Merge branch 'for-linus' of git://linux-arm.org/linux-2.6
[linux-2.6] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159  *      alloc_tty_struct        -       allocate a tty object
160  *
161  *      Return a new empty tty structure. The data fields have not
162  *      been initialized in any way but has been zeroed
163  *
164  *      Locking: none
165  */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173  *      free_tty_struct         -       free a disused tty
174  *      @tty: tty struct to free
175  *
176  *      Free the write buffers, tty queue and tty memory itself.
177  *
178  *      Locking: none. Must be called after tty is definitely unused
179  */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183         kfree(tty->write_buf);
184         tty_buffer_free_all(tty);
185         kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191  *      tty_name        -       return tty naming
192  *      @tty: tty structure
193  *      @buf: buffer for output
194  *
195  *      Convert a tty structure into a name. The name reflects the kernel
196  *      naming policy and if udev is in use may not reflect user space
197  *
198  *      Locking: none
199  */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
204                 strcpy(buf, "NULL tty");
205         else
206                 strcpy(buf, tty->name);
207         return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213                               const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216         if (!tty) {
217                 printk(KERN_WARNING
218                         "null TTY for (%d:%d) in %s\n",
219                         imajor(inode), iminor(inode), routine);
220                 return 1;
221         }
222         if (tty->magic != TTY_MAGIC) {
223                 printk(KERN_WARNING
224                         "bad magic number for tty struct (%d:%d) in %s\n",
225                         imajor(inode), iminor(inode), routine);
226                 return 1;
227         }
228 #endif
229         return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235         struct list_head *p;
236         int count = 0;
237
238         file_list_lock();
239         list_for_each(p, &tty->tty_files) {
240                 count++;
241         }
242         file_list_unlock();
243         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244             tty->driver->subtype == PTY_TYPE_SLAVE &&
245             tty->link && tty->link->count)
246                 count++;
247         if (tty->count != count) {
248                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249                                     "!= #fd's(%d) in %s\n",
250                        tty->name, tty->count, count, routine);
251                 return count;
252         }
253 #endif
254         return 0;
255 }
256
257 /**
258  *      get_tty_driver          -       find device of a tty
259  *      @dev_t: device identifier
260  *      @index: returns the index of the tty
261  *
262  *      This routine returns a tty driver structure, given a device number
263  *      and also passes back the index number.
264  *
265  *      Locking: caller must hold tty_mutex
266  */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270         struct tty_driver *p;
271
272         list_for_each_entry(p, &tty_drivers, tty_drivers) {
273                 dev_t base = MKDEV(p->major, p->minor_start);
274                 if (device < base || device >= base + p->num)
275                         continue;
276                 *index = device - base;
277                 return tty_driver_kref_get(p);
278         }
279         return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285  *      tty_find_polling_driver -       find device of a polled tty
286  *      @name: name string to match
287  *      @line: pointer to resulting tty line nr
288  *
289  *      This routine returns a tty driver structure, given a name
290  *      and the condition that the tty driver is capable of polled
291  *      operation.
292  */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295         struct tty_driver *p, *res = NULL;
296         int tty_line = 0;
297         int len;
298         char *str, *stp;
299
300         for (str = name; *str; str++)
301                 if ((*str >= '0' && *str <= '9') || *str == ',')
302                         break;
303         if (!*str)
304                 return NULL;
305
306         len = str - name;
307         tty_line = simple_strtoul(str, &str, 10);
308
309         mutex_lock(&tty_mutex);
310         /* Search through the tty devices to look for a match */
311         list_for_each_entry(p, &tty_drivers, tty_drivers) {
312                 if (strncmp(name, p->name, len) != 0)
313                         continue;
314                 stp = str;
315                 if (*stp == ',')
316                         stp++;
317                 if (*stp == '\0')
318                         stp = NULL;
319
320                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322                         res = tty_driver_kref_get(p);
323                         *line = tty_line;
324                         break;
325                 }
326         }
327         mutex_unlock(&tty_mutex);
328
329         return res;
330 }
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
333
334 /**
335  *      tty_check_change        -       check for POSIX terminal changes
336  *      @tty: tty to check
337  *
338  *      If we try to write to, or set the state of, a terminal and we're
339  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
340  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
341  *
342  *      Locking: ctrl_lock
343  */
344
345 int tty_check_change(struct tty_struct *tty)
346 {
347         unsigned long flags;
348         int ret = 0;
349
350         if (current->signal->tty != tty)
351                 return 0;
352
353         spin_lock_irqsave(&tty->ctrl_lock, flags);
354
355         if (!tty->pgrp) {
356                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357                 goto out_unlock;
358         }
359         if (task_pgrp(current) == tty->pgrp)
360                 goto out_unlock;
361         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362         if (is_ignored(SIGTTOU))
363                 goto out;
364         if (is_current_pgrp_orphaned()) {
365                 ret = -EIO;
366                 goto out;
367         }
368         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369         set_thread_flag(TIF_SIGPENDING);
370         ret = -ERESTARTSYS;
371 out:
372         return ret;
373 out_unlock:
374         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375         return ret;
376 }
377
378 EXPORT_SYMBOL(tty_check_change);
379
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381                                 size_t count, loff_t *ppos)
382 {
383         return 0;
384 }
385
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387                                  size_t count, loff_t *ppos)
388 {
389         return -EIO;
390 }
391
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 {
395         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
396 }
397
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399                 unsigned long arg)
400 {
401         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
402 }
403
404 static long hung_up_tty_compat_ioctl(struct file *file,
405                                      unsigned int cmd, unsigned long arg)
406 {
407         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
408 }
409
410 static const struct file_operations tty_fops = {
411         .llseek         = no_llseek,
412         .read           = tty_read,
413         .write          = tty_write,
414         .poll           = tty_poll,
415         .unlocked_ioctl = tty_ioctl,
416         .compat_ioctl   = tty_compat_ioctl,
417         .open           = tty_open,
418         .release        = tty_release,
419         .fasync         = tty_fasync,
420 };
421
422 static const struct file_operations console_fops = {
423         .llseek         = no_llseek,
424         .read           = tty_read,
425         .write          = redirected_tty_write,
426         .poll           = tty_poll,
427         .unlocked_ioctl = tty_ioctl,
428         .compat_ioctl   = tty_compat_ioctl,
429         .open           = tty_open,
430         .release        = tty_release,
431         .fasync         = tty_fasync,
432 };
433
434 static const struct file_operations hung_up_tty_fops = {
435         .llseek         = no_llseek,
436         .read           = hung_up_tty_read,
437         .write          = hung_up_tty_write,
438         .poll           = hung_up_tty_poll,
439         .unlocked_ioctl = hung_up_tty_ioctl,
440         .compat_ioctl   = hung_up_tty_compat_ioctl,
441         .release        = tty_release,
442 };
443
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
446
447 /**
448  *      tty_wakeup      -       request more data
449  *      @tty: terminal
450  *
451  *      Internal and external helper for wakeups of tty. This function
452  *      informs the line discipline if present that the driver is ready
453  *      to receive more output data.
454  */
455
456 void tty_wakeup(struct tty_struct *tty)
457 {
458         struct tty_ldisc *ld;
459
460         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461                 ld = tty_ldisc_ref(tty);
462                 if (ld) {
463                         if (ld->ops->write_wakeup)
464                                 ld->ops->write_wakeup(tty);
465                         tty_ldisc_deref(ld);
466                 }
467         }
468         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
469 }
470
471 EXPORT_SYMBOL_GPL(tty_wakeup);
472
473 /**
474  *      do_tty_hangup           -       actual handler for hangup events
475  *      @work: tty device
476  *
477  *      This can be called by the "eventd" kernel thread.  That is process
478  *      synchronous but doesn't hold any locks, so we need to make sure we
479  *      have the appropriate locks for what we're doing.
480  *
481  *      The hangup event clears any pending redirections onto the hung up
482  *      device. It ensures future writes will error and it does the needed
483  *      line discipline hangup and signal delivery. The tty object itself
484  *      remains intact.
485  *
486  *      Locking:
487  *              BKL
488  *                redirect lock for undoing redirection
489  *                file list lock for manipulating list of ttys
490  *                tty_ldisc_lock from called functions
491  *                termios_mutex resetting termios data
492  *                tasklist_lock to walk task list for hangup event
493  *                  ->siglock to protect ->signal/->sighand
494  */
495 static void do_tty_hangup(struct work_struct *work)
496 {
497         struct tty_struct *tty =
498                 container_of(work, struct tty_struct, hangup_work);
499         struct file *cons_filp = NULL;
500         struct file *filp, *f = NULL;
501         struct task_struct *p;
502         int    closecount = 0, n;
503         unsigned long flags;
504         int refs = 0;
505
506         if (!tty)
507                 return;
508
509         /* inuse_filps is protected by the single kernel lock */
510         lock_kernel();
511
512         spin_lock(&redirect_lock);
513         if (redirect && redirect->private_data == tty) {
514                 f = redirect;
515                 redirect = NULL;
516         }
517         spin_unlock(&redirect_lock);
518
519         check_tty_count(tty, "do_tty_hangup");
520         file_list_lock();
521         /* This breaks for file handles being sent over AF_UNIX sockets ? */
522         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523                 if (filp->f_op->write == redirected_tty_write)
524                         cons_filp = filp;
525                 if (filp->f_op->write != tty_write)
526                         continue;
527                 closecount++;
528                 tty_fasync(-1, filp, 0);        /* can't block */
529                 filp->f_op = &hung_up_tty_fops;
530         }
531         file_list_unlock();
532
533         tty_ldisc_hangup(tty);
534
535         read_lock(&tasklist_lock);
536         if (tty->session) {
537                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538                         spin_lock_irq(&p->sighand->siglock);
539                         if (p->signal->tty == tty) {
540                                 p->signal->tty = NULL;
541                                 /* We defer the dereferences outside fo
542                                    the tasklist lock */
543                                 refs++;
544                         }
545                         if (!p->signal->leader) {
546                                 spin_unlock_irq(&p->sighand->siglock);
547                                 continue;
548                         }
549                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
552                         spin_lock_irqsave(&tty->ctrl_lock, flags);
553                         if (tty->pgrp)
554                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556                         spin_unlock_irq(&p->sighand->siglock);
557                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
558         }
559         read_unlock(&tasklist_lock);
560
561         spin_lock_irqsave(&tty->ctrl_lock, flags);
562         clear_bit(TTY_THROTTLED, &tty->flags);
563         clear_bit(TTY_PUSH, &tty->flags);
564         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565         put_pid(tty->session);
566         put_pid(tty->pgrp);
567         tty->session = NULL;
568         tty->pgrp = NULL;
569         tty->ctrl_status = 0;
570         set_bit(TTY_HUPPED, &tty->flags);
571         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
572
573         /* Account for the p->signal references we killed */
574         while (refs--)
575                 tty_kref_put(tty);
576
577         /*
578          * If one of the devices matches a console pointer, we
579          * cannot just call hangup() because that will cause
580          * tty->count and state->count to go out of sync.
581          * So we just call close() the right number of times.
582          */
583         if (cons_filp) {
584                 if (tty->ops->close)
585                         for (n = 0; n < closecount; n++)
586                                 tty->ops->close(tty, cons_filp);
587         } else if (tty->ops->hangup)
588                 (tty->ops->hangup)(tty);
589         /*
590          * We don't want to have driver/ldisc interactions beyond
591          * the ones we did here. The driver layer expects no
592          * calls after ->hangup() from the ldisc side. However we
593          * can't yet guarantee all that.
594          */
595         set_bit(TTY_HUPPED, &tty->flags);
596         tty_ldisc_enable(tty);
597         unlock_kernel();
598         if (f)
599                 fput(f);
600 }
601
602 /**
603  *      tty_hangup              -       trigger a hangup event
604  *      @tty: tty to hangup
605  *
606  *      A carrier loss (virtual or otherwise) has occurred on this like
607  *      schedule a hangup sequence to run after this event.
608  */
609
610 void tty_hangup(struct tty_struct *tty)
611 {
612 #ifdef TTY_DEBUG_HANGUP
613         char    buf[64];
614         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616         schedule_work(&tty->hangup_work);
617 }
618
619 EXPORT_SYMBOL(tty_hangup);
620
621 /**
622  *      tty_vhangup             -       process vhangup
623  *      @tty: tty to hangup
624  *
625  *      The user has asked via system call for the terminal to be hung up.
626  *      We do this synchronously so that when the syscall returns the process
627  *      is complete. That guarantee is necessary for security reasons.
628  */
629
630 void tty_vhangup(struct tty_struct *tty)
631 {
632 #ifdef TTY_DEBUG_HANGUP
633         char    buf[64];
634
635         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637         do_tty_hangup(&tty->hangup_work);
638 }
639
640 EXPORT_SYMBOL(tty_vhangup);
641
642 /**
643  *      tty_vhangup_self        -       process vhangup for own ctty
644  *
645  *      Perform a vhangup on the current controlling tty
646  */
647
648 void tty_vhangup_self(void)
649 {
650         struct tty_struct *tty;
651
652         tty = get_current_tty();
653         if (tty) {
654                 tty_vhangup(tty);
655                 tty_kref_put(tty);
656         }
657 }
658
659 /**
660  *      tty_hung_up_p           -       was tty hung up
661  *      @filp: file pointer of tty
662  *
663  *      Return true if the tty has been subject to a vhangup or a carrier
664  *      loss
665  */
666
667 int tty_hung_up_p(struct file *filp)
668 {
669         return (filp->f_op == &hung_up_tty_fops);
670 }
671
672 EXPORT_SYMBOL(tty_hung_up_p);
673
674 static void session_clear_tty(struct pid *session)
675 {
676         struct task_struct *p;
677         do_each_pid_task(session, PIDTYPE_SID, p) {
678                 proc_clear_tty(p);
679         } while_each_pid_task(session, PIDTYPE_SID, p);
680 }
681
682 /**
683  *      disassociate_ctty       -       disconnect controlling tty
684  *      @on_exit: true if exiting so need to "hang up" the session
685  *
686  *      This function is typically called only by the session leader, when
687  *      it wants to disassociate itself from its controlling tty.
688  *
689  *      It performs the following functions:
690  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
691  *      (2)  Clears the tty from being controlling the session
692  *      (3)  Clears the controlling tty for all processes in the
693  *              session group.
694  *
695  *      The argument on_exit is set to 1 if called when a process is
696  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
697  *
698  *      Locking:
699  *              BKL is taken for hysterical raisins
700  *                tty_mutex is taken to protect tty
701  *                ->siglock is taken to protect ->signal/->sighand
702  *                tasklist_lock is taken to walk process list for sessions
703  *                  ->siglock is taken to protect ->signal/->sighand
704  */
705
706 void disassociate_ctty(int on_exit)
707 {
708         struct tty_struct *tty;
709         struct pid *tty_pgrp = NULL;
710
711
712         tty = get_current_tty();
713         if (tty) {
714                 tty_pgrp = get_pid(tty->pgrp);
715                 lock_kernel();
716                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717                         tty_vhangup(tty);
718                 unlock_kernel();
719                 tty_kref_put(tty);
720         } else if (on_exit) {
721                 struct pid *old_pgrp;
722                 spin_lock_irq(&current->sighand->siglock);
723                 old_pgrp = current->signal->tty_old_pgrp;
724                 current->signal->tty_old_pgrp = NULL;
725                 spin_unlock_irq(&current->sighand->siglock);
726                 if (old_pgrp) {
727                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
728                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
729                         put_pid(old_pgrp);
730                 }
731                 return;
732         }
733         if (tty_pgrp) {
734                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735                 if (!on_exit)
736                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737                 put_pid(tty_pgrp);
738         }
739
740         spin_lock_irq(&current->sighand->siglock);
741         put_pid(current->signal->tty_old_pgrp);
742         current->signal->tty_old_pgrp = NULL;
743         spin_unlock_irq(&current->sighand->siglock);
744
745         tty = get_current_tty();
746         if (tty) {
747                 unsigned long flags;
748                 spin_lock_irqsave(&tty->ctrl_lock, flags);
749                 put_pid(tty->session);
750                 put_pid(tty->pgrp);
751                 tty->session = NULL;
752                 tty->pgrp = NULL;
753                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754                 tty_kref_put(tty);
755         } else {
756 #ifdef TTY_DEBUG_HANGUP
757                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758                        " = NULL", tty);
759 #endif
760         }
761
762         /* Now clear signal->tty under the lock */
763         read_lock(&tasklist_lock);
764         session_clear_tty(task_session(current));
765         read_unlock(&tasklist_lock);
766 }
767
768 /**
769  *
770  *      no_tty  - Ensure the current process does not have a controlling tty
771  */
772 void no_tty(void)
773 {
774         struct task_struct *tsk = current;
775         lock_kernel();
776         if (tsk->signal->leader)
777                 disassociate_ctty(0);
778         unlock_kernel();
779         proc_clear_tty(tsk);
780 }
781
782
783 /**
784  *      stop_tty        -       propagate flow control
785  *      @tty: tty to stop
786  *
787  *      Perform flow control to the driver. For PTY/TTY pairs we
788  *      must also propagate the TIOCKPKT status. May be called
789  *      on an already stopped device and will not re-call the driver
790  *      method.
791  *
792  *      This functionality is used by both the line disciplines for
793  *      halting incoming flow and by the driver. It may therefore be
794  *      called from any context, may be under the tty atomic_write_lock
795  *      but not always.
796  *
797  *      Locking:
798  *              Uses the tty control lock internally
799  */
800
801 void stop_tty(struct tty_struct *tty)
802 {
803         unsigned long flags;
804         spin_lock_irqsave(&tty->ctrl_lock, flags);
805         if (tty->stopped) {
806                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807                 return;
808         }
809         tty->stopped = 1;
810         if (tty->link && tty->link->packet) {
811                 tty->ctrl_status &= ~TIOCPKT_START;
812                 tty->ctrl_status |= TIOCPKT_STOP;
813                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
814         }
815         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816         if (tty->ops->stop)
817                 (tty->ops->stop)(tty);
818 }
819
820 EXPORT_SYMBOL(stop_tty);
821
822 /**
823  *      start_tty       -       propagate flow control
824  *      @tty: tty to start
825  *
826  *      Start a tty that has been stopped if at all possible. Perform
827  *      any necessary wakeups and propagate the TIOCPKT status. If this
828  *      is the tty was previous stopped and is being started then the
829  *      driver start method is invoked and the line discipline woken.
830  *
831  *      Locking:
832  *              ctrl_lock
833  */
834
835 void start_tty(struct tty_struct *tty)
836 {
837         unsigned long flags;
838         spin_lock_irqsave(&tty->ctrl_lock, flags);
839         if (!tty->stopped || tty->flow_stopped) {
840                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841                 return;
842         }
843         tty->stopped = 0;
844         if (tty->link && tty->link->packet) {
845                 tty->ctrl_status &= ~TIOCPKT_STOP;
846                 tty->ctrl_status |= TIOCPKT_START;
847                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
848         }
849         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850         if (tty->ops->start)
851                 (tty->ops->start)(tty);
852         /* If we have a running line discipline it may need kicking */
853         tty_wakeup(tty);
854 }
855
856 EXPORT_SYMBOL(start_tty);
857
858 /**
859  *      tty_read        -       read method for tty device files
860  *      @file: pointer to tty file
861  *      @buf: user buffer
862  *      @count: size of user buffer
863  *      @ppos: unused
864  *
865  *      Perform the read system call function on this terminal device. Checks
866  *      for hung up devices before calling the line discipline method.
867  *
868  *      Locking:
869  *              Locks the line discipline internally while needed. Multiple
870  *      read calls may be outstanding in parallel.
871  */
872
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874                         loff_t *ppos)
875 {
876         int i;
877         struct tty_struct *tty;
878         struct inode *inode;
879         struct tty_ldisc *ld;
880
881         tty = (struct tty_struct *)file->private_data;
882         inode = file->f_path.dentry->d_inode;
883         if (tty_paranoia_check(tty, inode, "tty_read"))
884                 return -EIO;
885         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886                 return -EIO;
887
888         /* We want to wait for the line discipline to sort out in this
889            situation */
890         ld = tty_ldisc_ref_wait(tty);
891         if (ld->ops->read)
892                 i = (ld->ops->read)(tty, file, buf, count);
893         else
894                 i = -EIO;
895         tty_ldisc_deref(ld);
896         if (i > 0)
897                 inode->i_atime = current_fs_time(inode->i_sb);
898         return i;
899 }
900
901 void tty_write_unlock(struct tty_struct *tty)
902 {
903         mutex_unlock(&tty->atomic_write_lock);
904         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
905 }
906
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
908 {
909         if (!mutex_trylock(&tty->atomic_write_lock)) {
910                 if (ndelay)
911                         return -EAGAIN;
912                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913                         return -ERESTARTSYS;
914         }
915         return 0;
916 }
917
918 /*
919  * Split writes up in sane blocksizes to avoid
920  * denial-of-service type attacks
921  */
922 static inline ssize_t do_tty_write(
923         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924         struct tty_struct *tty,
925         struct file *file,
926         const char __user *buf,
927         size_t count)
928 {
929         ssize_t ret, written = 0;
930         unsigned int chunk;
931
932         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933         if (ret < 0)
934                 return ret;
935
936         /*
937          * We chunk up writes into a temporary buffer. This
938          * simplifies low-level drivers immensely, since they
939          * don't have locking issues and user mode accesses.
940          *
941          * But if TTY_NO_WRITE_SPLIT is set, we should use a
942          * big chunk-size..
943          *
944          * The default chunk-size is 2kB, because the NTTY
945          * layer has problems with bigger chunks. It will
946          * claim to be able to handle more characters than
947          * it actually does.
948          *
949          * FIXME: This can probably go away now except that 64K chunks
950          * are too likely to fail unless switched to vmalloc...
951          */
952         chunk = 2048;
953         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954                 chunk = 65536;
955         if (count < chunk)
956                 chunk = count;
957
958         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959         if (tty->write_cnt < chunk) {
960                 unsigned char *buf_chunk;
961
962                 if (chunk < 1024)
963                         chunk = 1024;
964
965                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966                 if (!buf_chunk) {
967                         ret = -ENOMEM;
968                         goto out;
969                 }
970                 kfree(tty->write_buf);
971                 tty->write_cnt = chunk;
972                 tty->write_buf = buf_chunk;
973         }
974
975         /* Do the write .. */
976         for (;;) {
977                 size_t size = count;
978                 if (size > chunk)
979                         size = chunk;
980                 ret = -EFAULT;
981                 if (copy_from_user(tty->write_buf, buf, size))
982                         break;
983                 ret = write(tty, file, tty->write_buf, size);
984                 if (ret <= 0)
985                         break;
986                 written += ret;
987                 buf += ret;
988                 count -= ret;
989                 if (!count)
990                         break;
991                 ret = -ERESTARTSYS;
992                 if (signal_pending(current))
993                         break;
994                 cond_resched();
995         }
996         if (written) {
997                 struct inode *inode = file->f_path.dentry->d_inode;
998                 inode->i_mtime = current_fs_time(inode->i_sb);
999                 ret = written;
1000         }
1001 out:
1002         tty_write_unlock(tty);
1003         return ret;
1004 }
1005
1006 /**
1007  * tty_write_message - write a message to a certain tty, not just the console.
1008  * @tty: the destination tty_struct
1009  * @msg: the message to write
1010  *
1011  * This is used for messages that need to be redirected to a specific tty.
1012  * We don't put it into the syslog queue right now maybe in the future if
1013  * really needed.
1014  *
1015  * We must still hold the BKL and test the CLOSING flag for the moment.
1016  */
1017
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1019 {
1020         lock_kernel();
1021         if (tty) {
1022                 mutex_lock(&tty->atomic_write_lock);
1023                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024                         tty->ops->write(tty, msg, strlen(msg));
1025                 tty_write_unlock(tty);
1026         }
1027         unlock_kernel();
1028         return;
1029 }
1030
1031
1032 /**
1033  *      tty_write               -       write method for tty device file
1034  *      @file: tty file pointer
1035  *      @buf: user data to write
1036  *      @count: bytes to write
1037  *      @ppos: unused
1038  *
1039  *      Write data to a tty device via the line discipline.
1040  *
1041  *      Locking:
1042  *              Locks the line discipline as required
1043  *              Writes to the tty driver are serialized by the atomic_write_lock
1044  *      and are then processed in chunks to the device. The line discipline
1045  *      write method will not be invoked in parallel for each device.
1046  */
1047
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049                                                 size_t count, loff_t *ppos)
1050 {
1051         struct tty_struct *tty;
1052         struct inode *inode = file->f_path.dentry->d_inode;
1053         ssize_t ret;
1054         struct tty_ldisc *ld;
1055
1056         tty = (struct tty_struct *)file->private_data;
1057         if (tty_paranoia_check(tty, inode, "tty_write"))
1058                 return -EIO;
1059         if (!tty || !tty->ops->write ||
1060                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061                         return -EIO;
1062         /* Short term debug to catch buggy drivers */
1063         if (tty->ops->write_room == NULL)
1064                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065                         tty->driver->name);
1066         ld = tty_ldisc_ref_wait(tty);
1067         if (!ld->ops->write)
1068                 ret = -EIO;
1069         else
1070                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071         tty_ldisc_deref(ld);
1072         return ret;
1073 }
1074
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076                                                 size_t count, loff_t *ppos)
1077 {
1078         struct file *p = NULL;
1079
1080         spin_lock(&redirect_lock);
1081         if (redirect) {
1082                 get_file(redirect);
1083                 p = redirect;
1084         }
1085         spin_unlock(&redirect_lock);
1086
1087         if (p) {
1088                 ssize_t res;
1089                 res = vfs_write(p, buf, count, &p->f_pos);
1090                 fput(p);
1091                 return res;
1092         }
1093         return tty_write(file, buf, count, ppos);
1094 }
1095
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1097
1098 /**
1099  *      pty_line_name   -       generate name for a pty
1100  *      @driver: the tty driver in use
1101  *      @index: the minor number
1102  *      @p: output buffer of at least 6 bytes
1103  *
1104  *      Generate a name from a driver reference and write it to the output
1105  *      buffer.
1106  *
1107  *      Locking: None
1108  */
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1110 {
1111         int i = index + driver->name_base;
1112         /* ->name is initialized to "ttyp", but "tty" is expected */
1113         sprintf(p, "%s%c%x",
1114                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115                 ptychar[i >> 4 & 0xf], i & 0xf);
1116 }
1117
1118 /**
1119  *      tty_line_name   -       generate name for a tty
1120  *      @driver: the tty driver in use
1121  *      @index: the minor number
1122  *      @p: output buffer of at least 7 bytes
1123  *
1124  *      Generate a name from a driver reference and write it to the output
1125  *      buffer.
1126  *
1127  *      Locking: None
1128  */
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1130 {
1131         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1132 }
1133
1134 /**
1135  *      tty_driver_lookup_tty() - find an existing tty, if any
1136  *      @driver: the driver for the tty
1137  *      @idx:    the minor number
1138  *
1139  *      Return the tty, if found or ERR_PTR() otherwise.
1140  *
1141  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1142  *      be held until the 'fast-open' is also done. Will change once we
1143  *      have refcounting in the driver and per driver locking
1144  */
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146                 struct inode *inode, int idx)
1147 {
1148         struct tty_struct *tty;
1149
1150         if (driver->ops->lookup)
1151                 return driver->ops->lookup(driver, inode, idx);
1152
1153         tty = driver->ttys[idx];
1154         return tty;
1155 }
1156
1157 /**
1158  *      tty_init_termios        -  helper for termios setup
1159  *      @tty: the tty to set up
1160  *
1161  *      Initialise the termios structures for this tty. Thus runs under
1162  *      the tty_mutex currently so we can be relaxed about ordering.
1163  */
1164
1165 int tty_init_termios(struct tty_struct *tty)
1166 {
1167         struct ktermios *tp;
1168         int idx = tty->index;
1169
1170         tp = tty->driver->termios[idx];
1171         if (tp == NULL) {
1172                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173                 if (tp == NULL)
1174                         return -ENOMEM;
1175                 memcpy(tp, &tty->driver->init_termios,
1176                                                 sizeof(struct ktermios));
1177                 tty->driver->termios[idx] = tp;
1178         }
1179         tty->termios = tp;
1180         tty->termios_locked = tp + 1;
1181
1182         /* Compatibility until drivers always set this */
1183         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185         return 0;
1186 }
1187
1188 /**
1189  *      tty_driver_install_tty() - install a tty entry in the driver
1190  *      @driver: the driver for the tty
1191  *      @tty: the tty
1192  *
1193  *      Install a tty object into the driver tables. The tty->index field
1194  *      will be set by the time this is called. This method is responsible
1195  *      for ensuring any need additional structures are allocated and
1196  *      configured.
1197  *
1198  *      Locking: tty_mutex for now
1199  */
1200 static int tty_driver_install_tty(struct tty_driver *driver,
1201                                                 struct tty_struct *tty)
1202 {
1203         int idx = tty->index;
1204
1205         if (driver->ops->install)
1206                 return driver->ops->install(driver, tty);
1207
1208         if (tty_init_termios(tty) == 0) {
1209                 tty_driver_kref_get(driver);
1210                 tty->count++;
1211                 driver->ttys[idx] = tty;
1212                 return 0;
1213         }
1214         return -ENOMEM;
1215 }
1216
1217 /**
1218  *      tty_driver_remove_tty() - remove a tty from the driver tables
1219  *      @driver: the driver for the tty
1220  *      @idx:    the minor number
1221  *
1222  *      Remvoe a tty object from the driver tables. The tty->index field
1223  *      will be set by the time this is called.
1224  *
1225  *      Locking: tty_mutex for now
1226  */
1227 static void tty_driver_remove_tty(struct tty_driver *driver,
1228                                                 struct tty_struct *tty)
1229 {
1230         if (driver->ops->remove)
1231                 driver->ops->remove(driver, tty);
1232         else
1233                 driver->ttys[tty->index] = NULL;
1234 }
1235
1236 /*
1237  *      tty_reopen()    - fast re-open of an open tty
1238  *      @tty    - the tty to open
1239  *
1240  *      Return 0 on success, -errno on error.
1241  *
1242  *      Locking: tty_mutex must be held from the time the tty was found
1243  *               till this open completes.
1244  */
1245 static int tty_reopen(struct tty_struct *tty)
1246 {
1247         struct tty_driver *driver = tty->driver;
1248
1249         if (test_bit(TTY_CLOSING, &tty->flags))
1250                 return -EIO;
1251
1252         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1253             driver->subtype == PTY_TYPE_MASTER) {
1254                 /*
1255                  * special case for PTY masters: only one open permitted,
1256                  * and the slave side open count is incremented as well.
1257                  */
1258                 if (tty->count)
1259                         return -EIO;
1260
1261                 tty->link->count++;
1262         }
1263         tty->count++;
1264         tty->driver = driver; /* N.B. why do this every time?? */
1265
1266         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1267
1268         return 0;
1269 }
1270
1271 /**
1272  *      tty_init_dev            -       initialise a tty device
1273  *      @driver: tty driver we are opening a device on
1274  *      @idx: device index
1275  *      @ret_tty: returned tty structure
1276  *      @first_ok: ok to open a new device (used by ptmx)
1277  *
1278  *      Prepare a tty device. This may not be a "new" clean device but
1279  *      could also be an active device. The pty drivers require special
1280  *      handling because of this.
1281  *
1282  *      Locking:
1283  *              The function is called under the tty_mutex, which
1284  *      protects us from the tty struct or driver itself going away.
1285  *
1286  *      On exit the tty device has the line discipline attached and
1287  *      a reference count of 1. If a pair was created for pty/tty use
1288  *      and the other was a pty master then it too has a reference count of 1.
1289  *
1290  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1291  * failed open.  The new code protects the open with a mutex, so it's
1292  * really quite straightforward.  The mutex locking can probably be
1293  * relaxed for the (most common) case of reopening a tty.
1294  */
1295
1296 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1297                                                                 int first_ok)
1298 {
1299         struct tty_struct *tty;
1300         int retval;
1301
1302         /* Check if pty master is being opened multiple times */
1303         if (driver->subtype == PTY_TYPE_MASTER &&
1304                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1305                 return ERR_PTR(-EIO);
1306
1307         /*
1308          * First time open is complex, especially for PTY devices.
1309          * This code guarantees that either everything succeeds and the
1310          * TTY is ready for operation, or else the table slots are vacated
1311          * and the allocated memory released.  (Except that the termios
1312          * and locked termios may be retained.)
1313          */
1314
1315         if (!try_module_get(driver->owner))
1316                 return ERR_PTR(-ENODEV);
1317
1318         tty = alloc_tty_struct();
1319         if (!tty)
1320                 goto fail_no_mem;
1321         initialize_tty_struct(tty, driver, idx);
1322
1323         retval = tty_driver_install_tty(driver, tty);
1324         if (retval < 0) {
1325                 free_tty_struct(tty);
1326                 module_put(driver->owner);
1327                 return ERR_PTR(retval);
1328         }
1329
1330         /*
1331          * Structures all installed ... call the ldisc open routines.
1332          * If we fail here just call release_tty to clean up.  No need
1333          * to decrement the use counts, as release_tty doesn't care.
1334          */
1335
1336         retval = tty_ldisc_setup(tty, tty->link);
1337         if (retval)
1338                 goto release_mem_out;
1339         return tty;
1340
1341 fail_no_mem:
1342         module_put(driver->owner);
1343         return ERR_PTR(-ENOMEM);
1344
1345         /* call the tty release_tty routine to clean out this slot */
1346 release_mem_out:
1347         if (printk_ratelimit())
1348                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1349                                  "clearing slot %d\n", idx);
1350         release_tty(tty, idx);
1351         return ERR_PTR(retval);
1352 }
1353
1354 void tty_free_termios(struct tty_struct *tty)
1355 {
1356         struct ktermios *tp;
1357         int idx = tty->index;
1358         /* Kill this flag and push into drivers for locking etc */
1359         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1360                 /* FIXME: Locking on ->termios array */
1361                 tp = tty->termios;
1362                 tty->driver->termios[idx] = NULL;
1363                 kfree(tp);
1364         }
1365 }
1366 EXPORT_SYMBOL(tty_free_termios);
1367
1368 void tty_shutdown(struct tty_struct *tty)
1369 {
1370         tty_driver_remove_tty(tty->driver, tty);
1371         tty_free_termios(tty);
1372 }
1373 EXPORT_SYMBOL(tty_shutdown);
1374
1375 /**
1376  *      release_one_tty         -       release tty structure memory
1377  *      @kref: kref of tty we are obliterating
1378  *
1379  *      Releases memory associated with a tty structure, and clears out the
1380  *      driver table slots. This function is called when a device is no longer
1381  *      in use. It also gets called when setup of a device fails.
1382  *
1383  *      Locking:
1384  *              tty_mutex - sometimes only
1385  *              takes the file list lock internally when working on the list
1386  *      of ttys that the driver keeps.
1387  */
1388 static void release_one_tty(struct kref *kref)
1389 {
1390         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1391         struct tty_driver *driver = tty->driver;
1392
1393         if (tty->ops->shutdown)
1394                 tty->ops->shutdown(tty);
1395         else
1396                 tty_shutdown(tty);
1397         tty->magic = 0;
1398         tty_driver_kref_put(driver);
1399         module_put(driver->owner);
1400
1401         file_list_lock();
1402         list_del_init(&tty->tty_files);
1403         file_list_unlock();
1404
1405         free_tty_struct(tty);
1406 }
1407
1408 /**
1409  *      tty_kref_put            -       release a tty kref
1410  *      @tty: tty device
1411  *
1412  *      Release a reference to a tty device and if need be let the kref
1413  *      layer destruct the object for us
1414  */
1415
1416 void tty_kref_put(struct tty_struct *tty)
1417 {
1418         if (tty)
1419                 kref_put(&tty->kref, release_one_tty);
1420 }
1421 EXPORT_SYMBOL(tty_kref_put);
1422
1423 /**
1424  *      release_tty             -       release tty structure memory
1425  *
1426  *      Release both @tty and a possible linked partner (think pty pair),
1427  *      and decrement the refcount of the backing module.
1428  *
1429  *      Locking:
1430  *              tty_mutex - sometimes only
1431  *              takes the file list lock internally when working on the list
1432  *      of ttys that the driver keeps.
1433  *              FIXME: should we require tty_mutex is held here ??
1434  *
1435  */
1436 static void release_tty(struct tty_struct *tty, int idx)
1437 {
1438         /* This should always be true but check for the moment */
1439         WARN_ON(tty->index != idx);
1440
1441         if (tty->link)
1442                 tty_kref_put(tty->link);
1443         tty_kref_put(tty);
1444 }
1445
1446 /*
1447  * Even releasing the tty structures is a tricky business.. We have
1448  * to be very careful that the structures are all released at the
1449  * same time, as interrupts might otherwise get the wrong pointers.
1450  *
1451  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1452  * lead to double frees or releasing memory still in use.
1453  */
1454 void tty_release_dev(struct file *filp)
1455 {
1456         struct tty_struct *tty, *o_tty;
1457         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1458         int     devpts;
1459         int     idx;
1460         char    buf[64];
1461         struct  inode *inode;
1462
1463         inode = filp->f_path.dentry->d_inode;
1464         tty = (struct tty_struct *)filp->private_data;
1465         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1466                 return;
1467
1468         check_tty_count(tty, "tty_release_dev");
1469
1470         tty_fasync(-1, filp, 0);
1471
1472         idx = tty->index;
1473         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1474                       tty->driver->subtype == PTY_TYPE_MASTER);
1475         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1476         o_tty = tty->link;
1477
1478 #ifdef TTY_PARANOIA_CHECK
1479         if (idx < 0 || idx >= tty->driver->num) {
1480                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1481                                   "free (%s)\n", tty->name);
1482                 return;
1483         }
1484         if (!devpts) {
1485                 if (tty != tty->driver->ttys[idx]) {
1486                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1487                                "for (%s)\n", idx, tty->name);
1488                         return;
1489                 }
1490                 if (tty->termios != tty->driver->termios[idx]) {
1491                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1492                                "for (%s)\n",
1493                                idx, tty->name);
1494                         return;
1495                 }
1496         }
1497 #endif
1498
1499 #ifdef TTY_DEBUG_HANGUP
1500         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1501                tty_name(tty, buf), tty->count);
1502 #endif
1503
1504 #ifdef TTY_PARANOIA_CHECK
1505         if (tty->driver->other &&
1506              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1507                 if (o_tty != tty->driver->other->ttys[idx]) {
1508                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1509                                           "not o_tty for (%s)\n",
1510                                idx, tty->name);
1511                         return;
1512                 }
1513                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1514                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1515                                           "not o_termios for (%s)\n",
1516                                idx, tty->name);
1517                         return;
1518                 }
1519                 if (o_tty->link != tty) {
1520                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1521                         return;
1522                 }
1523         }
1524 #endif
1525         if (tty->ops->close)
1526                 tty->ops->close(tty, filp);
1527
1528         /*
1529          * Sanity check: if tty->count is going to zero, there shouldn't be
1530          * any waiters on tty->read_wait or tty->write_wait.  We test the
1531          * wait queues and kick everyone out _before_ actually starting to
1532          * close.  This ensures that we won't block while releasing the tty
1533          * structure.
1534          *
1535          * The test for the o_tty closing is necessary, since the master and
1536          * slave sides may close in any order.  If the slave side closes out
1537          * first, its count will be one, since the master side holds an open.
1538          * Thus this test wouldn't be triggered at the time the slave closes,
1539          * so we do it now.
1540          *
1541          * Note that it's possible for the tty to be opened again while we're
1542          * flushing out waiters.  By recalculating the closing flags before
1543          * each iteration we avoid any problems.
1544          */
1545         while (1) {
1546                 /* Guard against races with tty->count changes elsewhere and
1547                    opens on /dev/tty */
1548
1549                 mutex_lock(&tty_mutex);
1550                 tty_closing = tty->count <= 1;
1551                 o_tty_closing = o_tty &&
1552                         (o_tty->count <= (pty_master ? 1 : 0));
1553                 do_sleep = 0;
1554
1555                 if (tty_closing) {
1556                         if (waitqueue_active(&tty->read_wait)) {
1557                                 wake_up_poll(&tty->read_wait, POLLIN);
1558                                 do_sleep++;
1559                         }
1560                         if (waitqueue_active(&tty->write_wait)) {
1561                                 wake_up_poll(&tty->write_wait, POLLOUT);
1562                                 do_sleep++;
1563                         }
1564                 }
1565                 if (o_tty_closing) {
1566                         if (waitqueue_active(&o_tty->read_wait)) {
1567                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1568                                 do_sleep++;
1569                         }
1570                         if (waitqueue_active(&o_tty->write_wait)) {
1571                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1572                                 do_sleep++;
1573                         }
1574                 }
1575                 if (!do_sleep)
1576                         break;
1577
1578                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1579                                     "active!\n", tty_name(tty, buf));
1580                 mutex_unlock(&tty_mutex);
1581                 schedule();
1582         }
1583
1584         /*
1585          * The closing flags are now consistent with the open counts on
1586          * both sides, and we've completed the last operation that could
1587          * block, so it's safe to proceed with closing.
1588          */
1589         if (pty_master) {
1590                 if (--o_tty->count < 0) {
1591                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1592                                             "(%d) for %s\n",
1593                                o_tty->count, tty_name(o_tty, buf));
1594                         o_tty->count = 0;
1595                 }
1596         }
1597         if (--tty->count < 0) {
1598                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1599                        tty->count, tty_name(tty, buf));
1600                 tty->count = 0;
1601         }
1602
1603         /*
1604          * We've decremented tty->count, so we need to remove this file
1605          * descriptor off the tty->tty_files list; this serves two
1606          * purposes:
1607          *  - check_tty_count sees the correct number of file descriptors
1608          *    associated with this tty.
1609          *  - do_tty_hangup no longer sees this file descriptor as
1610          *    something that needs to be handled for hangups.
1611          */
1612         file_kill(filp);
1613         filp->private_data = NULL;
1614
1615         /*
1616          * Perform some housekeeping before deciding whether to return.
1617          *
1618          * Set the TTY_CLOSING flag if this was the last open.  In the
1619          * case of a pty we may have to wait around for the other side
1620          * to close, and TTY_CLOSING makes sure we can't be reopened.
1621          */
1622         if (tty_closing)
1623                 set_bit(TTY_CLOSING, &tty->flags);
1624         if (o_tty_closing)
1625                 set_bit(TTY_CLOSING, &o_tty->flags);
1626
1627         /*
1628          * If _either_ side is closing, make sure there aren't any
1629          * processes that still think tty or o_tty is their controlling
1630          * tty.
1631          */
1632         if (tty_closing || o_tty_closing) {
1633                 read_lock(&tasklist_lock);
1634                 session_clear_tty(tty->session);
1635                 if (o_tty)
1636                         session_clear_tty(o_tty->session);
1637                 read_unlock(&tasklist_lock);
1638         }
1639
1640         mutex_unlock(&tty_mutex);
1641
1642         /* check whether both sides are closing ... */
1643         if (!tty_closing || (o_tty && !o_tty_closing))
1644                 return;
1645
1646 #ifdef TTY_DEBUG_HANGUP
1647         printk(KERN_DEBUG "freeing tty structure...");
1648 #endif
1649         /*
1650          * Ask the line discipline code to release its structures
1651          */
1652         tty_ldisc_release(tty, o_tty);
1653         /*
1654          * The release_tty function takes care of the details of clearing
1655          * the slots and preserving the termios structure.
1656          */
1657         release_tty(tty, idx);
1658
1659         /* Make this pty number available for reallocation */
1660         if (devpts)
1661                 devpts_kill_index(inode, idx);
1662 }
1663
1664 /**
1665  *      __tty_open              -       open a tty device
1666  *      @inode: inode of device file
1667  *      @filp: file pointer to tty
1668  *
1669  *      tty_open and tty_release keep up the tty count that contains the
1670  *      number of opens done on a tty. We cannot use the inode-count, as
1671  *      different inodes might point to the same tty.
1672  *
1673  *      Open-counting is needed for pty masters, as well as for keeping
1674  *      track of serial lines: DTR is dropped when the last close happens.
1675  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1676  *
1677  *      The termios state of a pty is reset on first open so that
1678  *      settings don't persist across reuse.
1679  *
1680  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1681  *               tty->count should protect the rest.
1682  *               ->siglock protects ->signal/->sighand
1683  */
1684
1685 static int __tty_open(struct inode *inode, struct file *filp)
1686 {
1687         struct tty_struct *tty = NULL;
1688         int noctty, retval;
1689         struct tty_driver *driver;
1690         int index;
1691         dev_t device = inode->i_rdev;
1692         unsigned saved_flags = filp->f_flags;
1693
1694         nonseekable_open(inode, filp);
1695
1696 retry_open:
1697         noctty = filp->f_flags & O_NOCTTY;
1698         index  = -1;
1699         retval = 0;
1700
1701         mutex_lock(&tty_mutex);
1702
1703         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1704                 tty = get_current_tty();
1705                 if (!tty) {
1706                         mutex_unlock(&tty_mutex);
1707                         return -ENXIO;
1708                 }
1709                 driver = tty_driver_kref_get(tty->driver);
1710                 index = tty->index;
1711                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1712                 /* noctty = 1; */
1713                 /* FIXME: Should we take a driver reference ? */
1714                 tty_kref_put(tty);
1715                 goto got_driver;
1716         }
1717 #ifdef CONFIG_VT
1718         if (device == MKDEV(TTY_MAJOR, 0)) {
1719                 extern struct tty_driver *console_driver;
1720                 driver = tty_driver_kref_get(console_driver);
1721                 index = fg_console;
1722                 noctty = 1;
1723                 goto got_driver;
1724         }
1725 #endif
1726         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1727                 struct tty_driver *console_driver = console_device(&index);
1728                 if (console_driver) {
1729                         driver = tty_driver_kref_get(console_driver);
1730                         if (driver) {
1731                                 /* Don't let /dev/console block */
1732                                 filp->f_flags |= O_NONBLOCK;
1733                                 noctty = 1;
1734                                 goto got_driver;
1735                         }
1736                 }
1737                 mutex_unlock(&tty_mutex);
1738                 return -ENODEV;
1739         }
1740
1741         driver = get_tty_driver(device, &index);
1742         if (!driver) {
1743                 mutex_unlock(&tty_mutex);
1744                 return -ENODEV;
1745         }
1746 got_driver:
1747         if (!tty) {
1748                 /* check whether we're reopening an existing tty */
1749                 tty = tty_driver_lookup_tty(driver, inode, index);
1750
1751                 if (IS_ERR(tty)) {
1752                         mutex_unlock(&tty_mutex);
1753                         return PTR_ERR(tty);
1754                 }
1755         }
1756
1757         if (tty) {
1758                 retval = tty_reopen(tty);
1759                 if (retval)
1760                         tty = ERR_PTR(retval);
1761         } else
1762                 tty = tty_init_dev(driver, index, 0);
1763
1764         mutex_unlock(&tty_mutex);
1765         tty_driver_kref_put(driver);
1766         if (IS_ERR(tty))
1767                 return PTR_ERR(tty);
1768
1769         filp->private_data = tty;
1770         file_move(filp, &tty->tty_files);
1771         check_tty_count(tty, "tty_open");
1772         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1773             tty->driver->subtype == PTY_TYPE_MASTER)
1774                 noctty = 1;
1775 #ifdef TTY_DEBUG_HANGUP
1776         printk(KERN_DEBUG "opening %s...", tty->name);
1777 #endif
1778         if (!retval) {
1779                 if (tty->ops->open)
1780                         retval = tty->ops->open(tty, filp);
1781                 else
1782                         retval = -ENODEV;
1783         }
1784         filp->f_flags = saved_flags;
1785
1786         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1787                                                 !capable(CAP_SYS_ADMIN))
1788                 retval = -EBUSY;
1789
1790         if (retval) {
1791 #ifdef TTY_DEBUG_HANGUP
1792                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1793                        tty->name);
1794 #endif
1795                 tty_release_dev(filp);
1796                 if (retval != -ERESTARTSYS)
1797                         return retval;
1798                 if (signal_pending(current))
1799                         return retval;
1800                 schedule();
1801                 /*
1802                  * Need to reset f_op in case a hangup happened.
1803                  */
1804                 if (filp->f_op == &hung_up_tty_fops)
1805                         filp->f_op = &tty_fops;
1806                 goto retry_open;
1807         }
1808
1809         mutex_lock(&tty_mutex);
1810         spin_lock_irq(&current->sighand->siglock);
1811         if (!noctty &&
1812             current->signal->leader &&
1813             !current->signal->tty &&
1814             tty->session == NULL)
1815                 __proc_set_tty(current, tty);
1816         spin_unlock_irq(&current->sighand->siglock);
1817         mutex_unlock(&tty_mutex);
1818         return 0;
1819 }
1820
1821 /* BKL pushdown: scary code avoidance wrapper */
1822 static int tty_open(struct inode *inode, struct file *filp)
1823 {
1824         int ret;
1825
1826         lock_kernel();
1827         ret = __tty_open(inode, filp);
1828         unlock_kernel();
1829         return ret;
1830 }
1831
1832
1833
1834
1835 /**
1836  *      tty_release             -       vfs callback for close
1837  *      @inode: inode of tty
1838  *      @filp: file pointer for handle to tty
1839  *
1840  *      Called the last time each file handle is closed that references
1841  *      this tty. There may however be several such references.
1842  *
1843  *      Locking:
1844  *              Takes bkl. See tty_release_dev
1845  */
1846
1847 static int tty_release(struct inode *inode, struct file *filp)
1848 {
1849         lock_kernel();
1850         tty_release_dev(filp);
1851         unlock_kernel();
1852         return 0;
1853 }
1854
1855 /**
1856  *      tty_poll        -       check tty status
1857  *      @filp: file being polled
1858  *      @wait: poll wait structures to update
1859  *
1860  *      Call the line discipline polling method to obtain the poll
1861  *      status of the device.
1862  *
1863  *      Locking: locks called line discipline but ldisc poll method
1864  *      may be re-entered freely by other callers.
1865  */
1866
1867 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1868 {
1869         struct tty_struct *tty;
1870         struct tty_ldisc *ld;
1871         int ret = 0;
1872
1873         tty = (struct tty_struct *)filp->private_data;
1874         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1875                 return 0;
1876
1877         ld = tty_ldisc_ref_wait(tty);
1878         if (ld->ops->poll)
1879                 ret = (ld->ops->poll)(tty, filp, wait);
1880         tty_ldisc_deref(ld);
1881         return ret;
1882 }
1883
1884 static int tty_fasync(int fd, struct file *filp, int on)
1885 {
1886         struct tty_struct *tty;
1887         unsigned long flags;
1888         int retval = 0;
1889
1890         lock_kernel();
1891         tty = (struct tty_struct *)filp->private_data;
1892         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1893                 goto out;
1894
1895         retval = fasync_helper(fd, filp, on, &tty->fasync);
1896         if (retval <= 0)
1897                 goto out;
1898
1899         if (on) {
1900                 enum pid_type type;
1901                 struct pid *pid;
1902                 if (!waitqueue_active(&tty->read_wait))
1903                         tty->minimum_to_wake = 1;
1904                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1905                 if (tty->pgrp) {
1906                         pid = tty->pgrp;
1907                         type = PIDTYPE_PGID;
1908                 } else {
1909                         pid = task_pid(current);
1910                         type = PIDTYPE_PID;
1911                 }
1912                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1913                 retval = __f_setown(filp, pid, type, 0);
1914                 if (retval)
1915                         goto out;
1916         } else {
1917                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1918                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
1919         }
1920         retval = 0;
1921 out:
1922         unlock_kernel();
1923         return retval;
1924 }
1925
1926 /**
1927  *      tiocsti                 -       fake input character
1928  *      @tty: tty to fake input into
1929  *      @p: pointer to character
1930  *
1931  *      Fake input to a tty device. Does the necessary locking and
1932  *      input management.
1933  *
1934  *      FIXME: does not honour flow control ??
1935  *
1936  *      Locking:
1937  *              Called functions take tty_ldisc_lock
1938  *              current->signal->tty check is safe without locks
1939  *
1940  *      FIXME: may race normal receive processing
1941  */
1942
1943 static int tiocsti(struct tty_struct *tty, char __user *p)
1944 {
1945         char ch, mbz = 0;
1946         struct tty_ldisc *ld;
1947
1948         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1949                 return -EPERM;
1950         if (get_user(ch, p))
1951                 return -EFAULT;
1952         tty_audit_tiocsti(tty, ch);
1953         ld = tty_ldisc_ref_wait(tty);
1954         ld->ops->receive_buf(tty, &ch, &mbz, 1);
1955         tty_ldisc_deref(ld);
1956         return 0;
1957 }
1958
1959 /**
1960  *      tiocgwinsz              -       implement window query ioctl
1961  *      @tty; tty
1962  *      @arg: user buffer for result
1963  *
1964  *      Copies the kernel idea of the window size into the user buffer.
1965  *
1966  *      Locking: tty->termios_mutex is taken to ensure the winsize data
1967  *              is consistent.
1968  */
1969
1970 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1971 {
1972         int err;
1973
1974         mutex_lock(&tty->termios_mutex);
1975         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1976         mutex_unlock(&tty->termios_mutex);
1977
1978         return err ? -EFAULT: 0;
1979 }
1980
1981 /**
1982  *      tty_do_resize           -       resize event
1983  *      @tty: tty being resized
1984  *      @rows: rows (character)
1985  *      @cols: cols (character)
1986  *
1987  *      Update the termios variables and send the neccessary signals to
1988  *      peform a terminal resize correctly
1989  */
1990
1991 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
1992 {
1993         struct pid *pgrp;
1994         unsigned long flags;
1995
1996         /* Lock the tty */
1997         mutex_lock(&tty->termios_mutex);
1998         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
1999                 goto done;
2000         /* Get the PID values and reference them so we can
2001            avoid holding the tty ctrl lock while sending signals */
2002         spin_lock_irqsave(&tty->ctrl_lock, flags);
2003         pgrp = get_pid(tty->pgrp);
2004         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2005
2006         if (pgrp)
2007                 kill_pgrp(pgrp, SIGWINCH, 1);
2008         put_pid(pgrp);
2009
2010         tty->winsize = *ws;
2011 done:
2012         mutex_unlock(&tty->termios_mutex);
2013         return 0;
2014 }
2015
2016 /**
2017  *      tiocswinsz              -       implement window size set ioctl
2018  *      @tty; tty side of tty
2019  *      @arg: user buffer for result
2020  *
2021  *      Copies the user idea of the window size to the kernel. Traditionally
2022  *      this is just advisory information but for the Linux console it
2023  *      actually has driver level meaning and triggers a VC resize.
2024  *
2025  *      Locking:
2026  *              Driver dependant. The default do_resize method takes the
2027  *      tty termios mutex and ctrl_lock. The console takes its own lock
2028  *      then calls into the default method.
2029  */
2030
2031 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2032 {
2033         struct winsize tmp_ws;
2034         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2035                 return -EFAULT;
2036
2037         if (tty->ops->resize)
2038                 return tty->ops->resize(tty, &tmp_ws);
2039         else
2040                 return tty_do_resize(tty, &tmp_ws);
2041 }
2042
2043 /**
2044  *      tioccons        -       allow admin to move logical console
2045  *      @file: the file to become console
2046  *
2047  *      Allow the adminstrator to move the redirected console device
2048  *
2049  *      Locking: uses redirect_lock to guard the redirect information
2050  */
2051
2052 static int tioccons(struct file *file)
2053 {
2054         if (!capable(CAP_SYS_ADMIN))
2055                 return -EPERM;
2056         if (file->f_op->write == redirected_tty_write) {
2057                 struct file *f;
2058                 spin_lock(&redirect_lock);
2059                 f = redirect;
2060                 redirect = NULL;
2061                 spin_unlock(&redirect_lock);
2062                 if (f)
2063                         fput(f);
2064                 return 0;
2065         }
2066         spin_lock(&redirect_lock);
2067         if (redirect) {
2068                 spin_unlock(&redirect_lock);
2069                 return -EBUSY;
2070         }
2071         get_file(file);
2072         redirect = file;
2073         spin_unlock(&redirect_lock);
2074         return 0;
2075 }
2076
2077 /**
2078  *      fionbio         -       non blocking ioctl
2079  *      @file: file to set blocking value
2080  *      @p: user parameter
2081  *
2082  *      Historical tty interfaces had a blocking control ioctl before
2083  *      the generic functionality existed. This piece of history is preserved
2084  *      in the expected tty API of posix OS's.
2085  *
2086  *      Locking: none, the open fle handle ensures it won't go away.
2087  */
2088
2089 static int fionbio(struct file *file, int __user *p)
2090 {
2091         int nonblock;
2092
2093         if (get_user(nonblock, p))
2094                 return -EFAULT;
2095
2096         spin_lock(&file->f_lock);
2097         if (nonblock)
2098                 file->f_flags |= O_NONBLOCK;
2099         else
2100                 file->f_flags &= ~O_NONBLOCK;
2101         spin_unlock(&file->f_lock);
2102         return 0;
2103 }
2104
2105 /**
2106  *      tiocsctty       -       set controlling tty
2107  *      @tty: tty structure
2108  *      @arg: user argument
2109  *
2110  *      This ioctl is used to manage job control. It permits a session
2111  *      leader to set this tty as the controlling tty for the session.
2112  *
2113  *      Locking:
2114  *              Takes tty_mutex() to protect tty instance
2115  *              Takes tasklist_lock internally to walk sessions
2116  *              Takes ->siglock() when updating signal->tty
2117  */
2118
2119 static int tiocsctty(struct tty_struct *tty, int arg)
2120 {
2121         int ret = 0;
2122         if (current->signal->leader && (task_session(current) == tty->session))
2123                 return ret;
2124
2125         mutex_lock(&tty_mutex);
2126         /*
2127          * The process must be a session leader and
2128          * not have a controlling tty already.
2129          */
2130         if (!current->signal->leader || current->signal->tty) {
2131                 ret = -EPERM;
2132                 goto unlock;
2133         }
2134
2135         if (tty->session) {
2136                 /*
2137                  * This tty is already the controlling
2138                  * tty for another session group!
2139                  */
2140                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2141                         /*
2142                          * Steal it away
2143                          */
2144                         read_lock(&tasklist_lock);
2145                         session_clear_tty(tty->session);
2146                         read_unlock(&tasklist_lock);
2147                 } else {
2148                         ret = -EPERM;
2149                         goto unlock;
2150                 }
2151         }
2152         proc_set_tty(current, tty);
2153 unlock:
2154         mutex_unlock(&tty_mutex);
2155         return ret;
2156 }
2157
2158 /**
2159  *      tty_get_pgrp    -       return a ref counted pgrp pid
2160  *      @tty: tty to read
2161  *
2162  *      Returns a refcounted instance of the pid struct for the process
2163  *      group controlling the tty.
2164  */
2165
2166 struct pid *tty_get_pgrp(struct tty_struct *tty)
2167 {
2168         unsigned long flags;
2169         struct pid *pgrp;
2170
2171         spin_lock_irqsave(&tty->ctrl_lock, flags);
2172         pgrp = get_pid(tty->pgrp);
2173         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2174
2175         return pgrp;
2176 }
2177 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2178
2179 /**
2180  *      tiocgpgrp               -       get process group
2181  *      @tty: tty passed by user
2182  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2183  *      @p: returned pid
2184  *
2185  *      Obtain the process group of the tty. If there is no process group
2186  *      return an error.
2187  *
2188  *      Locking: none. Reference to current->signal->tty is safe.
2189  */
2190
2191 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2192 {
2193         struct pid *pid;
2194         int ret;
2195         /*
2196          * (tty == real_tty) is a cheap way of
2197          * testing if the tty is NOT a master pty.
2198          */
2199         if (tty == real_tty && current->signal->tty != real_tty)
2200                 return -ENOTTY;
2201         pid = tty_get_pgrp(real_tty);
2202         ret =  put_user(pid_vnr(pid), p);
2203         put_pid(pid);
2204         return ret;
2205 }
2206
2207 /**
2208  *      tiocspgrp               -       attempt to set process group
2209  *      @tty: tty passed by user
2210  *      @real_tty: tty side device matching tty passed by user
2211  *      @p: pid pointer
2212  *
2213  *      Set the process group of the tty to the session passed. Only
2214  *      permitted where the tty session is our session.
2215  *
2216  *      Locking: RCU, ctrl lock
2217  */
2218
2219 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2220 {
2221         struct pid *pgrp;
2222         pid_t pgrp_nr;
2223         int retval = tty_check_change(real_tty);
2224         unsigned long flags;
2225
2226         if (retval == -EIO)
2227                 return -ENOTTY;
2228         if (retval)
2229                 return retval;
2230         if (!current->signal->tty ||
2231             (current->signal->tty != real_tty) ||
2232             (real_tty->session != task_session(current)))
2233                 return -ENOTTY;
2234         if (get_user(pgrp_nr, p))
2235                 return -EFAULT;
2236         if (pgrp_nr < 0)
2237                 return -EINVAL;
2238         rcu_read_lock();
2239         pgrp = find_vpid(pgrp_nr);
2240         retval = -ESRCH;
2241         if (!pgrp)
2242                 goto out_unlock;
2243         retval = -EPERM;
2244         if (session_of_pgrp(pgrp) != task_session(current))
2245                 goto out_unlock;
2246         retval = 0;
2247         spin_lock_irqsave(&tty->ctrl_lock, flags);
2248         put_pid(real_tty->pgrp);
2249         real_tty->pgrp = get_pid(pgrp);
2250         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251 out_unlock:
2252         rcu_read_unlock();
2253         return retval;
2254 }
2255
2256 /**
2257  *      tiocgsid                -       get session id
2258  *      @tty: tty passed by user
2259  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2260  *      @p: pointer to returned session id
2261  *
2262  *      Obtain the session id of the tty. If there is no session
2263  *      return an error.
2264  *
2265  *      Locking: none. Reference to current->signal->tty is safe.
2266  */
2267
2268 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2269 {
2270         /*
2271          * (tty == real_tty) is a cheap way of
2272          * testing if the tty is NOT a master pty.
2273         */
2274         if (tty == real_tty && current->signal->tty != real_tty)
2275                 return -ENOTTY;
2276         if (!real_tty->session)
2277                 return -ENOTTY;
2278         return put_user(pid_vnr(real_tty->session), p);
2279 }
2280
2281 /**
2282  *      tiocsetd        -       set line discipline
2283  *      @tty: tty device
2284  *      @p: pointer to user data
2285  *
2286  *      Set the line discipline according to user request.
2287  *
2288  *      Locking: see tty_set_ldisc, this function is just a helper
2289  */
2290
2291 static int tiocsetd(struct tty_struct *tty, int __user *p)
2292 {
2293         int ldisc;
2294         int ret;
2295
2296         if (get_user(ldisc, p))
2297                 return -EFAULT;
2298
2299         lock_kernel();
2300         ret = tty_set_ldisc(tty, ldisc);
2301         unlock_kernel();
2302
2303         return ret;
2304 }
2305
2306 /**
2307  *      send_break      -       performed time break
2308  *      @tty: device to break on
2309  *      @duration: timeout in mS
2310  *
2311  *      Perform a timed break on hardware that lacks its own driver level
2312  *      timed break functionality.
2313  *
2314  *      Locking:
2315  *              atomic_write_lock serializes
2316  *
2317  */
2318
2319 static int send_break(struct tty_struct *tty, unsigned int duration)
2320 {
2321         int retval;
2322
2323         if (tty->ops->break_ctl == NULL)
2324                 return 0;
2325
2326         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2327                 retval = tty->ops->break_ctl(tty, duration);
2328         else {
2329                 /* Do the work ourselves */
2330                 if (tty_write_lock(tty, 0) < 0)
2331                         return -EINTR;
2332                 retval = tty->ops->break_ctl(tty, -1);
2333                 if (retval)
2334                         goto out;
2335                 if (!signal_pending(current))
2336                         msleep_interruptible(duration);
2337                 retval = tty->ops->break_ctl(tty, 0);
2338 out:
2339                 tty_write_unlock(tty);
2340                 if (signal_pending(current))
2341                         retval = -EINTR;
2342         }
2343         return retval;
2344 }
2345
2346 /**
2347  *      tty_tiocmget            -       get modem status
2348  *      @tty: tty device
2349  *      @file: user file pointer
2350  *      @p: pointer to result
2351  *
2352  *      Obtain the modem status bits from the tty driver if the feature
2353  *      is supported. Return -EINVAL if it is not available.
2354  *
2355  *      Locking: none (up to the driver)
2356  */
2357
2358 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2359 {
2360         int retval = -EINVAL;
2361
2362         if (tty->ops->tiocmget) {
2363                 retval = tty->ops->tiocmget(tty, file);
2364
2365                 if (retval >= 0)
2366                         retval = put_user(retval, p);
2367         }
2368         return retval;
2369 }
2370
2371 /**
2372  *      tty_tiocmset            -       set modem status
2373  *      @tty: tty device
2374  *      @file: user file pointer
2375  *      @cmd: command - clear bits, set bits or set all
2376  *      @p: pointer to desired bits
2377  *
2378  *      Set the modem status bits from the tty driver if the feature
2379  *      is supported. Return -EINVAL if it is not available.
2380  *
2381  *      Locking: none (up to the driver)
2382  */
2383
2384 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2385              unsigned __user *p)
2386 {
2387         int retval;
2388         unsigned int set, clear, val;
2389
2390         if (tty->ops->tiocmset == NULL)
2391                 return -EINVAL;
2392
2393         retval = get_user(val, p);
2394         if (retval)
2395                 return retval;
2396         set = clear = 0;
2397         switch (cmd) {
2398         case TIOCMBIS:
2399                 set = val;
2400                 break;
2401         case TIOCMBIC:
2402                 clear = val;
2403                 break;
2404         case TIOCMSET:
2405                 set = val;
2406                 clear = ~val;
2407                 break;
2408         }
2409         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2410         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2411         return tty->ops->tiocmset(tty, file, set, clear);
2412 }
2413
2414 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2415 {
2416         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2417             tty->driver->subtype == PTY_TYPE_MASTER)
2418                 tty = tty->link;
2419         return tty;
2420 }
2421 EXPORT_SYMBOL(tty_pair_get_tty);
2422
2423 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2424 {
2425         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2426             tty->driver->subtype == PTY_TYPE_MASTER)
2427             return tty;
2428         return tty->link;
2429 }
2430 EXPORT_SYMBOL(tty_pair_get_pty);
2431
2432 /*
2433  * Split this up, as gcc can choke on it otherwise..
2434  */
2435 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2436 {
2437         struct tty_struct *tty, *real_tty;
2438         void __user *p = (void __user *)arg;
2439         int retval;
2440         struct tty_ldisc *ld;
2441         struct inode *inode = file->f_dentry->d_inode;
2442
2443         tty = (struct tty_struct *)file->private_data;
2444         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2445                 return -EINVAL;
2446
2447         real_tty = tty_pair_get_tty(tty);
2448
2449         /*
2450          * Factor out some common prep work
2451          */
2452         switch (cmd) {
2453         case TIOCSETD:
2454         case TIOCSBRK:
2455         case TIOCCBRK:
2456         case TCSBRK:
2457         case TCSBRKP:
2458                 retval = tty_check_change(tty);
2459                 if (retval)
2460                         return retval;
2461                 if (cmd != TIOCCBRK) {
2462                         tty_wait_until_sent(tty, 0);
2463                         if (signal_pending(current))
2464                                 return -EINTR;
2465                 }
2466                 break;
2467         }
2468
2469         /*
2470          *      Now do the stuff.
2471          */
2472         switch (cmd) {
2473         case TIOCSTI:
2474                 return tiocsti(tty, p);
2475         case TIOCGWINSZ:
2476                 return tiocgwinsz(real_tty, p);
2477         case TIOCSWINSZ:
2478                 return tiocswinsz(real_tty, p);
2479         case TIOCCONS:
2480                 return real_tty != tty ? -EINVAL : tioccons(file);
2481         case FIONBIO:
2482                 return fionbio(file, p);
2483         case TIOCEXCL:
2484                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2485                 return 0;
2486         case TIOCNXCL:
2487                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2488                 return 0;
2489         case TIOCNOTTY:
2490                 if (current->signal->tty != tty)
2491                         return -ENOTTY;
2492                 no_tty();
2493                 return 0;
2494         case TIOCSCTTY:
2495                 return tiocsctty(tty, arg);
2496         case TIOCGPGRP:
2497                 return tiocgpgrp(tty, real_tty, p);
2498         case TIOCSPGRP:
2499                 return tiocspgrp(tty, real_tty, p);
2500         case TIOCGSID:
2501                 return tiocgsid(tty, real_tty, p);
2502         case TIOCGETD:
2503                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2504         case TIOCSETD:
2505                 return tiocsetd(tty, p);
2506         /*
2507          * Break handling
2508          */
2509         case TIOCSBRK:  /* Turn break on, unconditionally */
2510                 if (tty->ops->break_ctl)
2511                         return tty->ops->break_ctl(tty, -1);
2512                 return 0;
2513         case TIOCCBRK:  /* Turn break off, unconditionally */
2514                 if (tty->ops->break_ctl)
2515                         return tty->ops->break_ctl(tty, 0);
2516                 return 0;
2517         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2518                 /* non-zero arg means wait for all output data
2519                  * to be sent (performed above) but don't send break.
2520                  * This is used by the tcdrain() termios function.
2521                  */
2522                 if (!arg)
2523                         return send_break(tty, 250);
2524                 return 0;
2525         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2526                 return send_break(tty, arg ? arg*100 : 250);
2527
2528         case TIOCMGET:
2529                 return tty_tiocmget(tty, file, p);
2530         case TIOCMSET:
2531         case TIOCMBIC:
2532         case TIOCMBIS:
2533                 return tty_tiocmset(tty, file, cmd, p);
2534         case TCFLSH:
2535                 switch (arg) {
2536                 case TCIFLUSH:
2537                 case TCIOFLUSH:
2538                 /* flush tty buffer and allow ldisc to process ioctl */
2539                         tty_buffer_flush(tty);
2540                         break;
2541                 }
2542                 break;
2543         }
2544         if (tty->ops->ioctl) {
2545                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2546                 if (retval != -ENOIOCTLCMD)
2547                         return retval;
2548         }
2549         ld = tty_ldisc_ref_wait(tty);
2550         retval = -EINVAL;
2551         if (ld->ops->ioctl) {
2552                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2553                 if (retval == -ENOIOCTLCMD)
2554                         retval = -EINVAL;
2555         }
2556         tty_ldisc_deref(ld);
2557         return retval;
2558 }
2559
2560 #ifdef CONFIG_COMPAT
2561 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2562                                 unsigned long arg)
2563 {
2564         struct inode *inode = file->f_dentry->d_inode;
2565         struct tty_struct *tty = file->private_data;
2566         struct tty_ldisc *ld;
2567         int retval = -ENOIOCTLCMD;
2568
2569         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2570                 return -EINVAL;
2571
2572         if (tty->ops->compat_ioctl) {
2573                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2574                 if (retval != -ENOIOCTLCMD)
2575                         return retval;
2576         }
2577
2578         ld = tty_ldisc_ref_wait(tty);
2579         if (ld->ops->compat_ioctl)
2580                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2581         tty_ldisc_deref(ld);
2582
2583         return retval;
2584 }
2585 #endif
2586
2587 /*
2588  * This implements the "Secure Attention Key" ---  the idea is to
2589  * prevent trojan horses by killing all processes associated with this
2590  * tty when the user hits the "Secure Attention Key".  Required for
2591  * super-paranoid applications --- see the Orange Book for more details.
2592  *
2593  * This code could be nicer; ideally it should send a HUP, wait a few
2594  * seconds, then send a INT, and then a KILL signal.  But you then
2595  * have to coordinate with the init process, since all processes associated
2596  * with the current tty must be dead before the new getty is allowed
2597  * to spawn.
2598  *
2599  * Now, if it would be correct ;-/ The current code has a nasty hole -
2600  * it doesn't catch files in flight. We may send the descriptor to ourselves
2601  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2602  *
2603  * Nasty bug: do_SAK is being called in interrupt context.  This can
2604  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2605  */
2606 void __do_SAK(struct tty_struct *tty)
2607 {
2608 #ifdef TTY_SOFT_SAK
2609         tty_hangup(tty);
2610 #else
2611         struct task_struct *g, *p;
2612         struct pid *session;
2613         int             i;
2614         struct file     *filp;
2615         struct fdtable *fdt;
2616
2617         if (!tty)
2618                 return;
2619         session = tty->session;
2620
2621         tty_ldisc_flush(tty);
2622
2623         tty_driver_flush_buffer(tty);
2624
2625         read_lock(&tasklist_lock);
2626         /* Kill the entire session */
2627         do_each_pid_task(session, PIDTYPE_SID, p) {
2628                 printk(KERN_NOTICE "SAK: killed process %d"
2629                         " (%s): task_session(p)==tty->session\n",
2630                         task_pid_nr(p), p->comm);
2631                 send_sig(SIGKILL, p, 1);
2632         } while_each_pid_task(session, PIDTYPE_SID, p);
2633         /* Now kill any processes that happen to have the
2634          * tty open.
2635          */
2636         do_each_thread(g, p) {
2637                 if (p->signal->tty == tty) {
2638                         printk(KERN_NOTICE "SAK: killed process %d"
2639                             " (%s): task_session(p)==tty->session\n",
2640                             task_pid_nr(p), p->comm);
2641                         send_sig(SIGKILL, p, 1);
2642                         continue;
2643                 }
2644                 task_lock(p);
2645                 if (p->files) {
2646                         /*
2647                          * We don't take a ref to the file, so we must
2648                          * hold ->file_lock instead.
2649                          */
2650                         spin_lock(&p->files->file_lock);
2651                         fdt = files_fdtable(p->files);
2652                         for (i = 0; i < fdt->max_fds; i++) {
2653                                 filp = fcheck_files(p->files, i);
2654                                 if (!filp)
2655                                         continue;
2656                                 if (filp->f_op->read == tty_read &&
2657                                     filp->private_data == tty) {
2658                                         printk(KERN_NOTICE "SAK: killed process %d"
2659                                             " (%s): fd#%d opened to the tty\n",
2660                                             task_pid_nr(p), p->comm, i);
2661                                         force_sig(SIGKILL, p);
2662                                         break;
2663                                 }
2664                         }
2665                         spin_unlock(&p->files->file_lock);
2666                 }
2667                 task_unlock(p);
2668         } while_each_thread(g, p);
2669         read_unlock(&tasklist_lock);
2670 #endif
2671 }
2672
2673 static void do_SAK_work(struct work_struct *work)
2674 {
2675         struct tty_struct *tty =
2676                 container_of(work, struct tty_struct, SAK_work);
2677         __do_SAK(tty);
2678 }
2679
2680 /*
2681  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2682  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2683  * the values which we write to it will be identical to the values which it
2684  * already has. --akpm
2685  */
2686 void do_SAK(struct tty_struct *tty)
2687 {
2688         if (!tty)
2689                 return;
2690         schedule_work(&tty->SAK_work);
2691 }
2692
2693 EXPORT_SYMBOL(do_SAK);
2694
2695 /**
2696  *      initialize_tty_struct
2697  *      @tty: tty to initialize
2698  *
2699  *      This subroutine initializes a tty structure that has been newly
2700  *      allocated.
2701  *
2702  *      Locking: none - tty in question must not be exposed at this point
2703  */
2704
2705 void initialize_tty_struct(struct tty_struct *tty,
2706                 struct tty_driver *driver, int idx)
2707 {
2708         memset(tty, 0, sizeof(struct tty_struct));
2709         kref_init(&tty->kref);
2710         tty->magic = TTY_MAGIC;
2711         tty_ldisc_init(tty);
2712         tty->session = NULL;
2713         tty->pgrp = NULL;
2714         tty->overrun_time = jiffies;
2715         tty->buf.head = tty->buf.tail = NULL;
2716         tty_buffer_init(tty);
2717         mutex_init(&tty->termios_mutex);
2718         mutex_init(&tty->ldisc_mutex);
2719         init_waitqueue_head(&tty->write_wait);
2720         init_waitqueue_head(&tty->read_wait);
2721         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2722         mutex_init(&tty->atomic_read_lock);
2723         mutex_init(&tty->atomic_write_lock);
2724         mutex_init(&tty->output_lock);
2725         mutex_init(&tty->echo_lock);
2726         spin_lock_init(&tty->read_lock);
2727         spin_lock_init(&tty->ctrl_lock);
2728         INIT_LIST_HEAD(&tty->tty_files);
2729         INIT_WORK(&tty->SAK_work, do_SAK_work);
2730
2731         tty->driver = driver;
2732         tty->ops = driver->ops;
2733         tty->index = idx;
2734         tty_line_name(driver, idx, tty->name);
2735 }
2736
2737 /**
2738  *      tty_put_char    -       write one character to a tty
2739  *      @tty: tty
2740  *      @ch: character
2741  *
2742  *      Write one byte to the tty using the provided put_char method
2743  *      if present. Returns the number of characters successfully output.
2744  *
2745  *      Note: the specific put_char operation in the driver layer may go
2746  *      away soon. Don't call it directly, use this method
2747  */
2748
2749 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2750 {
2751         if (tty->ops->put_char)
2752                 return tty->ops->put_char(tty, ch);
2753         return tty->ops->write(tty, &ch, 1);
2754 }
2755 EXPORT_SYMBOL_GPL(tty_put_char);
2756
2757 struct class *tty_class;
2758
2759 /**
2760  *      tty_register_device - register a tty device
2761  *      @driver: the tty driver that describes the tty device
2762  *      @index: the index in the tty driver for this tty device
2763  *      @device: a struct device that is associated with this tty device.
2764  *              This field is optional, if there is no known struct device
2765  *              for this tty device it can be set to NULL safely.
2766  *
2767  *      Returns a pointer to the struct device for this tty device
2768  *      (or ERR_PTR(-EFOO) on error).
2769  *
2770  *      This call is required to be made to register an individual tty device
2771  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2772  *      that bit is not set, this function should not be called by a tty
2773  *      driver.
2774  *
2775  *      Locking: ??
2776  */
2777
2778 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2779                                    struct device *device)
2780 {
2781         char name[64];
2782         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2783
2784         if (index >= driver->num) {
2785                 printk(KERN_ERR "Attempt to register invalid tty line number "
2786                        " (%d).\n", index);
2787                 return ERR_PTR(-EINVAL);
2788         }
2789
2790         if (driver->type == TTY_DRIVER_TYPE_PTY)
2791                 pty_line_name(driver, index, name);
2792         else
2793                 tty_line_name(driver, index, name);
2794
2795         return device_create(tty_class, device, dev, NULL, name);
2796 }
2797 EXPORT_SYMBOL(tty_register_device);
2798
2799 /**
2800  *      tty_unregister_device - unregister a tty device
2801  *      @driver: the tty driver that describes the tty device
2802  *      @index: the index in the tty driver for this tty device
2803  *
2804  *      If a tty device is registered with a call to tty_register_device() then
2805  *      this function must be called when the tty device is gone.
2806  *
2807  *      Locking: ??
2808  */
2809
2810 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2811 {
2812         device_destroy(tty_class,
2813                 MKDEV(driver->major, driver->minor_start) + index);
2814 }
2815 EXPORT_SYMBOL(tty_unregister_device);
2816
2817 struct tty_driver *alloc_tty_driver(int lines)
2818 {
2819         struct tty_driver *driver;
2820
2821         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2822         if (driver) {
2823                 kref_init(&driver->kref);
2824                 driver->magic = TTY_DRIVER_MAGIC;
2825                 driver->num = lines;
2826                 /* later we'll move allocation of tables here */
2827         }
2828         return driver;
2829 }
2830 EXPORT_SYMBOL(alloc_tty_driver);
2831
2832 static void destruct_tty_driver(struct kref *kref)
2833 {
2834         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2835         int i;
2836         struct ktermios *tp;
2837         void *p;
2838
2839         if (driver->flags & TTY_DRIVER_INSTALLED) {
2840                 /*
2841                  * Free the termios and termios_locked structures because
2842                  * we don't want to get memory leaks when modular tty
2843                  * drivers are removed from the kernel.
2844                  */
2845                 for (i = 0; i < driver->num; i++) {
2846                         tp = driver->termios[i];
2847                         if (tp) {
2848                                 driver->termios[i] = NULL;
2849                                 kfree(tp);
2850                         }
2851                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2852                                 tty_unregister_device(driver, i);
2853                 }
2854                 p = driver->ttys;
2855                 proc_tty_unregister_driver(driver);
2856                 driver->ttys = NULL;
2857                 driver->termios = NULL;
2858                 kfree(p);
2859                 cdev_del(&driver->cdev);
2860         }
2861         kfree(driver);
2862 }
2863
2864 void tty_driver_kref_put(struct tty_driver *driver)
2865 {
2866         kref_put(&driver->kref, destruct_tty_driver);
2867 }
2868 EXPORT_SYMBOL(tty_driver_kref_put);
2869
2870 void tty_set_operations(struct tty_driver *driver,
2871                         const struct tty_operations *op)
2872 {
2873         driver->ops = op;
2874 };
2875 EXPORT_SYMBOL(tty_set_operations);
2876
2877 void put_tty_driver(struct tty_driver *d)
2878 {
2879         tty_driver_kref_put(d);
2880 }
2881 EXPORT_SYMBOL(put_tty_driver);
2882
2883 /*
2884  * Called by a tty driver to register itself.
2885  */
2886 int tty_register_driver(struct tty_driver *driver)
2887 {
2888         int error;
2889         int i;
2890         dev_t dev;
2891         void **p = NULL;
2892
2893         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2894                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2895                 if (!p)
2896                         return -ENOMEM;
2897         }
2898
2899         if (!driver->major) {
2900                 error = alloc_chrdev_region(&dev, driver->minor_start,
2901                                                 driver->num, driver->name);
2902                 if (!error) {
2903                         driver->major = MAJOR(dev);
2904                         driver->minor_start = MINOR(dev);
2905                 }
2906         } else {
2907                 dev = MKDEV(driver->major, driver->minor_start);
2908                 error = register_chrdev_region(dev, driver->num, driver->name);
2909         }
2910         if (error < 0) {
2911                 kfree(p);
2912                 return error;
2913         }
2914
2915         if (p) {
2916                 driver->ttys = (struct tty_struct **)p;
2917                 driver->termios = (struct ktermios **)(p + driver->num);
2918         } else {
2919                 driver->ttys = NULL;
2920                 driver->termios = NULL;
2921         }
2922
2923         cdev_init(&driver->cdev, &tty_fops);
2924         driver->cdev.owner = driver->owner;
2925         error = cdev_add(&driver->cdev, dev, driver->num);
2926         if (error) {
2927                 unregister_chrdev_region(dev, driver->num);
2928                 driver->ttys = NULL;
2929                 driver->termios = NULL;
2930                 kfree(p);
2931                 return error;
2932         }
2933
2934         mutex_lock(&tty_mutex);
2935         list_add(&driver->tty_drivers, &tty_drivers);
2936         mutex_unlock(&tty_mutex);
2937
2938         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2939                 for (i = 0; i < driver->num; i++)
2940                     tty_register_device(driver, i, NULL);
2941         }
2942         proc_tty_register_driver(driver);
2943         driver->flags |= TTY_DRIVER_INSTALLED;
2944         return 0;
2945 }
2946
2947 EXPORT_SYMBOL(tty_register_driver);
2948
2949 /*
2950  * Called by a tty driver to unregister itself.
2951  */
2952 int tty_unregister_driver(struct tty_driver *driver)
2953 {
2954 #if 0
2955         /* FIXME */
2956         if (driver->refcount)
2957                 return -EBUSY;
2958 #endif
2959         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2960                                 driver->num);
2961         mutex_lock(&tty_mutex);
2962         list_del(&driver->tty_drivers);
2963         mutex_unlock(&tty_mutex);
2964         return 0;
2965 }
2966
2967 EXPORT_SYMBOL(tty_unregister_driver);
2968
2969 dev_t tty_devnum(struct tty_struct *tty)
2970 {
2971         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2972 }
2973 EXPORT_SYMBOL(tty_devnum);
2974
2975 void proc_clear_tty(struct task_struct *p)
2976 {
2977         unsigned long flags;
2978         struct tty_struct *tty;
2979         spin_lock_irqsave(&p->sighand->siglock, flags);
2980         tty = p->signal->tty;
2981         p->signal->tty = NULL;
2982         spin_unlock_irqrestore(&p->sighand->siglock, flags);
2983         tty_kref_put(tty);
2984 }
2985
2986 /* Called under the sighand lock */
2987
2988 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
2989 {
2990         if (tty) {
2991                 unsigned long flags;
2992                 /* We should not have a session or pgrp to put here but.... */
2993                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2994                 put_pid(tty->session);
2995                 put_pid(tty->pgrp);
2996                 tty->pgrp = get_pid(task_pgrp(tsk));
2997                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2998                 tty->session = get_pid(task_session(tsk));
2999                 if (tsk->signal->tty) {
3000                         printk(KERN_DEBUG "tty not NULL!!\n");
3001                         tty_kref_put(tsk->signal->tty);
3002                 }
3003         }
3004         put_pid(tsk->signal->tty_old_pgrp);
3005         tsk->signal->tty = tty_kref_get(tty);
3006         tsk->signal->tty_old_pgrp = NULL;
3007 }
3008
3009 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3010 {
3011         spin_lock_irq(&tsk->sighand->siglock);
3012         __proc_set_tty(tsk, tty);
3013         spin_unlock_irq(&tsk->sighand->siglock);
3014 }
3015
3016 struct tty_struct *get_current_tty(void)
3017 {
3018         struct tty_struct *tty;
3019         unsigned long flags;
3020
3021         spin_lock_irqsave(&current->sighand->siglock, flags);
3022         tty = tty_kref_get(current->signal->tty);
3023         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3024         return tty;
3025 }
3026 EXPORT_SYMBOL_GPL(get_current_tty);
3027
3028 void tty_default_fops(struct file_operations *fops)
3029 {
3030         *fops = tty_fops;
3031 }
3032
3033 /*
3034  * Initialize the console device. This is called *early*, so
3035  * we can't necessarily depend on lots of kernel help here.
3036  * Just do some early initializations, and do the complex setup
3037  * later.
3038  */
3039 void __init console_init(void)
3040 {
3041         initcall_t *call;
3042
3043         /* Setup the default TTY line discipline. */
3044         tty_ldisc_begin();
3045
3046         /*
3047          * set up the console device so that later boot sequences can
3048          * inform about problems etc..
3049          */
3050         call = __con_initcall_start;
3051         while (call < __con_initcall_end) {
3052                 (*call)();
3053                 call++;
3054         }
3055 }
3056
3057 static int __init tty_class_init(void)
3058 {
3059         tty_class = class_create(THIS_MODULE, "tty");
3060         if (IS_ERR(tty_class))
3061                 return PTR_ERR(tty_class);
3062         return 0;
3063 }
3064
3065 postcore_initcall(tty_class_init);
3066
3067 /* 3/2004 jmc: why do these devices exist? */
3068
3069 static struct cdev tty_cdev, console_cdev;
3070
3071 /*
3072  * Ok, now we can initialize the rest of the tty devices and can count
3073  * on memory allocations, interrupts etc..
3074  */
3075 static int __init tty_init(void)
3076 {
3077         cdev_init(&tty_cdev, &tty_fops);
3078         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3079             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3080                 panic("Couldn't register /dev/tty driver\n");
3081         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3082                               "tty");
3083
3084         cdev_init(&console_cdev, &console_fops);
3085         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3086             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3087                 panic("Couldn't register /dev/console driver\n");
3088         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3089                               "console");
3090
3091 #ifdef CONFIG_VT
3092         vty_init(&console_fops);
3093 #endif
3094         return 0;
3095 }
3096 module_init(tty_init);