Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[linux-2.6] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 #define JUMBO_FRAME_4k_ONLY
46 enum {
47         netdev_io_size = 128
48 };
49
50 #include "ipg.h"
51 #define DRV_NAME        "ipg"
52
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
56
57 /*
58  * Variable record -- index by leading revision/length
59  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
60  */
61 static unsigned short DefaultPhyParam[] = {
62         /* 11/12/03 IP1000A v1-3 rev=0x40 */
63         /*--------------------------------------------------------------------------
64         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
65                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
66                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
67           --------------------------------------------------------------------------*/
68         /* 12/17/03 IP1000A v1-4 rev=0x40 */
69         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
70             0x0000,
71         30, 0x005e, 9, 0x0700,
72         /* 01/09/04 IP1000A v1-5 rev=0x41 */
73         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
74             0x0000,
75         30, 0x005e, 9, 0x0700,
76         0x0000
77 };
78
79 static const char *ipg_brand_name[] = {
80         "IC PLUS IP1000 1000/100/10 based NIC",
81         "Sundance Technology ST2021 based NIC",
82         "Tamarack Microelectronics TC9020/9021 based NIC",
83         "Tamarack Microelectronics TC9020/9021 based NIC",
84         "D-Link NIC",
85         "D-Link NIC IP1000A"
86 };
87
88 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
89         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
90         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
91         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
92         { PCI_VDEVICE(DLINK,    0x9021), 3 },
93         { PCI_VDEVICE(DLINK,    0x4000), 4 },
94         { PCI_VDEVICE(DLINK,    0x4020), 5 },
95         { 0, }
96 };
97
98 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
99
100 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
101 {
102         struct ipg_nic_private *sp = netdev_priv(dev);
103         return sp->ioaddr;
104 }
105
106 #ifdef IPG_DEBUG
107 static void ipg_dump_rfdlist(struct net_device *dev)
108 {
109         struct ipg_nic_private *sp = netdev_priv(dev);
110         void __iomem *ioaddr = sp->ioaddr;
111         unsigned int i;
112         u32 offset;
113
114         IPG_DEBUG_MSG("_dump_rfdlist\n");
115
116         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
117         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
118         printk(KERN_INFO "RFDList start address = %16.16lx\n",
119                (unsigned long) sp->rxd_map);
120         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
121                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
122
123         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
124                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
125                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
126                        offset, (unsigned long) sp->rxd[i].next_desc);
127                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
128                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
129                        offset, (unsigned long) sp->rxd[i].rfs);
130                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
131                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
132                        offset, (unsigned long) sp->rxd[i].frag_info);
133         }
134 }
135
136 static void ipg_dump_tfdlist(struct net_device *dev)
137 {
138         struct ipg_nic_private *sp = netdev_priv(dev);
139         void __iomem *ioaddr = sp->ioaddr;
140         unsigned int i;
141         u32 offset;
142
143         IPG_DEBUG_MSG("_dump_tfdlist\n");
144
145         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
146         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
147         printk(KERN_INFO "TFDList start address = %16.16lx\n",
148                (unsigned long) sp->txd_map);
149         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
150                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
151
152         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
153                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
154                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
155                        offset, (unsigned long) sp->txd[i].next_desc);
156
157                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
158                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
159                        offset, (unsigned long) sp->txd[i].tfc);
160                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
161                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
162                        offset, (unsigned long) sp->txd[i].frag_info);
163         }
164 }
165 #endif
166
167 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
168 {
169         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
170         ndelay(IPG_PC_PHYCTRLWAIT_NS);
171 }
172
173 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
174 {
175         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
176         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
177 }
178
179 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
180 {
181         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
182
183         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
184 }
185
186 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
187 {
188         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
189                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
190 }
191
192 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
193 {
194         u16 bit_data;
195
196         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
197
198         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
199
200         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
201
202         return bit_data;
203 }
204
205 /*
206  * Read a register from the Physical Layer device located
207  * on the IPG NIC, using the IPG PHYCTRL register.
208  */
209 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
210 {
211         void __iomem *ioaddr = ipg_ioaddr(dev);
212         /*
213          * The GMII mangement frame structure for a read is as follows:
214          *
215          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
216          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
217          *
218          * <32 1s> = 32 consecutive logic 1 values
219          * A = bit of Physical Layer device address (MSB first)
220          * R = bit of register address (MSB first)
221          * z = High impedance state
222          * D = bit of read data (MSB first)
223          *
224          * Transmission order is 'Preamble' field first, bits transmitted
225          * left to right (first to last).
226          */
227         struct {
228                 u32 field;
229                 unsigned int len;
230         } p[] = {
231                 { GMII_PREAMBLE,        32 },   /* Preamble */
232                 { GMII_ST,              2  },   /* ST */
233                 { GMII_READ,            2  },   /* OP */
234                 { phy_id,               5  },   /* PHYAD */
235                 { phy_reg,              5  },   /* REGAD */
236                 { 0x0000,               2  },   /* TA */
237                 { 0x0000,               16 },   /* DATA */
238                 { 0x0000,               1  }    /* IDLE */
239         };
240         unsigned int i, j;
241         u8 polarity, data;
242
243         polarity  = ipg_r8(PHY_CTRL);
244         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
245
246         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
247         for (j = 0; j < 5; j++) {
248                 for (i = 0; i < p[j].len; i++) {
249                         /* For each variable length field, the MSB must be
250                          * transmitted first. Rotate through the field bits,
251                          * starting with the MSB, and move each bit into the
252                          * the 1st (2^1) bit position (this is the bit position
253                          * corresponding to the MgmtData bit of the PhyCtrl
254                          * register for the IPG).
255                          *
256                          * Example: ST = 01;
257                          *
258                          *          First write a '0' to bit 1 of the PhyCtrl
259                          *          register, then write a '1' to bit 1 of the
260                          *          PhyCtrl register.
261                          *
262                          * To do this, right shift the MSB of ST by the value:
263                          * [field length - 1 - #ST bits already written]
264                          * then left shift this result by 1.
265                          */
266                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
267                         data &= IPG_PC_MGMTDATA;
268                         data |= polarity | IPG_PC_MGMTDIR;
269
270                         ipg_drive_phy_ctl_low_high(ioaddr, data);
271                 }
272         }
273
274         send_three_state(ioaddr, polarity);
275
276         read_phy_bit(ioaddr, polarity);
277
278         /*
279          * For a read cycle, the bits for the next two fields (TA and
280          * DATA) are driven by the PHY (the IPG reads these bits).
281          */
282         for (i = 0; i < p[6].len; i++) {
283                 p[6].field |=
284                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
285         }
286
287         send_three_state(ioaddr, polarity);
288         send_three_state(ioaddr, polarity);
289         send_three_state(ioaddr, polarity);
290         send_end(ioaddr, polarity);
291
292         /* Return the value of the DATA field. */
293         return p[6].field;
294 }
295
296 /*
297  * Write to a register from the Physical Layer device located
298  * on the IPG NIC, using the IPG PHYCTRL register.
299  */
300 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
301 {
302         void __iomem *ioaddr = ipg_ioaddr(dev);
303         /*
304          * The GMII mangement frame structure for a read is as follows:
305          *
306          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
307          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
308          *
309          * <32 1s> = 32 consecutive logic 1 values
310          * A = bit of Physical Layer device address (MSB first)
311          * R = bit of register address (MSB first)
312          * z = High impedance state
313          * D = bit of write data (MSB first)
314          *
315          * Transmission order is 'Preamble' field first, bits transmitted
316          * left to right (first to last).
317          */
318         struct {
319                 u32 field;
320                 unsigned int len;
321         } p[] = {
322                 { GMII_PREAMBLE,        32 },   /* Preamble */
323                 { GMII_ST,              2  },   /* ST */
324                 { GMII_WRITE,           2  },   /* OP */
325                 { phy_id,               5  },   /* PHYAD */
326                 { phy_reg,              5  },   /* REGAD */
327                 { 0x0002,               2  },   /* TA */
328                 { val & 0xffff,         16 },   /* DATA */
329                 { 0x0000,               1  }    /* IDLE */
330         };
331         unsigned int i, j;
332         u8 polarity, data;
333
334         polarity  = ipg_r8(PHY_CTRL);
335         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
336
337         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
338         for (j = 0; j < 7; j++) {
339                 for (i = 0; i < p[j].len; i++) {
340                         /* For each variable length field, the MSB must be
341                          * transmitted first. Rotate through the field bits,
342                          * starting with the MSB, and move each bit into the
343                          * the 1st (2^1) bit position (this is the bit position
344                          * corresponding to the MgmtData bit of the PhyCtrl
345                          * register for the IPG).
346                          *
347                          * Example: ST = 01;
348                          *
349                          *          First write a '0' to bit 1 of the PhyCtrl
350                          *          register, then write a '1' to bit 1 of the
351                          *          PhyCtrl register.
352                          *
353                          * To do this, right shift the MSB of ST by the value:
354                          * [field length - 1 - #ST bits already written]
355                          * then left shift this result by 1.
356                          */
357                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
358                         data &= IPG_PC_MGMTDATA;
359                         data |= polarity | IPG_PC_MGMTDIR;
360
361                         ipg_drive_phy_ctl_low_high(ioaddr, data);
362                 }
363         }
364
365         /* The last cycle is a tri-state, so read from the PHY. */
366         for (j = 7; j < 8; j++) {
367                 for (i = 0; i < p[j].len; i++) {
368                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
369
370                         p[j].field |= ((ipg_r8(PHY_CTRL) &
371                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
372
373                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
374                 }
375         }
376 }
377
378 static void ipg_set_led_mode(struct net_device *dev)
379 {
380         struct ipg_nic_private *sp = netdev_priv(dev);
381         void __iomem *ioaddr = sp->ioaddr;
382         u32 mode;
383
384         mode = ipg_r32(ASIC_CTRL);
385         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
386
387         if ((sp->led_mode & 0x03) > 1)
388                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
389
390         if ((sp->led_mode & 0x01) == 1)
391                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
392
393         if ((sp->led_mode & 0x08) == 8)
394                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
395
396         ipg_w32(mode, ASIC_CTRL);
397 }
398
399 static void ipg_set_phy_set(struct net_device *dev)
400 {
401         struct ipg_nic_private *sp = netdev_priv(dev);
402         void __iomem *ioaddr = sp->ioaddr;
403         int physet;
404
405         physet = ipg_r8(PHY_SET);
406         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
407         physet |= ((sp->led_mode & 0x70) >> 4);
408         ipg_w8(physet, PHY_SET);
409 }
410
411 static int ipg_reset(struct net_device *dev, u32 resetflags)
412 {
413         /* Assert functional resets via the IPG AsicCtrl
414          * register as specified by the 'resetflags' input
415          * parameter.
416          */
417         void __iomem *ioaddr = ipg_ioaddr(dev);
418         unsigned int timeout_count = 0;
419
420         IPG_DEBUG_MSG("_reset\n");
421
422         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
423
424         /* Delay added to account for problem with 10Mbps reset. */
425         mdelay(IPG_AC_RESETWAIT);
426
427         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
428                 mdelay(IPG_AC_RESETWAIT);
429                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
430                         return -ETIME;
431         }
432         /* Set LED Mode in Asic Control */
433         ipg_set_led_mode(dev);
434
435         /* Set PHYSet Register Value */
436         ipg_set_phy_set(dev);
437         return 0;
438 }
439
440 /* Find the GMII PHY address. */
441 static int ipg_find_phyaddr(struct net_device *dev)
442 {
443         unsigned int phyaddr, i;
444
445         for (i = 0; i < 32; i++) {
446                 u32 status;
447
448                 /* Search for the correct PHY address among 32 possible. */
449                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
450
451                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
452                    GMII_PHY_ID1
453                  */
454
455                 status = mdio_read(dev, phyaddr, MII_BMSR);
456
457                 if ((status != 0xFFFF) && (status != 0))
458                         return phyaddr;
459         }
460
461         return 0x1f;
462 }
463
464 /*
465  * Configure IPG based on result of IEEE 802.3 PHY
466  * auto-negotiation.
467  */
468 static int ipg_config_autoneg(struct net_device *dev)
469 {
470         struct ipg_nic_private *sp = netdev_priv(dev);
471         void __iomem *ioaddr = sp->ioaddr;
472         unsigned int txflowcontrol;
473         unsigned int rxflowcontrol;
474         unsigned int fullduplex;
475         u32 mac_ctrl_val;
476         u32 asicctrl;
477         u8 phyctrl;
478
479         IPG_DEBUG_MSG("_config_autoneg\n");
480
481         asicctrl = ipg_r32(ASIC_CTRL);
482         phyctrl = ipg_r8(PHY_CTRL);
483         mac_ctrl_val = ipg_r32(MAC_CTRL);
484
485         /* Set flags for use in resolving auto-negotation, assuming
486          * non-1000Mbps, half duplex, no flow control.
487          */
488         fullduplex = 0;
489         txflowcontrol = 0;
490         rxflowcontrol = 0;
491
492         /* To accomodate a problem in 10Mbps operation,
493          * set a global flag if PHY running in 10Mbps mode.
494          */
495         sp->tenmbpsmode = 0;
496
497         printk(KERN_INFO "%s: Link speed = ", dev->name);
498
499         /* Determine actual speed of operation. */
500         switch (phyctrl & IPG_PC_LINK_SPEED) {
501         case IPG_PC_LINK_SPEED_10MBPS:
502                 printk("10Mbps.\n");
503                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
504                        dev->name);
505                 sp->tenmbpsmode = 1;
506                 break;
507         case IPG_PC_LINK_SPEED_100MBPS:
508                 printk("100Mbps.\n");
509                 break;
510         case IPG_PC_LINK_SPEED_1000MBPS:
511                 printk("1000Mbps.\n");
512                 break;
513         default:
514                 printk("undefined!\n");
515                 return 0;
516         }
517
518         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
519                 fullduplex = 1;
520                 txflowcontrol = 1;
521                 rxflowcontrol = 1;
522         }
523
524         /* Configure full duplex, and flow control. */
525         if (fullduplex == 1) {
526                 /* Configure IPG for full duplex operation. */
527                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
528
529                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
530
531                 if (txflowcontrol == 1) {
532                         printk("TX flow control");
533                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
534                 } else {
535                         printk("no TX flow control");
536                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
537                 }
538
539                 if (rxflowcontrol == 1) {
540                         printk(", RX flow control.");
541                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
542                 } else {
543                         printk(", no RX flow control.");
544                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
545                 }
546
547                 printk("\n");
548         } else {
549                 /* Configure IPG for half duplex operation. */
550                 printk(KERN_INFO "%s: setting half duplex, "
551                        "no TX flow control, no RX flow control.\n", dev->name);
552
553                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
554                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
555                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
556         }
557         ipg_w32(mac_ctrl_val, MAC_CTRL);
558         return 0;
559 }
560
561 /* Determine and configure multicast operation and set
562  * receive mode for IPG.
563  */
564 static void ipg_nic_set_multicast_list(struct net_device *dev)
565 {
566         void __iomem *ioaddr = ipg_ioaddr(dev);
567         struct dev_mc_list *mc_list_ptr;
568         unsigned int hashindex;
569         u32 hashtable[2];
570         u8 receivemode;
571
572         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
573
574         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
575
576         if (dev->flags & IFF_PROMISC) {
577                 /* NIC to be configured in promiscuous mode. */
578                 receivemode = IPG_RM_RECEIVEALLFRAMES;
579         } else if ((dev->flags & IFF_ALLMULTI) ||
580                    (dev->flags & IFF_MULTICAST &
581                     (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
582                 /* NIC to be configured to receive all multicast
583                  * frames. */
584                 receivemode |= IPG_RM_RECEIVEMULTICAST;
585         } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) {
586                 /* NIC to be configured to receive selected
587                  * multicast addresses. */
588                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
589         }
590
591         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
592          * The IPG applies a cyclic-redundancy-check (the same CRC
593          * used to calculate the frame data FCS) to the destination
594          * address all incoming multicast frames whose destination
595          * address has the multicast bit set. The least significant
596          * 6 bits of the CRC result are used as an addressing index
597          * into the hash table. If the value of the bit addressed by
598          * this index is a 1, the frame is passed to the host system.
599          */
600
601         /* Clear hashtable. */
602         hashtable[0] = 0x00000000;
603         hashtable[1] = 0x00000000;
604
605         /* Cycle through all multicast addresses to filter. */
606         for (mc_list_ptr = dev->mc_list;
607              mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
608                 /* Calculate CRC result for each multicast address. */
609                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
610                                      ETH_ALEN);
611
612                 /* Use only the least significant 6 bits. */
613                 hashindex = hashindex & 0x3F;
614
615                 /* Within "hashtable", set bit number "hashindex"
616                  * to a logic 1.
617                  */
618                 set_bit(hashindex, (void *)hashtable);
619         }
620
621         /* Write the value of the hashtable, to the 4, 16 bit
622          * HASHTABLE IPG registers.
623          */
624         ipg_w32(hashtable[0], HASHTABLE_0);
625         ipg_w32(hashtable[1], HASHTABLE_1);
626
627         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
628
629         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
630 }
631
632 static int ipg_io_config(struct net_device *dev)
633 {
634         void __iomem *ioaddr = ipg_ioaddr(dev);
635         u32 origmacctrl;
636         u32 restoremacctrl;
637
638         IPG_DEBUG_MSG("_io_config\n");
639
640         origmacctrl = ipg_r32(MAC_CTRL);
641
642         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
643
644         /* Based on compilation option, determine if FCS is to be
645          * stripped on receive frames by IPG.
646          */
647         if (!IPG_STRIP_FCS_ON_RX)
648                 restoremacctrl |= IPG_MC_RCV_FCS;
649
650         /* Determine if transmitter and/or receiver are
651          * enabled so we may restore MACCTRL correctly.
652          */
653         if (origmacctrl & IPG_MC_TX_ENABLED)
654                 restoremacctrl |= IPG_MC_TX_ENABLE;
655
656         if (origmacctrl & IPG_MC_RX_ENABLED)
657                 restoremacctrl |= IPG_MC_RX_ENABLE;
658
659         /* Transmitter and receiver must be disabled before setting
660          * IFSSelect.
661          */
662         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
663                 IPG_MC_RSVD_MASK, MAC_CTRL);
664
665         /* Now that transmitter and receiver are disabled, write
666          * to IFSSelect.
667          */
668         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
669
670         /* Set RECEIVEMODE register. */
671         ipg_nic_set_multicast_list(dev);
672
673         ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
674
675         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
676         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
677         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
678         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
679         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
680         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
681         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
682                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
683                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
684                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
685         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
686         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
687
688         /* IPG multi-frag frame bug workaround.
689          * Per silicon revision B3 eratta.
690          */
691         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
692
693         /* IPG TX poll now bug workaround.
694          * Per silicon revision B3 eratta.
695          */
696         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
697
698         /* IPG RX poll now bug workaround.
699          * Per silicon revision B3 eratta.
700          */
701         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
702
703         /* Now restore MACCTRL to original setting. */
704         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
705
706         /* Disable unused RMON statistics. */
707         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
708
709         /* Disable unused MIB statistics. */
710         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
711                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
712                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
713                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
714                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
715                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
716
717         return 0;
718 }
719
720 /*
721  * Create a receive buffer within system memory and update
722  * NIC private structure appropriately.
723  */
724 static int ipg_get_rxbuff(struct net_device *dev, int entry)
725 {
726         struct ipg_nic_private *sp = netdev_priv(dev);
727         struct ipg_rx *rxfd = sp->rxd + entry;
728         struct sk_buff *skb;
729         u64 rxfragsize;
730
731         IPG_DEBUG_MSG("_get_rxbuff\n");
732
733         skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
734         if (!skb) {
735                 sp->rx_buff[entry] = NULL;
736                 return -ENOMEM;
737         }
738
739         /* Adjust the data start location within the buffer to
740          * align IP address field to a 16 byte boundary.
741          */
742         skb_reserve(skb, NET_IP_ALIGN);
743
744         /* Associate the receive buffer with the IPG NIC. */
745         skb->dev = dev;
746
747         /* Save the address of the sk_buff structure. */
748         sp->rx_buff[entry] = skb;
749
750         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752
753         /* Set the RFD fragment length. */
754         rxfragsize = IPG_RXFRAG_SIZE;
755         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756
757         return 0;
758 }
759
760 static int init_rfdlist(struct net_device *dev)
761 {
762         struct ipg_nic_private *sp = netdev_priv(dev);
763         void __iomem *ioaddr = sp->ioaddr;
764         unsigned int i;
765
766         IPG_DEBUG_MSG("_init_rfdlist\n");
767
768         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769                 struct ipg_rx *rxfd = sp->rxd + i;
770
771                 if (sp->rx_buff[i]) {
772                         pci_unmap_single(sp->pdev,
773                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775                         dev_kfree_skb_irq(sp->rx_buff[i]);
776                         sp->rx_buff[i] = NULL;
777                 }
778
779                 /* Clear out the RFS field. */
780                 rxfd->rfs = 0x0000000000000000;
781
782                 if (ipg_get_rxbuff(dev, i) < 0) {
783                         /*
784                          * A receive buffer was not ready, break the
785                          * RFD list here.
786                          */
787                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
788
789                         /* Just in case we cannot allocate a single RFD.
790                          * Should not occur.
791                          */
792                         if (i == 0) {
793                                 printk(KERN_ERR "%s: No memory available"
794                                         " for RFD list.\n", dev->name);
795                                 return -ENOMEM;
796                         }
797                 }
798
799                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
800                         sizeof(struct ipg_rx)*(i + 1));
801         }
802         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
803
804         sp->rx_current = 0;
805         sp->rx_dirty = 0;
806
807         /* Write the location of the RFDList to the IPG. */
808         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
809         ipg_w32(0x00000000, RFD_LIST_PTR_1);
810
811         return 0;
812 }
813
814 static void init_tfdlist(struct net_device *dev)
815 {
816         struct ipg_nic_private *sp = netdev_priv(dev);
817         void __iomem *ioaddr = sp->ioaddr;
818         unsigned int i;
819
820         IPG_DEBUG_MSG("_init_tfdlist\n");
821
822         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
823                 struct ipg_tx *txfd = sp->txd + i;
824
825                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
826
827                 if (sp->tx_buff[i]) {
828                         dev_kfree_skb_irq(sp->tx_buff[i]);
829                         sp->tx_buff[i] = NULL;
830                 }
831
832                 txfd->next_desc = cpu_to_le64(sp->txd_map +
833                         sizeof(struct ipg_tx)*(i + 1));
834         }
835         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
836
837         sp->tx_current = 0;
838         sp->tx_dirty = 0;
839
840         /* Write the location of the TFDList to the IPG. */
841         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
842                        (u32) sp->txd_map);
843         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
844         ipg_w32(0x00000000, TFD_LIST_PTR_1);
845
846         sp->reset_current_tfd = 1;
847 }
848
849 /*
850  * Free all transmit buffers which have already been transfered
851  * via DMA to the IPG.
852  */
853 static void ipg_nic_txfree(struct net_device *dev)
854 {
855         struct ipg_nic_private *sp = netdev_priv(dev);
856         unsigned int released, pending, dirty;
857
858         IPG_DEBUG_MSG("_nic_txfree\n");
859
860         pending = sp->tx_current - sp->tx_dirty;
861         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
862
863         for (released = 0; released < pending; released++) {
864                 struct sk_buff *skb = sp->tx_buff[dirty];
865                 struct ipg_tx *txfd = sp->txd + dirty;
866
867                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
868
869                 /* Look at each TFD's TFC field beginning
870                  * at the last freed TFD up to the current TFD.
871                  * If the TFDDone bit is set, free the associated
872                  * buffer.
873                  */
874                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
875                         break;
876
877                 /* Free the transmit buffer. */
878                 if (skb) {
879                         pci_unmap_single(sp->pdev,
880                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
881                                 skb->len, PCI_DMA_TODEVICE);
882
883                         dev_kfree_skb_irq(skb);
884
885                         sp->tx_buff[dirty] = NULL;
886                 }
887                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
888         }
889
890         sp->tx_dirty += released;
891
892         if (netif_queue_stopped(dev) &&
893             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
894                 netif_wake_queue(dev);
895         }
896 }
897
898 static void ipg_tx_timeout(struct net_device *dev)
899 {
900         struct ipg_nic_private *sp = netdev_priv(dev);
901         void __iomem *ioaddr = sp->ioaddr;
902
903         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
904                   IPG_AC_FIFO);
905
906         spin_lock_irq(&sp->lock);
907
908         /* Re-configure after DMA reset. */
909         if (ipg_io_config(dev) < 0) {
910                 printk(KERN_INFO "%s: Error during re-configuration.\n",
911                        dev->name);
912         }
913
914         init_tfdlist(dev);
915
916         spin_unlock_irq(&sp->lock);
917
918         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
919                 MAC_CTRL);
920 }
921
922 /*
923  * For TxComplete interrupts, free all transmit
924  * buffers which have already been transfered via DMA
925  * to the IPG.
926  */
927 static void ipg_nic_txcleanup(struct net_device *dev)
928 {
929         struct ipg_nic_private *sp = netdev_priv(dev);
930         void __iomem *ioaddr = sp->ioaddr;
931         unsigned int i;
932
933         IPG_DEBUG_MSG("_nic_txcleanup\n");
934
935         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
936                 /* Reading the TXSTATUS register clears the
937                  * TX_COMPLETE interrupt.
938                  */
939                 u32 txstatusdword = ipg_r32(TX_STATUS);
940
941                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
942
943                 /* Check for Transmit errors. Error bits only valid if
944                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
945                  */
946                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
947                         break;
948
949                 /* If in 10Mbps mode, indicate transmit is ready. */
950                 if (sp->tenmbpsmode) {
951                         netif_wake_queue(dev);
952                 }
953
954                 /* Transmit error, increment stat counters. */
955                 if (txstatusdword & IPG_TS_TX_ERROR) {
956                         IPG_DEBUG_MSG("Transmit error.\n");
957                         sp->stats.tx_errors++;
958                 }
959
960                 /* Late collision, re-enable transmitter. */
961                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
962                         IPG_DEBUG_MSG("Late collision on transmit.\n");
963                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
964                                 IPG_MC_RSVD_MASK, MAC_CTRL);
965                 }
966
967                 /* Maximum collisions, re-enable transmitter. */
968                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
969                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
970                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
971                                 IPG_MC_RSVD_MASK, MAC_CTRL);
972                 }
973
974                 /* Transmit underrun, reset and re-enable
975                  * transmitter.
976                  */
977                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
978                         IPG_DEBUG_MSG("Transmitter underrun.\n");
979                         sp->stats.tx_fifo_errors++;
980                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
981                                   IPG_AC_NETWORK | IPG_AC_FIFO);
982
983                         /* Re-configure after DMA reset. */
984                         if (ipg_io_config(dev) < 0) {
985                                 printk(KERN_INFO
986                                        "%s: Error during re-configuration.\n",
987                                        dev->name);
988                         }
989                         init_tfdlist(dev);
990
991                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
992                                 IPG_MC_RSVD_MASK, MAC_CTRL);
993                 }
994         }
995
996         ipg_nic_txfree(dev);
997 }
998
999 /* Provides statistical information about the IPG NIC. */
1000 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1001 {
1002         struct ipg_nic_private *sp = netdev_priv(dev);
1003         void __iomem *ioaddr = sp->ioaddr;
1004         u16 temp1;
1005         u16 temp2;
1006
1007         IPG_DEBUG_MSG("_nic_get_stats\n");
1008
1009         /* Check to see if the NIC has been initialized via nic_open,
1010          * before trying to read statistic registers.
1011          */
1012         if (!test_bit(__LINK_STATE_START, &dev->state))
1013                 return &sp->stats;
1014
1015         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1016         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1017         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1018         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1019         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1020         sp->stats.rx_errors += temp1;
1021         sp->stats.rx_missed_errors += temp1;
1022         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1023                 ipg_r32(IPG_LATECOLLISIONS);
1024         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1025         sp->stats.collisions += temp1;
1026         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1027         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1028                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1029         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1030
1031         /* detailed tx_errors */
1032         sp->stats.tx_carrier_errors += temp2;
1033
1034         /* detailed rx_errors */
1035         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1036                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1037         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1038
1039         /* Unutilized IPG statistic registers. */
1040         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1041
1042         return &sp->stats;
1043 }
1044
1045 /* Restore used receive buffers. */
1046 static int ipg_nic_rxrestore(struct net_device *dev)
1047 {
1048         struct ipg_nic_private *sp = netdev_priv(dev);
1049         const unsigned int curr = sp->rx_current;
1050         unsigned int dirty = sp->rx_dirty;
1051
1052         IPG_DEBUG_MSG("_nic_rxrestore\n");
1053
1054         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1055                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1056
1057                 /* rx_copybreak may poke hole here and there. */
1058                 if (sp->rx_buff[entry])
1059                         continue;
1060
1061                 /* Generate a new receive buffer to replace the
1062                  * current buffer (which will be released by the
1063                  * Linux system).
1064                  */
1065                 if (ipg_get_rxbuff(dev, entry) < 0) {
1066                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1067
1068                         break;
1069                 }
1070
1071                 /* Reset the RFS field. */
1072                 sp->rxd[entry].rfs = 0x0000000000000000;
1073         }
1074         sp->rx_dirty = dirty;
1075
1076         return 0;
1077 }
1078
1079 #ifdef JUMBO_FRAME
1080
1081 /* use jumboindex and jumbosize to control jumbo frame status
1082  * initial status is jumboindex=-1 and jumbosize=0
1083  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1084  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1085  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1086  *               previous receiving and need to continue dumping the current one
1087  */
1088 enum {
1089         NORMAL_PACKET,
1090         ERROR_PACKET
1091 };
1092
1093 enum {
1094         FRAME_NO_START_NO_END   = 0,
1095         FRAME_WITH_START                = 1,
1096         FRAME_WITH_END          = 10,
1097         FRAME_WITH_START_WITH_END = 11
1098 };
1099
1100 inline void ipg_nic_rx_free_skb(struct net_device *dev)
1101 {
1102         struct ipg_nic_private *sp = netdev_priv(dev);
1103         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1104
1105         if (sp->rx_buff[entry]) {
1106                 struct ipg_rx *rxfd = sp->rxd + entry;
1107
1108                 pci_unmap_single(sp->pdev,
1109                         le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1110                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1111                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1112                 sp->rx_buff[entry] = NULL;
1113         }
1114 }
1115
1116 inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
1117 {
1118         struct ipg_nic_private *sp = netdev_priv(dev);
1119         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1120         int type = FRAME_NO_START_NO_END;
1121
1122         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1123                 type += FRAME_WITH_START;
1124         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1125                 type += FRAME_WITH_END;
1126         return type;
1127 }
1128
1129 inline int ipg_nic_rx_check_error(struct net_device *dev)
1130 {
1131         struct ipg_nic_private *sp = netdev_priv(dev);
1132         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1133         struct ipg_rx *rxfd = sp->rxd + entry;
1134
1135         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1136              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1137               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1138               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1139                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1140                               (unsigned long) rxfd->rfs);
1141
1142                 /* Increment general receive error statistic. */
1143                 sp->stats.rx_errors++;
1144
1145                 /* Increment detailed receive error statistics. */
1146                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1147                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1148
1149                         sp->stats.rx_fifo_errors++;
1150                 }
1151
1152                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1153                         IPG_DEBUG_MSG("RX runt occured.\n");
1154                         sp->stats.rx_length_errors++;
1155                 }
1156
1157                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1158                  * error count handled by a IPG statistic register.
1159                  */
1160
1161                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1162                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1163                         sp->stats.rx_frame_errors++;
1164                 }
1165
1166                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1167                  * handled by a IPG statistic register.
1168                  */
1169
1170                 /* Free the memory associated with the RX
1171                  * buffer since it is erroneous and we will
1172                  * not pass it to higher layer processes.
1173                  */
1174                 if (sp->rx_buff[entry]) {
1175                         pci_unmap_single(sp->pdev,
1176                                 le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1177                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1178
1179                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1180                         sp->rx_buff[entry] = NULL;
1181                 }
1182                 return ERROR_PACKET;
1183         }
1184         return NORMAL_PACKET;
1185 }
1186
1187 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1188                                           struct ipg_nic_private *sp,
1189                                           struct ipg_rx *rxfd, unsigned entry)
1190 {
1191         struct ipg_jumbo *jumbo = &sp->jumbo;
1192         struct sk_buff *skb;
1193         int framelen;
1194
1195         if (jumbo->found_start) {
1196                 dev_kfree_skb_irq(jumbo->skb);
1197                 jumbo->found_start = 0;
1198                 jumbo->current_size = 0;
1199                 jumbo->skb = NULL;
1200         }
1201
1202         /* 1: found error, 0 no error */
1203         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1204                 return;
1205
1206         skb = sp->rx_buff[entry];
1207         if (!skb)
1208                 return;
1209
1210         /* accept this frame and send to upper layer */
1211         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1212         if (framelen > IPG_RXFRAG_SIZE)
1213                 framelen = IPG_RXFRAG_SIZE;
1214
1215         skb_put(skb, framelen);
1216         skb->protocol = eth_type_trans(skb, dev);
1217         skb->ip_summed = CHECKSUM_NONE;
1218         netif_rx(skb);
1219         dev->last_rx = jiffies;
1220         sp->rx_buff[entry] = NULL;
1221 }
1222
1223 static void ipg_nic_rx_with_start(struct net_device *dev,
1224                                   struct ipg_nic_private *sp,
1225                                   struct ipg_rx *rxfd, unsigned entry)
1226 {
1227         struct ipg_jumbo *jumbo = &sp->jumbo;
1228         struct pci_dev *pdev = sp->pdev;
1229         struct sk_buff *skb;
1230
1231         /* 1: found error, 0 no error */
1232         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1233                 return;
1234
1235         /* accept this frame and send to upper layer */
1236         skb = sp->rx_buff[entry];
1237         if (!skb)
1238                 return;
1239
1240         if (jumbo->found_start)
1241                 dev_kfree_skb_irq(jumbo->skb);
1242
1243         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
1244                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1245
1246         skb_put(skb, IPG_RXFRAG_SIZE);
1247
1248         jumbo->found_start = 1;
1249         jumbo->current_size = IPG_RXFRAG_SIZE;
1250         jumbo->skb = skb;
1251
1252         sp->rx_buff[entry] = NULL;
1253         dev->last_rx = jiffies;
1254 }
1255
1256 static void ipg_nic_rx_with_end(struct net_device *dev,
1257                                 struct ipg_nic_private *sp,
1258                                 struct ipg_rx *rxfd, unsigned entry)
1259 {
1260         struct ipg_jumbo *jumbo = &sp->jumbo;
1261
1262         /* 1: found error, 0 no error */
1263         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1264                 struct sk_buff *skb = sp->rx_buff[entry];
1265
1266                 if (!skb)
1267                         return;
1268
1269                 if (jumbo->found_start) {
1270                         int framelen, endframelen;
1271
1272                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1273
1274                         endframeLen = framelen - jumbo->current_size;
1275                         /*
1276                         if (framelen > IPG_RXFRAG_SIZE)
1277                                 framelen=IPG_RXFRAG_SIZE;
1278                          */
1279                         if (framelen > IPG_RXSUPPORT_SIZE)
1280                                 dev_kfree_skb_irq(jumbo->skb);
1281                         else {
1282                                 memcpy(skb_put(jumbo->skb, endframeLen),
1283                                        skb->data, endframeLen);
1284
1285                                 jumbo->skb->protocol =
1286                                     eth_type_trans(jumbo->skb, dev);
1287
1288                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1289                                 netif_rx(jumbo->skb);
1290                         }
1291                 }
1292
1293                 dev->last_rx = jiffies;
1294                 jumbo->found_start = 0;
1295                 jumbo->current_size = 0;
1296                 jumbo->skb = NULL;
1297
1298                 ipg_nic_rx_free_skb(dev);
1299         } else {
1300                 dev_kfree_skb_irq(jumbo->skb);
1301                 jumbo->found_start = 0;
1302                 jumbo->current_size = 0;
1303                 jumbo->skb = NULL;
1304         }
1305 }
1306
1307 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1308                                        struct ipg_nic_private *sp,
1309                                        struct ipg_rx *rxfd, unsigned entry)
1310 {
1311         struct ipg_jumbo *jumbo = &sp->jumbo;
1312
1313         /* 1: found error, 0 no error */
1314         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1315                 struct sk_buff *skb = sp->rx_buff[entry];
1316
1317                 if (skb) {
1318                         if (jumbo->found_start) {
1319                                 jumbo->current_size += IPG_RXFRAG_SIZE;
1320                                 if (jumbo->current_size <= IPG_RXSUPPORT_SIZE) {
1321                                         memcpy(skb_put(jumbo->skb,
1322                                                        IPG_RXFRAG_SIZE),
1323                                                skb->data, IPG_RXFRAG_SIZE);
1324                                 }
1325                         }
1326                         dev->last_rx = jiffies;
1327                         ipg_nic_rx_free_skb(dev);
1328                 }
1329         } else {
1330                 dev_kfree_skb_irq(jumbo->skb);
1331                 jumbo->found_start = 0;
1332                 jumbo->current_size = 0;
1333                 jumbo->skb = NULL;
1334         }
1335 }
1336
1337 static int ipg_nic_rx(struct net_device *dev)
1338 {
1339         struct ipg_nic_private *sp = netdev_priv(dev);
1340         unsigned int curr = sp->rx_current;
1341         void __iomem *ioaddr = sp->ioaddr;
1342         unsigned int i;
1343
1344         IPG_DEBUG_MSG("_nic_rx\n");
1345
1346         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1347                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1348                 struct ipg_rx *rxfd = sp->rxd + entry;
1349
1350                 if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE)))
1351                         break;
1352
1353                 switch (ipg_nic_rx_check_frame_type(dev)) {
1354                 case FRAME_WITH_START_WITH_END:
1355                         ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry);
1356                         break;
1357                 case FRAME_WITH_START:
1358                         ipg_nic_rx_with_start(dev, tp, rxfd, entry);
1359                         break;
1360                 case FRAME_WITH_END:
1361                         ipg_nic_rx_with_end(dev, tp, rxfd, entry);
1362                         break;
1363                 case FRAME_NO_START_NO_END:
1364                         ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry);
1365                         break;
1366                 }
1367         }
1368
1369         sp->rx_current = curr;
1370
1371         if (i == IPG_MAXRFDPROCESS_COUNT) {
1372                 /* There are more RFDs to process, however the
1373                  * allocated amount of RFD processing time has
1374                  * expired. Assert Interrupt Requested to make
1375                  * sure we come back to process the remaining RFDs.
1376                  */
1377                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1378         }
1379
1380         ipg_nic_rxrestore(dev);
1381
1382         return 0;
1383 }
1384
1385 #else
1386 static int ipg_nic_rx(struct net_device *dev)
1387 {
1388         /* Transfer received Ethernet frames to higher network layers. */
1389         struct ipg_nic_private *sp = netdev_priv(dev);
1390         unsigned int curr = sp->rx_current;
1391         void __iomem *ioaddr = sp->ioaddr;
1392         struct ipg_rx *rxfd;
1393         unsigned int i;
1394
1395         IPG_DEBUG_MSG("_nic_rx\n");
1396
1397 #define __RFS_MASK \
1398         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1399
1400         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1401                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1402                 struct sk_buff *skb = sp->rx_buff[entry];
1403                 unsigned int framelen;
1404
1405                 rxfd = sp->rxd + entry;
1406
1407                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1408                         break;
1409
1410                 /* Get received frame length. */
1411                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1412
1413                 /* Check for jumbo frame arrival with too small
1414                  * RXFRAG_SIZE.
1415                  */
1416                 if (framelen > IPG_RXFRAG_SIZE) {
1417                         IPG_DEBUG_MSG
1418                             ("RFS FrameLen > allocated fragment size.\n");
1419
1420                         framelen = IPG_RXFRAG_SIZE;
1421                 }
1422
1423                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1424                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1425                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1426                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1427
1428                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1429                                       (unsigned long int) rxfd->rfs);
1430
1431                         /* Increment general receive error statistic. */
1432                         sp->stats.rx_errors++;
1433
1434                         /* Increment detailed receive error statistics. */
1435                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1436                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1437                                 sp->stats.rx_fifo_errors++;
1438                         }
1439
1440                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1441                                 IPG_DEBUG_MSG("RX runt occured.\n");
1442                                 sp->stats.rx_length_errors++;
1443                         }
1444
1445                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1446                         /* Do nothing, error count handled by a IPG
1447                          * statistic register.
1448                          */
1449
1450                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1451                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1452                                 sp->stats.rx_frame_errors++;
1453                         }
1454
1455                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1456                         /* Do nothing, error count handled by a IPG
1457                          * statistic register.
1458                          */
1459
1460                         /* Free the memory associated with the RX
1461                          * buffer since it is erroneous and we will
1462                          * not pass it to higher layer processes.
1463                          */
1464                         if (skb) {
1465                                 __le64 info = rxfd->frag_info;
1466
1467                                 pci_unmap_single(sp->pdev,
1468                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1469                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1470
1471                                 dev_kfree_skb_irq(skb);
1472                         }
1473                 } else {
1474
1475                         /* Adjust the new buffer length to accomodate the size
1476                          * of the received frame.
1477                          */
1478                         skb_put(skb, framelen);
1479
1480                         /* Set the buffer's protocol field to Ethernet. */
1481                         skb->protocol = eth_type_trans(skb, dev);
1482
1483                         /* The IPG encountered an error with (or
1484                          * there were no) IP/TCP/UDP checksums.
1485                          * This may or may not indicate an invalid
1486                          * IP/TCP/UDP frame was received. Let the
1487                          * upper layer decide.
1488                          */
1489                         skb->ip_summed = CHECKSUM_NONE;
1490
1491                         /* Hand off frame for higher layer processing.
1492                          * The function netif_rx() releases the sk_buff
1493                          * when processing completes.
1494                          */
1495                         netif_rx(skb);
1496
1497                         /* Record frame receive time (jiffies = Linux
1498                          * kernel current time stamp).
1499                          */
1500                         dev->last_rx = jiffies;
1501                 }
1502
1503                 /* Assure RX buffer is not reused by IPG. */
1504                 sp->rx_buff[entry] = NULL;
1505         }
1506
1507         /*
1508          * If there are more RFDs to proces and the allocated amount of RFD
1509          * processing time has expired, assert Interrupt Requested to make
1510          * sure we come back to process the remaining RFDs.
1511          */
1512         if (i == IPG_MAXRFDPROCESS_COUNT)
1513                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1514
1515 #ifdef IPG_DEBUG
1516         /* Check if the RFD list contained no receive frame data. */
1517         if (!i)
1518                 sp->EmptyRFDListCount++;
1519 #endif
1520         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1521                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1522                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1523                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1524
1525                 rxfd = sp->rxd + entry;
1526
1527                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1528
1529                 /* An unexpected event, additional code needed to handle
1530                  * properly. So for the time being, just disregard the
1531                  * frame.
1532                  */
1533
1534                 /* Free the memory associated with the RX
1535                  * buffer since it is erroneous and we will
1536                  * not pass it to higher layer processes.
1537                  */
1538                 if (sp->rx_buff[entry]) {
1539                         pci_unmap_single(sp->pdev,
1540                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1541                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1542                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1543                 }
1544
1545                 /* Assure RX buffer is not reused by IPG. */
1546                 sp->rx_buff[entry] = NULL;
1547         }
1548
1549         sp->rx_current = curr;
1550
1551         /* Check to see if there are a minimum number of used
1552          * RFDs before restoring any (should improve performance.)
1553          */
1554         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1555                 ipg_nic_rxrestore(dev);
1556
1557         return 0;
1558 }
1559 #endif
1560
1561 static void ipg_reset_after_host_error(struct work_struct *work)
1562 {
1563         struct ipg_nic_private *sp =
1564                 container_of(work, struct ipg_nic_private, task.work);
1565         struct net_device *dev = sp->dev;
1566
1567         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1568
1569         /*
1570          * Acknowledge HostError interrupt by resetting
1571          * IPG DMA and HOST.
1572          */
1573         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1574
1575         init_rfdlist(dev);
1576         init_tfdlist(dev);
1577
1578         if (ipg_io_config(dev) < 0) {
1579                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1580                        dev->name);
1581                 schedule_delayed_work(&sp->task, HZ);
1582         }
1583 }
1584
1585 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1586 {
1587         struct net_device *dev = dev_inst;
1588         struct ipg_nic_private *sp = netdev_priv(dev);
1589         void __iomem *ioaddr = sp->ioaddr;
1590         unsigned int handled = 0;
1591         u16 status;
1592
1593         IPG_DEBUG_MSG("_interrupt_handler\n");
1594
1595 #ifdef JUMBO_FRAME
1596         ipg_nic_rxrestore(dev);
1597 #endif
1598         spin_lock(&sp->lock);
1599
1600         /* Get interrupt source information, and acknowledge
1601          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1602          * IntRequested, MacControlFrame, LinkEvent) interrupts
1603          * if issued. Also, all IPG interrupts are disabled by
1604          * reading IntStatusAck.
1605          */
1606         status = ipg_r16(INT_STATUS_ACK);
1607
1608         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1609
1610         /* Shared IRQ of remove event. */
1611         if (!(status & IPG_IS_RSVD_MASK))
1612                 goto out_enable;
1613
1614         handled = 1;
1615
1616         if (unlikely(!netif_running(dev)))
1617                 goto out_unlock;
1618
1619         /* If RFDListEnd interrupt, restore all used RFDs. */
1620         if (status & IPG_IS_RFD_LIST_END) {
1621                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1622
1623                 /* The RFD list end indicates an RFD was encountered
1624                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1625                  * (indicating the RFD is not read for use by the
1626                  * IPG.) Try to restore all RFDs.
1627                  */
1628                 ipg_nic_rxrestore(dev);
1629
1630 #ifdef IPG_DEBUG
1631                 /* Increment the RFDlistendCount counter. */
1632                 sp->RFDlistendCount++;
1633 #endif
1634         }
1635
1636         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1637          * IntRequested interrupt, process received frames. */
1638         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1639             (status & IPG_IS_RFD_LIST_END) ||
1640             (status & IPG_IS_RX_DMA_COMPLETE) ||
1641             (status & IPG_IS_INT_REQUESTED)) {
1642 #ifdef IPG_DEBUG
1643                 /* Increment the RFD list checked counter if interrupted
1644                  * only to check the RFD list. */
1645                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1646                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1647                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1648                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1649                                 IPG_IS_UPDATE_STATS)))
1650                         sp->RFDListCheckedCount++;
1651 #endif
1652
1653                 ipg_nic_rx(dev);
1654         }
1655
1656         /* If TxDMAComplete interrupt, free used TFDs. */
1657         if (status & IPG_IS_TX_DMA_COMPLETE)
1658                 ipg_nic_txfree(dev);
1659
1660         /* TxComplete interrupts indicate one of numerous actions.
1661          * Determine what action to take based on TXSTATUS register.
1662          */
1663         if (status & IPG_IS_TX_COMPLETE)
1664                 ipg_nic_txcleanup(dev);
1665
1666         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1667         if (status & IPG_IS_UPDATE_STATS)
1668                 ipg_nic_get_stats(dev);
1669
1670         /* If HostError interrupt, reset IPG. */
1671         if (status & IPG_IS_HOST_ERROR) {
1672                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1673
1674                 schedule_delayed_work(&sp->task, 0);
1675         }
1676
1677         /* If LinkEvent interrupt, resolve autonegotiation. */
1678         if (status & IPG_IS_LINK_EVENT) {
1679                 if (ipg_config_autoneg(dev) < 0)
1680                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1681                                dev->name);
1682         }
1683
1684         /* If MACCtrlFrame interrupt, do nothing. */
1685         if (status & IPG_IS_MAC_CTRL_FRAME)
1686                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1687
1688         /* If RxComplete interrupt, do nothing. */
1689         if (status & IPG_IS_RX_COMPLETE)
1690                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1691
1692         /* If RxEarly interrupt, do nothing. */
1693         if (status & IPG_IS_RX_EARLY)
1694                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1695
1696 out_enable:
1697         /* Re-enable IPG interrupts. */
1698         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1699                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1700                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1701 out_unlock:
1702         spin_unlock(&sp->lock);
1703
1704         return IRQ_RETVAL(handled);
1705 }
1706
1707 static void ipg_rx_clear(struct ipg_nic_private *sp)
1708 {
1709         unsigned int i;
1710
1711         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1712                 if (sp->rx_buff[i]) {
1713                         struct ipg_rx *rxfd = sp->rxd + i;
1714
1715                         dev_kfree_skb_irq(sp->rx_buff[i]);
1716                         sp->rx_buff[i] = NULL;
1717                         pci_unmap_single(sp->pdev,
1718                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1719                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1720                 }
1721         }
1722 }
1723
1724 static void ipg_tx_clear(struct ipg_nic_private *sp)
1725 {
1726         unsigned int i;
1727
1728         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1729                 if (sp->tx_buff[i]) {
1730                         struct ipg_tx *txfd = sp->txd + i;
1731
1732                         pci_unmap_single(sp->pdev,
1733                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1734                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1735
1736                         dev_kfree_skb_irq(sp->tx_buff[i]);
1737
1738                         sp->tx_buff[i] = NULL;
1739                 }
1740         }
1741 }
1742
1743 static int ipg_nic_open(struct net_device *dev)
1744 {
1745         struct ipg_nic_private *sp = netdev_priv(dev);
1746         void __iomem *ioaddr = sp->ioaddr;
1747         struct pci_dev *pdev = sp->pdev;
1748         int rc;
1749
1750         IPG_DEBUG_MSG("_nic_open\n");
1751
1752         sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
1753
1754         /* Check for interrupt line conflicts, and request interrupt
1755          * line for IPG.
1756          *
1757          * IMPORTANT: Disable IPG interrupts prior to registering
1758          *            IRQ.
1759          */
1760         ipg_w16(0x0000, INT_ENABLE);
1761
1762         /* Register the interrupt line to be used by the IPG within
1763          * the Linux system.
1764          */
1765         rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1766                          dev->name, dev);
1767         if (rc < 0) {
1768                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1769                        dev->name);
1770                 goto out;
1771         }
1772
1773         dev->irq = pdev->irq;
1774
1775         rc = -ENOMEM;
1776
1777         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1778                                      &sp->rxd_map, GFP_KERNEL);
1779         if (!sp->rxd)
1780                 goto err_free_irq_0;
1781
1782         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1783                                      &sp->txd_map, GFP_KERNEL);
1784         if (!sp->txd)
1785                 goto err_free_rx_1;
1786
1787         rc = init_rfdlist(dev);
1788         if (rc < 0) {
1789                 printk(KERN_INFO "%s: Error during configuration.\n",
1790                        dev->name);
1791                 goto err_free_tx_2;
1792         }
1793
1794         init_tfdlist(dev);
1795
1796         rc = ipg_io_config(dev);
1797         if (rc < 0) {
1798                 printk(KERN_INFO "%s: Error during configuration.\n",
1799                        dev->name);
1800                 goto err_release_tfdlist_3;
1801         }
1802
1803         /* Resolve autonegotiation. */
1804         if (ipg_config_autoneg(dev) < 0)
1805                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1806
1807 #ifdef JUMBO_FRAME
1808         /* initialize JUMBO Frame control variable */
1809         sp->jumbo.found_start = 0;
1810         sp->jumbo.current_size = 0;
1811         sp->jumbo.skb = 0;
1812         dev->mtu = IPG_TXFRAG_SIZE;
1813 #endif
1814
1815         /* Enable transmit and receive operation of the IPG. */
1816         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1817                  IPG_MC_RSVD_MASK, MAC_CTRL);
1818
1819         netif_start_queue(dev);
1820 out:
1821         return rc;
1822
1823 err_release_tfdlist_3:
1824         ipg_tx_clear(sp);
1825         ipg_rx_clear(sp);
1826 err_free_tx_2:
1827         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1828 err_free_rx_1:
1829         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1830 err_free_irq_0:
1831         free_irq(pdev->irq, dev);
1832         goto out;
1833 }
1834
1835 static int ipg_nic_stop(struct net_device *dev)
1836 {
1837         struct ipg_nic_private *sp = netdev_priv(dev);
1838         void __iomem *ioaddr = sp->ioaddr;
1839         struct pci_dev *pdev = sp->pdev;
1840
1841         IPG_DEBUG_MSG("_nic_stop\n");
1842
1843         netif_stop_queue(dev);
1844
1845         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1846         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1847         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1848         IPG_DUMPTFDLIST(dev);
1849
1850         do {
1851                 (void) ipg_r16(INT_STATUS_ACK);
1852
1853                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1854
1855                 synchronize_irq(pdev->irq);
1856         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1857
1858         ipg_rx_clear(sp);
1859
1860         ipg_tx_clear(sp);
1861
1862         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1863         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1864
1865         free_irq(pdev->irq, dev);
1866
1867         return 0;
1868 }
1869
1870 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1871 {
1872         struct ipg_nic_private *sp = netdev_priv(dev);
1873         void __iomem *ioaddr = sp->ioaddr;
1874         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1875         unsigned long flags;
1876         struct ipg_tx *txfd;
1877
1878         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1879
1880         /* If in 10Mbps mode, stop the transmit queue so
1881          * no more transmit frames are accepted.
1882          */
1883         if (sp->tenmbpsmode)
1884                 netif_stop_queue(dev);
1885
1886         if (sp->reset_current_tfd) {
1887                 sp->reset_current_tfd = 0;
1888                 entry = 0;
1889         }
1890
1891         txfd = sp->txd + entry;
1892
1893         sp->tx_buff[entry] = skb;
1894
1895         /* Clear all TFC fields, except TFDDONE. */
1896         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1897
1898         /* Specify the TFC field within the TFD. */
1899         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1900                 (IPG_TFC_FRAMEID & sp->tx_current) |
1901                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1902         /*
1903          * 16--17 (WordAlign) <- 3 (disable),
1904          * 0--15 (FrameId) <- sp->tx_current,
1905          * 24--27 (FragCount) <- 1
1906          */
1907
1908         /* Request TxComplete interrupts at an interval defined
1909          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1910          * Request TxComplete interrupt for every frame
1911          * if in 10Mbps mode to accomodate problem with 10Mbps
1912          * processing.
1913          */
1914         if (sp->tenmbpsmode)
1915                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1916         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1917         /* Based on compilation option, determine if FCS is to be
1918          * appended to transmit frame by IPG.
1919          */
1920         if (!(IPG_APPEND_FCS_ON_TX))
1921                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1922
1923         /* Based on compilation option, determine if IP, TCP and/or
1924          * UDP checksums are to be added to transmit frame by IPG.
1925          */
1926         if (IPG_ADD_IPCHECKSUM_ON_TX)
1927                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1928
1929         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1930                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1931
1932         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1933                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1934
1935         /* Based on compilation option, determine if VLAN tag info is to be
1936          * inserted into transmit frame by IPG.
1937          */
1938         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1939                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1940                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1941                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1942                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1943         }
1944
1945         /* The fragment start location within system memory is defined
1946          * by the sk_buff structure's data field. The physical address
1947          * of this location within the system's virtual memory space
1948          * is determined using the IPG_HOST2BUS_MAP function.
1949          */
1950         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1951                 skb->len, PCI_DMA_TODEVICE));
1952
1953         /* The length of the fragment within system memory is defined by
1954          * the sk_buff structure's len field.
1955          */
1956         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1957                 ((u64) (skb->len & 0xffff) << 48));
1958
1959         /* Clear the TFDDone bit last to indicate the TFD is ready
1960          * for transfer to the IPG.
1961          */
1962         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1963
1964         spin_lock_irqsave(&sp->lock, flags);
1965
1966         sp->tx_current++;
1967
1968         mmiowb();
1969
1970         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1971
1972         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1973                 netif_stop_queue(dev);
1974
1975         spin_unlock_irqrestore(&sp->lock, flags);
1976
1977         return NETDEV_TX_OK;
1978 }
1979
1980 static void ipg_set_phy_default_param(unsigned char rev,
1981                                       struct net_device *dev, int phy_address)
1982 {
1983         unsigned short length;
1984         unsigned char revision;
1985         unsigned short *phy_param;
1986         unsigned short address, value;
1987
1988         phy_param = &DefaultPhyParam[0];
1989         length = *phy_param & 0x00FF;
1990         revision = (unsigned char)((*phy_param) >> 8);
1991         phy_param++;
1992         while (length != 0) {
1993                 if (rev == revision) {
1994                         while (length > 1) {
1995                                 address = *phy_param;
1996                                 value = *(phy_param + 1);
1997                                 phy_param += 2;
1998                                 mdio_write(dev, phy_address, address, value);
1999                                 length -= 4;
2000                         }
2001                         break;
2002                 } else {
2003                         phy_param += length / 2;
2004                         length = *phy_param & 0x00FF;
2005                         revision = (unsigned char)((*phy_param) >> 8);
2006                         phy_param++;
2007                 }
2008         }
2009 }
2010
2011 static int read_eeprom(struct net_device *dev, int eep_addr)
2012 {
2013         void __iomem *ioaddr = ipg_ioaddr(dev);
2014         unsigned int i;
2015         int ret = 0;
2016         u16 value;
2017
2018         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2019         ipg_w16(value, EEPROM_CTRL);
2020
2021         for (i = 0; i < 1000; i++) {
2022                 u16 data;
2023
2024                 mdelay(10);
2025                 data = ipg_r16(EEPROM_CTRL);
2026                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2027                         ret = ipg_r16(EEPROM_DATA);
2028                         break;
2029                 }
2030         }
2031         return ret;
2032 }
2033
2034 static void ipg_init_mii(struct net_device *dev)
2035 {
2036         struct ipg_nic_private *sp = netdev_priv(dev);
2037         struct mii_if_info *mii_if = &sp->mii_if;
2038         int phyaddr;
2039
2040         mii_if->dev          = dev;
2041         mii_if->mdio_read    = mdio_read;
2042         mii_if->mdio_write   = mdio_write;
2043         mii_if->phy_id_mask  = 0x1f;
2044         mii_if->reg_num_mask = 0x1f;
2045
2046         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2047
2048         if (phyaddr != 0x1f) {
2049                 u16 mii_phyctrl, mii_1000cr;
2050                 u8 revisionid = 0;
2051
2052                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2053                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2054                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2055                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2056
2057                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2058
2059                 /* Set default phyparam */
2060                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2061                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2062
2063                 /* Reset PHY */
2064                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2065                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2066
2067         }
2068 }
2069
2070 static int ipg_hw_init(struct net_device *dev)
2071 {
2072         struct ipg_nic_private *sp = netdev_priv(dev);
2073         void __iomem *ioaddr = sp->ioaddr;
2074         unsigned int i;
2075         int rc;
2076
2077         /* Read/Write and Reset EEPROM Value */
2078         /* Read LED Mode Configuration from EEPROM */
2079         sp->led_mode = read_eeprom(dev, 6);
2080
2081         /* Reset all functions within the IPG. Do not assert
2082          * RST_OUT as not compatible with some PHYs.
2083          */
2084         rc = ipg_reset(dev, IPG_RESET_MASK);
2085         if (rc < 0)
2086                 goto out;
2087
2088         ipg_init_mii(dev);
2089
2090         /* Read MAC Address from EEPROM */
2091         for (i = 0; i < 3; i++)
2092                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2093
2094         for (i = 0; i < 3; i++)
2095                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2096
2097         /* Set station address in ethernet_device structure. */
2098         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2099         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2100         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2101         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2102         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2103         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2104 out:
2105         return rc;
2106 }
2107
2108 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2109 {
2110         struct ipg_nic_private *sp = netdev_priv(dev);
2111         int rc;
2112
2113         mutex_lock(&sp->mii_mutex);
2114         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2115         mutex_unlock(&sp->mii_mutex);
2116
2117         return rc;
2118 }
2119
2120 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2121 {
2122         /* Function to accomodate changes to Maximum Transfer Unit
2123          * (or MTU) of IPG NIC. Cannot use default function since
2124          * the default will not allow for MTU > 1500 bytes.
2125          */
2126
2127         IPG_DEBUG_MSG("_nic_change_mtu\n");
2128
2129         /* Check that the new MTU value is between 68 (14 byte header, 46
2130          * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
2131          * corresponds to the MAXFRAMESIZE register in the IPG.
2132          */
2133         if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
2134                 return -EINVAL;
2135
2136         dev->mtu = new_mtu;
2137
2138         return 0;
2139 }
2140
2141 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2142 {
2143         struct ipg_nic_private *sp = netdev_priv(dev);
2144         int rc;
2145
2146         mutex_lock(&sp->mii_mutex);
2147         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2148         mutex_unlock(&sp->mii_mutex);
2149
2150         return rc;
2151 }
2152
2153 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2154 {
2155         struct ipg_nic_private *sp = netdev_priv(dev);
2156         int rc;
2157
2158         mutex_lock(&sp->mii_mutex);
2159         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2160         mutex_unlock(&sp->mii_mutex);
2161
2162         return rc;
2163 }
2164
2165 static int ipg_nway_reset(struct net_device *dev)
2166 {
2167         struct ipg_nic_private *sp = netdev_priv(dev);
2168         int rc;
2169
2170         mutex_lock(&sp->mii_mutex);
2171         rc = mii_nway_restart(&sp->mii_if);
2172         mutex_unlock(&sp->mii_mutex);
2173
2174         return rc;
2175 }
2176
2177 static struct ethtool_ops ipg_ethtool_ops = {
2178         .get_settings = ipg_get_settings,
2179         .set_settings = ipg_set_settings,
2180         .nway_reset   = ipg_nway_reset,
2181 };
2182
2183 static void __devexit ipg_remove(struct pci_dev *pdev)
2184 {
2185         struct net_device *dev = pci_get_drvdata(pdev);
2186         struct ipg_nic_private *sp = netdev_priv(dev);
2187
2188         IPG_DEBUG_MSG("_remove\n");
2189
2190         /* Un-register Ethernet device. */
2191         unregister_netdev(dev);
2192
2193         pci_iounmap(pdev, sp->ioaddr);
2194
2195         pci_release_regions(pdev);
2196
2197         free_netdev(dev);
2198         pci_disable_device(pdev);
2199         pci_set_drvdata(pdev, NULL);
2200 }
2201
2202 static int __devinit ipg_probe(struct pci_dev *pdev,
2203                                const struct pci_device_id *id)
2204 {
2205         unsigned int i = id->driver_data;
2206         struct ipg_nic_private *sp;
2207         struct net_device *dev;
2208         void __iomem *ioaddr;
2209         int rc;
2210
2211         rc = pci_enable_device(pdev);
2212         if (rc < 0)
2213                 goto out;
2214
2215         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2216
2217         pci_set_master(pdev);
2218
2219         rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2220         if (rc < 0) {
2221                 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2222                 if (rc < 0) {
2223                         printk(KERN_ERR "%s: DMA config failed.\n",
2224                                pci_name(pdev));
2225                         goto err_disable_0;
2226                 }
2227         }
2228
2229         /*
2230          * Initialize net device.
2231          */
2232         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2233         if (!dev) {
2234                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2235                 rc = -ENOMEM;
2236                 goto err_disable_0;
2237         }
2238
2239         sp = netdev_priv(dev);
2240         spin_lock_init(&sp->lock);
2241         mutex_init(&sp->mii_mutex);
2242
2243         /* Declare IPG NIC functions for Ethernet device methods.
2244          */
2245         dev->open = &ipg_nic_open;
2246         dev->stop = &ipg_nic_stop;
2247         dev->hard_start_xmit = &ipg_nic_hard_start_xmit;
2248         dev->get_stats = &ipg_nic_get_stats;
2249         dev->set_multicast_list = &ipg_nic_set_multicast_list;
2250         dev->do_ioctl = ipg_ioctl;
2251         dev->tx_timeout = ipg_tx_timeout;
2252         dev->change_mtu = &ipg_nic_change_mtu;
2253
2254         SET_NETDEV_DEV(dev, &pdev->dev);
2255         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2256
2257         rc = pci_request_regions(pdev, DRV_NAME);
2258         if (rc)
2259                 goto err_free_dev_1;
2260
2261         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2262         if (!ioaddr) {
2263                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2264                 rc = -EIO;
2265                 goto err_release_regions_2;
2266         }
2267
2268         /* Save the pointer to the PCI device information. */
2269         sp->ioaddr = ioaddr;
2270         sp->pdev = pdev;
2271         sp->dev = dev;
2272
2273         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2274
2275         pci_set_drvdata(pdev, dev);
2276
2277         rc = ipg_hw_init(dev);
2278         if (rc < 0)
2279                 goto err_unmap_3;
2280
2281         rc = register_netdev(dev);
2282         if (rc < 0)
2283                 goto err_unmap_3;
2284
2285         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2286 out:
2287         return rc;
2288
2289 err_unmap_3:
2290         pci_iounmap(pdev, ioaddr);
2291 err_release_regions_2:
2292         pci_release_regions(pdev);
2293 err_free_dev_1:
2294         free_netdev(dev);
2295 err_disable_0:
2296         pci_disable_device(pdev);
2297         goto out;
2298 }
2299
2300 static struct pci_driver ipg_pci_driver = {
2301         .name           = IPG_DRIVER_NAME,
2302         .id_table       = ipg_pci_tbl,
2303         .probe          = ipg_probe,
2304         .remove         = __devexit_p(ipg_remove),
2305 };
2306
2307 static int __init ipg_init_module(void)
2308 {
2309         return pci_register_driver(&ipg_pci_driver);
2310 }
2311
2312 static void __exit ipg_exit_module(void)
2313 {
2314         pci_unregister_driver(&ipg_pci_driver);
2315 }
2316
2317 module_init(ipg_init_module);
2318 module_exit(ipg_exit_module);