1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 * rx_ring_num : This can be used to program the number of receive rings used
31 * rx_ring_sz: This defines the number of descriptors each ring can have. This
32 * is also an array of size 8.
33 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
34 * values are 1, 2 and 3.
35 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
36 * tx_fifo_len: This too is an array of 8. Each element defines the number of
37 * Tx descriptors that can be associated with each corresponding FIFO.
38 ************************************************************************/
40 #include <linux/config.h>
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/ioport.h>
45 #include <linux/pci.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/kernel.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/stddef.h>
54 #include <linux/ioctl.h>
55 #include <linux/timex.h>
56 #include <linux/sched.h>
57 #include <linux/ethtool.h>
58 #include <linux/version.h>
59 #include <linux/workqueue.h>
60 #include <linux/if_vlan.h>
62 #include <asm/system.h>
63 #include <asm/uaccess.h>
68 #include "s2io-regs.h"
70 #define DRV_VERSION "Version 2.0.9.3"
72 /* S2io Driver name & version. */
73 static char s2io_driver_name[] = "Neterion";
74 static char s2io_driver_version[] = DRV_VERSION;
76 int rxd_size[4] = {32,48,48,64};
77 int rxd_count[4] = {127,85,85,63};
79 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
83 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
84 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
90 * Cards with following subsystem_id have a link state indication
91 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
92 * macro below identifies these cards given the subsystem_id.
94 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
95 (dev_type == XFRAME_I_DEVICE) ? \
96 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
97 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
99 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
100 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
101 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
104 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
107 mac_info_t *mac_control;
109 mac_control = &sp->mac_control;
110 if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
112 if (rxb_size <= rxd_count[sp->rxd_mode]) {
120 /* Ethtool related variables and Macros. */
121 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
122 "Register test\t(offline)",
123 "Eeprom test\t(offline)",
124 "Link test\t(online)",
125 "RLDRAM test\t(offline)",
126 "BIST Test\t(offline)"
129 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
131 {"tmac_data_octets"},
135 {"tmac_pause_ctrl_frms"},
136 {"tmac_any_err_frms"},
137 {"tmac_vld_ip_octets"},
145 {"rmac_data_octets"},
146 {"rmac_fcs_err_frms"},
148 {"rmac_vld_mcst_frms"},
149 {"rmac_vld_bcst_frms"},
150 {"rmac_in_rng_len_err_frms"},
152 {"rmac_pause_ctrl_frms"},
153 {"rmac_discarded_frms"},
154 {"rmac_usized_frms"},
155 {"rmac_osized_frms"},
157 {"rmac_jabber_frms"},
165 {"rmac_err_drp_udp"},
167 {"rmac_accepted_ip"},
169 {"\n DRIVER STATISTICS"},
170 {"single_bit_ecc_errs"},
171 {"double_bit_ecc_errs"},
174 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
175 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
177 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
178 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
180 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
181 init_timer(&timer); \
182 timer.function = handle; \
183 timer.data = (unsigned long) arg; \
184 mod_timer(&timer, (jiffies + exp)) \
187 static void s2io_vlan_rx_register(struct net_device *dev,
188 struct vlan_group *grp)
190 nic_t *nic = dev->priv;
193 spin_lock_irqsave(&nic->tx_lock, flags);
195 spin_unlock_irqrestore(&nic->tx_lock, flags);
198 /* Unregister the vlan */
199 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
201 nic_t *nic = dev->priv;
204 spin_lock_irqsave(&nic->tx_lock, flags);
206 nic->vlgrp->vlan_devices[vid] = NULL;
207 spin_unlock_irqrestore(&nic->tx_lock, flags);
211 * Constants to be programmed into the Xena's registers, to configure
215 #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL
218 static u64 herc_act_dtx_cfg[] = {
220 0x8000051536750000ULL, 0x80000515367500E0ULL,
222 0x8000051536750004ULL, 0x80000515367500E4ULL,
224 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
226 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
228 0x801205150D440000ULL, 0x801205150D4400E0ULL,
230 0x801205150D440004ULL, 0x801205150D4400E4ULL,
232 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
234 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
239 static u64 xena_mdio_cfg[] = {
241 0xC001010000000000ULL, 0xC0010100000000E0ULL,
242 0xC0010100008000E4ULL,
243 /* Remove Reset from PMA PLL */
244 0xC001010000000000ULL, 0xC0010100000000E0ULL,
245 0xC0010100000000E4ULL,
249 static u64 xena_dtx_cfg[] = {
250 0x8000051500000000ULL, 0x80000515000000E0ULL,
251 0x80000515D93500E4ULL, 0x8001051500000000ULL,
252 0x80010515000000E0ULL, 0x80010515001E00E4ULL,
253 0x8002051500000000ULL, 0x80020515000000E0ULL,
254 0x80020515F21000E4ULL,
255 /* Set PADLOOPBACKN */
256 0x8002051500000000ULL, 0x80020515000000E0ULL,
257 0x80020515B20000E4ULL, 0x8003051500000000ULL,
258 0x80030515000000E0ULL, 0x80030515B20000E4ULL,
259 0x8004051500000000ULL, 0x80040515000000E0ULL,
260 0x80040515B20000E4ULL, 0x8005051500000000ULL,
261 0x80050515000000E0ULL, 0x80050515B20000E4ULL,
263 /* Remove PADLOOPBACKN */
264 0x8002051500000000ULL, 0x80020515000000E0ULL,
265 0x80020515F20000E4ULL, 0x8003051500000000ULL,
266 0x80030515000000E0ULL, 0x80030515F20000E4ULL,
267 0x8004051500000000ULL, 0x80040515000000E0ULL,
268 0x80040515F20000E4ULL, 0x8005051500000000ULL,
269 0x80050515000000E0ULL, 0x80050515F20000E4ULL,
274 * Constants for Fixing the MacAddress problem seen mostly on
277 static u64 fix_mac[] = {
278 0x0060000000000000ULL, 0x0060600000000000ULL,
279 0x0040600000000000ULL, 0x0000600000000000ULL,
280 0x0020600000000000ULL, 0x0060600000000000ULL,
281 0x0020600000000000ULL, 0x0060600000000000ULL,
282 0x0020600000000000ULL, 0x0060600000000000ULL,
283 0x0020600000000000ULL, 0x0060600000000000ULL,
284 0x0020600000000000ULL, 0x0060600000000000ULL,
285 0x0020600000000000ULL, 0x0060600000000000ULL,
286 0x0020600000000000ULL, 0x0060600000000000ULL,
287 0x0020600000000000ULL, 0x0060600000000000ULL,
288 0x0020600000000000ULL, 0x0060600000000000ULL,
289 0x0020600000000000ULL, 0x0060600000000000ULL,
290 0x0020600000000000ULL, 0x0000600000000000ULL,
291 0x0040600000000000ULL, 0x0060600000000000ULL,
295 /* Module Loadable parameters. */
296 static unsigned int tx_fifo_num = 1;
297 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
298 {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
299 static unsigned int rx_ring_num = 1;
300 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
301 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
302 static unsigned int rts_frm_len[MAX_RX_RINGS] =
303 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
304 static unsigned int rx_ring_mode = 1;
305 static unsigned int use_continuous_tx_intrs = 1;
306 static unsigned int rmac_pause_time = 65535;
307 static unsigned int mc_pause_threshold_q0q3 = 187;
308 static unsigned int mc_pause_threshold_q4q7 = 187;
309 static unsigned int shared_splits;
310 static unsigned int tmac_util_period = 5;
311 static unsigned int rmac_util_period = 5;
312 static unsigned int bimodal = 0;
313 static unsigned int l3l4hdr_size = 128;
314 #ifndef CONFIG_S2IO_NAPI
315 static unsigned int indicate_max_pkts;
317 /* Frequency of Rx desc syncs expressed as power of 2 */
318 static unsigned int rxsync_frequency = 3;
319 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
320 static unsigned int intr_type = 0;
324 * This table lists all the devices that this driver supports.
326 static struct pci_device_id s2io_tbl[] __devinitdata = {
327 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
328 PCI_ANY_ID, PCI_ANY_ID},
329 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
330 PCI_ANY_ID, PCI_ANY_ID},
331 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
332 PCI_ANY_ID, PCI_ANY_ID},
333 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
334 PCI_ANY_ID, PCI_ANY_ID},
338 MODULE_DEVICE_TABLE(pci, s2io_tbl);
340 static struct pci_driver s2io_driver = {
342 .id_table = s2io_tbl,
343 .probe = s2io_init_nic,
344 .remove = __devexit_p(s2io_rem_nic),
347 /* A simplifier macro used both by init and free shared_mem Fns(). */
348 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
351 * init_shared_mem - Allocation and Initialization of Memory
352 * @nic: Device private variable.
353 * Description: The function allocates all the memory areas shared
354 * between the NIC and the driver. This includes Tx descriptors,
355 * Rx descriptors and the statistics block.
358 static int init_shared_mem(struct s2io_nic *nic)
361 void *tmp_v_addr, *tmp_v_addr_next;
362 dma_addr_t tmp_p_addr, tmp_p_addr_next;
363 RxD_block_t *pre_rxd_blk = NULL;
364 int i, j, blk_cnt, rx_sz, tx_sz;
365 int lst_size, lst_per_page;
366 struct net_device *dev = nic->dev;
370 mac_info_t *mac_control;
371 struct config_param *config;
373 mac_control = &nic->mac_control;
374 config = &nic->config;
377 /* Allocation and initialization of TXDLs in FIOFs */
379 for (i = 0; i < config->tx_fifo_num; i++) {
380 size += config->tx_cfg[i].fifo_len;
382 if (size > MAX_AVAILABLE_TXDS) {
383 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
385 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
389 lst_size = (sizeof(TxD_t) * config->max_txds);
390 tx_sz = lst_size * size;
391 lst_per_page = PAGE_SIZE / lst_size;
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 int fifo_len = config->tx_cfg[i].fifo_len;
395 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
396 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
398 if (!mac_control->fifos[i].list_info) {
400 "Malloc failed for list_info\n");
403 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
405 for (i = 0; i < config->tx_fifo_num; i++) {
406 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
408 mac_control->fifos[i].tx_curr_put_info.offset = 0;
409 mac_control->fifos[i].tx_curr_put_info.fifo_len =
410 config->tx_cfg[i].fifo_len - 1;
411 mac_control->fifos[i].tx_curr_get_info.offset = 0;
412 mac_control->fifos[i].tx_curr_get_info.fifo_len =
413 config->tx_cfg[i].fifo_len - 1;
414 mac_control->fifos[i].fifo_no = i;
415 mac_control->fifos[i].nic = nic;
416 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 1;
418 for (j = 0; j < page_num; j++) {
422 tmp_v = pci_alloc_consistent(nic->pdev,
426 "pci_alloc_consistent ");
427 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
430 /* If we got a zero DMA address(can happen on
431 * certain platforms like PPC), reallocate.
432 * Store virtual address of page we don't want,
436 mac_control->zerodma_virt_addr = tmp_v;
438 "%s: Zero DMA address for TxDL. ", dev->name);
440 "Virtual address %p\n", tmp_v);
441 tmp_v = pci_alloc_consistent(nic->pdev,
445 "pci_alloc_consistent ");
446 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
450 while (k < lst_per_page) {
451 int l = (j * lst_per_page) + k;
452 if (l == config->tx_cfg[i].fifo_len)
454 mac_control->fifos[i].list_info[l].list_virt_addr =
455 tmp_v + (k * lst_size);
456 mac_control->fifos[i].list_info[l].list_phy_addr =
457 tmp_p + (k * lst_size);
463 /* Allocation and initialization of RXDs in Rings */
465 for (i = 0; i < config->rx_ring_num; i++) {
466 if (config->rx_cfg[i].num_rxd %
467 (rxd_count[nic->rxd_mode] + 1)) {
468 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
469 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
471 DBG_PRINT(ERR_DBG, "RxDs per Block");
474 size += config->rx_cfg[i].num_rxd;
475 mac_control->rings[i].block_count =
476 config->rx_cfg[i].num_rxd /
477 (rxd_count[nic->rxd_mode] + 1 );
478 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
479 mac_control->rings[i].block_count;
481 if (nic->rxd_mode == RXD_MODE_1)
482 size = (size * (sizeof(RxD1_t)));
484 size = (size * (sizeof(RxD3_t)));
487 for (i = 0; i < config->rx_ring_num; i++) {
488 mac_control->rings[i].rx_curr_get_info.block_index = 0;
489 mac_control->rings[i].rx_curr_get_info.offset = 0;
490 mac_control->rings[i].rx_curr_get_info.ring_len =
491 config->rx_cfg[i].num_rxd - 1;
492 mac_control->rings[i].rx_curr_put_info.block_index = 0;
493 mac_control->rings[i].rx_curr_put_info.offset = 0;
494 mac_control->rings[i].rx_curr_put_info.ring_len =
495 config->rx_cfg[i].num_rxd - 1;
496 mac_control->rings[i].nic = nic;
497 mac_control->rings[i].ring_no = i;
499 blk_cnt = config->rx_cfg[i].num_rxd /
500 (rxd_count[nic->rxd_mode] + 1);
501 /* Allocating all the Rx blocks */
502 for (j = 0; j < blk_cnt; j++) {
503 rx_block_info_t *rx_blocks;
506 rx_blocks = &mac_control->rings[i].rx_blocks[j];
507 size = SIZE_OF_BLOCK; //size is always page size
508 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
510 if (tmp_v_addr == NULL) {
512 * In case of failure, free_shared_mem()
513 * is called, which should free any
514 * memory that was alloced till the
517 rx_blocks->block_virt_addr = tmp_v_addr;
520 memset(tmp_v_addr, 0, size);
521 rx_blocks->block_virt_addr = tmp_v_addr;
522 rx_blocks->block_dma_addr = tmp_p_addr;
523 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
524 rxd_count[nic->rxd_mode],
526 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
527 rx_blocks->rxds[l].virt_addr =
528 rx_blocks->block_virt_addr +
529 (rxd_size[nic->rxd_mode] * l);
530 rx_blocks->rxds[l].dma_addr =
531 rx_blocks->block_dma_addr +
532 (rxd_size[nic->rxd_mode] * l);
535 mac_control->rings[i].rx_blocks[j].block_virt_addr =
537 mac_control->rings[i].rx_blocks[j].block_dma_addr =
540 /* Interlinking all Rx Blocks */
541 for (j = 0; j < blk_cnt; j++) {
543 mac_control->rings[i].rx_blocks[j].block_virt_addr;
545 mac_control->rings[i].rx_blocks[(j + 1) %
546 blk_cnt].block_virt_addr;
548 mac_control->rings[i].rx_blocks[j].block_dma_addr;
550 mac_control->rings[i].rx_blocks[(j + 1) %
551 blk_cnt].block_dma_addr;
553 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
554 pre_rxd_blk->reserved_2_pNext_RxD_block =
555 (unsigned long) tmp_v_addr_next;
556 pre_rxd_blk->pNext_RxD_Blk_physical =
557 (u64) tmp_p_addr_next;
560 if (nic->rxd_mode >= RXD_MODE_3A) {
562 * Allocation of Storages for buffer addresses in 2BUFF mode
563 * and the buffers as well.
565 for (i = 0; i < config->rx_ring_num; i++) {
566 blk_cnt = config->rx_cfg[i].num_rxd /
567 (rxd_count[nic->rxd_mode]+ 1);
568 mac_control->rings[i].ba =
569 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
571 if (!mac_control->rings[i].ba)
573 for (j = 0; j < blk_cnt; j++) {
575 mac_control->rings[i].ba[j] =
576 kmalloc((sizeof(buffAdd_t) *
577 (rxd_count[nic->rxd_mode] + 1)),
579 if (!mac_control->rings[i].ba[j])
581 while (k != rxd_count[nic->rxd_mode]) {
582 ba = &mac_control->rings[i].ba[j][k];
584 ba->ba_0_org = (void *) kmalloc
585 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
588 tmp = (unsigned long)ba->ba_0_org;
590 tmp &= ~((unsigned long) ALIGN_SIZE);
591 ba->ba_0 = (void *) tmp;
593 ba->ba_1_org = (void *) kmalloc
594 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
597 tmp = (unsigned long) ba->ba_1_org;
599 tmp &= ~((unsigned long) ALIGN_SIZE);
600 ba->ba_1 = (void *) tmp;
607 /* Allocation and initialization of Statistics block */
608 size = sizeof(StatInfo_t);
609 mac_control->stats_mem = pci_alloc_consistent
610 (nic->pdev, size, &mac_control->stats_mem_phy);
612 if (!mac_control->stats_mem) {
614 * In case of failure, free_shared_mem() is called, which
615 * should free any memory that was alloced till the
620 mac_control->stats_mem_sz = size;
622 tmp_v_addr = mac_control->stats_mem;
623 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
624 memset(tmp_v_addr, 0, size);
625 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
626 (unsigned long long) tmp_p_addr);
632 * free_shared_mem - Free the allocated Memory
633 * @nic: Device private variable.
634 * Description: This function is to free all memory locations allocated by
635 * the init_shared_mem() function and return it to the kernel.
638 static void free_shared_mem(struct s2io_nic *nic)
640 int i, j, blk_cnt, size;
642 dma_addr_t tmp_p_addr;
643 mac_info_t *mac_control;
644 struct config_param *config;
645 int lst_size, lst_per_page;
646 struct net_device *dev = nic->dev;
651 mac_control = &nic->mac_control;
652 config = &nic->config;
654 lst_size = (sizeof(TxD_t) * config->max_txds);
655 lst_per_page = PAGE_SIZE / lst_size;
657 for (i = 0; i < config->tx_fifo_num; i++) {
658 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
660 for (j = 0; j < page_num; j++) {
661 int mem_blks = (j * lst_per_page);
662 if (!mac_control->fifos[i].list_info)
664 if (!mac_control->fifos[i].list_info[mem_blks].
667 pci_free_consistent(nic->pdev, PAGE_SIZE,
668 mac_control->fifos[i].
671 mac_control->fifos[i].
675 /* If we got a zero DMA address during allocation,
678 if (mac_control->zerodma_virt_addr) {
679 pci_free_consistent(nic->pdev, PAGE_SIZE,
680 mac_control->zerodma_virt_addr,
683 "%s: Freeing TxDL with zero DMA addr. ",
685 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
686 mac_control->zerodma_virt_addr);
688 kfree(mac_control->fifos[i].list_info);
691 size = SIZE_OF_BLOCK;
692 for (i = 0; i < config->rx_ring_num; i++) {
693 blk_cnt = mac_control->rings[i].block_count;
694 for (j = 0; j < blk_cnt; j++) {
695 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
697 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
699 if (tmp_v_addr == NULL)
701 pci_free_consistent(nic->pdev, size,
702 tmp_v_addr, tmp_p_addr);
703 kfree(mac_control->rings[i].rx_blocks[j].rxds);
707 if (nic->rxd_mode >= RXD_MODE_3A) {
708 /* Freeing buffer storage addresses in 2BUFF mode. */
709 for (i = 0; i < config->rx_ring_num; i++) {
710 blk_cnt = config->rx_cfg[i].num_rxd /
711 (rxd_count[nic->rxd_mode] + 1);
712 for (j = 0; j < blk_cnt; j++) {
714 if (!mac_control->rings[i].ba[j])
716 while (k != rxd_count[nic->rxd_mode]) {
718 &mac_control->rings[i].ba[j][k];
723 kfree(mac_control->rings[i].ba[j]);
725 kfree(mac_control->rings[i].ba);
729 if (mac_control->stats_mem) {
730 pci_free_consistent(nic->pdev,
731 mac_control->stats_mem_sz,
732 mac_control->stats_mem,
733 mac_control->stats_mem_phy);
738 * s2io_verify_pci_mode -
741 static int s2io_verify_pci_mode(nic_t *nic)
743 XENA_dev_config_t __iomem *bar0 = nic->bar0;
744 register u64 val64 = 0;
747 val64 = readq(&bar0->pci_mode);
748 mode = (u8)GET_PCI_MODE(val64);
750 if ( val64 & PCI_MODE_UNKNOWN_MODE)
751 return -1; /* Unknown PCI mode */
757 * s2io_print_pci_mode -
759 static int s2io_print_pci_mode(nic_t *nic)
761 XENA_dev_config_t __iomem *bar0 = nic->bar0;
762 register u64 val64 = 0;
764 struct config_param *config = &nic->config;
766 val64 = readq(&bar0->pci_mode);
767 mode = (u8)GET_PCI_MODE(val64);
769 if ( val64 & PCI_MODE_UNKNOWN_MODE)
770 return -1; /* Unknown PCI mode */
772 if (val64 & PCI_MODE_32_BITS) {
773 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
775 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
779 case PCI_MODE_PCI_33:
780 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
781 config->bus_speed = 33;
783 case PCI_MODE_PCI_66:
784 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
785 config->bus_speed = 133;
787 case PCI_MODE_PCIX_M1_66:
788 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
789 config->bus_speed = 133; /* Herc doubles the clock rate */
791 case PCI_MODE_PCIX_M1_100:
792 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
793 config->bus_speed = 200;
795 case PCI_MODE_PCIX_M1_133:
796 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
797 config->bus_speed = 266;
799 case PCI_MODE_PCIX_M2_66:
800 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
801 config->bus_speed = 133;
803 case PCI_MODE_PCIX_M2_100:
804 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
805 config->bus_speed = 200;
807 case PCI_MODE_PCIX_M2_133:
808 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
809 config->bus_speed = 266;
812 return -1; /* Unsupported bus speed */
819 * init_nic - Initialization of hardware
820 * @nic: device peivate variable
821 * Description: The function sequentially configures every block
822 * of the H/W from their reset values.
823 * Return Value: SUCCESS on success and
824 * '-1' on failure (endian settings incorrect).
827 static int init_nic(struct s2io_nic *nic)
829 XENA_dev_config_t __iomem *bar0 = nic->bar0;
830 struct net_device *dev = nic->dev;
831 register u64 val64 = 0;
835 mac_info_t *mac_control;
836 struct config_param *config;
837 int mdio_cnt = 0, dtx_cnt = 0;
838 unsigned long long mem_share;
841 mac_control = &nic->mac_control;
842 config = &nic->config;
844 /* to set the swapper controle on the card */
845 if(s2io_set_swapper(nic)) {
846 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
851 * Herc requires EOI to be removed from reset before XGXS, so..
853 if (nic->device_type & XFRAME_II_DEVICE) {
854 val64 = 0xA500000000ULL;
855 writeq(val64, &bar0->sw_reset);
857 val64 = readq(&bar0->sw_reset);
860 /* Remove XGXS from reset state */
862 writeq(val64, &bar0->sw_reset);
864 val64 = readq(&bar0->sw_reset);
866 /* Enable Receiving broadcasts */
867 add = &bar0->mac_cfg;
868 val64 = readq(&bar0->mac_cfg);
869 val64 |= MAC_RMAC_BCAST_ENABLE;
870 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
871 writel((u32) val64, add);
872 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
873 writel((u32) (val64 >> 32), (add + 4));
875 /* Read registers in all blocks */
876 val64 = readq(&bar0->mac_int_mask);
877 val64 = readq(&bar0->mc_int_mask);
878 val64 = readq(&bar0->xgxs_int_mask);
882 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
885 * Configuring the XAUI Interface of Xena.
886 * ***************************************
887 * To Configure the Xena's XAUI, one has to write a series
888 * of 64 bit values into two registers in a particular
889 * sequence. Hence a macro 'SWITCH_SIGN' has been defined
890 * which will be defined in the array of configuration values
891 * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
892 * to switch writing from one regsiter to another. We continue
893 * writing these values until we encounter the 'END_SIGN' macro.
894 * For example, After making a series of 21 writes into
895 * dtx_control register the 'SWITCH_SIGN' appears and hence we
896 * start writing into mdio_control until we encounter END_SIGN.
898 if (nic->device_type & XFRAME_II_DEVICE) {
899 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
900 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
901 &bar0->dtx_control, UF);
903 msleep(1); /* Necessary!! */
909 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
910 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
914 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
915 &bar0->dtx_control, UF);
916 val64 = readq(&bar0->dtx_control);
920 while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
921 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
925 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
926 &bar0->mdio_control, UF);
927 val64 = readq(&bar0->mdio_control);
930 if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
931 (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
939 /* Tx DMA Initialization */
941 writeq(val64, &bar0->tx_fifo_partition_0);
942 writeq(val64, &bar0->tx_fifo_partition_1);
943 writeq(val64, &bar0->tx_fifo_partition_2);
944 writeq(val64, &bar0->tx_fifo_partition_3);
947 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
949 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
950 13) | vBIT(config->tx_cfg[i].fifo_priority,
953 if (i == (config->tx_fifo_num - 1)) {
960 writeq(val64, &bar0->tx_fifo_partition_0);
964 writeq(val64, &bar0->tx_fifo_partition_1);
968 writeq(val64, &bar0->tx_fifo_partition_2);
972 writeq(val64, &bar0->tx_fifo_partition_3);
977 /* Enable Tx FIFO partition 0. */
978 val64 = readq(&bar0->tx_fifo_partition_0);
979 val64 |= BIT(0); /* To enable the FIFO partition. */
980 writeq(val64, &bar0->tx_fifo_partition_0);
983 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
984 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
986 if ((nic->device_type == XFRAME_I_DEVICE) &&
987 (get_xena_rev_id(nic->pdev) < 4))
988 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
990 val64 = readq(&bar0->tx_fifo_partition_0);
991 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
992 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
995 * Initialization of Tx_PA_CONFIG register to ignore packet
996 * integrity checking.
998 val64 = readq(&bar0->tx_pa_cfg);
999 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1000 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1001 writeq(val64, &bar0->tx_pa_cfg);
1003 /* Rx DMA intialization. */
1005 for (i = 0; i < config->rx_ring_num; i++) {
1007 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1010 writeq(val64, &bar0->rx_queue_priority);
1013 * Allocating equal share of memory to all the
1017 if (nic->device_type & XFRAME_II_DEVICE)
1022 for (i = 0; i < config->rx_ring_num; i++) {
1025 mem_share = (mem_size / config->rx_ring_num +
1026 mem_size % config->rx_ring_num);
1027 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1030 mem_share = (mem_size / config->rx_ring_num);
1031 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1034 mem_share = (mem_size / config->rx_ring_num);
1035 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1038 mem_share = (mem_size / config->rx_ring_num);
1039 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1042 mem_share = (mem_size / config->rx_ring_num);
1043 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1046 mem_share = (mem_size / config->rx_ring_num);
1047 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1050 mem_share = (mem_size / config->rx_ring_num);
1051 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1054 mem_share = (mem_size / config->rx_ring_num);
1055 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1059 writeq(val64, &bar0->rx_queue_cfg);
1062 * Filling Tx round robin registers
1063 * as per the number of FIFOs
1065 switch (config->tx_fifo_num) {
1067 val64 = 0x0000000000000000ULL;
1068 writeq(val64, &bar0->tx_w_round_robin_0);
1069 writeq(val64, &bar0->tx_w_round_robin_1);
1070 writeq(val64, &bar0->tx_w_round_robin_2);
1071 writeq(val64, &bar0->tx_w_round_robin_3);
1072 writeq(val64, &bar0->tx_w_round_robin_4);
1075 val64 = 0x0000010000010000ULL;
1076 writeq(val64, &bar0->tx_w_round_robin_0);
1077 val64 = 0x0100000100000100ULL;
1078 writeq(val64, &bar0->tx_w_round_robin_1);
1079 val64 = 0x0001000001000001ULL;
1080 writeq(val64, &bar0->tx_w_round_robin_2);
1081 val64 = 0x0000010000010000ULL;
1082 writeq(val64, &bar0->tx_w_round_robin_3);
1083 val64 = 0x0100000000000000ULL;
1084 writeq(val64, &bar0->tx_w_round_robin_4);
1087 val64 = 0x0001000102000001ULL;
1088 writeq(val64, &bar0->tx_w_round_robin_0);
1089 val64 = 0x0001020000010001ULL;
1090 writeq(val64, &bar0->tx_w_round_robin_1);
1091 val64 = 0x0200000100010200ULL;
1092 writeq(val64, &bar0->tx_w_round_robin_2);
1093 val64 = 0x0001000102000001ULL;
1094 writeq(val64, &bar0->tx_w_round_robin_3);
1095 val64 = 0x0001020000000000ULL;
1096 writeq(val64, &bar0->tx_w_round_robin_4);
1099 val64 = 0x0001020300010200ULL;
1100 writeq(val64, &bar0->tx_w_round_robin_0);
1101 val64 = 0x0100000102030001ULL;
1102 writeq(val64, &bar0->tx_w_round_robin_1);
1103 val64 = 0x0200010000010203ULL;
1104 writeq(val64, &bar0->tx_w_round_robin_2);
1105 val64 = 0x0001020001000001ULL;
1106 writeq(val64, &bar0->tx_w_round_robin_3);
1107 val64 = 0x0203000100000000ULL;
1108 writeq(val64, &bar0->tx_w_round_robin_4);
1111 val64 = 0x0001000203000102ULL;
1112 writeq(val64, &bar0->tx_w_round_robin_0);
1113 val64 = 0x0001020001030004ULL;
1114 writeq(val64, &bar0->tx_w_round_robin_1);
1115 val64 = 0x0001000203000102ULL;
1116 writeq(val64, &bar0->tx_w_round_robin_2);
1117 val64 = 0x0001020001030004ULL;
1118 writeq(val64, &bar0->tx_w_round_robin_3);
1119 val64 = 0x0001000000000000ULL;
1120 writeq(val64, &bar0->tx_w_round_robin_4);
1123 val64 = 0x0001020304000102ULL;
1124 writeq(val64, &bar0->tx_w_round_robin_0);
1125 val64 = 0x0304050001020001ULL;
1126 writeq(val64, &bar0->tx_w_round_robin_1);
1127 val64 = 0x0203000100000102ULL;
1128 writeq(val64, &bar0->tx_w_round_robin_2);
1129 val64 = 0x0304000102030405ULL;
1130 writeq(val64, &bar0->tx_w_round_robin_3);
1131 val64 = 0x0001000200000000ULL;
1132 writeq(val64, &bar0->tx_w_round_robin_4);
1135 val64 = 0x0001020001020300ULL;
1136 writeq(val64, &bar0->tx_w_round_robin_0);
1137 val64 = 0x0102030400010203ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_1);
1139 val64 = 0x0405060001020001ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_2);
1141 val64 = 0x0304050000010200ULL;
1142 writeq(val64, &bar0->tx_w_round_robin_3);
1143 val64 = 0x0102030000000000ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_4);
1147 val64 = 0x0001020300040105ULL;
1148 writeq(val64, &bar0->tx_w_round_robin_0);
1149 val64 = 0x0200030106000204ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_1);
1151 val64 = 0x0103000502010007ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_2);
1153 val64 = 0x0304010002060500ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_3);
1155 val64 = 0x0103020400000000ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_4);
1160 /* Filling the Rx round robin registers as per the
1161 * number of Rings and steering based on QoS.
1163 switch (config->rx_ring_num) {
1165 val64 = 0x8080808080808080ULL;
1166 writeq(val64, &bar0->rts_qos_steering);
1169 val64 = 0x0000010000010000ULL;
1170 writeq(val64, &bar0->rx_w_round_robin_0);
1171 val64 = 0x0100000100000100ULL;
1172 writeq(val64, &bar0->rx_w_round_robin_1);
1173 val64 = 0x0001000001000001ULL;
1174 writeq(val64, &bar0->rx_w_round_robin_2);
1175 val64 = 0x0000010000010000ULL;
1176 writeq(val64, &bar0->rx_w_round_robin_3);
1177 val64 = 0x0100000000000000ULL;
1178 writeq(val64, &bar0->rx_w_round_robin_4);
1180 val64 = 0x8080808040404040ULL;
1181 writeq(val64, &bar0->rts_qos_steering);
1184 val64 = 0x0001000102000001ULL;
1185 writeq(val64, &bar0->rx_w_round_robin_0);
1186 val64 = 0x0001020000010001ULL;
1187 writeq(val64, &bar0->rx_w_round_robin_1);
1188 val64 = 0x0200000100010200ULL;
1189 writeq(val64, &bar0->rx_w_round_robin_2);
1190 val64 = 0x0001000102000001ULL;
1191 writeq(val64, &bar0->rx_w_round_robin_3);
1192 val64 = 0x0001020000000000ULL;
1193 writeq(val64, &bar0->rx_w_round_robin_4);
1195 val64 = 0x8080804040402020ULL;
1196 writeq(val64, &bar0->rts_qos_steering);
1199 val64 = 0x0001020300010200ULL;
1200 writeq(val64, &bar0->rx_w_round_robin_0);
1201 val64 = 0x0100000102030001ULL;
1202 writeq(val64, &bar0->rx_w_round_robin_1);
1203 val64 = 0x0200010000010203ULL;
1204 writeq(val64, &bar0->rx_w_round_robin_2);
1205 val64 = 0x0001020001000001ULL;
1206 writeq(val64, &bar0->rx_w_round_robin_3);
1207 val64 = 0x0203000100000000ULL;
1208 writeq(val64, &bar0->rx_w_round_robin_4);
1210 val64 = 0x8080404020201010ULL;
1211 writeq(val64, &bar0->rts_qos_steering);
1214 val64 = 0x0001000203000102ULL;
1215 writeq(val64, &bar0->rx_w_round_robin_0);
1216 val64 = 0x0001020001030004ULL;
1217 writeq(val64, &bar0->rx_w_round_robin_1);
1218 val64 = 0x0001000203000102ULL;
1219 writeq(val64, &bar0->rx_w_round_robin_2);
1220 val64 = 0x0001020001030004ULL;
1221 writeq(val64, &bar0->rx_w_round_robin_3);
1222 val64 = 0x0001000000000000ULL;
1223 writeq(val64, &bar0->rx_w_round_robin_4);
1225 val64 = 0x8080404020201008ULL;
1226 writeq(val64, &bar0->rts_qos_steering);
1229 val64 = 0x0001020304000102ULL;
1230 writeq(val64, &bar0->rx_w_round_robin_0);
1231 val64 = 0x0304050001020001ULL;
1232 writeq(val64, &bar0->rx_w_round_robin_1);
1233 val64 = 0x0203000100000102ULL;
1234 writeq(val64, &bar0->rx_w_round_robin_2);
1235 val64 = 0x0304000102030405ULL;
1236 writeq(val64, &bar0->rx_w_round_robin_3);
1237 val64 = 0x0001000200000000ULL;
1238 writeq(val64, &bar0->rx_w_round_robin_4);
1240 val64 = 0x8080404020100804ULL;
1241 writeq(val64, &bar0->rts_qos_steering);
1244 val64 = 0x0001020001020300ULL;
1245 writeq(val64, &bar0->rx_w_round_robin_0);
1246 val64 = 0x0102030400010203ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_1);
1248 val64 = 0x0405060001020001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_2);
1250 val64 = 0x0304050000010200ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_3);
1252 val64 = 0x0102030000000000ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_4);
1255 val64 = 0x8080402010080402ULL;
1256 writeq(val64, &bar0->rts_qos_steering);
1259 val64 = 0x0001020300040105ULL;
1260 writeq(val64, &bar0->rx_w_round_robin_0);
1261 val64 = 0x0200030106000204ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_1);
1263 val64 = 0x0103000502010007ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_2);
1265 val64 = 0x0304010002060500ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_3);
1267 val64 = 0x0103020400000000ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_4);
1270 val64 = 0x8040201008040201ULL;
1271 writeq(val64, &bar0->rts_qos_steering);
1277 for (i = 0; i < 8; i++)
1278 writeq(val64, &bar0->rts_frm_len_n[i]);
1280 /* Set the default rts frame length for the rings configured */
1281 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1282 for (i = 0 ; i < config->rx_ring_num ; i++)
1283 writeq(val64, &bar0->rts_frm_len_n[i]);
1285 /* Set the frame length for the configured rings
1286 * desired by the user
1288 for (i = 0; i < config->rx_ring_num; i++) {
1289 /* If rts_frm_len[i] == 0 then it is assumed that user not
1290 * specified frame length steering.
1291 * If the user provides the frame length then program
1292 * the rts_frm_len register for those values or else
1293 * leave it as it is.
1295 if (rts_frm_len[i] != 0) {
1296 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1297 &bar0->rts_frm_len_n[i]);
1301 /* Program statistics memory */
1302 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1304 if (nic->device_type == XFRAME_II_DEVICE) {
1305 val64 = STAT_BC(0x320);
1306 writeq(val64, &bar0->stat_byte_cnt);
1310 * Initializing the sampling rate for the device to calculate the
1311 * bandwidth utilization.
1313 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1314 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1315 writeq(val64, &bar0->mac_link_util);
1319 * Initializing the Transmit and Receive Traffic Interrupt
1323 * TTI Initialization. Default Tx timer gets us about
1324 * 250 interrupts per sec. Continuous interrupts are enabled
1327 if (nic->device_type == XFRAME_II_DEVICE) {
1328 int count = (nic->config.bus_speed * 125)/2;
1329 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1332 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1334 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1335 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1336 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1337 if (use_continuous_tx_intrs)
1338 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1339 writeq(val64, &bar0->tti_data1_mem);
1341 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1342 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1343 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1344 writeq(val64, &bar0->tti_data2_mem);
1346 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1347 writeq(val64, &bar0->tti_command_mem);
1350 * Once the operation completes, the Strobe bit of the command
1351 * register will be reset. We poll for this particular condition
1352 * We wait for a maximum of 500ms for the operation to complete,
1353 * if it's not complete by then we return error.
1357 val64 = readq(&bar0->tti_command_mem);
1358 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1362 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1370 if (nic->config.bimodal) {
1372 for (k = 0; k < config->rx_ring_num; k++) {
1373 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1374 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1375 writeq(val64, &bar0->tti_command_mem);
1378 * Once the operation completes, the Strobe bit of the command
1379 * register will be reset. We poll for this particular condition
1380 * We wait for a maximum of 500ms for the operation to complete,
1381 * if it's not complete by then we return error.
1385 val64 = readq(&bar0->tti_command_mem);
1386 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1391 "%s: TTI init Failed\n",
1401 /* RTI Initialization */
1402 if (nic->device_type == XFRAME_II_DEVICE) {
1404 * Programmed to generate Apprx 500 Intrs per
1407 int count = (nic->config.bus_speed * 125)/4;
1408 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1410 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1412 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1413 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1414 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1416 writeq(val64, &bar0->rti_data1_mem);
1418 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1419 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1420 if (nic->intr_type == MSI_X)
1421 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1422 RTI_DATA2_MEM_RX_UFC_D(0x40));
1424 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1425 RTI_DATA2_MEM_RX_UFC_D(0x80));
1426 writeq(val64, &bar0->rti_data2_mem);
1428 for (i = 0; i < config->rx_ring_num; i++) {
1429 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1430 | RTI_CMD_MEM_OFFSET(i);
1431 writeq(val64, &bar0->rti_command_mem);
1434 * Once the operation completes, the Strobe bit of the
1435 * command register will be reset. We poll for this
1436 * particular condition. We wait for a maximum of 500ms
1437 * for the operation to complete, if it's not complete
1438 * by then we return error.
1442 val64 = readq(&bar0->rti_command_mem);
1443 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1447 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1458 * Initializing proper values as Pause threshold into all
1459 * the 8 Queues on Rx side.
1461 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1462 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1464 /* Disable RMAC PAD STRIPPING */
1465 add = &bar0->mac_cfg;
1466 val64 = readq(&bar0->mac_cfg);
1467 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1468 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1469 writel((u32) (val64), add);
1470 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1471 writel((u32) (val64 >> 32), (add + 4));
1472 val64 = readq(&bar0->mac_cfg);
1475 * Set the time value to be inserted in the pause frame
1476 * generated by xena.
1478 val64 = readq(&bar0->rmac_pause_cfg);
1479 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1480 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1481 writeq(val64, &bar0->rmac_pause_cfg);
1484 * Set the Threshold Limit for Generating the pause frame
1485 * If the amount of data in any Queue exceeds ratio of
1486 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1487 * pause frame is generated
1490 for (i = 0; i < 4; i++) {
1492 (((u64) 0xFF00 | nic->mac_control.
1493 mc_pause_threshold_q0q3)
1496 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1499 for (i = 0; i < 4; i++) {
1501 (((u64) 0xFF00 | nic->mac_control.
1502 mc_pause_threshold_q4q7)
1505 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1508 * TxDMA will stop Read request if the number of read split has
1509 * exceeded the limit pointed by shared_splits
1511 val64 = readq(&bar0->pic_control);
1512 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1513 writeq(val64, &bar0->pic_control);
1516 * Programming the Herc to split every write transaction
1517 * that does not start on an ADB to reduce disconnects.
1519 if (nic->device_type == XFRAME_II_DEVICE) {
1520 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1521 writeq(val64, &bar0->wreq_split_mask);
1524 /* Setting Link stability period to 64 ms */
1525 if (nic->device_type == XFRAME_II_DEVICE) {
1526 val64 = MISC_LINK_STABILITY_PRD(3);
1527 writeq(val64, &bar0->misc_control);
1532 #define LINK_UP_DOWN_INTERRUPT 1
1533 #define MAC_RMAC_ERR_TIMER 2
1535 int s2io_link_fault_indication(nic_t *nic)
1537 if (nic->intr_type != INTA)
1538 return MAC_RMAC_ERR_TIMER;
1539 if (nic->device_type == XFRAME_II_DEVICE)
1540 return LINK_UP_DOWN_INTERRUPT;
1542 return MAC_RMAC_ERR_TIMER;
1546 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1547 * @nic: device private variable,
1548 * @mask: A mask indicating which Intr block must be modified and,
1549 * @flag: A flag indicating whether to enable or disable the Intrs.
1550 * Description: This function will either disable or enable the interrupts
1551 * depending on the flag argument. The mask argument can be used to
1552 * enable/disable any Intr block.
1553 * Return Value: NONE.
1556 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1558 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1559 register u64 val64 = 0, temp64 = 0;
1561 /* Top level interrupt classification */
1562 /* PIC Interrupts */
1563 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1564 /* Enable PIC Intrs in the general intr mask register */
1565 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1566 if (flag == ENABLE_INTRS) {
1567 temp64 = readq(&bar0->general_int_mask);
1568 temp64 &= ~((u64) val64);
1569 writeq(temp64, &bar0->general_int_mask);
1571 * If Hercules adapter enable GPIO otherwise
1572 * disabled all PCIX, Flash, MDIO, IIC and GPIO
1573 * interrupts for now.
1576 if (s2io_link_fault_indication(nic) ==
1577 LINK_UP_DOWN_INTERRUPT ) {
1578 temp64 = readq(&bar0->pic_int_mask);
1579 temp64 &= ~((u64) PIC_INT_GPIO);
1580 writeq(temp64, &bar0->pic_int_mask);
1581 temp64 = readq(&bar0->gpio_int_mask);
1582 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1583 writeq(temp64, &bar0->gpio_int_mask);
1585 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1588 * No MSI Support is available presently, so TTI and
1589 * RTI interrupts are also disabled.
1591 } else if (flag == DISABLE_INTRS) {
1593 * Disable PIC Intrs in the general
1594 * intr mask register
1596 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1597 temp64 = readq(&bar0->general_int_mask);
1599 writeq(val64, &bar0->general_int_mask);
1603 /* DMA Interrupts */
1604 /* Enabling/Disabling Tx DMA interrupts */
1605 if (mask & TX_DMA_INTR) {
1606 /* Enable TxDMA Intrs in the general intr mask register */
1607 val64 = TXDMA_INT_M;
1608 if (flag == ENABLE_INTRS) {
1609 temp64 = readq(&bar0->general_int_mask);
1610 temp64 &= ~((u64) val64);
1611 writeq(temp64, &bar0->general_int_mask);
1613 * Keep all interrupts other than PFC interrupt
1614 * and PCC interrupt disabled in DMA level.
1616 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1618 writeq(val64, &bar0->txdma_int_mask);
1620 * Enable only the MISC error 1 interrupt in PFC block
1622 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1623 writeq(val64, &bar0->pfc_err_mask);
1625 * Enable only the FB_ECC error interrupt in PCC block
1627 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1628 writeq(val64, &bar0->pcc_err_mask);
1629 } else if (flag == DISABLE_INTRS) {
1631 * Disable TxDMA Intrs in the general intr mask
1634 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1635 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1636 temp64 = readq(&bar0->general_int_mask);
1638 writeq(val64, &bar0->general_int_mask);
1642 /* Enabling/Disabling Rx DMA interrupts */
1643 if (mask & RX_DMA_INTR) {
1644 /* Enable RxDMA Intrs in the general intr mask register */
1645 val64 = RXDMA_INT_M;
1646 if (flag == ENABLE_INTRS) {
1647 temp64 = readq(&bar0->general_int_mask);
1648 temp64 &= ~((u64) val64);
1649 writeq(temp64, &bar0->general_int_mask);
1651 * All RxDMA block interrupts are disabled for now
1654 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1655 } else if (flag == DISABLE_INTRS) {
1657 * Disable RxDMA Intrs in the general intr mask
1660 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1661 temp64 = readq(&bar0->general_int_mask);
1663 writeq(val64, &bar0->general_int_mask);
1667 /* MAC Interrupts */
1668 /* Enabling/Disabling MAC interrupts */
1669 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1670 val64 = TXMAC_INT_M | RXMAC_INT_M;
1671 if (flag == ENABLE_INTRS) {
1672 temp64 = readq(&bar0->general_int_mask);
1673 temp64 &= ~((u64) val64);
1674 writeq(temp64, &bar0->general_int_mask);
1676 * All MAC block error interrupts are disabled for now
1679 } else if (flag == DISABLE_INTRS) {
1681 * Disable MAC Intrs in the general intr mask register
1683 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1684 writeq(DISABLE_ALL_INTRS,
1685 &bar0->mac_rmac_err_mask);
1687 temp64 = readq(&bar0->general_int_mask);
1689 writeq(val64, &bar0->general_int_mask);
1693 /* XGXS Interrupts */
1694 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1695 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1696 if (flag == ENABLE_INTRS) {
1697 temp64 = readq(&bar0->general_int_mask);
1698 temp64 &= ~((u64) val64);
1699 writeq(temp64, &bar0->general_int_mask);
1701 * All XGXS block error interrupts are disabled for now
1704 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1705 } else if (flag == DISABLE_INTRS) {
1707 * Disable MC Intrs in the general intr mask register
1709 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1710 temp64 = readq(&bar0->general_int_mask);
1712 writeq(val64, &bar0->general_int_mask);
1716 /* Memory Controller(MC) interrupts */
1717 if (mask & MC_INTR) {
1719 if (flag == ENABLE_INTRS) {
1720 temp64 = readq(&bar0->general_int_mask);
1721 temp64 &= ~((u64) val64);
1722 writeq(temp64, &bar0->general_int_mask);
1724 * Enable all MC Intrs.
1726 writeq(0x0, &bar0->mc_int_mask);
1727 writeq(0x0, &bar0->mc_err_mask);
1728 } else if (flag == DISABLE_INTRS) {
1730 * Disable MC Intrs in the general intr mask register
1732 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1733 temp64 = readq(&bar0->general_int_mask);
1735 writeq(val64, &bar0->general_int_mask);
1740 /* Tx traffic interrupts */
1741 if (mask & TX_TRAFFIC_INTR) {
1742 val64 = TXTRAFFIC_INT_M;
1743 if (flag == ENABLE_INTRS) {
1744 temp64 = readq(&bar0->general_int_mask);
1745 temp64 &= ~((u64) val64);
1746 writeq(temp64, &bar0->general_int_mask);
1748 * Enable all the Tx side interrupts
1749 * writing 0 Enables all 64 TX interrupt levels
1751 writeq(0x0, &bar0->tx_traffic_mask);
1752 } else if (flag == DISABLE_INTRS) {
1754 * Disable Tx Traffic Intrs in the general intr mask
1757 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1758 temp64 = readq(&bar0->general_int_mask);
1760 writeq(val64, &bar0->general_int_mask);
1764 /* Rx traffic interrupts */
1765 if (mask & RX_TRAFFIC_INTR) {
1766 val64 = RXTRAFFIC_INT_M;
1767 if (flag == ENABLE_INTRS) {
1768 temp64 = readq(&bar0->general_int_mask);
1769 temp64 &= ~((u64) val64);
1770 writeq(temp64, &bar0->general_int_mask);
1771 /* writing 0 Enables all 8 RX interrupt levels */
1772 writeq(0x0, &bar0->rx_traffic_mask);
1773 } else if (flag == DISABLE_INTRS) {
1775 * Disable Rx Traffic Intrs in the general intr mask
1778 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1779 temp64 = readq(&bar0->general_int_mask);
1781 writeq(val64, &bar0->general_int_mask);
1786 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1790 if (flag == FALSE) {
1791 if ((!herc && (rev_id >= 4)) || herc) {
1792 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1793 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1794 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1798 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1799 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1800 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1805 if ((!herc && (rev_id >= 4)) || herc) {
1806 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1807 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1808 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1809 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1810 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1814 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1815 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1816 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1817 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1818 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1827 * verify_xena_quiescence - Checks whether the H/W is ready
1828 * @val64 : Value read from adapter status register.
1829 * @flag : indicates if the adapter enable bit was ever written once
1831 * Description: Returns whether the H/W is ready to go or not. Depending
1832 * on whether adapter enable bit was written or not the comparison
1833 * differs and the calling function passes the input argument flag to
1835 * Return: 1 If xena is quiescence
1836 * 0 If Xena is not quiescence
1839 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1842 u64 tmp64 = ~((u64) val64);
1843 int rev_id = get_xena_rev_id(sp->pdev);
1845 herc = (sp->device_type == XFRAME_II_DEVICE);
1848 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1849 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1850 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1851 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1852 ADAPTER_STATUS_P_PLL_LOCK))) {
1853 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1860 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1861 * @sp: Pointer to device specifc structure
1863 * New procedure to clear mac address reading problems on Alpha platforms
1867 void fix_mac_address(nic_t * sp)
1869 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1873 while (fix_mac[i] != END_SIGN) {
1874 writeq(fix_mac[i++], &bar0->gpio_control);
1876 val64 = readq(&bar0->gpio_control);
1881 * start_nic - Turns the device on
1882 * @nic : device private variable.
1884 * This function actually turns the device on. Before this function is
1885 * called,all Registers are configured from their reset states
1886 * and shared memory is allocated but the NIC is still quiescent. On
1887 * calling this function, the device interrupts are cleared and the NIC is
1888 * literally switched on by writing into the adapter control register.
1890 * SUCCESS on success and -1 on failure.
1893 static int start_nic(struct s2io_nic *nic)
1895 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1896 struct net_device *dev = nic->dev;
1897 register u64 val64 = 0;
1900 mac_info_t *mac_control;
1901 struct config_param *config;
1903 mac_control = &nic->mac_control;
1904 config = &nic->config;
1906 /* PRC Initialization and configuration */
1907 for (i = 0; i < config->rx_ring_num; i++) {
1908 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1909 &bar0->prc_rxd0_n[i]);
1911 val64 = readq(&bar0->prc_ctrl_n[i]);
1912 if (nic->config.bimodal)
1913 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1914 if (nic->rxd_mode == RXD_MODE_1)
1915 val64 |= PRC_CTRL_RC_ENABLED;
1917 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1918 writeq(val64, &bar0->prc_ctrl_n[i]);
1921 if (nic->rxd_mode == RXD_MODE_3B) {
1922 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1923 val64 = readq(&bar0->rx_pa_cfg);
1924 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1925 writeq(val64, &bar0->rx_pa_cfg);
1929 * Enabling MC-RLDRAM. After enabling the device, we timeout
1930 * for around 100ms, which is approximately the time required
1931 * for the device to be ready for operation.
1933 val64 = readq(&bar0->mc_rldram_mrs);
1934 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1935 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1936 val64 = readq(&bar0->mc_rldram_mrs);
1938 msleep(100); /* Delay by around 100 ms. */
1940 /* Enabling ECC Protection. */
1941 val64 = readq(&bar0->adapter_control);
1942 val64 &= ~ADAPTER_ECC_EN;
1943 writeq(val64, &bar0->adapter_control);
1946 * Clearing any possible Link state change interrupts that
1947 * could have popped up just before Enabling the card.
1949 val64 = readq(&bar0->mac_rmac_err_reg);
1951 writeq(val64, &bar0->mac_rmac_err_reg);
1954 * Verify if the device is ready to be enabled, if so enable
1957 val64 = readq(&bar0->adapter_status);
1958 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1959 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1960 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1961 (unsigned long long) val64);
1965 /* Enable select interrupts */
1966 if (nic->intr_type != INTA)
1967 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
1969 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
1970 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1971 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1972 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1976 * With some switches, link might be already up at this point.
1977 * Because of this weird behavior, when we enable laser,
1978 * we may not get link. We need to handle this. We cannot
1979 * figure out which switch is misbehaving. So we are forced to
1980 * make a global change.
1983 /* Enabling Laser. */
1984 val64 = readq(&bar0->adapter_control);
1985 val64 |= ADAPTER_EOI_TX_ON;
1986 writeq(val64, &bar0->adapter_control);
1988 /* SXE-002: Initialize link and activity LED */
1989 subid = nic->pdev->subsystem_device;
1990 if (((subid & 0xFF) >= 0x07) &&
1991 (nic->device_type == XFRAME_I_DEVICE)) {
1992 val64 = readq(&bar0->gpio_control);
1993 val64 |= 0x0000800000000000ULL;
1994 writeq(val64, &bar0->gpio_control);
1995 val64 = 0x0411040400000000ULL;
1996 writeq(val64, (void __iomem *)bar0 + 0x2700);
2000 * Don't see link state interrupts on certain switches, so
2001 * directly scheduling a link state task from here.
2003 schedule_work(&nic->set_link_task);
2009 * free_tx_buffers - Free all queued Tx buffers
2010 * @nic : device private variable.
2012 * Free all queued Tx buffers.
2013 * Return Value: void
2016 static void free_tx_buffers(struct s2io_nic *nic)
2018 struct net_device *dev = nic->dev;
2019 struct sk_buff *skb;
2022 mac_info_t *mac_control;
2023 struct config_param *config;
2024 int cnt = 0, frg_cnt;
2026 mac_control = &nic->mac_control;
2027 config = &nic->config;
2029 for (i = 0; i < config->tx_fifo_num; i++) {
2030 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2031 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
2034 (struct sk_buff *) ((unsigned long) txdp->
2037 memset(txdp, 0, sizeof(TxD_t) *
2041 frg_cnt = skb_shinfo(skb)->nr_frags;
2042 pci_unmap_single(nic->pdev, (dma_addr_t)
2043 txdp->Buffer_Pointer,
2044 skb->len - skb->data_len,
2050 for (j = 0; j < frg_cnt; j++, txdp++) {
2052 &skb_shinfo(skb)->frags[j];
2053 pci_unmap_page(nic->pdev,
2063 memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
2067 "%s:forcibly freeing %d skbs on FIFO%d\n",
2069 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2070 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2075 * stop_nic - To stop the nic
2076 * @nic ; device private variable.
2078 * This function does exactly the opposite of what the start_nic()
2079 * function does. This function is called to stop the device.
2084 static void stop_nic(struct s2io_nic *nic)
2086 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2087 register u64 val64 = 0;
2088 u16 interruptible, i;
2089 mac_info_t *mac_control;
2090 struct config_param *config;
2092 mac_control = &nic->mac_control;
2093 config = &nic->config;
2095 /* Disable all interrupts */
2096 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2097 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2098 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2099 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2102 for (i = 0; i < config->rx_ring_num; i++) {
2103 val64 = readq(&bar0->prc_ctrl_n[i]);
2104 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2105 writeq(val64, &bar0->prc_ctrl_n[i]);
2109 int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
2111 struct net_device *dev = nic->dev;
2112 struct sk_buff *frag_list;
2115 /* Buffer-1 receives L3/L4 headers */
2116 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2117 (nic->pdev, skb->data, l3l4hdr_size + 4,
2118 PCI_DMA_FROMDEVICE);
2120 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2121 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2122 if (skb_shinfo(skb)->frag_list == NULL) {
2123 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2126 frag_list = skb_shinfo(skb)->frag_list;
2127 frag_list->next = NULL;
2128 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2129 frag_list->data = tmp;
2130 frag_list->tail = tmp;
2132 /* Buffer-2 receives L4 data payload */
2133 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2134 frag_list->data, dev->mtu,
2135 PCI_DMA_FROMDEVICE);
2136 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2137 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2143 * fill_rx_buffers - Allocates the Rx side skbs
2144 * @nic: device private variable
2145 * @ring_no: ring number
2147 * The function allocates Rx side skbs and puts the physical
2148 * address of these buffers into the RxD buffer pointers, so that the NIC
2149 * can DMA the received frame into these locations.
2150 * The NIC supports 3 receive modes, viz
2152 * 2. three buffer and
2153 * 3. Five buffer modes.
2154 * Each mode defines how many fragments the received frame will be split
2155 * up into by the NIC. The frame is split into L3 header, L4 Header,
2156 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2157 * is split into 3 fragments. As of now only single buffer mode is
2160 * SUCCESS on success or an appropriate -ve value on failure.
2163 int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2165 struct net_device *dev = nic->dev;
2166 struct sk_buff *skb;
2168 int off, off1, size, block_no, block_no1;
2171 mac_info_t *mac_control;
2172 struct config_param *config;
2175 #ifndef CONFIG_S2IO_NAPI
2176 unsigned long flags;
2178 RxD_t *first_rxdp = NULL;
2180 mac_control = &nic->mac_control;
2181 config = &nic->config;
2182 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2183 atomic_read(&nic->rx_bufs_left[ring_no]);
2185 while (alloc_tab < alloc_cnt) {
2186 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2188 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2190 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2191 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2193 rxdp = mac_control->rings[ring_no].
2194 rx_blocks[block_no].rxds[off].virt_addr;
2196 if ((block_no == block_no1) && (off == off1) &&
2197 (rxdp->Host_Control)) {
2198 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2200 DBG_PRINT(INTR_DBG, " info equated\n");
2203 if (off && (off == rxd_count[nic->rxd_mode])) {
2204 mac_control->rings[ring_no].rx_curr_put_info.
2206 if (mac_control->rings[ring_no].rx_curr_put_info.
2207 block_index == mac_control->rings[ring_no].
2209 mac_control->rings[ring_no].rx_curr_put_info.
2211 block_no = mac_control->rings[ring_no].
2212 rx_curr_put_info.block_index;
2213 if (off == rxd_count[nic->rxd_mode])
2215 mac_control->rings[ring_no].rx_curr_put_info.
2217 rxdp = mac_control->rings[ring_no].
2218 rx_blocks[block_no].block_virt_addr;
2219 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2222 #ifndef CONFIG_S2IO_NAPI
2223 spin_lock_irqsave(&nic->put_lock, flags);
2224 mac_control->rings[ring_no].put_pos =
2225 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2226 spin_unlock_irqrestore(&nic->put_lock, flags);
2228 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2229 ((nic->rxd_mode >= RXD_MODE_3A) &&
2230 (rxdp->Control_2 & BIT(0)))) {
2231 mac_control->rings[ring_no].rx_curr_put_info.
2235 /* calculate size of skb based on ring mode */
2236 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2237 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2238 if (nic->rxd_mode == RXD_MODE_1)
2239 size += NET_IP_ALIGN;
2240 else if (nic->rxd_mode == RXD_MODE_3B)
2241 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2243 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2246 skb = dev_alloc_skb(size);
2248 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2249 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2252 first_rxdp->Control_1 |= RXD_OWN_XENA;
2256 if (nic->rxd_mode == RXD_MODE_1) {
2257 /* 1 buffer mode - normal operation mode */
2258 memset(rxdp, 0, sizeof(RxD1_t));
2259 skb_reserve(skb, NET_IP_ALIGN);
2260 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
2261 (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2262 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
2263 rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
2265 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2267 * 2 or 3 buffer mode -
2268 * Both 2 buffer mode and 3 buffer mode provides 128
2269 * byte aligned receive buffers.
2271 * 3 buffer mode provides header separation where in
2272 * skb->data will have L3/L4 headers where as
2273 * skb_shinfo(skb)->frag_list will have the L4 data
2277 memset(rxdp, 0, sizeof(RxD3_t));
2278 ba = &mac_control->rings[ring_no].ba[block_no][off];
2279 skb_reserve(skb, BUF0_LEN);
2280 tmp = (u64)(unsigned long) skb->data;
2283 skb->data = (void *) (unsigned long)tmp;
2284 skb->tail = (void *) (unsigned long)tmp;
2286 ((RxD3_t*)rxdp)->Buffer0_ptr =
2287 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2288 PCI_DMA_FROMDEVICE);
2289 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2290 if (nic->rxd_mode == RXD_MODE_3B) {
2291 /* Two buffer mode */
2294 * Buffer2 will have L3/L4 header plus
2297 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2298 (nic->pdev, skb->data, dev->mtu + 4,
2299 PCI_DMA_FROMDEVICE);
2301 /* Buffer-1 will be dummy buffer not used */
2302 ((RxD3_t*)rxdp)->Buffer1_ptr =
2303 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2304 PCI_DMA_FROMDEVICE);
2305 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2306 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2310 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2311 dev_kfree_skb_irq(skb);
2314 first_rxdp->Control_1 |=
2320 rxdp->Control_2 |= BIT(0);
2322 rxdp->Host_Control = (unsigned long) (skb);
2323 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2324 rxdp->Control_1 |= RXD_OWN_XENA;
2326 if (off == (rxd_count[nic->rxd_mode] + 1))
2328 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2330 rxdp->Control_2 |= SET_RXD_MARKER;
2331 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2334 first_rxdp->Control_1 |= RXD_OWN_XENA;
2338 atomic_inc(&nic->rx_bufs_left[ring_no]);
2343 /* Transfer ownership of first descriptor to adapter just before
2344 * exiting. Before that, use memory barrier so that ownership
2345 * and other fields are seen by adapter correctly.
2349 first_rxdp->Control_1 |= RXD_OWN_XENA;
2355 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2357 struct net_device *dev = sp->dev;
2359 struct sk_buff *skb;
2361 mac_info_t *mac_control;
2364 mac_control = &sp->mac_control;
2365 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2366 rxdp = mac_control->rings[ring_no].
2367 rx_blocks[blk].rxds[j].virt_addr;
2368 skb = (struct sk_buff *)
2369 ((unsigned long) rxdp->Host_Control);
2373 if (sp->rxd_mode == RXD_MODE_1) {
2374 pci_unmap_single(sp->pdev, (dma_addr_t)
2375 ((RxD1_t*)rxdp)->Buffer0_ptr,
2377 HEADER_ETHERNET_II_802_3_SIZE
2378 + HEADER_802_2_SIZE +
2380 PCI_DMA_FROMDEVICE);
2381 memset(rxdp, 0, sizeof(RxD1_t));
2382 } else if(sp->rxd_mode == RXD_MODE_3B) {
2383 ba = &mac_control->rings[ring_no].
2385 pci_unmap_single(sp->pdev, (dma_addr_t)
2386 ((RxD3_t*)rxdp)->Buffer0_ptr,
2388 PCI_DMA_FROMDEVICE);
2389 pci_unmap_single(sp->pdev, (dma_addr_t)
2390 ((RxD3_t*)rxdp)->Buffer1_ptr,
2392 PCI_DMA_FROMDEVICE);
2393 pci_unmap_single(sp->pdev, (dma_addr_t)
2394 ((RxD3_t*)rxdp)->Buffer2_ptr,
2396 PCI_DMA_FROMDEVICE);
2397 memset(rxdp, 0, sizeof(RxD3_t));
2399 pci_unmap_single(sp->pdev, (dma_addr_t)
2400 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2401 PCI_DMA_FROMDEVICE);
2402 pci_unmap_single(sp->pdev, (dma_addr_t)
2403 ((RxD3_t*)rxdp)->Buffer1_ptr,
2405 PCI_DMA_FROMDEVICE);
2406 pci_unmap_single(sp->pdev, (dma_addr_t)
2407 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2408 PCI_DMA_FROMDEVICE);
2409 memset(rxdp, 0, sizeof(RxD3_t));
2412 atomic_dec(&sp->rx_bufs_left[ring_no]);
2417 * free_rx_buffers - Frees all Rx buffers
2418 * @sp: device private variable.
2420 * This function will free all Rx buffers allocated by host.
2425 static void free_rx_buffers(struct s2io_nic *sp)
2427 struct net_device *dev = sp->dev;
2428 int i, blk = 0, buf_cnt = 0;
2429 mac_info_t *mac_control;
2430 struct config_param *config;
2432 mac_control = &sp->mac_control;
2433 config = &sp->config;
2435 for (i = 0; i < config->rx_ring_num; i++) {
2436 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2437 free_rxd_blk(sp,i,blk);
2439 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2440 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2441 mac_control->rings[i].rx_curr_put_info.offset = 0;
2442 mac_control->rings[i].rx_curr_get_info.offset = 0;
2443 atomic_set(&sp->rx_bufs_left[i], 0);
2444 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2445 dev->name, buf_cnt, i);
2450 * s2io_poll - Rx interrupt handler for NAPI support
2451 * @dev : pointer to the device structure.
2452 * @budget : The number of packets that were budgeted to be processed
2453 * during one pass through the 'Poll" function.
2455 * Comes into picture only if NAPI support has been incorporated. It does
2456 * the same thing that rx_intr_handler does, but not in a interrupt context
2457 * also It will process only a given number of packets.
2459 * 0 on success and 1 if there are No Rx packets to be processed.
2462 #if defined(CONFIG_S2IO_NAPI)
2463 static int s2io_poll(struct net_device *dev, int *budget)
2465 nic_t *nic = dev->priv;
2466 int pkt_cnt = 0, org_pkts_to_process;
2467 mac_info_t *mac_control;
2468 struct config_param *config;
2469 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2473 atomic_inc(&nic->isr_cnt);
2474 mac_control = &nic->mac_control;
2475 config = &nic->config;
2477 nic->pkts_to_process = *budget;
2478 if (nic->pkts_to_process > dev->quota)
2479 nic->pkts_to_process = dev->quota;
2480 org_pkts_to_process = nic->pkts_to_process;
2482 val64 = readq(&bar0->rx_traffic_int);
2483 writeq(val64, &bar0->rx_traffic_int);
2485 for (i = 0; i < config->rx_ring_num; i++) {
2486 rx_intr_handler(&mac_control->rings[i]);
2487 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2488 if (!nic->pkts_to_process) {
2489 /* Quota for the current iteration has been met */
2496 dev->quota -= pkt_cnt;
2498 netif_rx_complete(dev);
2500 for (i = 0; i < config->rx_ring_num; i++) {
2501 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2502 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2503 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2507 /* Re enable the Rx interrupts. */
2508 en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2509 atomic_dec(&nic->isr_cnt);
2513 dev->quota -= pkt_cnt;
2516 for (i = 0; i < config->rx_ring_num; i++) {
2517 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2518 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2519 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2523 atomic_dec(&nic->isr_cnt);
2529 * rx_intr_handler - Rx interrupt handler
2530 * @nic: device private variable.
2532 * If the interrupt is because of a received frame or if the
2533 * receive ring contains fresh as yet un-processed frames,this function is
2534 * called. It picks out the RxD at which place the last Rx processing had
2535 * stopped and sends the skb to the OSM's Rx handler and then increments
2540 static void rx_intr_handler(ring_info_t *ring_data)
2542 nic_t *nic = ring_data->nic;
2543 struct net_device *dev = (struct net_device *) nic->dev;
2544 int get_block, put_block, put_offset;
2545 rx_curr_get_info_t get_info, put_info;
2547 struct sk_buff *skb;
2548 #ifndef CONFIG_S2IO_NAPI
2551 spin_lock(&nic->rx_lock);
2552 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2553 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2554 __FUNCTION__, dev->name);
2555 spin_unlock(&nic->rx_lock);
2559 get_info = ring_data->rx_curr_get_info;
2560 get_block = get_info.block_index;
2561 put_info = ring_data->rx_curr_put_info;
2562 put_block = put_info.block_index;
2563 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2564 #ifndef CONFIG_S2IO_NAPI
2565 spin_lock(&nic->put_lock);
2566 put_offset = ring_data->put_pos;
2567 spin_unlock(&nic->put_lock);
2569 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
2572 while (RXD_IS_UP2DT(rxdp)) {
2573 /* If your are next to put index then it's FIFO full condition */
2574 if ((get_block == put_block) &&
2575 (get_info.offset + 1) == put_info.offset) {
2576 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2579 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2581 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2583 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2584 spin_unlock(&nic->rx_lock);
2587 if (nic->rxd_mode == RXD_MODE_1) {
2588 pci_unmap_single(nic->pdev, (dma_addr_t)
2589 ((RxD1_t*)rxdp)->Buffer0_ptr,
2591 HEADER_ETHERNET_II_802_3_SIZE +
2594 PCI_DMA_FROMDEVICE);
2595 } else if (nic->rxd_mode == RXD_MODE_3B) {
2596 pci_unmap_single(nic->pdev, (dma_addr_t)
2597 ((RxD3_t*)rxdp)->Buffer0_ptr,
2598 BUF0_LEN, PCI_DMA_FROMDEVICE);
2599 pci_unmap_single(nic->pdev, (dma_addr_t)
2600 ((RxD3_t*)rxdp)->Buffer1_ptr,
2601 BUF1_LEN, PCI_DMA_FROMDEVICE);
2602 pci_unmap_single(nic->pdev, (dma_addr_t)
2603 ((RxD3_t*)rxdp)->Buffer2_ptr,
2605 PCI_DMA_FROMDEVICE);
2607 pci_unmap_single(nic->pdev, (dma_addr_t)
2608 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2609 PCI_DMA_FROMDEVICE);
2610 pci_unmap_single(nic->pdev, (dma_addr_t)
2611 ((RxD3_t*)rxdp)->Buffer1_ptr,
2613 PCI_DMA_FROMDEVICE);
2614 pci_unmap_single(nic->pdev, (dma_addr_t)
2615 ((RxD3_t*)rxdp)->Buffer2_ptr,
2616 dev->mtu, PCI_DMA_FROMDEVICE);
2618 rx_osm_handler(ring_data, rxdp);
2620 ring_data->rx_curr_get_info.offset = get_info.offset;
2621 rxdp = ring_data->rx_blocks[get_block].
2622 rxds[get_info.offset].virt_addr;
2623 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2624 get_info.offset = 0;
2625 ring_data->rx_curr_get_info.offset = get_info.offset;
2627 if (get_block == ring_data->block_count)
2629 ring_data->rx_curr_get_info.block_index = get_block;
2630 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2633 #ifdef CONFIG_S2IO_NAPI
2634 nic->pkts_to_process -= 1;
2635 if (!nic->pkts_to_process)
2639 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2643 spin_unlock(&nic->rx_lock);
2647 * tx_intr_handler - Transmit interrupt handler
2648 * @nic : device private variable
2650 * If an interrupt was raised to indicate DMA complete of the
2651 * Tx packet, this function is called. It identifies the last TxD
2652 * whose buffer was freed and frees all skbs whose data have already
2653 * DMA'ed into the NICs internal memory.
2658 static void tx_intr_handler(fifo_info_t *fifo_data)
2660 nic_t *nic = fifo_data->nic;
2661 struct net_device *dev = (struct net_device *) nic->dev;
2662 tx_curr_get_info_t get_info, put_info;
2663 struct sk_buff *skb;
2667 get_info = fifo_data->tx_curr_get_info;
2668 put_info = fifo_data->tx_curr_put_info;
2669 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2671 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2672 (get_info.offset != put_info.offset) &&
2673 (txdlp->Host_Control)) {
2674 /* Check for TxD errors */
2675 if (txdlp->Control_1 & TXD_T_CODE) {
2676 unsigned long long err;
2677 err = txdlp->Control_1 & TXD_T_CODE;
2678 if ((err >> 48) == 0xA) {
2679 DBG_PRINT(TX_DBG, "TxD returned due \
2680 to loss of link\n");
2683 DBG_PRINT(ERR_DBG, "***TxD error \
2688 skb = (struct sk_buff *) ((unsigned long)
2689 txdlp->Host_Control);
2691 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2693 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2697 frg_cnt = skb_shinfo(skb)->nr_frags;
2698 nic->tx_pkt_count++;
2700 pci_unmap_single(nic->pdev, (dma_addr_t)
2701 txdlp->Buffer_Pointer,
2702 skb->len - skb->data_len,
2708 for (j = 0; j < frg_cnt; j++, txdlp++) {
2710 &skb_shinfo(skb)->frags[j];
2711 if (!txdlp->Buffer_Pointer)
2713 pci_unmap_page(nic->pdev,
2723 (sizeof(TxD_t) * fifo_data->max_txds));
2725 /* Updating the statistics block */
2726 nic->stats.tx_bytes += skb->len;
2727 dev_kfree_skb_irq(skb);
2730 get_info.offset %= get_info.fifo_len + 1;
2731 txdlp = (TxD_t *) fifo_data->list_info
2732 [get_info.offset].list_virt_addr;
2733 fifo_data->tx_curr_get_info.offset =
2737 spin_lock(&nic->tx_lock);
2738 if (netif_queue_stopped(dev))
2739 netif_wake_queue(dev);
2740 spin_unlock(&nic->tx_lock);
2744 * alarm_intr_handler - Alarm Interrrupt handler
2745 * @nic: device private variable
2746 * Description: If the interrupt was neither because of Rx packet or Tx
2747 * complete, this function is called. If the interrupt was to indicate
2748 * a loss of link, the OSM link status handler is invoked for any other
2749 * alarm interrupt the block that raised the interrupt is displayed
2750 * and a H/W reset is issued.
2755 static void alarm_intr_handler(struct s2io_nic *nic)
2757 struct net_device *dev = (struct net_device *) nic->dev;
2758 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2759 register u64 val64 = 0, err_reg = 0;
2761 /* Handling link status change error Intr */
2762 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2763 err_reg = readq(&bar0->mac_rmac_err_reg);
2764 writeq(err_reg, &bar0->mac_rmac_err_reg);
2765 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2766 schedule_work(&nic->set_link_task);
2770 /* Handling Ecc errors */
2771 val64 = readq(&bar0->mc_err_reg);
2772 writeq(val64, &bar0->mc_err_reg);
2773 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2774 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2775 nic->mac_control.stats_info->sw_stat.
2777 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
2779 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
2780 if (nic->device_type != XFRAME_II_DEVICE) {
2781 /* Reset XframeI only if critical error */
2782 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
2783 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
2784 netif_stop_queue(dev);
2785 schedule_work(&nic->rst_timer_task);
2789 nic->mac_control.stats_info->sw_stat.
2794 /* In case of a serious error, the device will be Reset. */
2795 val64 = readq(&bar0->serr_source);
2796 if (val64 & SERR_SOURCE_ANY) {
2797 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2798 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
2799 (unsigned long long)val64);
2800 netif_stop_queue(dev);
2801 schedule_work(&nic->rst_timer_task);
2805 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2806 * Error occurs, the adapter will be recycled by disabling the
2807 * adapter enable bit and enabling it again after the device
2808 * becomes Quiescent.
2810 val64 = readq(&bar0->pcc_err_reg);
2811 writeq(val64, &bar0->pcc_err_reg);
2812 if (val64 & PCC_FB_ECC_DB_ERR) {
2813 u64 ac = readq(&bar0->adapter_control);
2814 ac &= ~(ADAPTER_CNTL_EN);
2815 writeq(ac, &bar0->adapter_control);
2816 ac = readq(&bar0->adapter_control);
2817 schedule_work(&nic->set_link_task);
2820 /* Other type of interrupts are not being handled now, TODO */
2824 * wait_for_cmd_complete - waits for a command to complete.
2825 * @sp : private member of the device structure, which is a pointer to the
2826 * s2io_nic structure.
2827 * Description: Function that waits for a command to Write into RMAC
2828 * ADDR DATA registers to be completed and returns either success or
2829 * error depending on whether the command was complete or not.
2831 * SUCCESS on success and FAILURE on failure.
2834 int wait_for_cmd_complete(nic_t * sp)
2836 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2837 int ret = FAILURE, cnt = 0;
2841 val64 = readq(&bar0->rmac_addr_cmd_mem);
2842 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2855 * s2io_reset - Resets the card.
2856 * @sp : private member of the device structure.
2857 * Description: Function to Reset the card. This function then also
2858 * restores the previously saved PCI configuration space registers as
2859 * the card reset also resets the configuration space.
2864 void s2io_reset(nic_t * sp)
2866 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2870 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
2871 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
2873 val64 = SW_RESET_ALL;
2874 writeq(val64, &bar0->sw_reset);
2877 * At this stage, if the PCI write is indeed completed, the
2878 * card is reset and so is the PCI Config space of the device.
2879 * So a read cannot be issued at this stage on any of the
2880 * registers to ensure the write into "sw_reset" register
2882 * Question: Is there any system call that will explicitly force
2883 * all the write commands still pending on the bus to be pushed
2885 * As of now I'am just giving a 250ms delay and hoping that the
2886 * PCI write to sw_reset register is done by this time.
2890 /* Restore the PCI state saved during initialization. */
2891 pci_restore_state(sp->pdev);
2892 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
2898 /* Set swapper to enable I/O register access */
2899 s2io_set_swapper(sp);
2901 /* Restore the MSIX table entries from local variables */
2902 restore_xmsi_data(sp);
2904 /* Clear certain PCI/PCI-X fields after reset */
2905 if (sp->device_type == XFRAME_II_DEVICE) {
2906 /* Clear parity err detect bit */
2907 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
2909 /* Clearing PCIX Ecc status register */
2910 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
2912 /* Clearing PCI_STATUS error reflected here */
2913 writeq(BIT(62), &bar0->txpic_int_reg);
2916 /* Reset device statistics maintained by OS */
2917 memset(&sp->stats, 0, sizeof (struct net_device_stats));
2919 /* SXE-002: Configure link and activity LED to turn it off */
2920 subid = sp->pdev->subsystem_device;
2921 if (((subid & 0xFF) >= 0x07) &&
2922 (sp->device_type == XFRAME_I_DEVICE)) {
2923 val64 = readq(&bar0->gpio_control);
2924 val64 |= 0x0000800000000000ULL;
2925 writeq(val64, &bar0->gpio_control);
2926 val64 = 0x0411040400000000ULL;
2927 writeq(val64, (void __iomem *)bar0 + 0x2700);
2931 * Clear spurious ECC interrupts that would have occured on
2932 * XFRAME II cards after reset.
2934 if (sp->device_type == XFRAME_II_DEVICE) {
2935 val64 = readq(&bar0->pcc_err_reg);
2936 writeq(val64, &bar0->pcc_err_reg);
2939 sp->device_enabled_once = FALSE;
2943 * s2io_set_swapper - to set the swapper controle on the card
2944 * @sp : private member of the device structure,
2945 * pointer to the s2io_nic structure.
2946 * Description: Function to set the swapper control on the card
2947 * correctly depending on the 'endianness' of the system.
2949 * SUCCESS on success and FAILURE on failure.
2952 int s2io_set_swapper(nic_t * sp)
2954 struct net_device *dev = sp->dev;
2955 XENA_dev_config_t __iomem *bar0 = sp->bar0;
2956 u64 val64, valt, valr;
2959 * Set proper endian settings and verify the same by reading
2960 * the PIF Feed-back register.
2963 val64 = readq(&bar0->pif_rd_swapper_fb);
2964 if (val64 != 0x0123456789ABCDEFULL) {
2966 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
2967 0x8100008181000081ULL, /* FE=1, SE=0 */
2968 0x4200004242000042ULL, /* FE=0, SE=1 */
2969 0}; /* FE=0, SE=0 */
2972 writeq(value[i], &bar0->swapper_ctrl);
2973 val64 = readq(&bar0->pif_rd_swapper_fb);
2974 if (val64 == 0x0123456789ABCDEFULL)
2979 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2981 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2982 (unsigned long long) val64);
2987 valr = readq(&bar0->swapper_ctrl);
2990 valt = 0x0123456789ABCDEFULL;
2991 writeq(valt, &bar0->xmsi_address);
2992 val64 = readq(&bar0->xmsi_address);
2996 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
2997 0x0081810000818100ULL, /* FE=1, SE=0 */
2998 0x0042420000424200ULL, /* FE=0, SE=1 */
2999 0}; /* FE=0, SE=0 */
3002 writeq((value[i] | valr), &bar0->swapper_ctrl);
3003 writeq(valt, &bar0->xmsi_address);
3004 val64 = readq(&bar0->xmsi_address);
3010 unsigned long long x = val64;
3011 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3012 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3016 val64 = readq(&bar0->swapper_ctrl);
3017 val64 &= 0xFFFF000000000000ULL;
3021 * The device by default set to a big endian format, so a
3022 * big endian driver need not set anything.
3024 val64 |= (SWAPPER_CTRL_TXP_FE |
3025 SWAPPER_CTRL_TXP_SE |
3026 SWAPPER_CTRL_TXD_R_FE |
3027 SWAPPER_CTRL_TXD_W_FE |
3028 SWAPPER_CTRL_TXF_R_FE |
3029 SWAPPER_CTRL_RXD_R_FE |
3030 SWAPPER_CTRL_RXD_W_FE |
3031 SWAPPER_CTRL_RXF_W_FE |
3032 SWAPPER_CTRL_XMSI_FE |
3033 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3034 if (sp->intr_type == INTA)
3035 val64 |= SWAPPER_CTRL_XMSI_SE;
3036 writeq(val64, &bar0->swapper_ctrl);
3039 * Initially we enable all bits to make it accessible by the
3040 * driver, then we selectively enable only those bits that
3043 val64 |= (SWAPPER_CTRL_TXP_FE |
3044 SWAPPER_CTRL_TXP_SE |
3045 SWAPPER_CTRL_TXD_R_FE |
3046 SWAPPER_CTRL_TXD_R_SE |
3047 SWAPPER_CTRL_TXD_W_FE |
3048 SWAPPER_CTRL_TXD_W_SE |
3049 SWAPPER_CTRL_TXF_R_FE |
3050 SWAPPER_CTRL_RXD_R_FE |
3051 SWAPPER_CTRL_RXD_R_SE |
3052 SWAPPER_CTRL_RXD_W_FE |
3053 SWAPPER_CTRL_RXD_W_SE |
3054 SWAPPER_CTRL_RXF_W_FE |
3055 SWAPPER_CTRL_XMSI_FE |
3056 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3057 if (sp->intr_type == INTA)
3058 val64 |= SWAPPER_CTRL_XMSI_SE;
3059 writeq(val64, &bar0->swapper_ctrl);
3061 val64 = readq(&bar0->swapper_ctrl);
3064 * Verifying if endian settings are accurate by reading a
3065 * feedback register.
3067 val64 = readq(&bar0->pif_rd_swapper_fb);
3068 if (val64 != 0x0123456789ABCDEFULL) {
3069 /* Endian settings are incorrect, calls for another dekko. */
3070 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3072 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3073 (unsigned long long) val64);
3080 int wait_for_msix_trans(nic_t *nic, int i)
3082 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3084 int ret = 0, cnt = 0;
3087 val64 = readq(&bar0->xmsi_access);
3088 if (!(val64 & BIT(15)))
3094 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3101 void restore_xmsi_data(nic_t *nic)
3103 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3107 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3108 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3109 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3110 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3111 writeq(val64, &bar0->xmsi_access);
3112 if (wait_for_msix_trans(nic, i)) {
3113 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3119 void store_xmsi_data(nic_t *nic)
3121 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3122 u64 val64, addr, data;
3125 /* Store and display */
3126 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3127 val64 = (BIT(15) | vBIT(i, 26, 6));
3128 writeq(val64, &bar0->xmsi_access);
3129 if (wait_for_msix_trans(nic, i)) {
3130 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3133 addr = readq(&bar0->xmsi_address);
3134 data = readq(&bar0->xmsi_data);
3136 nic->msix_info[i].addr = addr;
3137 nic->msix_info[i].data = data;
3142 int s2io_enable_msi(nic_t *nic)
3144 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3145 u16 msi_ctrl, msg_val;
3146 struct config_param *config = &nic->config;
3147 struct net_device *dev = nic->dev;
3148 u64 val64, tx_mat, rx_mat;
3151 val64 = readq(&bar0->pic_control);
3153 writeq(val64, &bar0->pic_control);
3155 err = pci_enable_msi(nic->pdev);
3157 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3163 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3164 * for interrupt handling.
3166 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3168 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3169 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3171 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3173 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3175 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3176 tx_mat = readq(&bar0->tx_mat0_n[0]);
3177 for (i=0; i<config->tx_fifo_num; i++) {
3178 tx_mat |= TX_MAT_SET(i, 1);
3180 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3182 rx_mat = readq(&bar0->rx_mat);
3183 for (i=0; i<config->rx_ring_num; i++) {
3184 rx_mat |= RX_MAT_SET(i, 1);
3186 writeq(rx_mat, &bar0->rx_mat);
3188 dev->irq = nic->pdev->irq;
3192 int s2io_enable_msi_x(nic_t *nic)
3194 XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
3196 u16 msi_control; /* Temp variable */
3197 int ret, i, j, msix_indx = 1;
3199 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3201 if (nic->entries == NULL) {
3202 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3205 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3208 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3210 if (nic->s2io_entries == NULL) {
3211 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3212 kfree(nic->entries);
3215 memset(nic->s2io_entries, 0,
3216 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3218 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3219 nic->entries[i].entry = i;
3220 nic->s2io_entries[i].entry = i;
3221 nic->s2io_entries[i].arg = NULL;
3222 nic->s2io_entries[i].in_use = 0;
3225 tx_mat = readq(&bar0->tx_mat0_n[0]);
3226 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3227 tx_mat |= TX_MAT_SET(i, msix_indx);
3228 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3229 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3230 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3232 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3234 if (!nic->config.bimodal) {
3235 rx_mat = readq(&bar0->rx_mat);
3236 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3237 rx_mat |= RX_MAT_SET(j, msix_indx);
3238 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3239 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3240 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3242 writeq(rx_mat, &bar0->rx_mat);
3244 tx_mat = readq(&bar0->tx_mat0_n[7]);
3245 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3246 tx_mat |= TX_MAT_SET(i, msix_indx);
3247 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3248 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3249 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3251 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3254 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3256 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3257 kfree(nic->entries);
3258 kfree(nic->s2io_entries);
3259 nic->entries = NULL;
3260 nic->s2io_entries = NULL;
3265 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3266 * in the herc NIC. (Temp change, needs to be removed later)
3268 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3269 msi_control |= 0x1; /* Enable MSI */
3270 pci_write_config_word(nic->pdev, 0x42, msi_control);
3275 /* ********************************************************* *
3276 * Functions defined below concern the OS part of the driver *
3277 * ********************************************************* */
3280 * s2io_open - open entry point of the driver
3281 * @dev : pointer to the device structure.
3283 * This function is the open entry point of the driver. It mainly calls a
3284 * function to allocate Rx buffers and inserts them into the buffer
3285 * descriptors and then enables the Rx part of the NIC.
3287 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3291 int s2io_open(struct net_device *dev)
3293 nic_t *sp = dev->priv;
3296 u16 msi_control; /* Temp variable */
3299 * Make sure you have link off by default every time
3300 * Nic is initialized
3302 netif_carrier_off(dev);
3303 sp->last_link_state = 0;
3305 /* Initialize H/W and enable interrupts */
3306 if (s2io_card_up(sp)) {
3307 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3310 goto hw_init_failed;
3313 /* Store the values of the MSIX table in the nic_t structure */
3314 store_xmsi_data(sp);
3316 /* After proper initialization of H/W, register ISR */
3317 if (sp->intr_type == MSI) {
3318 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3319 SA_SHIRQ, sp->name, dev);
3321 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3322 failed\n", dev->name);
3323 goto isr_registration_failed;
3326 if (sp->intr_type == MSI_X) {
3327 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3328 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3329 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3331 err = request_irq(sp->entries[i].vector,
3332 s2io_msix_fifo_handle, 0, sp->desc1,
3333 sp->s2io_entries[i].arg);
3334 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
3335 sp->msix_info[i].addr);
3337 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3339 err = request_irq(sp->entries[i].vector,
3340 s2io_msix_ring_handle, 0, sp->desc2,
3341 sp->s2io_entries[i].arg);
3342 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
3343 sp->msix_info[i].addr);
3346 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3347 failed\n", dev->name, i);
3348 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3349 goto isr_registration_failed;
3351 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3354 if (sp->intr_type == INTA) {
3355 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3358 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3360 goto isr_registration_failed;
3364 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3365 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3367 goto setting_mac_address_failed;
3370 netif_start_queue(dev);
3373 setting_mac_address_failed:
3374 if (sp->intr_type != MSI_X)
3375 free_irq(sp->pdev->irq, dev);
3376 isr_registration_failed:
3377 del_timer_sync(&sp->alarm_timer);
3378 if (sp->intr_type == MSI_X) {
3379 if (sp->device_type == XFRAME_II_DEVICE) {
3380 for (i=1; (sp->s2io_entries[i].in_use ==
3381 MSIX_REGISTERED_SUCCESS); i++) {
3382 int vector = sp->entries[i].vector;
3383 void *arg = sp->s2io_entries[i].arg;
3385 free_irq(vector, arg);
3387 pci_disable_msix(sp->pdev);
3390 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3391 msi_control &= 0xFFFE; /* Disable MSI */
3392 pci_write_config_word(sp->pdev, 0x42, msi_control);
3395 else if (sp->intr_type == MSI)
3396 pci_disable_msi(sp->pdev);
3399 if (sp->intr_type == MSI_X) {
3402 if (sp->s2io_entries)
3403 kfree(sp->s2io_entries);
3409 * s2io_close -close entry point of the driver
3410 * @dev : device pointer.
3412 * This is the stop entry point of the driver. It needs to undo exactly
3413 * whatever was done by the open entry point,thus it's usually referred to
3414 * as the close function.Among other things this function mainly stops the
3415 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3417 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3421 int s2io_close(struct net_device *dev)
3423 nic_t *sp = dev->priv;
3427 flush_scheduled_work();
3428 netif_stop_queue(dev);
3429 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3432 if (sp->intr_type == MSI_X) {
3433 if (sp->device_type == XFRAME_II_DEVICE) {
3434 for (i=1; (sp->s2io_entries[i].in_use ==
3435 MSIX_REGISTERED_SUCCESS); i++) {
3436 int vector = sp->entries[i].vector;
3437 void *arg = sp->s2io_entries[i].arg;
3439 free_irq(vector, arg);
3441 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3442 msi_control &= 0xFFFE; /* Disable MSI */
3443 pci_write_config_word(sp->pdev, 0x42, msi_control);
3445 pci_disable_msix(sp->pdev);
3449 free_irq(sp->pdev->irq, dev);
3450 if (sp->intr_type == MSI)
3451 pci_disable_msi(sp->pdev);
3453 sp->device_close_flag = TRUE; /* Device is shut down. */
3458 * s2io_xmit - Tx entry point of te driver
3459 * @skb : the socket buffer containing the Tx data.
3460 * @dev : device pointer.
3462 * This function is the Tx entry point of the driver. S2IO NIC supports
3463 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3464 * NOTE: when device cant queue the pkt,just the trans_start variable will
3467 * 0 on success & 1 on failure.
3470 int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3472 nic_t *sp = dev->priv;
3473 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3476 TxFIFO_element_t __iomem *tx_fifo;
3477 unsigned long flags;
3482 int vlan_priority = 0;
3483 mac_info_t *mac_control;
3484 struct config_param *config;
3486 mac_control = &sp->mac_control;
3487 config = &sp->config;
3489 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3490 spin_lock_irqsave(&sp->tx_lock, flags);
3491 if (atomic_read(&sp->card_state) == CARD_DOWN) {
3492 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3494 spin_unlock_irqrestore(&sp->tx_lock, flags);
3501 /* Get Fifo number to Transmit based on vlan priority */
3502 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3503 vlan_tag = vlan_tx_tag_get(skb);
3504 vlan_priority = vlan_tag >> 13;
3505 queue = config->fifo_mapping[vlan_priority];
3508 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3509 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3510 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3513 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3514 /* Avoid "put" pointer going beyond "get" pointer */
3515 if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3516 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3517 netif_stop_queue(dev);
3519 spin_unlock_irqrestore(&sp->tx_lock, flags);
3523 /* A buffer with no data will be dropped */
3525 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3527 spin_unlock_irqrestore(&sp->tx_lock, flags);
3532 mss = skb_shinfo(skb)->tso_size;
3534 txdp->Control_1 |= TXD_TCP_LSO_EN;
3535 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3539 frg_cnt = skb_shinfo(skb)->nr_frags;
3540 frg_len = skb->len - skb->data_len;
3542 txdp->Buffer_Pointer = pci_map_single
3543 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3544 txdp->Host_Control = (unsigned long) skb;
3545 if (skb->ip_summed == CHECKSUM_HW) {
3547 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3551 txdp->Control_2 |= config->tx_intr_type;
3553 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3554 txdp->Control_2 |= TXD_VLAN_ENABLE;
3555 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3558 txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3559 TXD_GATHER_CODE_FIRST);
3560 txdp->Control_1 |= TXD_LIST_OWN_XENA;
3562 /* For fragmented SKB. */
3563 for (i = 0; i < frg_cnt; i++) {
3564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3565 /* A '0' length fragment will be ignored */
3569 txdp->Buffer_Pointer = (u64) pci_map_page
3570 (sp->pdev, frag->page, frag->page_offset,
3571 frag->size, PCI_DMA_TODEVICE);
3572 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3574 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3576 tx_fifo = mac_control->tx_FIFO_start[queue];
3577 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3578 writeq(val64, &tx_fifo->TxDL_Pointer);
3580 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3585 val64 |= TX_FIFO_SPECIAL_FUNC;
3587 writeq(val64, &tx_fifo->List_Control);
3592 put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3593 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3595 /* Avoid "put" pointer going beyond "get" pointer */
3596 if (((put_off + 1) % queue_len) == get_off) {
3598 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3600 netif_stop_queue(dev);
3603 dev->trans_start = jiffies;
3604 spin_unlock_irqrestore(&sp->tx_lock, flags);
3610 s2io_alarm_handle(unsigned long data)
3612 nic_t *sp = (nic_t *)data;
3614 alarm_intr_handler(sp);
3615 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3619 s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
3621 struct net_device *dev = (struct net_device *) dev_id;
3622 nic_t *sp = dev->priv;
3625 mac_info_t *mac_control;
3626 struct config_param *config;
3628 atomic_inc(&sp->isr_cnt);
3629 mac_control = &sp->mac_control;
3630 config = &sp->config;
3631 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
3633 /* If Intr is because of Rx Traffic */
3634 for (i = 0; i < config->rx_ring_num; i++)
3635 rx_intr_handler(&mac_control->rings[i]);
3637 /* If Intr is because of Tx Traffic */
3638 for (i = 0; i < config->tx_fifo_num; i++)
3639 tx_intr_handler(&mac_control->fifos[i]);
3642 * If the Rx buffer count is below the panic threshold then
3643 * reallocate the buffers from the interrupt handler itself,
3644 * else schedule a tasklet to reallocate the buffers.
3646 for (i = 0; i < config->rx_ring_num; i++) {
3647 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3648 int level = rx_buffer_level(sp, rxb_size, i);
3650 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3651 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3652 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3653 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3654 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3656 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3657 clear_bit(0, (&sp->tasklet_status));
3658 atomic_dec(&sp->isr_cnt);
3661 clear_bit(0, (&sp->tasklet_status));
3662 } else if (level == LOW) {
3663 tasklet_schedule(&sp->task);
3667 atomic_dec(&sp->isr_cnt);
3672 s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
3674 ring_info_t *ring = (ring_info_t *)dev_id;
3675 nic_t *sp = ring->nic;
3676 int rxb_size, level, rng_n;
3678 atomic_inc(&sp->isr_cnt);
3679 rx_intr_handler(ring);
3681 rng_n = ring->ring_no;
3682 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
3683 level = rx_buffer_level(sp, rxb_size, rng_n);
3685 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3687 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
3688 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3689 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
3690 DBG_PRINT(ERR_DBG, "Out of memory in %s",
3692 clear_bit(0, (&sp->tasklet_status));
3695 clear_bit(0, (&sp->tasklet_status));
3696 } else if (level == LOW) {
3697 tasklet_schedule(&sp->task);
3699 atomic_dec(&sp->isr_cnt);
3705 s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
3707 fifo_info_t *fifo = (fifo_info_t *)dev_id;
3708 nic_t *sp = fifo->nic;
3710 atomic_inc(&sp->isr_cnt);
3711 tx_intr_handler(fifo);
3712 atomic_dec(&sp->isr_cnt);
3716 static void s2io_txpic_intr_handle(nic_t *sp)
3718 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3721 val64 = readq(&bar0->pic_int_status);
3722 if (val64 & PIC_INT_GPIO) {
3723 val64 = readq(&bar0->gpio_int_reg);
3724 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3725 (val64 & GPIO_INT_REG_LINK_UP)) {
3726 val64 |= GPIO_INT_REG_LINK_DOWN;
3727 val64 |= GPIO_INT_REG_LINK_UP;
3728 writeq(val64, &bar0->gpio_int_reg);
3732 if (((sp->last_link_state == LINK_UP) &&
3733 (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3734 ((sp->last_link_state == LINK_DOWN) &&
3735 (val64 & GPIO_INT_REG_LINK_UP))) {
3736 val64 = readq(&bar0->gpio_int_mask);
3737 val64 |= GPIO_INT_MASK_LINK_DOWN;
3738 val64 |= GPIO_INT_MASK_LINK_UP;
3739 writeq(val64, &bar0->gpio_int_mask);
3740 s2io_set_link((unsigned long)sp);
3743 if (sp->last_link_state == LINK_UP) {
3744 /*enable down interrupt */
3745 val64 = readq(&bar0->gpio_int_mask);
3746 /* unmasks link down intr */
3747 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
3748 /* masks link up intr */
3749 val64 |= GPIO_INT_MASK_LINK_UP;
3750 writeq(val64, &bar0->gpio_int_mask);
3752 /*enable UP Interrupt */
3753 val64 = readq(&bar0->gpio_int_mask);
3754 /* unmasks link up interrupt */
3755 val64 &= ~GPIO_INT_MASK_LINK_UP;
3756 /* masks link down interrupt */
3757 val64 |= GPIO_INT_MASK_LINK_DOWN;
3758 writeq(val64, &bar0->gpio_int_mask);
3764 * s2io_isr - ISR handler of the device .
3765 * @irq: the irq of the device.
3766 * @dev_id: a void pointer to the dev structure of the NIC.
3767 * @pt_regs: pointer to the registers pushed on the stack.
3768 * Description: This function is the ISR handler of the device. It
3769 * identifies the reason for the interrupt and calls the relevant
3770 * service routines. As a contongency measure, this ISR allocates the
3771 * recv buffers, if their numbers are below the panic value which is
3772 * presently set to 25% of the original number of rcv buffers allocated.
3774 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
3775 * IRQ_NONE: will be returned if interrupt is not from our device
3777 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3779 struct net_device *dev = (struct net_device *) dev_id;
3780 nic_t *sp = dev->priv;
3781 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3783 u64 reason = 0, val64;
3784 mac_info_t *mac_control;
3785 struct config_param *config;
3787 atomic_inc(&sp->isr_cnt);
3788 mac_control = &sp->mac_control;
3789 config = &sp->config;
3792 * Identify the cause for interrupt and call the appropriate
3793 * interrupt handler. Causes for the interrupt could be;
3797 * 4. Error in any functional blocks of the NIC.
3799 reason = readq(&bar0->general_int_status);
3802 /* The interrupt was not raised by Xena. */
3803 atomic_dec(&sp->isr_cnt);
3807 #ifdef CONFIG_S2IO_NAPI
3808 if (reason & GEN_INTR_RXTRAFFIC) {
3809 if (netif_rx_schedule_prep(dev)) {
3810 en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3812 __netif_rx_schedule(dev);
3816 /* If Intr is because of Rx Traffic */
3817 if (reason & GEN_INTR_RXTRAFFIC) {
3819 * rx_traffic_int reg is an R1 register, writing all 1's
3820 * will ensure that the actual interrupt causing bit get's
3821 * cleared and hence a read can be avoided.
3823 val64 = 0xFFFFFFFFFFFFFFFFULL;
3824 writeq(val64, &bar0->rx_traffic_int);
3825 for (i = 0; i < config->rx_ring_num; i++) {
3826 rx_intr_handler(&mac_control->rings[i]);
3831 /* If Intr is because of Tx Traffic */
3832 if (reason & GEN_INTR_TXTRAFFIC) {
3834 * tx_traffic_int reg is an R1 register, writing all 1's
3835 * will ensure that the actual interrupt causing bit get's
3836 * cleared and hence a read can be avoided.
3838 val64 = 0xFFFFFFFFFFFFFFFFULL;
3839 writeq(val64, &bar0->tx_traffic_int);
3841 for (i = 0; i < config->tx_fifo_num; i++)
3842 tx_intr_handler(&mac_control->fifos[i]);
3845 if (reason & GEN_INTR_TXPIC)
3846 s2io_txpic_intr_handle(sp);
3848 * If the Rx buffer count is below the panic threshold then
3849 * reallocate the buffers from the interrupt handler itself,
3850 * else schedule a tasklet to reallocate the buffers.
3852 #ifndef CONFIG_S2IO_NAPI
3853 for (i = 0; i < config->rx_ring_num; i++) {
3855 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3856 int level = rx_buffer_level(sp, rxb_size, i);
3858 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3859 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3860 DBG_PRINT(INTR_DBG, "PANIC levels\n");
3861 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3862 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3864 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3865 clear_bit(0, (&sp->tasklet_status));
3866 atomic_dec(&sp->isr_cnt);
3869 clear_bit(0, (&sp->tasklet_status));
3870 } else if (level == LOW) {
3871 tasklet_schedule(&sp->task);
3876 atomic_dec(&sp->isr_cnt);
3883 static void s2io_updt_stats(nic_t *sp)
3885 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3889 if (atomic_read(&sp->card_state) == CARD_UP) {
3890 /* Apprx 30us on a 133 MHz bus */
3891 val64 = SET_UPDT_CLICKS(10) |
3892 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3893 writeq(val64, &bar0->stat_cfg);
3896 val64 = readq(&bar0->stat_cfg);
3897 if (!(val64 & BIT(0)))
3901 break; /* Updt failed */
3907 * s2io_get_stats - Updates the device statistics structure.
3908 * @dev : pointer to the device structure.
3910 * This function updates the device statistics structure in the s2io_nic
3911 * structure and returns a pointer to the same.
3913 * pointer to the updated net_device_stats structure.
3916 struct net_device_stats *s2io_get_stats(struct net_device *dev)
3918 nic_t *sp = dev->priv;
3919 mac_info_t *mac_control;
3920 struct config_param *config;
3923 mac_control = &sp->mac_control;
3924 config = &sp->config;
3926 /* Configure Stats for immediate updt */
3927 s2io_updt_stats(sp);
3929 sp->stats.tx_packets =
3930 le32_to_cpu(mac_control->stats_info->tmac_frms);
3931 sp->stats.tx_errors =
3932 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3933 sp->stats.rx_errors =
3934 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3935 sp->stats.multicast =
3936 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3937 sp->stats.rx_length_errors =
3938 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3940 return (&sp->stats);
3944 * s2io_set_multicast - entry point for multicast address enable/disable.
3945 * @dev : pointer to the device structure
3947 * This function is a driver entry point which gets called by the kernel
3948 * whenever multicast addresses must be enabled/disabled. This also gets
3949 * called to set/reset promiscuous mode. Depending on the deivce flag, we
3950 * determine, if multicast address must be enabled or if promiscuous mode
3951 * is to be disabled etc.
3956 static void s2io_set_multicast(struct net_device *dev)
3959 struct dev_mc_list *mclist;
3960 nic_t *sp = dev->priv;
3961 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3962 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3964 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3967 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3968 /* Enable all Multicast addresses */
3969 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3970 &bar0->rmac_addr_data0_mem);
3971 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3972 &bar0->rmac_addr_data1_mem);
3973 val64 = RMAC_ADDR_CMD_MEM_WE |
3974 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3975 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3976 writeq(val64, &bar0->rmac_addr_cmd_mem);
3977 /* Wait till command completes */
3978 wait_for_cmd_complete(sp);
3981 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3982 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3983 /* Disable all Multicast addresses */
3984 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3985 &bar0->rmac_addr_data0_mem);
3986 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3987 &bar0->rmac_addr_data1_mem);
3988 val64 = RMAC_ADDR_CMD_MEM_WE |
3989 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3990 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3991 writeq(val64, &bar0->rmac_addr_cmd_mem);
3992 /* Wait till command completes */
3993 wait_for_cmd_complete(sp);
3996 sp->all_multi_pos = 0;
3999 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4000 /* Put the NIC into promiscuous mode */
4001 add = &bar0->mac_cfg;
4002 val64 = readq(&bar0->mac_cfg);
4003 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4005 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4006 writel((u32) val64, add);
4007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4008 writel((u32) (val64 >> 32), (add + 4));
4010 val64 = readq(&bar0->mac_cfg);
4011 sp->promisc_flg = 1;
4012 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4014 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4015 /* Remove the NIC from promiscuous mode */
4016 add = &bar0->mac_cfg;
4017 val64 = readq(&bar0->mac_cfg);
4018 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4020 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4021 writel((u32) val64, add);
4022 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4023 writel((u32) (val64 >> 32), (add + 4));
4025 val64 = readq(&bar0->mac_cfg);
4026 sp->promisc_flg = 0;
4027 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4031 /* Update individual M_CAST address list */
4032 if ((!sp->m_cast_flg) && dev->mc_count) {
4034 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4035 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4037 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4038 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4042 prev_cnt = sp->mc_addr_count;
4043 sp->mc_addr_count = dev->mc_count;
4045 /* Clear out the previous list of Mc in the H/W. */
4046 for (i = 0; i < prev_cnt; i++) {
4047 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4048 &bar0->rmac_addr_data0_mem);
4049 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4050 &bar0->rmac_addr_data1_mem);
4051 val64 = RMAC_ADDR_CMD_MEM_WE |
4052 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4053 RMAC_ADDR_CMD_MEM_OFFSET
4054 (MAC_MC_ADDR_START_OFFSET + i);
4055 writeq(val64, &bar0->rmac_addr_cmd_mem);
4057 /* Wait for command completes */
4058 if (wait_for_cmd_complete(sp)) {
4059 DBG_PRINT(ERR_DBG, "%s: Adding ",
4061 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4066 /* Create the new Rx filter list and update the same in H/W. */
4067 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4068 i++, mclist = mclist->next) {
4069 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4071 for (j = 0; j < ETH_ALEN; j++) {
4072 mac_addr |= mclist->dmi_addr[j];
4076 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4077 &bar0->rmac_addr_data0_mem);
4078 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4079 &bar0->rmac_addr_data1_mem);
4080 val64 = RMAC_ADDR_CMD_MEM_WE |
4081 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4082 RMAC_ADDR_CMD_MEM_OFFSET
4083 (i + MAC_MC_ADDR_START_OFFSET);
4084 writeq(val64, &bar0->rmac_addr_cmd_mem);
4086 /* Wait for command completes */
4087 if (wait_for_cmd_complete(sp)) {
4088 DBG_PRINT(ERR_DBG, "%s: Adding ",
4090 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4098 * s2io_set_mac_addr - Programs the Xframe mac address
4099 * @dev : pointer to the device structure.
4100 * @addr: a uchar pointer to the new mac address which is to be set.
4101 * Description : This procedure will program the Xframe to receive
4102 * frames with new Mac Address
4103 * Return value: SUCCESS on success and an appropriate (-)ve integer
4104 * as defined in errno.h file on failure.
4107 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4109 nic_t *sp = dev->priv;
4110 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4111 register u64 val64, mac_addr = 0;
4115 * Set the new MAC address as the new unicast filter and reflect this
4116 * change on the device address registered with the OS. It will be
4119 for (i = 0; i < ETH_ALEN; i++) {
4121 mac_addr |= addr[i];
4124 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4125 &bar0->rmac_addr_data0_mem);
4128 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4129 RMAC_ADDR_CMD_MEM_OFFSET(0);
4130 writeq(val64, &bar0->rmac_addr_cmd_mem);
4131 /* Wait till command completes */
4132 if (wait_for_cmd_complete(sp)) {
4133 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4141 * s2io_ethtool_sset - Sets different link parameters.
4142 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4143 * @info: pointer to the structure with parameters given by ethtool to set
4146 * The function sets different link parameters provided by the user onto
4152 static int s2io_ethtool_sset(struct net_device *dev,
4153 struct ethtool_cmd *info)
4155 nic_t *sp = dev->priv;
4156 if ((info->autoneg == AUTONEG_ENABLE) ||
4157 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4160 s2io_close(sp->dev);
4168 * s2io_ethtol_gset - Return link specific information.
4169 * @sp : private member of the device structure, pointer to the
4170 * s2io_nic structure.
4171 * @info : pointer to the structure with parameters given by ethtool
4172 * to return link information.
4174 * Returns link specific information like speed, duplex etc.. to ethtool.
4176 * return 0 on success.
4179 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4181 nic_t *sp = dev->priv;
4182 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4183 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4184 info->port = PORT_FIBRE;
4185 /* info->transceiver?? TODO */
4187 if (netif_carrier_ok(sp->dev)) {
4188 info->speed = 10000;
4189 info->duplex = DUPLEX_FULL;
4195 info->autoneg = AUTONEG_DISABLE;
4200 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4201 * @sp : private member of the device structure, which is a pointer to the
4202 * s2io_nic structure.
4203 * @info : pointer to the structure with parameters given by ethtool to
4204 * return driver information.
4206 * Returns driver specefic information like name, version etc.. to ethtool.
4211 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4212 struct ethtool_drvinfo *info)
4214 nic_t *sp = dev->priv;
4216 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4217 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4218 strncpy(info->fw_version, "", sizeof(info->fw_version));
4219 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4220 info->regdump_len = XENA_REG_SPACE;
4221 info->eedump_len = XENA_EEPROM_SPACE;
4222 info->testinfo_len = S2IO_TEST_LEN;
4223 info->n_stats = S2IO_STAT_LEN;
4227 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4228 * @sp: private member of the device structure, which is a pointer to the
4229 * s2io_nic structure.
4230 * @regs : pointer to the structure with parameters given by ethtool for
4231 * dumping the registers.
4232 * @reg_space: The input argumnet into which all the registers are dumped.
4234 * Dumps the entire register space of xFrame NIC into the user given
4240 static void s2io_ethtool_gregs(struct net_device *dev,
4241 struct ethtool_regs *regs, void *space)
4245 u8 *reg_space = (u8 *) space;
4246 nic_t *sp = dev->priv;
4248 regs->len = XENA_REG_SPACE;
4249 regs->version = sp->pdev->subsystem_device;
4251 for (i = 0; i < regs->len; i += 8) {
4252 reg = readq(sp->bar0 + i);
4253 memcpy((reg_space + i), ®, 8);
4258 * s2io_phy_id - timer function that alternates adapter LED.
4259 * @data : address of the private member of the device structure, which
4260 * is a pointer to the s2io_nic structure, provided as an u32.
4261 * Description: This is actually the timer function that alternates the
4262 * adapter LED bit of the adapter control bit to set/reset every time on
4263 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4264 * once every second.
4266 static void s2io_phy_id(unsigned long data)
4268 nic_t *sp = (nic_t *) data;
4269 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4273 subid = sp->pdev->subsystem_device;
4274 if ((sp->device_type == XFRAME_II_DEVICE) ||
4275 ((subid & 0xFF) >= 0x07)) {
4276 val64 = readq(&bar0->gpio_control);
4277 val64 ^= GPIO_CTRL_GPIO_0;
4278 writeq(val64, &bar0->gpio_control);
4280 val64 = readq(&bar0->adapter_control);
4281 val64 ^= ADAPTER_LED_ON;
4282 writeq(val64, &bar0->adapter_control);
4285 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4289 * s2io_ethtool_idnic - To physically identify the nic on the system.
4290 * @sp : private member of the device structure, which is a pointer to the
4291 * s2io_nic structure.
4292 * @id : pointer to the structure with identification parameters given by
4294 * Description: Used to physically identify the NIC on the system.
4295 * The Link LED will blink for a time specified by the user for
4297 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4298 * identification is possible only if it's link is up.
4300 * int , returns 0 on success
4303 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4305 u64 val64 = 0, last_gpio_ctrl_val;
4306 nic_t *sp = dev->priv;
4307 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4310 subid = sp->pdev->subsystem_device;
4311 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4312 if ((sp->device_type == XFRAME_I_DEVICE) &&
4313 ((subid & 0xFF) < 0x07)) {
4314 val64 = readq(&bar0->adapter_control);
4315 if (!(val64 & ADAPTER_CNTL_EN)) {
4317 "Adapter Link down, cannot blink LED\n");
4321 if (sp->id_timer.function == NULL) {
4322 init_timer(&sp->id_timer);
4323 sp->id_timer.function = s2io_phy_id;
4324 sp->id_timer.data = (unsigned long) sp;
4326 mod_timer(&sp->id_timer, jiffies);
4328 msleep_interruptible(data * HZ);
4330 msleep_interruptible(MAX_FLICKER_TIME);
4331 del_timer_sync(&sp->id_timer);
4333 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4334 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4335 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4342 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4343 * @sp : private member of the device structure, which is a pointer to the
4344 * s2io_nic structure.
4345 * @ep : pointer to the structure with pause parameters given by ethtool.
4347 * Returns the Pause frame generation and reception capability of the NIC.
4351 static void s2io_ethtool_getpause_data(struct net_device *dev,
4352 struct ethtool_pauseparam *ep)
4355 nic_t *sp = dev->priv;
4356 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4358 val64 = readq(&bar0->rmac_pause_cfg);
4359 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4360 ep->tx_pause = TRUE;
4361 if (val64 & RMAC_PAUSE_RX_ENABLE)
4362 ep->rx_pause = TRUE;
4363 ep->autoneg = FALSE;
4367 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4368 * @sp : private member of the device structure, which is a pointer to the
4369 * s2io_nic structure.
4370 * @ep : pointer to the structure with pause parameters given by ethtool.
4372 * It can be used to set or reset Pause frame generation or reception
4373 * support of the NIC.
4375 * int, returns 0 on Success
4378 static int s2io_ethtool_setpause_data(struct net_device *dev,
4379 struct ethtool_pauseparam *ep)
4382 nic_t *sp = dev->priv;
4383 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4385 val64 = readq(&bar0->rmac_pause_cfg);
4387 val64 |= RMAC_PAUSE_GEN_ENABLE;
4389 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4391 val64 |= RMAC_PAUSE_RX_ENABLE;
4393 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4394 writeq(val64, &bar0->rmac_pause_cfg);
4399 * read_eeprom - reads 4 bytes of data from user given offset.
4400 * @sp : private member of the device structure, which is a pointer to the
4401 * s2io_nic structure.
4402 * @off : offset at which the data must be written
4403 * @data : Its an output parameter where the data read at the given
4406 * Will read 4 bytes of data from the user given offset and return the
4408 * NOTE: Will allow to read only part of the EEPROM visible through the
4411 * -1 on failure and 0 on success.
4414 #define S2IO_DEV_ID 5
4415 static int read_eeprom(nic_t * sp, int off, u64 * data)
4420 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4422 if (sp->device_type == XFRAME_I_DEVICE) {
4423 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4424 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4425 I2C_CONTROL_CNTL_START;
4426 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4428 while (exit_cnt < 5) {
4429 val64 = readq(&bar0->i2c_control);
4430 if (I2C_CONTROL_CNTL_END(val64)) {
4431 *data = I2C_CONTROL_GET_DATA(val64);
4440 if (sp->device_type == XFRAME_II_DEVICE) {
4441 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4442 SPI_CONTROL_BYTECNT(0x3) |
4443 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4444 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4445 val64 |= SPI_CONTROL_REQ;
4446 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4447 while (exit_cnt < 5) {
4448 val64 = readq(&bar0->spi_control);
4449 if (val64 & SPI_CONTROL_NACK) {
4452 } else if (val64 & SPI_CONTROL_DONE) {
4453 *data = readq(&bar0->spi_data);
4466 * write_eeprom - actually writes the relevant part of the data value.
4467 * @sp : private member of the device structure, which is a pointer to the
4468 * s2io_nic structure.
4469 * @off : offset at which the data must be written
4470 * @data : The data that is to be written
4471 * @cnt : Number of bytes of the data that are actually to be written into
4472 * the Eeprom. (max of 3)
4474 * Actually writes the relevant part of the data value into the Eeprom
4475 * through the I2C bus.
4477 * 0 on success, -1 on failure.
4480 static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
4482 int exit_cnt = 0, ret = -1;
4484 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4486 if (sp->device_type == XFRAME_I_DEVICE) {
4487 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4488 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4489 I2C_CONTROL_CNTL_START;
4490 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4492 while (exit_cnt < 5) {
4493 val64 = readq(&bar0->i2c_control);
4494 if (I2C_CONTROL_CNTL_END(val64)) {
4495 if (!(val64 & I2C_CONTROL_NACK))
4504 if (sp->device_type == XFRAME_II_DEVICE) {
4505 int write_cnt = (cnt == 8) ? 0 : cnt;
4506 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4508 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4509 SPI_CONTROL_BYTECNT(write_cnt) |
4510 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4511 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4512 val64 |= SPI_CONTROL_REQ;
4513 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4514 while (exit_cnt < 5) {
4515 val64 = readq(&bar0->spi_control);
4516 if (val64 & SPI_CONTROL_NACK) {
4519 } else if (val64 & SPI_CONTROL_DONE) {
4531 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
4532 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4533 * @eeprom : pointer to the user level structure provided by ethtool,
4534 * containing all relevant information.
4535 * @data_buf : user defined value to be written into Eeprom.
4536 * Description: Reads the values stored in the Eeprom at given offset
4537 * for a given length. Stores these values int the input argument data
4538 * buffer 'data_buf' and returns these to the caller (ethtool.)
4543 static int s2io_ethtool_geeprom(struct net_device *dev,
4544 struct ethtool_eeprom *eeprom, u8 * data_buf)
4548 nic_t *sp = dev->priv;
4550 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
4552 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
4553 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
4555 for (i = 0; i < eeprom->len; i += 4) {
4556 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
4557 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
4561 memcpy((data_buf + i), &valid, 4);
4567 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
4568 * @sp : private member of the device structure, which is a pointer to the
4569 * s2io_nic structure.
4570 * @eeprom : pointer to the user level structure provided by ethtool,
4571 * containing all relevant information.
4572 * @data_buf ; user defined value to be written into Eeprom.
4574 * Tries to write the user provided value in the Eeprom, at the offset
4575 * given by the user.
4577 * 0 on success, -EFAULT on failure.
4580 static int s2io_ethtool_seeprom(struct net_device *dev,
4581 struct ethtool_eeprom *eeprom,
4584 int len = eeprom->len, cnt = 0;
4585 u64 valid = 0, data;
4586 nic_t *sp = dev->priv;
4588 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4590 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4591 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4597 data = (u32) data_buf[cnt] & 0x000000FF;
4599 valid = (u32) (data << 24);
4603 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4605 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4607 "write into the specified offset\n");
4618 * s2io_register_test - reads and writes into all clock domains.
4619 * @sp : private member of the device structure, which is a pointer to the
4620 * s2io_nic structure.
4621 * @data : variable that returns the result of each of the test conducted b
4624 * Read and write into all clock domains. The NIC has 3 clock domains,
4625 * see that registers in all the three regions are accessible.
4630 static int s2io_register_test(nic_t * sp, uint64_t * data)
4632 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4633 u64 val64 = 0, exp_val;
4636 val64 = readq(&bar0->pif_rd_swapper_fb);
4637 if (val64 != 0x123456789abcdefULL) {
4639 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4642 val64 = readq(&bar0->rmac_pause_cfg);
4643 if (val64 != 0xc000ffff00000000ULL) {
4645 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4648 val64 = readq(&bar0->rx_queue_cfg);
4649 if (sp->device_type == XFRAME_II_DEVICE)
4650 exp_val = 0x0404040404040404ULL;
4652 exp_val = 0x0808080808080808ULL;
4653 if (val64 != exp_val) {
4655 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4658 val64 = readq(&bar0->xgxs_efifo_cfg);
4659 if (val64 != 0x000000001923141EULL) {
4661 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4664 val64 = 0x5A5A5A5A5A5A5A5AULL;
4665 writeq(val64, &bar0->xmsi_data);
4666 val64 = readq(&bar0->xmsi_data);
4667 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4669 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4672 val64 = 0xA5A5A5A5A5A5A5A5ULL;
4673 writeq(val64, &bar0->xmsi_data);
4674 val64 = readq(&bar0->xmsi_data);
4675 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4677 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4685 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4686 * @sp : private member of the device structure, which is a pointer to the
4687 * s2io_nic structure.
4688 * @data:variable that returns the result of each of the test conducted by
4691 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4697 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4700 u64 ret_data, org_4F0, org_7F0;
4701 u8 saved_4F0 = 0, saved_7F0 = 0;
4702 struct net_device *dev = sp->dev;
4704 /* Test Write Error at offset 0 */
4705 /* Note that SPI interface allows write access to all areas
4706 * of EEPROM. Hence doing all negative testing only for Xframe I.
4708 if (sp->device_type == XFRAME_I_DEVICE)
4709 if (!write_eeprom(sp, 0, 0, 3))
4712 /* Save current values at offsets 0x4F0 and 0x7F0 */
4713 if (!read_eeprom(sp, 0x4F0, &org_4F0))
4715 if (!read_eeprom(sp, 0x7F0, &org_7F0))
4718 /* Test Write at offset 4f0 */
4719 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
4721 if (read_eeprom(sp, 0x4F0, &ret_data))
4724 if (ret_data != 0x012345) {
4725 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4729 /* Reset the EEPROM data go FFFF */
4730 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
4732 /* Test Write Request Error at offset 0x7c */
4733 if (sp->device_type == XFRAME_I_DEVICE)
4734 if (!write_eeprom(sp, 0x07C, 0, 3))
4737 /* Test Write Request at offset 0x7f0 */
4738 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
4740 if (read_eeprom(sp, 0x7F0, &ret_data))
4743 if (ret_data != 0x012345) {
4744 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", dev->name, (u64)0x12345, ret_data);
4748 /* Reset the EEPROM data go FFFF */
4749 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
4751 if (sp->device_type == XFRAME_I_DEVICE) {
4752 /* Test Write Error at offset 0x80 */
4753 if (!write_eeprom(sp, 0x080, 0, 3))
4756 /* Test Write Error at offset 0xfc */
4757 if (!write_eeprom(sp, 0x0FC, 0, 3))
4760 /* Test Write Error at offset 0x100 */
4761 if (!write_eeprom(sp, 0x100, 0, 3))
4764 /* Test Write Error at offset 4ec */
4765 if (!write_eeprom(sp, 0x4EC, 0, 3))
4769 /* Restore values at offsets 0x4F0 and 0x7F0 */
4771 write_eeprom(sp, 0x4F0, org_4F0, 3);
4773 write_eeprom(sp, 0x7F0, org_7F0, 3);
4780 * s2io_bist_test - invokes the MemBist test of the card .
4781 * @sp : private member of the device structure, which is a pointer to the
4782 * s2io_nic structure.
4783 * @data:variable that returns the result of each of the test conducted by
4786 * This invokes the MemBist test of the card. We give around
4787 * 2 secs time for the Test to complete. If it's still not complete
4788 * within this peiod, we consider that the test failed.
4790 * 0 on success and -1 on failure.
4793 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4796 int cnt = 0, ret = -1;
4798 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4799 bist |= PCI_BIST_START;
4800 pci_write_config_word(sp->pdev, PCI_BIST, bist);
4803 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4804 if (!(bist & PCI_BIST_START)) {
4805 *data = (bist & PCI_BIST_CODE_MASK);
4817 * s2io-link_test - verifies the link state of the nic
4818 * @sp ; private member of the device structure, which is a pointer to the
4819 * s2io_nic structure.
4820 * @data: variable that returns the result of each of the test conducted by
4823 * The function verifies the link state of the NIC and updates the input
4824 * argument 'data' appropriately.
4829 static int s2io_link_test(nic_t * sp, uint64_t * data)
4831 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4834 val64 = readq(&bar0->adapter_status);
4835 if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4842 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4843 * @sp - private member of the device structure, which is a pointer to the
4844 * s2io_nic structure.
4845 * @data - variable that returns the result of each of the test
4846 * conducted by the driver.
4848 * This is one of the offline test that tests the read and write
4849 * access to the RldRam chip on the NIC.
4854 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4856 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4858 int cnt, iteration = 0, test_fail = 0;
4860 val64 = readq(&bar0->adapter_control);
4861 val64 &= ~ADAPTER_ECC_EN;
4862 writeq(val64, &bar0->adapter_control);
4864 val64 = readq(&bar0->mc_rldram_test_ctrl);
4865 val64 |= MC_RLDRAM_TEST_MODE;
4866 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4868 val64 = readq(&bar0->mc_rldram_mrs);
4869 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4870 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4872 val64 |= MC_RLDRAM_MRS_ENABLE;
4873 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4875 while (iteration < 2) {
4876 val64 = 0x55555555aaaa0000ULL;
4877 if (iteration == 1) {
4878 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4880 writeq(val64, &bar0->mc_rldram_test_d0);
4882 val64 = 0xaaaa5a5555550000ULL;
4883 if (iteration == 1) {
4884 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4886 writeq(val64, &bar0->mc_rldram_test_d1);
4888 val64 = 0x55aaaaaaaa5a0000ULL;
4889 if (iteration == 1) {
4890 val64 ^= 0xFFFFFFFFFFFF0000ULL;
4892 writeq(val64, &bar0->mc_rldram_test_d2);
4894 val64 = (u64) (0x0000003ffffe0100ULL);
4895 writeq(val64, &bar0->mc_rldram_test_add);
4897 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4899 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4901 for (cnt = 0; cnt < 5; cnt++) {
4902 val64 = readq(&bar0->mc_rldram_test_ctrl);
4903 if (val64 & MC_RLDRAM_TEST_DONE)
4911 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4912 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
4914 for (cnt = 0; cnt < 5; cnt++) {
4915 val64 = readq(&bar0->mc_rldram_test_ctrl);
4916 if (val64 & MC_RLDRAM_TEST_DONE)
4924 val64 = readq(&bar0->mc_rldram_test_ctrl);
4925 if (!(val64 & MC_RLDRAM_TEST_PASS))
4933 /* Bring the adapter out of test mode */
4934 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
4940 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4941 * @sp : private member of the device structure, which is a pointer to the
4942 * s2io_nic structure.
4943 * @ethtest : pointer to a ethtool command specific structure that will be
4944 * returned to the user.
4945 * @data : variable that returns the result of each of the test
4946 * conducted by the driver.
4948 * This function conducts 6 tests ( 4 offline and 2 online) to determine
4949 * the health of the card.
4954 static void s2io_ethtool_test(struct net_device *dev,
4955 struct ethtool_test *ethtest,
4958 nic_t *sp = dev->priv;
4959 int orig_state = netif_running(sp->dev);
4961 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4962 /* Offline Tests. */
4964 s2io_close(sp->dev);
4966 if (s2io_register_test(sp, &data[0]))
4967 ethtest->flags |= ETH_TEST_FL_FAILED;
4971 if (s2io_rldram_test(sp, &data[3]))
4972 ethtest->flags |= ETH_TEST_FL_FAILED;
4976 if (s2io_eeprom_test(sp, &data[1]))
4977 ethtest->flags |= ETH_TEST_FL_FAILED;
4979 if (s2io_bist_test(sp, &data[4]))
4980 ethtest->flags |= ETH_TEST_FL_FAILED;
4990 "%s: is not up, cannot run test\n",
4999 if (s2io_link_test(sp, &data[2]))
5000 ethtest->flags |= ETH_TEST_FL_FAILED;
5009 static void s2io_get_ethtool_stats(struct net_device *dev,
5010 struct ethtool_stats *estats,
5014 nic_t *sp = dev->priv;
5015 StatInfo_t *stat_info = sp->mac_control.stats_info;
5017 s2io_updt_stats(sp);
5019 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5020 le32_to_cpu(stat_info->tmac_frms);
5022 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5023 le32_to_cpu(stat_info->tmac_data_octets);
5024 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5026 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5027 le32_to_cpu(stat_info->tmac_mcst_frms);
5029 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5030 le32_to_cpu(stat_info->tmac_bcst_frms);
5031 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5033 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5034 le32_to_cpu(stat_info->tmac_any_err_frms);
5035 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5037 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5038 le32_to_cpu(stat_info->tmac_vld_ip);
5040 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5041 le32_to_cpu(stat_info->tmac_drop_ip);
5043 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5044 le32_to_cpu(stat_info->tmac_icmp);
5046 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5047 le32_to_cpu(stat_info->tmac_rst_tcp);
5048 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5049 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5050 le32_to_cpu(stat_info->tmac_udp);
5052 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5053 le32_to_cpu(stat_info->rmac_vld_frms);
5055 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5056 le32_to_cpu(stat_info->rmac_data_octets);
5057 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5058 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5060 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5061 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5063 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5064 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5065 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5066 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5067 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5069 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5070 le32_to_cpu(stat_info->rmac_discarded_frms);
5072 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5073 le32_to_cpu(stat_info->rmac_usized_frms);
5075 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5076 le32_to_cpu(stat_info->rmac_osized_frms);
5078 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5079 le32_to_cpu(stat_info->rmac_frag_frms);
5081 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5082 le32_to_cpu(stat_info->rmac_jabber_frms);
5083 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5084 le32_to_cpu(stat_info->rmac_ip);
5085 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5086 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5087 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5088 le32_to_cpu(stat_info->rmac_drop_ip);
5089 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5090 le32_to_cpu(stat_info->rmac_icmp);
5091 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5092 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5093 le32_to_cpu(stat_info->rmac_udp);
5095 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5096 le32_to_cpu(stat_info->rmac_err_drp_udp);
5098 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5099 le32_to_cpu(stat_info->rmac_pause_cnt);
5101 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5102 le32_to_cpu(stat_info->rmac_accepted_ip);
5103 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5105 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5106 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5109 int s2io_ethtool_get_regs_len(struct net_device *dev)
5111 return (XENA_REG_SPACE);
5115 u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5117 nic_t *sp = dev->priv;
5119 return (sp->rx_csum);
5121 int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5123 nic_t *sp = dev->priv;
5132 int s2io_get_eeprom_len(struct net_device *dev)
5134 return (XENA_EEPROM_SPACE);
5137 int s2io_ethtool_self_test_count(struct net_device *dev)
5139 return (S2IO_TEST_LEN);
5141 void s2io_ethtool_get_strings(struct net_device *dev,
5142 u32 stringset, u8 * data)
5144 switch (stringset) {
5146 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5149 memcpy(data, ðtool_stats_keys,
5150 sizeof(ethtool_stats_keys));
5153 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5155 return (S2IO_STAT_LEN);
5158 int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5161 dev->features |= NETIF_F_IP_CSUM;
5163 dev->features &= ~NETIF_F_IP_CSUM;
5169 static struct ethtool_ops netdev_ethtool_ops = {
5170 .get_settings = s2io_ethtool_gset,
5171 .set_settings = s2io_ethtool_sset,
5172 .get_drvinfo = s2io_ethtool_gdrvinfo,
5173 .get_regs_len = s2io_ethtool_get_regs_len,
5174 .get_regs = s2io_ethtool_gregs,
5175 .get_link = ethtool_op_get_link,
5176 .get_eeprom_len = s2io_get_eeprom_len,
5177 .get_eeprom = s2io_ethtool_geeprom,
5178 .set_eeprom = s2io_ethtool_seeprom,
5179 .get_pauseparam = s2io_ethtool_getpause_data,
5180 .set_pauseparam = s2io_ethtool_setpause_data,
5181 .get_rx_csum = s2io_ethtool_get_rx_csum,
5182 .set_rx_csum = s2io_ethtool_set_rx_csum,
5183 .get_tx_csum = ethtool_op_get_tx_csum,
5184 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5185 .get_sg = ethtool_op_get_sg,
5186 .set_sg = ethtool_op_set_sg,
5188 .get_tso = ethtool_op_get_tso,
5189 .set_tso = ethtool_op_set_tso,
5191 .self_test_count = s2io_ethtool_self_test_count,
5192 .self_test = s2io_ethtool_test,
5193 .get_strings = s2io_ethtool_get_strings,
5194 .phys_id = s2io_ethtool_idnic,
5195 .get_stats_count = s2io_ethtool_get_stats_count,
5196 .get_ethtool_stats = s2io_get_ethtool_stats
5200 * s2io_ioctl - Entry point for the Ioctl
5201 * @dev : Device pointer.
5202 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5203 * a proprietary structure used to pass information to the driver.
5204 * @cmd : This is used to distinguish between the different commands that
5205 * can be passed to the IOCTL functions.
5207 * Currently there are no special functionality supported in IOCTL, hence
5208 * function always return EOPNOTSUPPORTED
5211 int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5217 * s2io_change_mtu - entry point to change MTU size for the device.
5218 * @dev : device pointer.
5219 * @new_mtu : the new MTU size for the device.
5220 * Description: A driver entry point to change MTU size for the device.
5221 * Before changing the MTU the device must be stopped.
5223 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5227 int s2io_change_mtu(struct net_device *dev, int new_mtu)
5229 nic_t *sp = dev->priv;
5231 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5232 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5238 if (netif_running(dev)) {
5240 netif_stop_queue(dev);
5241 if (s2io_card_up(sp)) {
5242 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5245 if (netif_queue_stopped(dev))
5246 netif_wake_queue(dev);
5247 } else { /* Device is down */
5248 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5249 u64 val64 = new_mtu;
5251 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5258 * s2io_tasklet - Bottom half of the ISR.
5259 * @dev_adr : address of the device structure in dma_addr_t format.
5261 * This is the tasklet or the bottom half of the ISR. This is
5262 * an extension of the ISR which is scheduled by the scheduler to be run
5263 * when the load on the CPU is low. All low priority tasks of the ISR can
5264 * be pushed into the tasklet. For now the tasklet is used only to
5265 * replenish the Rx buffers in the Rx buffer descriptors.
5270 static void s2io_tasklet(unsigned long dev_addr)
5272 struct net_device *dev = (struct net_device *) dev_addr;
5273 nic_t *sp = dev->priv;
5275 mac_info_t *mac_control;
5276 struct config_param *config;
5278 mac_control = &sp->mac_control;
5279 config = &sp->config;
5281 if (!TASKLET_IN_USE) {
5282 for (i = 0; i < config->rx_ring_num; i++) {
5283 ret = fill_rx_buffers(sp, i);
5284 if (ret == -ENOMEM) {
5285 DBG_PRINT(ERR_DBG, "%s: Out of ",
5287 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5289 } else if (ret == -EFILL) {
5291 "%s: Rx Ring %d is full\n",
5296 clear_bit(0, (&sp->tasklet_status));
5301 * s2io_set_link - Set the LInk status
5302 * @data: long pointer to device private structue
5303 * Description: Sets the link status for the adapter
5306 static void s2io_set_link(unsigned long data)
5308 nic_t *nic = (nic_t *) data;
5309 struct net_device *dev = nic->dev;
5310 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5314 if (test_and_set_bit(0, &(nic->link_state))) {
5315 /* The card is being reset, no point doing anything */
5319 subid = nic->pdev->subsystem_device;
5320 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5322 * Allow a small delay for the NICs self initiated
5323 * cleanup to complete.
5328 val64 = readq(&bar0->adapter_status);
5329 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
5330 if (LINK_IS_UP(val64)) {
5331 val64 = readq(&bar0->adapter_control);
5332 val64 |= ADAPTER_CNTL_EN;
5333 writeq(val64, &bar0->adapter_control);
5334 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5336 val64 = readq(&bar0->gpio_control);
5337 val64 |= GPIO_CTRL_GPIO_0;
5338 writeq(val64, &bar0->gpio_control);
5339 val64 = readq(&bar0->gpio_control);
5341 val64 |= ADAPTER_LED_ON;
5342 writeq(val64, &bar0->adapter_control);
5344 if (s2io_link_fault_indication(nic) ==
5345 MAC_RMAC_ERR_TIMER) {
5346 val64 = readq(&bar0->adapter_status);
5347 if (!LINK_IS_UP(val64)) {
5348 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5349 DBG_PRINT(ERR_DBG, " Link down");
5350 DBG_PRINT(ERR_DBG, "after ");
5351 DBG_PRINT(ERR_DBG, "enabling ");
5352 DBG_PRINT(ERR_DBG, "device \n");
5355 if (nic->device_enabled_once == FALSE) {
5356 nic->device_enabled_once = TRUE;
5358 s2io_link(nic, LINK_UP);
5360 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5362 val64 = readq(&bar0->gpio_control);
5363 val64 &= ~GPIO_CTRL_GPIO_0;
5364 writeq(val64, &bar0->gpio_control);
5365 val64 = readq(&bar0->gpio_control);
5367 s2io_link(nic, LINK_DOWN);
5369 } else { /* NIC is not Quiescent. */
5370 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
5371 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
5372 netif_stop_queue(dev);
5374 clear_bit(0, &(nic->link_state));
5377 static void s2io_card_down(nic_t * sp)
5380 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5381 unsigned long flags;
5382 register u64 val64 = 0;
5384 del_timer_sync(&sp->alarm_timer);
5385 /* If s2io_set_link task is executing, wait till it completes. */
5386 while (test_and_set_bit(0, &(sp->link_state))) {
5389 atomic_set(&sp->card_state, CARD_DOWN);
5391 /* disable Tx and Rx traffic on the NIC */
5395 tasklet_kill(&sp->task);
5397 /* Check if the device is Quiescent and then Reset the NIC */
5399 val64 = readq(&bar0->adapter_status);
5400 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
5408 "s2io_close:Device not Quiescent ");
5409 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
5410 (unsigned long long) val64);
5416 /* Waiting till all Interrupt handlers are complete */
5420 if (!atomic_read(&sp->isr_cnt))
5425 spin_lock_irqsave(&sp->tx_lock, flags);
5426 /* Free all Tx buffers */
5427 free_tx_buffers(sp);
5428 spin_unlock_irqrestore(&sp->tx_lock, flags);
5430 /* Free all Rx buffers */
5431 spin_lock_irqsave(&sp->rx_lock, flags);
5432 free_rx_buffers(sp);
5433 spin_unlock_irqrestore(&sp->rx_lock, flags);
5435 clear_bit(0, &(sp->link_state));
5438 static int s2io_card_up(nic_t * sp)
5441 mac_info_t *mac_control;
5442 struct config_param *config;
5443 struct net_device *dev = (struct net_device *) sp->dev;
5445 /* Initialize the H/W I/O registers */
5446 if (init_nic(sp) != 0) {
5447 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
5452 if (sp->intr_type == MSI)
5453 ret = s2io_enable_msi(sp);
5454 else if (sp->intr_type == MSI_X)
5455 ret = s2io_enable_msi_x(sp);
5457 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
5458 sp->intr_type = INTA;
5462 * Initializing the Rx buffers. For now we are considering only 1
5463 * Rx ring and initializing buffers into 30 Rx blocks
5465 mac_control = &sp->mac_control;
5466 config = &sp->config;
5468 for (i = 0; i < config->rx_ring_num; i++) {
5469 if ((ret = fill_rx_buffers(sp, i))) {
5470 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
5473 free_rx_buffers(sp);
5476 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
5477 atomic_read(&sp->rx_bufs_left[i]));
5480 /* Setting its receive mode */
5481 s2io_set_multicast(dev);
5483 /* Enable tasklet for the device */
5484 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
5486 /* Enable Rx Traffic and interrupts on the NIC */
5487 if (start_nic(sp)) {
5488 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
5489 tasklet_kill(&sp->task);
5491 free_irq(dev->irq, dev);
5492 free_rx_buffers(sp);
5496 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
5498 atomic_set(&sp->card_state, CARD_UP);
5503 * s2io_restart_nic - Resets the NIC.
5504 * @data : long pointer to the device private structure
5506 * This function is scheduled to be run by the s2io_tx_watchdog
5507 * function after 0.5 secs to reset the NIC. The idea is to reduce
5508 * the run time of the watch dog routine which is run holding a
5512 static void s2io_restart_nic(unsigned long data)
5514 struct net_device *dev = (struct net_device *) data;
5515 nic_t *sp = dev->priv;
5518 if (s2io_card_up(sp)) {
5519 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5522 netif_wake_queue(dev);
5523 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
5529 * s2io_tx_watchdog - Watchdog for transmit side.
5530 * @dev : Pointer to net device structure
5532 * This function is triggered if the Tx Queue is stopped
5533 * for a pre-defined amount of time when the Interface is still up.
5534 * If the Interface is jammed in such a situation, the hardware is
5535 * reset (by s2io_close) and restarted again (by s2io_open) to
5536 * overcome any problem that might have been caused in the hardware.
5541 static void s2io_tx_watchdog(struct net_device *dev)
5543 nic_t *sp = dev->priv;
5545 if (netif_carrier_ok(dev)) {
5546 schedule_work(&sp->rst_timer_task);
5551 * rx_osm_handler - To perform some OS related operations on SKB.
5552 * @sp: private member of the device structure,pointer to s2io_nic structure.
5553 * @skb : the socket buffer pointer.
5554 * @len : length of the packet
5555 * @cksum : FCS checksum of the frame.
5556 * @ring_no : the ring from which this RxD was extracted.
5558 * This function is called by the Tx interrupt serivce routine to perform
5559 * some OS related operations on the SKB before passing it to the upper
5560 * layers. It mainly checks if the checksum is OK, if so adds it to the
5561 * SKBs cksum variable, increments the Rx packet count and passes the SKB
5562 * to the upper layer. If the checksum is wrong, it increments the Rx
5563 * packet error count, frees the SKB and returns error.
5565 * SUCCESS on success and -1 on failure.
5567 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
5569 nic_t *sp = ring_data->nic;
5570 struct net_device *dev = (struct net_device *) sp->dev;
5571 struct sk_buff *skb = (struct sk_buff *)
5572 ((unsigned long) rxdp->Host_Control);
5573 int ring_no = ring_data->ring_no;
5574 u16 l3_csum, l4_csum;
5577 if (rxdp->Control_1 & RXD_T_CODE) {
5578 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
5579 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
5582 sp->stats.rx_crc_errors++;
5583 atomic_dec(&sp->rx_bufs_left[ring_no]);
5584 rxdp->Host_Control = 0;
5588 /* Updating statistics */
5589 rxdp->Host_Control = 0;
5591 sp->stats.rx_packets++;
5592 if (sp->rxd_mode == RXD_MODE_1) {
5593 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
5595 sp->stats.rx_bytes += len;
5598 } else if (sp->rxd_mode >= RXD_MODE_3A) {
5599 int get_block = ring_data->rx_curr_get_info.block_index;
5600 int get_off = ring_data->rx_curr_get_info.offset;
5601 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
5602 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
5603 unsigned char *buff = skb_push(skb, buf0_len);
5605 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
5606 sp->stats.rx_bytes += buf0_len + buf2_len;
5607 memcpy(buff, ba->ba_0, buf0_len);
5609 if (sp->rxd_mode == RXD_MODE_3A) {
5610 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
5612 skb_put(skb, buf1_len);
5613 skb->len += buf2_len;
5614 skb->data_len += buf2_len;
5615 skb->truesize += buf2_len;
5616 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
5617 sp->stats.rx_bytes += buf1_len;
5620 skb_put(skb, buf2_len);
5623 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5625 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5626 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5627 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5629 * NIC verifies if the Checksum of the received
5630 * frame is Ok or not and accordingly returns
5631 * a flag in the RxD.
5633 skb->ip_summed = CHECKSUM_UNNECESSARY;
5636 * Packet with erroneous checksum, let the
5637 * upper layers deal with it.
5639 skb->ip_summed = CHECKSUM_NONE;
5642 skb->ip_summed = CHECKSUM_NONE;
5645 skb->protocol = eth_type_trans(skb, dev);
5646 #ifdef CONFIG_S2IO_NAPI
5647 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5648 /* Queueing the vlan frame to the upper layer */
5649 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5650 RXD_GET_VLAN_TAG(rxdp->Control_2));
5652 netif_receive_skb(skb);
5655 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5656 /* Queueing the vlan frame to the upper layer */
5657 vlan_hwaccel_rx(skb, sp->vlgrp,
5658 RXD_GET_VLAN_TAG(rxdp->Control_2));
5663 dev->last_rx = jiffies;
5664 atomic_dec(&sp->rx_bufs_left[ring_no]);
5669 * s2io_link - stops/starts the Tx queue.
5670 * @sp : private member of the device structure, which is a pointer to the
5671 * s2io_nic structure.
5672 * @link : inidicates whether link is UP/DOWN.
5674 * This function stops/starts the Tx queue depending on whether the link
5675 * status of the NIC is is down or up. This is called by the Alarm
5676 * interrupt handler whenever a link change interrupt comes up.
5681 void s2io_link(nic_t * sp, int link)
5683 struct net_device *dev = (struct net_device *) sp->dev;
5685 if (link != sp->last_link_state) {
5686 if (link == LINK_DOWN) {
5687 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5688 netif_carrier_off(dev);
5690 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5691 netif_carrier_on(dev);
5694 sp->last_link_state = link;
5698 * get_xena_rev_id - to identify revision ID of xena.
5699 * @pdev : PCI Dev structure
5701 * Function to identify the Revision ID of xena.
5703 * returns the revision ID of the device.
5706 int get_xena_rev_id(struct pci_dev *pdev)
5710 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5715 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5716 * @sp : private member of the device structure, which is a pointer to the
5717 * s2io_nic structure.
5719 * This function initializes a few of the PCI and PCI-X configuration registers
5720 * with recommended values.
5725 static void s2io_init_pci(nic_t * sp)
5727 u16 pci_cmd = 0, pcix_cmd = 0;
5729 /* Enable Data Parity Error Recovery in PCI-X command register. */
5730 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5732 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5734 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5737 /* Set the PErr Response bit in PCI command register. */
5738 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5739 pci_write_config_word(sp->pdev, PCI_COMMAND,
5740 (pci_cmd | PCI_COMMAND_PARITY));
5741 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5743 /* Forcibly disabling relaxed ordering capability of the card. */
5745 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5747 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5751 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5752 MODULE_LICENSE("GPL");
5753 MODULE_VERSION(DRV_VERSION);
5755 module_param(tx_fifo_num, int, 0);
5756 module_param(rx_ring_num, int, 0);
5757 module_param(rx_ring_mode, int, 0);
5758 module_param_array(tx_fifo_len, uint, NULL, 0);
5759 module_param_array(rx_ring_sz, uint, NULL, 0);
5760 module_param_array(rts_frm_len, uint, NULL, 0);
5761 module_param(use_continuous_tx_intrs, int, 1);
5762 module_param(rmac_pause_time, int, 0);
5763 module_param(mc_pause_threshold_q0q3, int, 0);
5764 module_param(mc_pause_threshold_q4q7, int, 0);
5765 module_param(shared_splits, int, 0);
5766 module_param(tmac_util_period, int, 0);
5767 module_param(rmac_util_period, int, 0);
5768 module_param(bimodal, bool, 0);
5769 module_param(l3l4hdr_size, int , 0);
5770 #ifndef CONFIG_S2IO_NAPI
5771 module_param(indicate_max_pkts, int, 0);
5773 module_param(rxsync_frequency, int, 0);
5774 module_param(intr_type, int, 0);
5777 * s2io_init_nic - Initialization of the adapter .
5778 * @pdev : structure containing the PCI related information of the device.
5779 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5781 * The function initializes an adapter identified by the pci_dec structure.
5782 * All OS related initialization including memory and device structure and
5783 * initlaization of the device private variable is done. Also the swapper
5784 * control register is initialized to enable read and write into the I/O
5785 * registers of the device.
5787 * returns 0 on success and negative on failure.
5790 static int __devinit
5791 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5794 struct net_device *dev;
5796 int dma_flag = FALSE;
5797 u32 mac_up, mac_down;
5798 u64 val64 = 0, tmp64 = 0;
5799 XENA_dev_config_t __iomem *bar0 = NULL;
5801 mac_info_t *mac_control;
5802 struct config_param *config;
5804 u8 dev_intr_type = intr_type;
5806 #ifdef CONFIG_S2IO_NAPI
5807 if (dev_intr_type != INTA) {
5808 DBG_PRINT(ERR_DBG, "NAPI cannot be enabled when MSI/MSI-X \
5809 is enabled. Defaulting to INTA\n");
5810 dev_intr_type = INTA;
5813 DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5816 if ((ret = pci_enable_device(pdev))) {
5818 "s2io_init_nic: pci_enable_device failed\n");
5822 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5823 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5825 if (pci_set_consistent_dma_mask
5826 (pdev, DMA_64BIT_MASK)) {
5828 "Unable to obtain 64bit DMA for \
5829 consistent allocations\n");
5830 pci_disable_device(pdev);
5833 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5834 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5836 pci_disable_device(pdev);
5840 if ((dev_intr_type == MSI_X) &&
5841 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
5842 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
5843 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. \
5844 Defaulting to INTA\n");
5845 dev_intr_type = INTA;
5847 if (dev_intr_type != MSI_X) {
5848 if (pci_request_regions(pdev, s2io_driver_name)) {
5849 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5850 pci_disable_device(pdev);
5855 if (!(request_mem_region(pci_resource_start(pdev, 0),
5856 pci_resource_len(pdev, 0), s2io_driver_name))) {
5857 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
5858 pci_disable_device(pdev);
5861 if (!(request_mem_region(pci_resource_start(pdev, 2),
5862 pci_resource_len(pdev, 2), s2io_driver_name))) {
5863 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
5864 release_mem_region(pci_resource_start(pdev, 0),
5865 pci_resource_len(pdev, 0));
5866 pci_disable_device(pdev);
5871 dev = alloc_etherdev(sizeof(nic_t));
5873 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5874 pci_disable_device(pdev);
5875 pci_release_regions(pdev);
5879 pci_set_master(pdev);
5880 pci_set_drvdata(pdev, dev);
5881 SET_MODULE_OWNER(dev);
5882 SET_NETDEV_DEV(dev, &pdev->dev);
5884 /* Private member variable initialized to s2io NIC structure */
5886 memset(sp, 0, sizeof(nic_t));
5889 sp->high_dma_flag = dma_flag;
5890 sp->device_enabled_once = FALSE;
5891 if (rx_ring_mode == 1)
5892 sp->rxd_mode = RXD_MODE_1;
5893 if (rx_ring_mode == 2)
5894 sp->rxd_mode = RXD_MODE_3B;
5895 if (rx_ring_mode == 3)
5896 sp->rxd_mode = RXD_MODE_3A;
5898 sp->intr_type = dev_intr_type;
5900 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5901 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5902 sp->device_type = XFRAME_II_DEVICE;
5904 sp->device_type = XFRAME_I_DEVICE;
5907 /* Initialize some PCI/PCI-X fields of the NIC. */
5911 * Setting the device configuration parameters.
5912 * Most of these parameters can be specified by the user during
5913 * module insertion as they are module loadable parameters. If
5914 * these parameters are not not specified during load time, they
5915 * are initialized with default values.
5917 mac_control = &sp->mac_control;
5918 config = &sp->config;
5920 /* Tx side parameters. */
5921 if (tx_fifo_len[0] == 0)
5922 tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */
5923 config->tx_fifo_num = tx_fifo_num;
5924 for (i = 0; i < MAX_TX_FIFOS; i++) {
5925 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5926 config->tx_cfg[i].fifo_priority = i;
5929 /* mapping the QoS priority to the configured fifos */
5930 for (i = 0; i < MAX_TX_FIFOS; i++)
5931 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5933 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5934 for (i = 0; i < config->tx_fifo_num; i++) {
5935 config->tx_cfg[i].f_no_snoop =
5936 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5937 if (config->tx_cfg[i].fifo_len < 65) {
5938 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5942 config->max_txds = MAX_SKB_FRAGS + 1;
5944 /* Rx side parameters. */
5945 if (rx_ring_sz[0] == 0)
5946 rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */
5947 config->rx_ring_num = rx_ring_num;
5948 for (i = 0; i < MAX_RX_RINGS; i++) {
5949 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5950 (rxd_count[sp->rxd_mode] + 1);
5951 config->rx_cfg[i].ring_priority = i;
5954 for (i = 0; i < rx_ring_num; i++) {
5955 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5956 config->rx_cfg[i].f_no_snoop =
5957 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5960 /* Setting Mac Control parameters */
5961 mac_control->rmac_pause_time = rmac_pause_time;
5962 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5963 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5966 /* Initialize Ring buffer parameters. */
5967 for (i = 0; i < config->rx_ring_num; i++)
5968 atomic_set(&sp->rx_bufs_left[i], 0);
5970 /* Initialize the number of ISRs currently running */
5971 atomic_set(&sp->isr_cnt, 0);
5973 /* initialize the shared memory used by the NIC and the host */
5974 if (init_shared_mem(sp)) {
5975 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5978 goto mem_alloc_failed;
5981 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5982 pci_resource_len(pdev, 0));
5984 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5987 goto bar0_remap_failed;
5990 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5991 pci_resource_len(pdev, 2));
5993 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5996 goto bar1_remap_failed;
5999 dev->irq = pdev->irq;
6000 dev->base_addr = (unsigned long) sp->bar0;
6002 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6003 for (j = 0; j < MAX_TX_FIFOS; j++) {
6004 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6005 (sp->bar1 + (j * 0x00020000));
6008 /* Driver entry points */
6009 dev->open = &s2io_open;
6010 dev->stop = &s2io_close;
6011 dev->hard_start_xmit = &s2io_xmit;
6012 dev->get_stats = &s2io_get_stats;
6013 dev->set_multicast_list = &s2io_set_multicast;
6014 dev->do_ioctl = &s2io_ioctl;
6015 dev->change_mtu = &s2io_change_mtu;
6016 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
6017 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6018 dev->vlan_rx_register = s2io_vlan_rx_register;
6019 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
6022 * will use eth_mac_addr() for dev->set_mac_address
6023 * mac address will be set every time dev->open() is called
6025 #if defined(CONFIG_S2IO_NAPI)
6026 dev->poll = s2io_poll;
6030 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6031 if (sp->high_dma_flag == TRUE)
6032 dev->features |= NETIF_F_HIGHDMA;
6034 dev->features |= NETIF_F_TSO;
6037 dev->tx_timeout = &s2io_tx_watchdog;
6038 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6039 INIT_WORK(&sp->rst_timer_task,
6040 (void (*)(void *)) s2io_restart_nic, dev);
6041 INIT_WORK(&sp->set_link_task,
6042 (void (*)(void *)) s2io_set_link, sp);
6044 pci_save_state(sp->pdev);
6046 /* Setting swapper control on the NIC, for proper reset operation */
6047 if (s2io_set_swapper(sp)) {
6048 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6051 goto set_swap_failed;
6054 /* Verify if the Herc works on the slot its placed into */
6055 if (sp->device_type & XFRAME_II_DEVICE) {
6056 mode = s2io_verify_pci_mode(sp);
6058 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6059 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6061 goto set_swap_failed;
6065 /* Not needed for Herc */
6066 if (sp->device_type & XFRAME_I_DEVICE) {
6068 * Fix for all "FFs" MAC address problems observed on
6071 fix_mac_address(sp);
6076 * MAC address initialization.
6077 * For now only one mac address will be read and used.
6080 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6081 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6082 writeq(val64, &bar0->rmac_addr_cmd_mem);
6083 wait_for_cmd_complete(sp);
6085 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6086 mac_down = (u32) tmp64;
6087 mac_up = (u32) (tmp64 >> 32);
6089 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6091 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6092 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6093 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6094 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6095 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6096 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6098 /* Set the factory defined MAC address initially */
6099 dev->addr_len = ETH_ALEN;
6100 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6103 * Initialize the tasklet status and link state flags
6104 * and the card state parameter
6106 atomic_set(&(sp->card_state), 0);
6107 sp->tasklet_status = 0;
6110 /* Initialize spinlocks */
6111 spin_lock_init(&sp->tx_lock);
6112 #ifndef CONFIG_S2IO_NAPI
6113 spin_lock_init(&sp->put_lock);
6115 spin_lock_init(&sp->rx_lock);
6118 * SXE-002: Configure link and activity LED to init state
6121 subid = sp->pdev->subsystem_device;
6122 if ((subid & 0xFF) >= 0x07) {
6123 val64 = readq(&bar0->gpio_control);
6124 val64 |= 0x0000800000000000ULL;
6125 writeq(val64, &bar0->gpio_control);
6126 val64 = 0x0411040400000000ULL;
6127 writeq(val64, (void __iomem *) bar0 + 0x2700);
6128 val64 = readq(&bar0->gpio_control);
6131 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6133 if (register_netdev(dev)) {
6134 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6136 goto register_failed;
6139 if (sp->device_type & XFRAME_II_DEVICE) {
6140 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
6142 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6143 get_xena_rev_id(sp->pdev),
6144 s2io_driver_version);
6145 switch(sp->intr_type) {
6147 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6150 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6153 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6157 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6158 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6159 sp->def_mac_addr[0].mac_addr[0],
6160 sp->def_mac_addr[0].mac_addr[1],
6161 sp->def_mac_addr[0].mac_addr[2],
6162 sp->def_mac_addr[0].mac_addr[3],
6163 sp->def_mac_addr[0].mac_addr[4],
6164 sp->def_mac_addr[0].mac_addr[5]);
6165 mode = s2io_print_pci_mode(sp);
6167 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
6169 goto set_swap_failed;
6172 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
6174 DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
6175 get_xena_rev_id(sp->pdev),
6176 s2io_driver_version);
6177 switch(sp->intr_type) {
6179 DBG_PRINT(ERR_DBG, ", Intr type INTA");
6182 DBG_PRINT(ERR_DBG, ", Intr type MSI");
6185 DBG_PRINT(ERR_DBG, ", Intr type MSI-X");
6188 DBG_PRINT(ERR_DBG, "\nCopyright(c) 2002-2005 Neterion Inc.\n");
6189 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
6190 sp->def_mac_addr[0].mac_addr[0],
6191 sp->def_mac_addr[0].mac_addr[1],
6192 sp->def_mac_addr[0].mac_addr[2],
6193 sp->def_mac_addr[0].mac_addr[3],
6194 sp->def_mac_addr[0].mac_addr[4],
6195 sp->def_mac_addr[0].mac_addr[5]);
6197 if (sp->rxd_mode == RXD_MODE_3B)
6198 DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
6199 "enabled\n",dev->name);
6200 if (sp->rxd_mode == RXD_MODE_3A)
6201 DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
6202 "enabled\n",dev->name);
6204 /* Initialize device name */
6205 strcpy(sp->name, dev->name);
6206 if (sp->device_type & XFRAME_II_DEVICE)
6207 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
6209 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
6211 /* Initialize bimodal Interrupts */
6212 sp->config.bimodal = bimodal;
6213 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6214 sp->config.bimodal = 0;
6215 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6220 * Make Link state as off at this point, when the Link change
6221 * interrupt comes the state will be automatically changed to
6224 netif_carrier_off(dev);
6235 free_shared_mem(sp);
6236 pci_disable_device(pdev);
6237 if (dev_intr_type != MSI_X)
6238 pci_release_regions(pdev);
6240 release_mem_region(pci_resource_start(pdev, 0),
6241 pci_resource_len(pdev, 0));
6242 release_mem_region(pci_resource_start(pdev, 2),
6243 pci_resource_len(pdev, 2));
6245 pci_set_drvdata(pdev, NULL);
6252 * s2io_rem_nic - Free the PCI device
6253 * @pdev: structure containing the PCI related information of the device.
6254 * Description: This function is called by the Pci subsystem to release a
6255 * PCI device and free up all resource held up by the device. This could
6256 * be in response to a Hot plug event or when the driver is to be removed
6260 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
6262 struct net_device *dev =
6263 (struct net_device *) pci_get_drvdata(pdev);
6267 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
6272 unregister_netdev(dev);
6274 free_shared_mem(sp);
6277 pci_disable_device(pdev);
6278 if (sp->intr_type != MSI_X)
6279 pci_release_regions(pdev);
6281 release_mem_region(pci_resource_start(pdev, 0),
6282 pci_resource_len(pdev, 0));
6283 release_mem_region(pci_resource_start(pdev, 2),
6284 pci_resource_len(pdev, 2));
6286 pci_set_drvdata(pdev, NULL);
6291 * s2io_starter - Entry point for the driver
6292 * Description: This function is the entry point for the driver. It verifies
6293 * the module loadable parameters and initializes PCI configuration space.
6296 int __init s2io_starter(void)
6298 return pci_module_init(&s2io_driver);
6302 * s2io_closer - Cleanup routine for the driver
6303 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
6306 void s2io_closer(void)
6308 pci_unregister_driver(&s2io_driver);
6309 DBG_PRINT(INIT_DBG, "cleanup done\n");
6312 module_init(s2io_starter);
6313 module_exit(s2io_closer);