa_pause == LPA_PAUSE_ASYM)
2309                                 {
2310                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2311                                 }
2312                                 break;
2313                         }
2314                 } else {
2315                         pause_flags = np->pause_flags;
2316                 }
2317         }
2318         nv_update_pause(dev, pause_flags);
2319
2320         return retval;
2321 }
2322
2323 static void nv_linkchange(struct net_device *dev)
2324 {
2325         if (nv_update_linkspeed(dev)) {
2326                 if (!netif_carrier_ok(dev)) {
2327                         netif_carrier_on(dev);
2328                         printk(KERN_INFO "%s: link up.\n", dev->name);
2329                         nv_start_rx(dev);
2330                 }
2331         } else {
2332                 if (netif_carrier_ok(dev)) {
2333                         netif_carrier_off(dev);
2334                         printk(KERN_INFO "%s: link down.\n", dev->name);
2335                         nv_stop_rx(dev);
2336                 }
2337         }
2338 }
2339
2340 static void nv_link_irq(struct net_device *dev)
2341 {
2342         u8 __iomem *base = get_hwbase(dev);
2343         u32 miistat;
2344
2345         miistat = readl(base + NvRegMIIStatus);
2346         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2347         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2348
2349         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2350                 nv_linkchange(dev);
2351         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2352 }
2353
2354 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2355 {
2356         struct net_device *dev = (struct net_device *) data;
2357         struct fe_priv *np = netdev_priv(dev);
2358         u8 __iomem *base = get_hwbase(dev);
2359         u32 events;
2360         int i;
2361
2362         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2363
2364         for (i=0; ; i++) {
2365                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2366                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2367                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2368                 } else {
2369                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2370                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2371                 }
2372                 pci_push(base);
2373                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2374                 if (!(events & np->irqmask))
2375                         break;
2376
2377                 spin_lock(&np->lock);
2378                 nv_tx_done(dev);
2379                 spin_unlock(&np->lock);
2380
2381                 nv_rx_process(dev);
2382                 if (nv_alloc_rx(dev)) {
2383                         spin_lock(&np->lock);
2384                         if (!np->in_shutdown)
2385                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2386                         spin_unlock(&np->lock);
2387                 }
2388
2389                 if (events & NVREG_IRQ_LINK) {
2390                         spin_lock(&np->lock);
2391                         nv_link_irq(dev);
2392                         spin_unlock(&np->lock);
2393                 }
2394                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2395                         spin_lock(&np->lock);
2396                         nv_linkchange(dev);
2397                         spin_unlock(&np->lock);
2398                         np->link_timeout = jiffies + LINK_TIMEOUT;
2399                 }
2400                 if (events & (NVREG_IRQ_TX_ERR)) {
2401                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2402                                                 dev->name, events);
2403                 }
2404                 if (events & (NVREG_IRQ_UNKNOWN)) {
2405                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2406                                                 dev->name, events);
2407                 }
2408                 if (i > max_interrupt_work) {
2409                         spin_lock(&np->lock);
2410                         /* disable interrupts on the nic */
2411                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2412                                 writel(0, base + NvRegIrqMask);
2413                         else
2414                                 writel(np->irqmask, base + NvRegIrqMask);
2415                         pci_push(base);
2416
2417                         if (!np->in_shutdown) {
2418                                 np->nic_poll_irq = np->irqmask;
2419                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2420                         }
2421                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2422                         spin_unlock(&np->lock);
2423                         break;
2424                 }
2425
2426         }
2427         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2428
2429         return IRQ_RETVAL(i);
2430 }
2431
2432 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2433 {
2434         struct net_device *dev = (struct net_device *) data;
2435         struct fe_priv *np = netdev_priv(dev);
2436         u8 __iomem *base = get_hwbase(dev);
2437         u32 events;
2438         int i;
2439
2440         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2441
2442         for (i=0; ; i++) {
2443                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2444                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2445                 pci_push(base);
2446                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2447                 if (!(events & np->irqmask))
2448                         break;
2449
2450                 spin_lock_irq(&np->lock);
2451                 nv_tx_done(dev);
2452                 spin_unlock_irq(&np->lock);
2453
2454                 if (events & (NVREG_IRQ_TX_ERR)) {
2455                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2456                                                 dev->name, events);
2457                 }
2458                 if (i > max_interrupt_work) {
2459                         spin_lock_irq(&np->lock);
2460                         /* disable interrupts on the nic */
2461                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2462                         pci_push(base);
2463
2464                         if (!np->in_shutdown) {
2465                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2466                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2467                         }
2468                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2469                         spin_unlock_irq(&np->lock);
2470                         break;
2471                 }
2472
2473         }
2474         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2475
2476         return IRQ_RETVAL(i);
2477 }
2478
2479 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2480 {
2481         struct net_device *dev = (struct net_device *) data;
2482         struct fe_priv *np = netdev_priv(dev);
2483         u8 __iomem *base = get_hwbase(dev);
2484         u32 events;
2485         int i;
2486
2487         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2488
2489         for (i=0; ; i++) {
2490                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2491                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2492                 pci_push(base);
2493                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2494                 if (!(events & np->irqmask))
2495                         break;
2496
2497                 nv_rx_process(dev);
2498                 if (nv_alloc_rx(dev)) {
2499                         spin_lock_irq(&np->lock);
2500                         if (!np->in_shutdown)
2501                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2502                         spin_unlock_irq(&np->lock);
2503                 }
2504
2505                 if (i > max_interrupt_work) {
2506                         spin_lock_irq(&np->lock);
2507                         /* disable interrupts on the nic */
2508                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2509                         pci_push(base);
2510
2511                         if (!np->in_shutdown) {
2512                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2513                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2514                         }
2515                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2516                         spin_unlock_irq(&np->lock);
2517                         break;
2518                 }
2519
2520         }
2521         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2522
2523         return IRQ_RETVAL(i);
2524 }
2525
2526 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2527 {
2528         struct net_device *dev = (struct net_device *) data;
2529         struct fe_priv *np = netdev_priv(dev);
2530         u8 __iomem *base = get_hwbase(dev);
2531         u32 events;
2532         int i;
2533
2534         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2535
2536         for (i=0; ; i++) {
2537                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2538                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2539                 pci_push(base);
2540                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2541                 if (!(events & np->irqmask))
2542                         break;
2543
2544                 if (events & NVREG_IRQ_LINK) {
2545                         spin_lock_irq(&np->lock);
2546                         nv_link_irq(dev);
2547                         spin_unlock_irq(&np->lock);
2548                 }
2549                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2550                         spin_lock_irq(&np->lock);
2551                         nv_linkchange(dev);
2552                         spin_unlock_irq(&np->lock);
2553                         np->link_timeout = jiffies + LINK_TIMEOUT;
2554                 }
2555                 if (events & (NVREG_IRQ_UNKNOWN)) {
2556                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2557                                                 dev->name, events);
2558                 }
2559                 if (i > max_interrupt_work) {
2560                         spin_lock_irq(&np->lock);
2561                         /* disable interrupts on the nic */
2562                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2563                         pci_push(base);
2564
2565                         if (!np->in_shutdown) {
2566                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2567                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2568                         }
2569                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2570                         spin_unlock_irq(&np->lock);
2571                         break;
2572                 }
2573
2574         }
2575         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2576
2577         return IRQ_RETVAL(i);
2578 }
2579
2580 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2581 {
2582         struct net_device *dev = (struct net_device *) data;
2583         struct fe_priv *np = netdev_priv(dev);
2584         u8 __iomem *base = get_hwbase(dev);
2585         u32 events;
2586
2587         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2588
2589         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2590                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2591                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2592         } else {
2593                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2594                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2595         }
2596         pci_push(base);
2597         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2598         if (!(events & NVREG_IRQ_TIMER))
2599                 return IRQ_RETVAL(0);
2600
2601         spin_lock(&np->lock);
2602         np->intr_test = 1;
2603         spin_unlock(&np->lock);
2604
2605         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2606
2607         return IRQ_RETVAL(1);
2608 }
2609
2610 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2611 {
2612         u8 __iomem *base = get_hwbase(dev);
2613         int i;
2614         u32 msixmap = 0;
2615
2616         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2617          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2618          * the remaining 8 interrupts.
2619          */
2620         for (i = 0; i < 8; i++) {
2621                 if ((irqmask >> i) & 0x1) {
2622                         msixmap |= vector << (i << 2);
2623                 }
2624         }
2625         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2626
2627         msixmap = 0;
2628         for (i = 0; i < 8; i++) {
2629                 if ((irqmask >> (i + 8)) & 0x1) {
2630                         msixmap |= vector << (i << 2);
2631                 }
2632         }
2633         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2634 }
2635
2636 static int nv_request_irq(struct net_device *dev, int intr_test)
2637 {
2638         struct fe_priv *np = get_nvpriv(dev);
2639         u8 __iomem *base = get_hwbase(dev);
2640         int ret = 1;
2641         int i;
2642
2643         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2644                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2645                         np->msi_x_entry[i].entry = i;
2646                 }
2647                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2648                         np->msi_flags |= NV_MSI_X_ENABLED;
2649                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2650                                 /* Request irq for rx handling */
2651                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2652                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2653                                         pci_disable_msix(np->pci_dev);
2654                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2655                                         goto out_err;
2656                                 }
2657                                 /* Request irq for tx handling */
2658                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2659                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2660                                         pci_disable_msix(np->pci_dev);
2661                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2662                                         goto out_free_rx;
2663                                 }
2664                                 /* Request irq for link and timer handling */
2665                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2666                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2667                                         pci_disable_msix(np->pci_dev);
2668                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2669                                         goto out_free_tx;
2670                                 }
2671                                 /* map interrupts to their respective vector */
2672                                 writel(0, base + NvRegMSIXMap0);
2673                                 writel(0, base + NvRegMSIXMap1);
2674                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2675                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2676                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2677                         } else {
2678                                 /* Request irq for all interrupts */
2679                                 if ((!intr_test &&
2680                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2681                                     (intr_test &&
2682                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2683                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2684                                         pci_disable_msix(np->pci_dev);
2685                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2686                                         goto out_err;
2687                                 }
2688
2689                                 /* map interrupts to vector 0 */
2690                                 writel(0, base + NvRegMSIXMap0);
2691                                 writel(0, base + NvRegMSIXMap1);
2692                         }
2693                 }
2694         }
2695         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2696                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2697                         np->msi_flags |= NV_MSI_ENABLED;
2698                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2699                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2700                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2701                                 pci_disable_msi(np->pci_dev);
2702                                 np->msi_flags &= ~NV_MSI_ENABLED;
2703                                 goto out_err;
2704                         }
2705
2706                         /* map interrupts to vector 0 */
2707                         writel(0, base + NvRegMSIMap0);
2708                         writel(0, base + NvRegMSIMap1);
2709                         /* enable msi vector 0 */
2710                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2711                 }
2712         }
2713         if (ret != 0) {
2714                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2715                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2716                         goto out_err;
2717
2718         }
2719
2720         return 0;
2721 out_free_tx:
2722         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2723 out_free_rx:
2724         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2725 out_err:
2726         return 1;
2727 }
2728
2729 static void nv_free_irq(struct net_device *dev)
2730 {
2731         struct fe_priv *np = get_nvpriv(dev);
2732         int i;
2733
2734         if (np->msi_flags & NV_MSI_X_ENABLED) {
2735                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2736                         free_irq(np->msi_x_entry[i].vector, dev);
2737                 }
2738                 pci_disable_msix(np->pci_dev);
2739                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2740         } else {
2741                 free_irq(np->pci_dev->irq, dev);
2742                 if (np->msi_flags & NV_MSI_ENABLED) {
2743                         pci_disable_msi(np->pci_dev);
2744                         np->msi_flags &= ~NV_MSI_ENABLED;
2745                 }
2746         }
2747 }
2748
2749 static void nv_do_nic_poll(unsigned long data)
2750 {
2751         struct net_device *dev = (struct net_device *) data;
2752         struct fe_priv *np = netdev_priv(dev);
2753         u8 __iomem *base = get_hwbase(dev);
2754         u32 mask = 0;
2755
2756         /*
2757          * First disable irq(s) and then
2758          * reenable interrupts on the nic, we have to do this before calling
2759          * nv_nic_irq because that may decide to do otherwise
2760          */
2761
2762         if (!using_multi_irqs(dev)) {
2763                 if (np->msi_flags & NV_MSI_X_ENABLED)
2764                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2765                 else
2766                         disable_irq_lockdep(dev->irq);
2767                 mask = np->irqmask;
2768         } else {
2769                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2770                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2771                         mask |= NVREG_IRQ_RX_ALL;
2772                 }
2773                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2774                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2775                         mask |= NVREG_IRQ_TX_ALL;
2776                 }
2777                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2778                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2779                         mask |= NVREG_IRQ_OTHER;
2780                 }
2781         }
2782         np->nic_poll_irq = 0;
2783
2784         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2785
2786         writel(mask, base + NvRegIrqMask);
2787         pci_push(base);
2788
2789         if (!using_multi_irqs(dev)) {
2790                 nv_nic_irq(0, dev, NULL);
2791                 if (np->msi_flags & NV_MSI_X_ENABLED)
2792                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2793                 else
2794                         enable_irq_lockdep(dev->irq);
2795         } else {
2796                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2797                         nv_nic_irq_rx(0, dev, NULL);
2798                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2799                 }
2800                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2801                         nv_nic_irq_tx(0, dev, NULL);
2802                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2803                 }
2804                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2805                         nv_nic_irq_other(0, dev, NULL);
2806                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2807                 }
2808         }
2809 }
2810
2811 #ifdef CONFIG_NET_POLL_CONTROLLER
2812 static void nv_poll_controller(struct net_device *dev)
2813 {
2814         nv_do_nic_poll((unsigned long) dev);
2815 }
2816 #endif
2817
2818 static void nv_do_stats_poll(unsigned long data)
2819 {
2820         struct net_device *dev = (struct net_device *) data;
2821         struct fe_priv *np = netdev_priv(dev);
2822         u8 __iomem *base = get_hwbase(dev);
2823
2824         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2825         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2826         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2827         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2828         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2829         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2830         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2831         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2832         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2833         np->estats.tx_deferral += readl(base + NvRegTxDef);
2834         np->estats.tx_packets += readl(base + NvRegTxFrame);
2835         np->estats.tx_pause += readl(base + NvRegTxPause);
2836         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2837         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2838         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2839         np->estats.rx_runt += readl(base + NvRegRxRunt);
2840         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2841         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2842         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2843         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2844         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2845         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2846         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2847         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2848         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2849         np->estats.rx_pause += readl(base + NvRegRxPause);
2850         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2851         np->estats.rx_packets =
2852                 np->estats.rx_unicast +
2853                 np->estats.rx_multicast +
2854                 np->estats.rx_broadcast;
2855         np->estats.rx_errors_total =
2856                 np->estats.rx_crc_errors +
2857                 np->estats.rx_over_errors +
2858                 np->estats.rx_frame_error +
2859                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2860                 np->estats.rx_late_collision +
2861                 np->estats.rx_runt +
2862                 np->estats.rx_frame_too_long;
2863
2864         if (!np->in_shutdown)
2865                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2866 }
2867
2868 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2869 {
2870         struct fe_priv *np = netdev_priv(dev);
2871         strcpy(info->driver, "forcedeth");
2872         strcpy(info->version, FORCEDETH_VERSION);
2873         strcpy(info->bus_info, pci_name(np->pci_dev));
2874 }
2875
2876 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2877 {
2878         struct fe_priv *np = netdev_priv(dev);
2879         wolinfo->supported = WAKE_MAGIC;
2880
2881         spin_lock_irq(&np->lock);
2882         if (np->wolenabled)
2883                 wolinfo->wolopts = WAKE_MAGIC;
2884         spin_unlock_irq(&np->lock);
2885 }
2886
2887 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2888 {
2889         struct fe_priv *np = netdev_priv(dev);
2890         u8 __iomem *base = get_hwbase(dev);
2891         u32 flags = 0;
2892
2893         if (wolinfo->wolopts == 0) {
2894                 np->wolenabled = 0;
2895         } else if (wolinfo->wolopts & WAKE_MAGIC) {
2896                 np->wolenabled = 1;
2897                 flags = NVREG_WAKEUPFLAGS_ENABLE;
2898         }
2899         if (netif_running(dev)) {
2900                 spin_lock_irq(&np->lock);
2901                 writel(flags, base + NvRegWakeUpFlags);
2902                 spin_unlock_irq(&np->lock);
2903         }
2904         return 0;
2905 }
2906
2907 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2908 {
2909         struct fe_priv *np = netdev_priv(dev);
2910         int adv;
2911
2912         spin_lock_irq(&np->lock);
2913         ecmd->port = PORT_MII;
2914         if (!netif_running(dev)) {
2915                 /* We do not track link speed / duplex setting if the
2916                  * interface is disabled. Force a link check */
2917                 if (nv_update_linkspeed(dev)) {
2918                         if (!netif_carrier_ok(dev))
2919                                 netif_carrier_on(dev);
2920                 } else {
2921                         if (netif_carrier_ok(dev))
2922                                 netif_carrier_off(dev);
2923                 }
2924         }
2925
2926         if (netif_carrier_ok(dev)) {
2927                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2928                 case NVREG_LINKSPEED_10:
2929                         ecmd->speed = SPEED_10;
2930                         break;
2931                 case NVREG_LINKSPEED_100:
2932                         ecmd->speed = SPEED_100;
2933                         break;
2934                 case NVREG_LINKSPEED_1000:
2935                         ecmd->speed = SPEED_1000;
2936                         break;
2937                 }
2938                 ecmd->duplex = DUPLEX_HALF;
2939                 if (np->duplex)
2940                         ecmd->duplex = DUPLEX_FULL;
2941         } else {
2942                 ecmd->speed = -1;
2943                 ecmd->duplex = -1;
2944         }
2945
2946         ecmd->autoneg = np->autoneg;
2947
2948         ecmd->advertising = ADVERTISED_MII;
2949         if (np->autoneg) {
2950                 ecmd->advertising |= ADVERTISED_Autoneg;
2951                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2952                 if (adv & ADVERTISE_10HALF)
2953                         ecmd->advertising |= ADVERTISED_10baseT_Half;
2954                 if (adv & ADVERTISE_10FULL)
2955                         ecmd->advertising |= ADVERTISED_10baseT_Full;
2956                 if (adv & ADVERTISE_100HALF)
2957                         ecmd->advertising |= ADVERTISED_100baseT_Half;
2958                 if (adv & ADVERTISE_100FULL)
2959                         ecmd->advertising |= ADVERTISED_100baseT_Full;
2960                 if (np->gigabit == PHY_GIGABIT) {
2961                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2962                         if (adv & ADVERTISE_1000FULL)
2963                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2964                 }
2965         }
2966         ecmd->supported = (SUPPORTED_Autoneg |
2967                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2968                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2969                 SUPPORTED_MII);
2970         if (np->gigabit == PHY_GIGABIT)
2971                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2972
2973         ecmd->phy_address = np->phyaddr;
2974         ecmd->transceiver = XCVR_EXTERNAL;
2975
2976         /* ignore maxtxpkt, maxrxpkt for now */
2977         spin_unlock_irq(&np->lock);
2978         return 0;
2979 }
2980
2981 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2982 {
2983         struct fe_priv *np = netdev_priv(dev);
2984
2985         if (ecmd->port != PORT_MII)
2986                 return -EINVAL;
2987         if (ecmd->transceiver != XCVR_EXTERNAL)
2988                 return -EINVAL;
2989         if (ecmd->phy_address != np->phyaddr) {
2990                 /* TODO: support switching between multiple phys. Should be
2991                  * trivial, but not enabled due to lack of test hardware. */
2992                 return -EINVAL;
2993         }
2994         if (ecmd->autoneg == AUTONEG_ENABLE) {
2995                 u32 mask;
2996
2997                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2998                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2999                 if (np->gigabit == PHY_GIGABIT)
3000                         mask |= ADVERTISED_1000baseT_Full;
3001
3002                 if ((ecmd->advertising & mask) == 0)
3003                         return -EINVAL;
3004
3005         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3006                 /* Note: autonegotiation disable, speed 1000 intentionally
3007                  * forbidden - noone should need that. */
3008
3009                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3010                         return -EINVAL;
3011                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3012                         return -EINVAL;
3013         } else {
3014                 return -EINVAL;
3015         }
3016
3017         netif_carrier_off(dev);
3018         if (netif_running(dev)) {
3019                 nv_disable_irq(dev);
3020                 netif_tx_lock_bh(dev);
3021                 spin_lock(&np->lock);
3022                 /* stop engines */
3023                 nv_stop_rx(dev);
3024                 nv_stop_tx(dev);
3025                 spin_unlock(&np->lock);
3026                 netif_tx_unlock_bh(dev);
3027         }
3028
3029         if (ecmd->autoneg == AUTONEG_ENABLE) {
3030                 int adv, bmcr;
3031
3032                 np->autoneg = 1;
3033
3034                 /* advertise only what has been requested */
3035                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3036                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3037                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3038                         adv |= ADVERTISE_10HALF;
3039                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3040                         adv |= ADVERTISE_10FULL;
3041                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3042                         adv |= ADVERTISE_100HALF;
3043                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3044                         adv |= ADVERTISE_100FULL;
3045                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3046                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3047                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3048                         adv |=  ADVERTISE_PAUSE_ASYM;
3049                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3050
3051                 if (np->gigabit == PHY_GIGABIT) {
3052                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3053                         adv &= ~ADVERTISE_1000FULL;
3054                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3055                                 adv |= ADVERTISE_1000FULL;
3056                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3057                 }
3058
3059                 if (netif_running(dev))
3060                         printk(KERN_INFO "%s: link down.\n", dev->name);
3061                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3062                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3063                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3064
3065         } else {
3066                 int adv, bmcr;
3067
3068                 np->autoneg = 0;
3069
3070                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3071                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3072                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3073                         adv |= ADVERTISE_10HALF;
3074                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3075                         adv |= ADVERTISE_10FULL;
3076                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3077                         adv |= ADVERTISE_100HALF;
3078                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3079                         adv |= ADVERTISE_100FULL;
3080                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3081                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3082                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3083                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3084                 }
3085                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3086                         adv |=  ADVERTISE_PAUSE_ASYM;
3087                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3088                 }
3089                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3090                 np->fixed_mode = adv;
3091
3092                 if (np->gigabit == PHY_GIGABIT) {
3093                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3094                         adv &= ~ADVERTISE_1000FULL;
3095                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3096                 }
3097
3098                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3099                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3100                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3101                         bmcr |= BMCR_FULLDPLX;
3102                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3103                         bmcr |= BMCR_SPEED100;
3104                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3105                 if (np->phy_oui == PHY_OUI_MARVELL) {
3106                         /* reset the phy */
3107                         if (phy_reset(dev)) {
3108                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3109                                 return -EINVAL;
3110                         }
3111                 } else if (netif_running(dev)) {
3112                         /* Wait a bit and then reconfigure the nic. */
3113                         udelay(10);
3114                         nv_linkchange(dev);
3115                 }
3116         }
3117
3118         if (netif_running(dev)) {
3119                 nv_start_rx(dev);
3120                 nv_start_tx(dev);
3121                 nv_enable_irq(dev);
3122         }
3123
3124         return 0;
3125 }
3126
3127 #define FORCEDETH_REGS_VER      1
3128
3129 static int nv_get_regs_len(struct net_device *dev)
3130 {
3131         struct fe_priv *np = netdev_priv(dev);
3132         return np->register_size;
3133 }
3134
3135 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3136 {
3137         struct fe_priv *np = netdev_priv(dev);
3138         u8 __iomem *base = get_hwbase(dev);
3139         u32 *rbuf = buf;
3140         int i;
3141
3142         regs->version = FORCEDETH_REGS_VER;
3143         spin_lock_irq(&np->lock);
3144         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3145                 rbuf[i] = readl(base + i*sizeof(u32));
3146         spin_unlock_irq(&np->lock);
3147 }
3148
3149 static int nv_nway_reset(struct net_device *dev)
3150 {
3151         struct fe_priv *np = netdev_priv(dev);
3152         int ret;
3153
3154         if (np->autoneg) {
3155                 int bmcr;
3156
3157                 netif_carrier_off(dev);
3158                 if (netif_running(dev)) {
3159                         nv_disable_irq(dev);
3160                         netif_tx_lock_bh(dev);
3161                         spin_lock(&np->lock);
3162                         /* stop engines */
3163                         nv_stop_rx(dev);
3164                         nv_stop_tx(dev);
3165                         spin_unlock(&np->lock);
3166                         netif_tx_unlock_bh(dev);
3167                         printk(KERN_INFO "%s: link down.\n", dev->name);
3168                 }
3169
3170                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3171                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3172                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3173
3174                 if (netif_running(dev)) {
3175                         nv_start_rx(dev);
3176                         nv_start_tx(dev);
3177                         nv_enable_irq(dev);
3178                 }
3179                 ret = 0;
3180         } else {
3181                 ret = -EINVAL;
3182         }
3183
3184         return ret;
3185 }
3186
3187 static int nv_set_tso(struct net_device *dev, u32 value)
3188 {
3189         struct fe_priv *np = netdev_priv(dev);
3190
3191         if ((np->driver_data & DEV_HAS_CHECKSUM))
3192                 return ethtool_op_set_tso(dev, value);
3193         else
3194                 return -EOPNOTSUPP;
3195 }
3196
3197 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3198 {
3199         struct fe_priv *np = netdev_priv(dev);
3200
3201         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3202         ring->rx_mini_max_pending = 0;
3203         ring->rx_jumbo_max_pending = 0;
3204         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3205
3206         ring->rx_pending = np->rx_ring_size;
3207         ring->rx_mini_pending = 0;
3208         ring->rx_jumbo_pending = 0;
3209         ring->tx_pending = np->tx_ring_size;
3210 }
3211
3212 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3213 {
3214         struct fe_priv *np = netdev_priv(dev);
3215         u8 __iomem *base = get_hwbase(dev);
3216         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3217         dma_addr_t ring_addr;
3218
3219         if (ring->rx_pending < RX_RING_MIN ||
3220             ring->tx_pending < TX_RING_MIN ||
3221             ring->rx_mini_pending != 0 ||
3222             ring->rx_jumbo_pending != 0 ||
3223             (np->desc_ver == DESC_VER_1 &&
3224              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3225               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3226             (np->desc_ver != DESC_VER_1 &&
3227              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3228               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3229                 return -EINVAL;
3230         }
3231
3232         /* allocate new rings */
3233         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3234                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3235                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3236                                             &ring_addr);
3237         } else {
3238                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3239                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3240                                             &ring_addr);
3241         }
3242         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3243         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3244         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3245         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3246         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3247         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3248                 /* fall back to old rings */
3249                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3250                         if (rxtx_ring)
3251                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3252                                                     rxtx_ring, ring_addr);
3253                 } else {
3254                         if (rxtx_ring)
3255                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3256                                                     rxtx_ring, ring_addr);
3257                 }
3258                 if (rx_skbuff)
3259                         kfree(rx_skbuff);
3260                 if (rx_dma)
3261                         kfree(rx_dma);
3262                 if (tx_skbuff)
3263                         kfree(tx_skbuff);
3264                 if (tx_dma)
3265                         kfree(tx_dma);
3266                 if (tx_dma_len)
3267                         kfree(tx_dma_len);
3268                 goto exit;
3269         }
3270
3271         if (netif_running(dev)) {
3272                 nv_disable_irq(dev);
3273                 netif_tx_lock_bh(dev);
3274                 spin_lock(&np->lock);
3275                 /* stop engines */
3276                 nv_stop_rx(dev);
3277                 nv_stop_tx(dev);
3278                 nv_txrx_reset(dev);
3279                 /* drain queues */
3280                 nv_drain_rx(dev);
3281                 nv_drain_tx(dev);
3282                 /* delete queues */
3283                 free_rings(dev);
3284         }
3285
3286         /* set new values */
3287         np->rx_ring_size = ring->rx_pending;
3288         np->tx_ring_size = ring->tx_pending;
3289         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3290         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3291         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3292                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3293                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3294         } else {
3295                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3296                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3297         }
3298         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3299         np->rx_dma = (dma_addr_t*)rx_dma;
3300         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3301         np->tx_dma = (dma_addr_t*)tx_dma;
3302         np->tx_dma_len = (unsigned int*)tx_dma_len;
3303         np->ring_addr = ring_addr;
3304
3305         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3306         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3307         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3308         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3309         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3310
3311         if (netif_running(dev)) {
3312                 /* reinit driver view of the queues */
3313                 set_bufsize(dev);
3314                 if (nv_init_ring(dev)) {
3315                         if (!np->in_shutdown)
3316                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3317                 }
3318
3319                 /* reinit nic view of the queues */
3320                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3321                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3322                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3323                         base + NvRegRingSizes);
3324                 pci_push(base);
3325                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3326                 pci_push(base);
3327
3328                 /* restart engines */
3329                 nv_start_rx(dev);
3330                 nv_start_tx(dev);
3331                 spin_unlock(&np->lock);
3332                 netif_tx_unlock_bh(dev);
3333                 nv_enable_irq(dev);
3334         }
3335         return 0;
3336 exit:
3337         return -ENOMEM;
3338 }
3339
3340 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3341 {
3342         struct fe_priv *np = netdev_priv(dev);
3343
3344         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3345         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3346         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3347 }
3348
3349 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3350 {
3351         struct fe_priv *np = netdev_priv(dev);
3352         int adv, bmcr;
3353
3354         if ((!np->autoneg && np->duplex == 0) ||
3355             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3356                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3357                        dev->name);
3358                 return -EINVAL;
3359         }
3360         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3361                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3362                 return -EINVAL;
3363         }
3364
3365         netif_carrier_off(dev);
3366         if (netif_running(dev)) {
3367                 nv_disable_irq(dev);
3368                 netif_tx_lock_bh(dev);
3369                 spin_lock(&np->lock);
3370                 /* stop engines */
3371                 nv_stop_rx(dev);
3372                 nv_stop_tx(dev);
3373                 spin_unlock(&np->lock);
3374                 netif_tx_unlock_bh(dev);
3375         }
3376
3377         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3378         if (pause->rx_pause)
3379                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3380         if (pause->tx_pause)
3381                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3382
3383         if (np->autoneg && pause->autoneg) {
3384                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3385
3386                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3387                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3388                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3389                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3390                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3391                         adv |=  ADVERTISE_PAUSE_ASYM;
3392                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3393
3394                 if (netif_running(dev))
3395                         printk(KERN_INFO "%s: link down.\n", dev->name);
3396                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3397                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3398                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3399         } else {
3400                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3401                 if (pause->rx_pause)
3402                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3403                 if (pause->tx_pause)
3404                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3405
3406                 if (!netif_running(dev))
3407                         nv_update_linkspeed(dev);
3408                 else
3409                         nv_update_pause(dev, np->pause_flags);
3410         }
3411
3412         if (netif_running(dev)) {
3413                 nv_start_rx(dev);
3414                 nv_start_tx(dev);
3415                 nv_enable_irq(dev);
3416         }
3417         return 0;
3418 }
3419
3420 static u32 nv_get_rx_csum(struct net_device *dev)
3421 {
3422         struct fe_priv *np = netdev_priv(dev);
3423         return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3424 }
3425
3426 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3427 {
3428         struct fe_priv *np = netdev_priv(dev);
3429         u8 __iomem *base = get_hwbase(dev);
3430         int retcode = 0;
3431
3432         if (np->driver_data & DEV_HAS_CHECKSUM) {
3433
3434                 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3435                     (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3436                         /* already set or unset */
3437                         return 0;
3438                 }
3439
3440                 if (data) {
3441                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3442                 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3443                         np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3444                 } else {
3445                         printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3446                         return -EINVAL;
3447                 }
3448
3449                 if (netif_running(dev)) {
3450                         spin_lock_irq(&np->lock);
3451                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3452                         spin_unlock_irq(&np->lock);
3453                 }
3454         } else {
3455                 return -EINVAL;
3456         }
3457
3458         return retcode;
3459 }
3460
3461 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3462 {
3463         struct fe_priv *np = netdev_priv(dev);
3464
3465         if (np->driver_data & DEV_HAS_CHECKSUM)
3466                 return ethtool_op_set_tx_hw_csum(dev, data);
3467         else
3468                 return -EOPNOTSUPP;
3469 }
3470
3471 static int nv_set_sg(struct net_device *dev, u32 data)
3472 {
3473         struct fe_priv *np = netdev_priv(dev);
3474
3475         if (np->driver_data & DEV_HAS_CHECKSUM)
3476                 return ethtool_op_set_sg(dev, data);
3477         else
3478                 return -EOPNOTSUPP;
3479 }
3480
3481 static int nv_get_stats_count(struct net_device *dev)
3482 {
3483         struct fe_priv *np = netdev_priv(dev);
3484
3485         if (np->driver_data & DEV_HAS_STATISTICS)
3486                 return sizeof(struct nv_ethtool_stats)/sizeof(u64);
3487         else
3488                 return 0;
3489 }
3490
3491 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3492 {
3493         struct fe_priv *np = netdev_priv(dev);
3494
3495         /* update stats */
3496         nv_do_stats_poll((unsigned long)dev);
3497
3498         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3499 }
3500
3501 static int nv_self_test_count(struct net_device *dev)
3502 {
3503         struct fe_priv *np = netdev_priv(dev);
3504
3505         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3506                 return NV_TEST_COUNT_EXTENDED;
3507         else
3508                 return NV_TEST_COUNT_BASE;
3509 }
3510
3511 static int nv_link_test(struct net_device *dev)
3512 {
3513         struct fe_priv *np = netdev_priv(dev);
3514         int mii_status;
3515
3516         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3517         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3518
3519         /* check phy link status */
3520         if (!(mii_status & BMSR_LSTATUS))
3521                 return 0;
3522         else
3523                 return 1;
3524 }
3525
3526 static int nv_register_test(struct net_device *dev)
3527 {
3528         u8 __iomem *base = get_hwbase(dev);
3529         int i = 0;
3530         u32 orig_read, new_read;
3531
3532         do {
3533                 orig_read = readl(base + nv_registers_test[i].reg);
3534
3535                 /* xor with mask to toggle bits */
3536                 orig_read ^= nv_registers_test[i].mask;
3537
3538                 writel(orig_read, base + nv_registers_test[i].reg);
3539
3540                 new_read = readl(base + nv_registers_test[i].reg);
3541
3542                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3543                         return 0;
3544
3545                 /* restore original value */
3546                 orig_read ^= nv_registers_test[i].mask;
3547                 writel(orig_read, base + nv_registers_test[i].reg);
3548
3549         } while (nv_registers_test[++i].reg != 0);
3550
3551         return 1;
3552 }
3553
3554 static int nv_interrupt_test(struct net_device *dev)
3555 {
3556         struct fe_priv *np = netdev_priv(dev);
3557         u8 __iomem *base = get_hwbase(dev);
3558         int ret = 1;
3559         int testcnt;
3560         u32 save_msi_flags, save_poll_interval = 0;
3561
3562         if (netif_running(dev)) {
3563                 /* free current irq */
3564                 nv_free_irq(dev);
3565                 save_poll_interval = readl(base+NvRegPollingInterval);
3566         }
3567
3568         /* flag to test interrupt handler */
3569         np->intr_test = 0;
3570
3571         /* setup test irq */
3572         save_msi_flags = np->msi_flags;
3573         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3574         np->msi_flags |= 0x001; /* setup 1 vector */
3575         if (nv_request_irq(dev, 1))
3576                 return 0;
3577
3578         /* setup timer interrupt */
3579         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3580         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3581
3582         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3583
3584         /* wait for at least one interrupt */
3585         msleep(100);
3586
3587         spin_lock_irq(&np->lock);
3588
3589         /* flag should be set within ISR */
3590         testcnt = np->intr_test;
3591         if (!testcnt)
3592                 ret = 2;
3593
3594         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3595         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3596                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3597         else
3598                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3599
3600         spin_unlock_irq(&np->lock);
3601
3602         nv_free_irq(dev);
3603
3604         np->msi_flags = save_msi_flags;
3605
3606         if (netif_running(dev)) {
3607                 writel(save_poll_interval, base + NvRegPollingInterval);
3608                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3609                 /* restore original irq */
3610                 if (nv_request_irq(dev, 0))
3611                         return 0;
3612         }
3613
3614         return ret;
3615 }
3616
3617 static int nv_loopback_test(struct net_device *dev)
3618 {
3619         struct fe_priv *np = netdev_priv(dev);
3620         u8 __iomem *base = get_hwbase(dev);
3621         struct sk_buff *tx_skb, *rx_skb;
3622         dma_addr_t test_dma_addr;
3623         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3624         u32 flags;
3625         int len, i, pkt_len;
3626         u8 *pkt_data;
3627         u32 filter_flags = 0;
3628         u32 misc1_flags = 0;
3629         int ret = 1;
3630
3631         if (netif_running(dev)) {
3632                 nv_disable_irq(dev);
3633                 filter_flags = readl(base + NvRegPacketFilterFlags);
3634                 misc1_flags = readl(base + NvRegMisc1);
3635         } else {
3636                 nv_txrx_reset(dev);
3637         }
3638
3639         /* reinit driver view of the rx queue */
3640         set_bufsize(dev);
3641         nv_init_ring(dev);
3642
3643         /* setup hardware for loopback */
3644         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3645         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3646
3647         /* reinit nic view of the rx queue */
3648         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3649         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3650         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3651                 base + NvRegRingSizes);
3652         pci_push(base);
3653
3654         /* restart rx engine */
3655         nv_start_rx(dev);
3656         nv_start_tx(dev);
3657
3658         /* setup packet for tx */
3659         pkt_len = ETH_DATA_LEN;
3660         tx_skb = dev_alloc_skb(pkt_len);
3661         pkt_data = skb_put(tx_skb, pkt_len);
3662         for (i = 0; i < pkt_len; i++)
3663                 pkt_data[i] = (u8)(i & 0xff);
3664         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3665                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3666
3667         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3668                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
3669                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3670         } else {
3671                 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
3672                 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3673                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3674         }
3675         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3676         pci_push(get_hwbase(dev));
3677
3678         msleep(500);
3679
3680         /* check for rx of the packet */
3681         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3682                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
3683                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3684
3685         } else {
3686                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
3687                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3688         }
3689
3690         if (flags & NV_RX_AVAIL) {
3691                 ret = 0;
3692         } else if (np->desc_ver == DESC_VER_1) {
3693                 if (flags & NV_RX_ERROR)
3694                         ret = 0;
3695         } else {
3696                 if (flags & NV_RX2_ERROR) {
3697                         ret = 0;
3698                 }
3699         }
3700
3701         if (ret) {
3702                 if (len != pkt_len) {
3703                         ret = 0;
3704                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3705                                 dev->name, len, pkt_len);
3706                 } else {
3707                         rx_skb = np->rx_skbuff[0];
3708                         for (i = 0; i < pkt_len; i++) {
3709                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3710                                         ret = 0;
3711                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3712                                                 dev->name, i);
3713                                         break;
3714                                 }
3715                         }
3716                 }
3717         } else {
3718                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3719         }
3720
3721         pci_unmap_page(np->pci_dev, test_dma_addr,
3722                        tx_skb->end-tx_skb->data,
3723                        PCI_DMA_TODEVICE);
3724         dev_kfree_skb_any(tx_skb);
3725
3726         /* stop engines */
3727         nv_stop_rx(dev);
3728         nv_stop_tx(dev);
3729         nv_txrx_reset(dev);
3730         /* drain rx queue */
3731         nv_drain_rx(dev);
3732         nv_drain_tx(dev);
3733
3734         if (netif_running(dev)) {
3735                 writel(misc1_flags, base + NvRegMisc1);
3736                 writel(filter_flags, base + NvRegPacketFilterFlags);
3737                 nv_enable_irq(dev);
3738         }
3739
3740         return ret;
3741 }
3742
3743 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3744 {
3745         struct fe_priv *np = netdev_priv(dev);
3746         u8 __iomem *base = get_hwbase(dev);
3747         int result;
3748         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3749
3750         if (!nv_link_test(dev)) {
3751                 test->flags |= ETH_TEST_FL_FAILED;
3752                 buffer[0] = 1;
3753         }
3754
3755         if (test->flags & ETH_TEST_FL_OFFLINE) {
3756                 if (netif_running(dev)) {
3757                         netif_stop_queue(dev);
3758                         netif_tx_lock_bh(dev);
3759                         spin_lock_irq(&np->lock);
3760                         nv_disable_hw_interrupts(dev, np->irqmask);
3761                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3762                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3763                         } else {
3764                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3765                         }
3766                         /* stop engines */
3767                         nv_stop_rx(dev);
3768                         nv_stop_tx(dev);
3769                         nv_txrx_reset(dev);
3770                         /* drain rx queue */
3771                         nv_drain_rx(dev);
3772                         nv_drain_tx(dev);
3773                         spin_unlock_irq(&np->lock);
3774                         netif_tx_unlock_bh(dev);
3775                 }
3776
3777                 if (!nv_register_test(dev)) {
3778                         test->flags |= ETH_TEST_FL_FAILED;
3779                         buffer[1] = 1;
3780                 }
3781
3782                 result = nv_interrupt_test(dev);
3783                 if (result != 1) {
3784                         test->flags |= ETH_TEST_FL_FAILED;
3785                         buffer[2] = 1;
3786                 }
3787                 if (result == 0) {
3788                         /* bail out */
3789                         return;
3790                 }
3791
3792                 if (!nv_loopback_test(dev)) {
3793                         test->flags |= ETH_TEST_FL_FAILED;
3794                         buffer[3] = 1;
3795                 }
3796
3797                 if (netif_running(dev)) {
3798                         /* reinit driver view of the rx queue */
3799                         set_bufsize(dev);
3800                         if (nv_init_ring(dev)) {
3801                                 if (!np->in_shutdown)
3802                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3803                         }
3804                         /* reinit nic view of the rx queue */
3805                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3806                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3807                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3808                                 base + NvRegRingSizes);
3809                         pci_push(base);
3810                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3811                         pci_push(base);
3812                         /* restart rx engine */
3813                         nv_start_rx(dev);
3814                         nv_start_tx(dev);
3815                         netif_start_queue(dev);
3816                         nv_enable_hw_interrupts(dev, np->irqmask);
3817                 }
3818         }
3819 }
3820
3821 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3822 {
3823         switch (stringset) {
3824         case ETH_SS_STATS:
3825                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3826                 break;
3827         case ETH_SS_TEST:
3828                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3829                 break;
3830         }
3831 }
3832
3833 static struct ethtool_ops ops = {
3834         .get_drvinfo = nv_get_drvinfo,
3835         .get_link = ethtool_op_get_link,
3836         .get_wol = nv_get_wol,
3837         .set_wol = nv_set_wol,
3838         .get_settings = nv_get_settings,
3839         .set_settings = nv_set_settings,
3840         .get_regs_len = nv_get_regs_len,
3841         .get_regs = nv_get_regs,
3842         .nway_reset = nv_nway_reset,
3843         .get_perm_addr = ethtool_op_get_perm_addr,
3844         .get_tso = ethtool_op_get_tso,
3845         .set_tso = nv_set_tso,
3846         .get_ringparam = nv_get_ringparam,
3847         .set_ringparam = nv_set_ringparam,
3848         .get_pauseparam = nv_get_pauseparam,
3849         .set_pauseparam = nv_set_pauseparam,
3850         .get_rx_csum = nv_get_rx_csum,
3851         .set_rx_csum = nv_set_rx_csum,
3852         .get_tx_csum = ethtool_op_get_tx_csum,
3853         .set_tx_csum = nv_set_tx_csum,
3854         .get_sg = ethtool_op_get_sg,
3855         .set_sg = nv_set_sg,
3856         .get_strings = nv_get_strings,
3857         .get_stats_count = nv_get_stats_count,
3858         .get_ethtool_stats = nv_get_ethtool_stats,
3859         .self_test_count = nv_self_test_count,
3860         .self_test = nv_self_test,
3861 };
3862
3863 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3864 {
3865         struct fe_priv *np = get_nvpriv(dev);
3866
3867         spin_lock_irq(&np->lock);
3868
3869         /* save vlan group */
3870         np->vlangrp = grp;
3871
3872         if (grp) {
3873                 /* enable vlan on MAC */
3874                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3875         } else {
3876                 /* disable vlan on MAC */
3877                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3878                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3879         }
3880
3881         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3882
3883         spin_unlock_irq(&np->lock);
3884 };
3885
3886 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3887 {
3888         /* nothing to do */
3889 };
3890
3891 static int nv_open(struct net_device *dev)
3892 {
3893         struct fe_priv *np = netdev_priv(dev);
3894         u8 __iomem *base = get_hwbase(dev);
3895         int ret = 1;
3896         int oom, i;
3897
3898         dprintk(KERN_DEBUG "nv_open: begin\n");
3899
3900         /* erase previous misconfiguration */
3901         if (np->driver_data & DEV_HAS_POWER_CNTRL)
3902                 nv_mac_reset(dev);
3903         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3904         writel(0, base + NvRegMulticastAddrB);
3905         writel(0, base + NvRegMulticastMaskA);
3906         writel(0, base + NvRegMulticastMaskB);
3907         writel(0, base + NvRegPacketFilterFlags);
3908
3909         writel(0, base + NvRegTransmitterControl);
3910         writel(0, base + NvRegReceiverControl);
3911
3912         writel(0, base + NvRegAdapterControl);
3913
3914         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3915                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
3916
3917         /* initialize descriptor rings */
3918         set_bufsize(dev);
3919         oom = nv_init_ring(dev);
3920
3921         writel(0, base + NvRegLinkSpeed);
3922         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
3923         nv_txrx_reset(dev);
3924         writel(0, base + NvRegUnknownSetupReg6);
3925
3926         np->in_shutdown = 0;
3927
3928         /* give hw rings */
3929         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3930         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3931                 base + NvRegRingSizes);
3932
3933         writel(np->linkspeed, base + NvRegLinkSpeed);
3934         if (np->desc_ver == DESC_VER_1)
3935                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
3936         else
3937                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
3938         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3939         writel(np->vlanctl_bits, base + NvRegVlanControl);
3940         pci_push(base);
3941         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3942         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3943                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3944                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3945
3946         writel(0, base + NvRegUnknownSetupReg4);
3947         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3948         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3949
3950         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3951         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3952         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3953         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3954
3955         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3956         get_random_bytes(&i, sizeof(i));
3957         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3958         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
3959         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
3960         if (poll_interval == -1) {
3961                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3962                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3963                 else
3964                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3965         }
3966         else
3967                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3968         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3969         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3970                         base + NvRegAdapterControl);
3971         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3972         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3973         if (np->wolenabled)
3974                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3975
3976         i = readl(base + NvRegPowerState);
3977         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3978                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3979
3980         pci_push(base);
3981         udelay(10);
3982         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3983
3984         nv_disable_hw_interrupts(dev, np->irqmask);
3985         pci_push(base);
3986         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3987         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3988         pci_push(base);
3989
3990         if (nv_request_irq(dev, 0)) {
3991                 goto out_drain;
3992         }
3993
3994         /* ask for interrupts */
3995         nv_enable_hw_interrupts(dev, np->irqmask);
3996
3997         spin_lock_irq(&np->lock);
3998         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3999         writel(0, base + NvRegMulticastAddrB);
4000         writel(0, base + NvRegMulticastMaskA);
4001         writel(0, base + NvRegMulticastMaskB);
4002         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4003         /* One manual link speed update: Interrupts are enabled, future link
4004          * speed changes cause interrupts and are handled by nv_link_irq().
4005          */
4006         {
4007                 u32 miistat;
4008                 miistat = readl(base + NvRegMIIStatus);
4009                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4010                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4011         }
4012         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4013          * to init hw */
4014         np->linkspeed = 0;
4015         ret = nv_update_linkspeed(dev);
4016         nv_start_rx(dev);
4017         nv_start_tx(dev);
4018         netif_start_queue(dev);
4019         if (ret) {
4020                 netif_carrier_on(dev);
4021         } else {
4022                 printk("%s: no link during initialization.\n", dev->name);
4023                 netif_carrier_off(dev);
4024         }
4025         if (oom)
4026                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4027
4028         /* start statistics timer */
4029         if (np->driver_data & DEV_HAS_STATISTICS)
4030                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4031
4032         spin_unlock_irq(&np->lock);
4033
4034         return 0;
4035 out_drain:
4036         drain_ring(dev);
4037         return ret;
4038 }
4039
4040 static int nv_close(struct net_device *dev)
4041 {
4042         struct fe_priv *np = netdev_priv(dev);
4043         u8 __iomem *base;
4044
4045         spin_lock_irq(&np->lock);
4046         np->in_shutdown = 1;
4047         spin_unlock_irq(&np->lock);
4048         synchronize_irq(dev->irq);
4049
4050         del_timer_sync(&np->oom_kick);
4051         del_timer_sync(&np->nic_poll);
4052         del_timer_sync(&np->stats_poll);
4053
4054         netif_stop_queue(dev);
4055         spin_lock_irq(&np->lock);
4056         nv_stop_tx(dev);
4057         nv_stop_rx(dev);
4058         nv_txrx_reset(dev);
4059
4060         /* disable interrupts on the nic or we will lock up */
4061         base = get_hwbase(dev);
4062         nv_disable_hw_interrupts(dev, np->irqmask);
4063         pci_push(base);
4064         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4065
4066         spin_unlock_irq(&np->lock);
4067
4068         nv_free_irq(dev);
4069
4070         drain_ring(dev);
4071
4072         if (np->wolenabled)
4073                 nv_start_rx(dev);
4074
4075         /* FIXME: power down nic */
4076
4077         return 0;
4078 }
4079
4080 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4081 {
4082         struct net_device *dev;
4083         struct fe_priv *np;
4084         unsigned long addr;
4085         u8 __iomem *base;
4086         int err, i;
4087         u32 powerstate, txreg;
4088
4089         dev = alloc_etherdev(sizeof(struct fe_priv));
4090         err = -ENOMEM;
4091         if (!dev)
4092                 goto out;
4093
4094         np = netdev_priv(dev);
4095         np->pci_dev = pci_dev;
4096         spin_lock_init(&np->lock);
4097         SET_MODULE_OWNER(dev);
4098         SET_NETDEV_DEV(dev, &pci_dev->dev);
4099
4100         init_timer(&np->oom_kick);
4101         np->oom_kick.data = (unsigned long) dev;
4102         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4103         init_timer(&np->nic_poll);
4104         np->nic_poll.data = (unsigned long) dev;
4105         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4106         init_timer(&np->stats_poll);
4107         np->stats_poll.data = (unsigned long) dev;
4108         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4109
4110         err = pci_enable_device(pci_dev);
4111         if (err) {
4112                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4113                                 err, pci_name(pci_dev));
4114                 goto out_free;
4115         }
4116
4117         pci_set_master(pci_dev);
4118
4119         err = pci_request_regions(pci_dev, DRV_NAME);
4120         if (err < 0)
4121                 goto out_disable;
4122
4123         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4124                 np->register_size = NV_PCI_REGSZ_VER2;
4125         else
4126                 np->register_size = NV_PCI_REGSZ_VER1;
4127
4128         err = -EINVAL;
4129         addr = 0;
4130         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4131                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4132                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4133                                 pci_resource_len(pci_dev, i),
4134                                 pci_resource_flags(pci_dev, i));
4135                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4136                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4137                         addr = pci_resource_start(pci_dev, i);
4138                         break;
4139                 }
4140         }
4141         if (i == DEVICE_COUNT_RESOURCE) {
4142                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4143                                         pci_name(pci_dev));
4144                 goto out_relreg;
4145         }
4146
4147         /* copy of driver data */
4148         np->driver_data = id->driver_data;
4149
4150         /* handle different descriptor versions */
4151         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4152                 /* packet format 3: supports 40-bit addressing */
4153                 np->desc_ver = DESC_VER_3;
4154                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4155                 if (dma_64bit) {
4156                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4157                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4158                                        pci_name(pci_dev));
4159                         } else {
4160                                 dev->features |= NETIF_F_HIGHDMA;
4161                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4162                         }
4163                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4164                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4165                                        pci_name(pci_dev));
4166                         }
4167                 }
4168         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4169                 /* packet format 2: supports jumbo frames */
4170                 np->desc_ver = DESC_VER_2;
4171                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4172         } else {
4173                 /* original packet format */
4174                 np->desc_ver = DESC_VER_1;
4175                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4176         }
4177
4178         np->pkt_limit = NV_PKTLIMIT_1;
4179         if (id->driver_data & DEV_HAS_LARGEDESC)
4180                 np->pkt_limit = NV_PKTLIMIT_2;
4181
4182         if (id->driver_data & DEV_HAS_CHECKSUM) {
4183                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4184                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4185 #ifdef NETIF_F_TSO
4186                 dev->features |= NETIF_F_TSO;
4187 #endif
4188         }
4189
4190         np->vlanctl_bits = 0;
4191         if (id->driver_data & DEV_HAS_VLAN) {
4192                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4193                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4194                 dev->vlan_rx_register = nv_vlan_rx_register;
4195                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4196         }
4197
4198         np->msi_flags = 0;
4199         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4200                 np->msi_flags |= NV_MSI_CAPABLE;
4201         }
4202         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4203                 np->msi_flags |= NV_MSI_X_CAPABLE;
4204         }
4205
4206         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4207         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4208                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4209         }
4210
4211
4212         err = -ENOMEM;
4213         np->base = ioremap(addr, np->register_size);
4214         if (!np->base)
4215                 goto out_relreg;
4216         dev->base_addr = (unsigned long)np->base;
4217
4218         dev->irq = pci_dev->irq;
4219
4220         np->rx_ring_size = RX_RING_DEFAULT;
4221         np->tx_ring_size = TX_RING_DEFAULT;
4222         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4223         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4224
4225         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4226                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4227                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4228                                         &np->ring_addr);
4229                 if (!np->rx_ring.orig)
4230                         goto out_unmap;
4231                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4232         } else {
4233                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4234                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4235                                         &np->ring_addr);
4236                 if (!np->rx_ring.ex)
4237                         goto out_unmap;
4238                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4239         }
4240         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4241         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4242         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4243         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4244         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4245         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4246                 goto out_freering;
4247         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4248         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4249         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4250         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4251         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4252
4253         dev->open = nv_open;
4254         dev->stop = nv_close;
4255         dev->hard_start_xmit = nv_start_xmit;
4256         dev->get_stats = nv_get_stats;
4257         dev->change_mtu = nv_change_mtu;
4258         dev->set_mac_address = nv_set_mac_address;
4259         dev->set_multicast_list = nv_set_multicast;
4260 #ifdef CONFIG_NET_POLL_CONTROLLER
4261         dev->poll_controller = nv_poll_controller;
4262 #endif
4263         SET_ETHTOOL_OPS(dev, &ops);
4264         dev->tx_timeout = nv_tx_timeout;
4265         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4266
4267         pci_set_drvdata(pci_dev, dev);
4268
4269         /* read the mac address */
4270         base = get_hwbase(dev);
4271         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4272         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4273
4274         /* check the workaround bit for correct mac address order */
4275         txreg = readl(base + NvRegTransmitPoll);
4276         if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
4277                 /* mac address is already in correct order */
4278                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
4279                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
4280                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
4281                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
4282                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
4283                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
4284         } else {
4285                 /* need to reverse mac address to correct order */
4286                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4287                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4288                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4289                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4290                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4291                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4292                 /* set permanent address to be correct aswell */
4293                 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
4294                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
4295                 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
4296                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4297         }
4298         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4299
4300         if (!is_valid_ether_addr(dev->perm_addr)) {
4301                 /*
4302                  * Bad mac address. At least one bios sets the mac address
4303                  * to 01:23:45:67:89:ab
4304                  */
4305                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4306                         pci_name(pci_dev),
4307                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4308                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4309                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4310                 dev->dev_addr[0] = 0x00;
4311                 dev->dev_addr[1] = 0x00;
4312                 dev->dev_addr[2] = 0x6c;
4313                 get_random_bytes(&dev->dev_addr[3], 3);
4314         }
4315
4316         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4317                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4318                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4319
4320         /* set mac address */
4321         nv_copy_mac_to_hw(dev);
4322
4323         /* disable WOL */
4324         writel(0, base + NvRegWakeUpFlags);
4325         np->wolenabled = 0;
4326
4327         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4328                 u8 revision_id;
4329                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4330
4331                 /* take phy and nic out of low power mode */
4332                 powerstate = readl(base + NvRegPowerState2);
4333                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4334                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4335                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4336                     revision_id >= 0xA3)
4337                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4338                 writel(powerstate, base + NvRegPowerState2);
4339         }
4340
4341         if (np->desc_ver == DESC_VER_1) {
4342                 np->tx_flags = NV_TX_VALID;
4343         } else {
4344                 np->tx_flags = NV_TX2_VALID;
4345         }
4346         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4347                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4348                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4349                         np->msi_flags |= 0x0003;
4350         } else {
4351                 np->irqmask = NVREG_IRQMASK_CPU;
4352                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4353                         np->msi_flags |= 0x0001;
4354         }
4355
4356         if (id->driver_data & DEV_NEED_TIMERIRQ)
4357                 np->irqmask |= NVREG_IRQ_TIMER;
4358         if (id->driver_data & DEV_NEED_LINKTIMER) {
4359                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4360                 np->need_linktimer = 1;
4361                 np->link_timeout = jiffies + LINK_TIMEOUT;
4362         } else {
4363                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4364                 np->need_linktimer = 0;
4365         }
4366
4367         /* find a suitable phy */
4368         for (i = 1; i <= 32; i++) {
4369                 int id1, id2;
4370                 int phyaddr = i & 0x1F;
4371
4372                 spin_lock_irq(&np->lock);
4373                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4374                 spin_unlock_irq(&np->lock);
4375                 if (id1 < 0 || id1 == 0xffff)
4376                         continue;
4377                 spin_lock_irq(&np->lock);
4378                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4379                 spin_unlock_irq(&np->lock);
4380                 if (id2 < 0 || id2 == 0xffff)
4381                         continue;
4382
4383                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4384                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4385                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4386                         pci_name(pci_dev), id1, id2, phyaddr);
4387                 np->phyaddr = phyaddr;
4388                 np->phy_oui = id1 | id2;
4389                 break;
4390         }
4391         if (i == 33) {
4392                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4393                        pci_name(pci_dev));
4394                 goto out_error;
4395         }
4396
4397         /* reset it */
4398         phy_init(dev);
4399
4400         /* set default link speed settings */
4401         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4402         np->duplex = 0;
4403         np->autoneg = 1;
4404
4405         err = register_netdev(dev);
4406         if (err) {
4407                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4408                 goto out_error;
4409         }
4410         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4411                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4412                         pci_name(pci_dev));
4413
4414         return 0;
4415
4416 out_error:
4417         pci_set_drvdata(pci_dev, NULL);
4418 out_freering:
4419         free_rings(dev);
4420 out_unmap:
4421         iounmap(get_hwbase(dev));
4422 out_relreg:
4423         pci_release_regions(pci_dev);
4424 out_disable:
4425         pci_disable_device(pci_dev);
4426 out_free:
4427         free_netdev(dev);
4428 out:
4429         return err;
4430 }
4431
4432 static void __devexit nv_remove(struct pci_dev *pci_dev)
4433 {
4434         struct net_device *dev = pci_get_drvdata(pci_dev);
4435         struct fe_priv *np = netdev_priv(dev);
4436         u8 __iomem *base = get_hwbase(dev);
4437
4438         unregister_netdev(dev);
4439
4440         /* special op: write back the misordered MAC address - otherwise
4441          * the next nv_probe would see a wrong address.
4442          */
4443         writel(np->orig_mac[0], base + NvRegMacAddrA);
4444         writel(np->orig_mac[1], base + NvRegMacAddrB);
4445
4446         /* free all structures */
4447         free_rings(dev);
4448         iounmap(get_hwbase(dev));
4449         pci_release_regions(pci_dev);
4450         pci_disable_device(pci_dev);
4451         free_netdev(dev);
4452         pci_set_drvdata(pci_dev, NULL);
4453 }
4454
4455 static struct pci_device_id pci_tbl[] = {
4456         {       /* nForce Ethernet Controller */
4457                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4458                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4459         },
4460         {       /* nForce2 Ethernet Controller */
4461                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4462                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4463         },
4464         {       /* nForce3 Ethernet Controller */
4465                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4466                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4467         },
4468         {       /* nForce3 Ethernet Controller */
4469                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4470                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4471         },
4472         {       /* nForce3 Ethernet Controller */
4473                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4474                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4475         },
4476         {       /* nForce3 Ethernet Controller */
4477                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4478                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4479         },
4480         {       /* nForce3 Ethernet Controller */
4481                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4482                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4483         },
4484         {       /* CK804 Ethernet Controller */
4485                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4486                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4487         },
4488         {       /* CK804 Ethernet Controller */
4489                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4490                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4491         },
4492         {       /* MCP04 Ethernet Controller */
4493                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4494                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4495         },
4496         {       /* MCP04 Ethernet Controller */
4497                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4498                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4499         },
4500         {       /* MCP51 Ethernet Controller */
4501                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4502                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4503         },
4504         {       /* MCP51 Ethernet Controller */
4505                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4506                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4507         },
4508         {       /* MCP55 Ethernet Controller */
4509                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4510                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4511         },
4512         {       /* MCP55 Ethernet Controller */
4513                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4514                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4515         },
4516         {       /* MCP61 Ethernet Controller */
4517                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4518                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4519         },
4520         {       /* MCP61 Ethernet Controller */
4521                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4522                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4523         },
4524         {       /* MCP61 Ethernet Controller */
4525                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4526                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4527         },
4528         {       /* MCP61 Ethernet Controller */
4529                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4530                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4531         },
4532         {       /* MCP65 Ethernet Controller */
4533                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4534                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4535         },
4536         {       /* MCP65 Ethernet Controller */
4537                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4538                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4539         },
4540         {       /* MCP65 Ethernet Controller */
4541                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4542                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4543         },
4544         {       /* MCP65 Ethernet Controller */
4545                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4546                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4547         },
4548         {0,},
4549 };
4550
4551 static struct pci_driver driver = {
4552         .name = "forcedeth",
4553         .id_table = pci_tbl,
4554         .probe = nv_probe,
4555         .remove = __devexit_p(nv_remove),
4556 };
4557
4558
4559 static int __init init_nic(void)
4560 {
4561         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4562         return pci_module_init(&driver);
4563 }
4564
4565 static void __exit exit_nic(void)
4566 {
4567         pci_unregister_driver(&driver);
4568 }
4569
4570 module_param(max_interrupt_work, int, 0);
4571 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4572 module_param(optimization_mode, int, 0);
4573 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4574 module_param(poll_interval, int, 0);
4575 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4576 module_param(msi, int, 0);
4577 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4578 module_param(msix, int, 0);
4579 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4580 module_param(dma_64bit, int, 0);
4581 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4582
4583 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4584 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4585 MODULE_LICENSE("GPL");
4586
4587 MODULE_DEVICE_TABLE(pci, pci_tbl);
4588
4589 module_init(init_nic);
4590 module_exit(exit_nic);