2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
43 /* Default simulator parameters values */
44 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
46 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
47 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
48 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
49 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
50 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
51 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
55 #define CONFIG_NANDSIM_ACCESS_DELAY 25
57 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
58 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
60 #ifndef CONFIG_NANDSIM_ERASE_DELAY
61 #define CONFIG_NANDSIM_ERASE_DELAY 2
63 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
64 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
66 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
67 #define CONFIG_NANDSIM_INPUT_CYCLE 50
69 #ifndef CONFIG_NANDSIM_BUS_WIDTH
70 #define CONFIG_NANDSIM_BUS_WIDTH 8
72 #ifndef CONFIG_NANDSIM_DO_DELAYS
73 #define CONFIG_NANDSIM_DO_DELAYS 0
75 #ifndef CONFIG_NANDSIM_LOG
76 #define CONFIG_NANDSIM_LOG 0
78 #ifndef CONFIG_NANDSIM_DBG
79 #define CONFIG_NANDSIM_DBG 0
82 static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
83 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
84 static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
85 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
86 static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
87 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
88 static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
89 static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
90 static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
91 static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
92 static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
93 static uint log = CONFIG_NANDSIM_LOG;
94 static uint dbg = CONFIG_NANDSIM_DBG;
95 static unsigned long parts[MAX_MTD_DEVICES];
96 static unsigned int parts_num;
97 static char *badblocks = NULL;
98 static char *weakblocks = NULL;
99 static char *weakpages = NULL;
100 static unsigned int bitflips = 0;
101 static char *gravepages = NULL;
103 module_param(first_id_byte, uint, 0400);
104 module_param(second_id_byte, uint, 0400);
105 module_param(third_id_byte, uint, 0400);
106 module_param(fourth_id_byte, uint, 0400);
107 module_param(access_delay, uint, 0400);
108 module_param(programm_delay, uint, 0400);
109 module_param(erase_delay, uint, 0400);
110 module_param(output_cycle, uint, 0400);
111 module_param(input_cycle, uint, 0400);
112 module_param(bus_width, uint, 0400);
113 module_param(do_delays, uint, 0400);
114 module_param(log, uint, 0400);
115 module_param(dbg, uint, 0400);
116 module_param_array(parts, ulong, &parts_num, 0400);
117 module_param(badblocks, charp, 0400);
118 module_param(weakblocks, charp, 0400);
119 module_param(weakpages, charp, 0400);
120 module_param(bitflips, uint, 0400);
121 module_param(gravepages, charp, 0400);
123 MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
124 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
125 MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
126 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
127 MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
128 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
129 MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
130 MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
131 MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
132 MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
133 MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
134 MODULE_PARM_DESC(log, "Perform logging if not zero");
135 MODULE_PARM_DESC(dbg, "Output debug information if not zero");
136 MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
137 /* Page and erase block positions for the following parameters are independent of any partitions */
138 MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
139 MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
140 " separated by commas e.g. 113:2 means eb 113"
141 " can be erased only twice before failing");
142 MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
143 " separated by commas e.g. 1401:2 means page 1401"
144 " can be written only twice before failing");
145 MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
146 MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
147 " separated by commas e.g. 1401:2 means page 1401"
148 " can be read only twice before failing");
150 /* The largest possible page size */
151 #define NS_LARGEST_PAGE_SIZE 2048
153 /* The prefix for simulator output */
154 #define NS_OUTPUT_PREFIX "[nandsim]"
156 /* Simulator's output macros (logging, debugging, warning, error) */
157 #define NS_LOG(args...) \
158 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
159 #define NS_DBG(args...) \
160 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
161 #define NS_WARN(args...) \
162 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
163 #define NS_ERR(args...) \
164 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
166 /* Busy-wait delay macros (microseconds, milliseconds) */
167 #define NS_UDELAY(us) \
168 do { if (do_delays) udelay(us); } while(0)
169 #define NS_MDELAY(us) \
170 do { if (do_delays) mdelay(us); } while(0)
172 /* Is the nandsim structure initialized ? */
173 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
175 /* Good operation completion status */
176 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
178 /* Operation failed completion status */
179 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
181 /* Calculate the page offset in flash RAM image by (row, column) address */
182 #define NS_RAW_OFFSET(ns) \
183 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
185 /* Calculate the OOB offset in flash RAM image by (row, column) address */
186 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
188 /* After a command is input, the simulator goes to one of the following states */
189 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
190 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
191 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
192 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
193 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
194 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
195 #define STATE_CMD_STATUS 0x00000007 /* read status */
196 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
197 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
198 #define STATE_CMD_READID 0x0000000A /* read ID */
199 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
200 #define STATE_CMD_RESET 0x0000000C /* reset */
201 #define STATE_CMD_MASK 0x0000000F /* command states mask */
203 /* After an addres is input, the simulator goes to one of these states */
204 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
205 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
206 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
207 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
209 /* Durind data input/output the simulator is in these states */
210 #define STATE_DATAIN 0x00000100 /* waiting for data input */
211 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
213 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
214 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
215 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
216 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
217 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
219 /* Previous operation is done, ready to accept new requests */
220 #define STATE_READY 0x00000000
222 /* This state is used to mark that the next state isn't known yet */
223 #define STATE_UNKNOWN 0x10000000
225 /* Simulator's actions bit masks */
226 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
227 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
228 #define ACTION_SECERASE 0x00300000 /* erase sector */
229 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
230 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
231 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
232 #define ACTION_MASK 0x00700000 /* action mask */
234 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
235 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
237 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
238 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
239 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
240 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
241 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
242 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
243 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
244 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
245 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
247 /* Remove action bits ftom state */
248 #define NS_STATE(x) ((x) & ~ACTION_MASK)
251 * Maximum previous states which need to be saved. Currently saving is
252 * only needed for page programm operation with preceeded read command
253 * (which is only valid for 512-byte pages).
255 #define NS_MAX_PREVSTATES 1
258 * A union to represent flash memory contents and flash buffer.
261 u_char *byte; /* for byte access */
262 uint16_t *word; /* for 16-bit word access */
266 * The structure which describes all the internal simulator data.
269 struct mtd_partition partitions[MAX_MTD_DEVICES];
270 unsigned int nbparts;
272 uint busw; /* flash chip bus width (8 or 16) */
273 u_char ids[4]; /* chip's ID bytes */
274 uint32_t options; /* chip's characteristic bits */
275 uint32_t state; /* current chip state */
276 uint32_t nxstate; /* next expected state */
278 uint32_t *op; /* current operation, NULL operations isn't known yet */
279 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
280 uint16_t npstates; /* number of previous states saved */
281 uint16_t stateidx; /* current state index */
283 /* The simulated NAND flash pages array */
286 /* Internal buffer of page + OOB size bytes */
289 /* NAND flash "geometry" */
290 struct nandsin_geometry {
291 uint32_t totsz; /* total flash size, bytes */
292 uint32_t secsz; /* flash sector (erase block) size, bytes */
293 uint pgsz; /* NAND flash page size, bytes */
294 uint oobsz; /* page OOB area size, bytes */
295 uint32_t totszoob; /* total flash size including OOB, bytes */
296 uint pgszoob; /* page size including OOB , bytes*/
297 uint secszoob; /* sector size including OOB, bytes */
298 uint pgnum; /* total number of pages */
299 uint pgsec; /* number of pages per sector */
300 uint secshift; /* bits number in sector size */
301 uint pgshift; /* bits number in page size */
302 uint oobshift; /* bits number in OOB size */
303 uint pgaddrbytes; /* bytes per page address */
304 uint secaddrbytes; /* bytes per sector address */
305 uint idbytes; /* the number ID bytes that this chip outputs */
308 /* NAND flash internal registers */
309 struct nandsim_regs {
310 unsigned command; /* the command register */
311 u_char status; /* the status register */
312 uint row; /* the page number */
313 uint column; /* the offset within page */
314 uint count; /* internal counter */
315 uint num; /* number of bytes which must be processed */
316 uint off; /* fixed page offset */
319 /* NAND flash lines state */
320 struct ns_lines_status {
321 int ce; /* chip Enable */
322 int cle; /* command Latch Enable */
323 int ale; /* address Latch Enable */
324 int wp; /* write Protect */
329 * Operations array. To perform any operation the simulator must pass
330 * through the correspondent states chain.
332 static struct nandsim_operations {
333 uint32_t reqopts; /* options which are required to perform the operation */
334 uint32_t states[NS_OPER_STATES]; /* operation's states */
335 } ops[NS_OPER_NUM] = {
336 /* Read page + OOB from the beginning */
337 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
338 STATE_DATAOUT, STATE_READY}},
339 /* Read page + OOB from the second half */
340 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
341 STATE_DATAOUT, STATE_READY}},
343 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
344 STATE_DATAOUT, STATE_READY}},
345 /* Programm page starting from the beginning */
346 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
347 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
348 /* Programm page starting from the beginning */
349 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
350 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
351 /* Programm page starting from the second half */
352 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
353 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
355 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
356 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
358 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
360 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
361 /* Read multi-plane status */
362 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
364 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
365 /* Large page devices read page */
366 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
367 STATE_DATAOUT, STATE_READY}}
371 struct list_head list;
372 unsigned int erase_block_no;
373 unsigned int max_erases;
374 unsigned int erases_done;
377 static LIST_HEAD(weak_blocks);
380 struct list_head list;
381 unsigned int page_no;
382 unsigned int max_writes;
383 unsigned int writes_done;
386 static LIST_HEAD(weak_pages);
389 struct list_head list;
390 unsigned int page_no;
391 unsigned int max_reads;
392 unsigned int reads_done;
395 static LIST_HEAD(grave_pages);
397 /* MTD structure for NAND controller */
398 static struct mtd_info *nsmtd;
400 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
403 * Allocate array of page pointers and initialize the array to NULL
406 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
408 static int alloc_device(struct nandsim *ns)
412 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
414 NS_ERR("alloc_map: unable to allocate page array\n");
417 for (i = 0; i < ns->geom.pgnum; i++) {
418 ns->pages[i].byte = NULL;
425 * Free any allocated pages, and free the array of page pointers.
427 static void free_device(struct nandsim *ns)
432 for (i = 0; i < ns->geom.pgnum; i++) {
433 if (ns->pages[i].byte)
434 kfree(ns->pages[i].byte);
440 static char *get_partition_name(int i)
443 sprintf(buf, "NAND simulator partition %d", i);
444 return kstrdup(buf, GFP_KERNEL);
448 * Initialize the nandsim structure.
450 * RETURNS: 0 if success, -ERRNO if failure.
452 static int init_nandsim(struct mtd_info *mtd)
454 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
455 struct nandsim *ns = (struct nandsim *)(chip->priv);
458 u_int32_t next_offset;
460 if (NS_IS_INITIALIZED(ns)) {
461 NS_ERR("init_nandsim: nandsim is already initialized\n");
465 /* Force mtd to not do delays */
466 chip->chip_delay = 0;
468 /* Initialize the NAND flash parameters */
469 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
470 ns->geom.totsz = mtd->size;
471 ns->geom.pgsz = mtd->writesize;
472 ns->geom.oobsz = mtd->oobsize;
473 ns->geom.secsz = mtd->erasesize;
474 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
475 ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
476 ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
477 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
478 ns->geom.pgshift = chip->page_shift;
479 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
480 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
481 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
484 if (ns->geom.pgsz == 256) {
485 ns->options |= OPT_PAGE256;
487 else if (ns->geom.pgsz == 512) {
488 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
490 ns->options |= OPT_PAGE512_8BIT;
491 } else if (ns->geom.pgsz == 2048) {
492 ns->options |= OPT_PAGE2048;
494 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
498 if (ns->options & OPT_SMALLPAGE) {
499 if (ns->geom.totsz < (64 << 20)) {
500 ns->geom.pgaddrbytes = 3;
501 ns->geom.secaddrbytes = 2;
503 ns->geom.pgaddrbytes = 4;
504 ns->geom.secaddrbytes = 3;
507 if (ns->geom.totsz <= (128 << 20)) {
508 ns->geom.pgaddrbytes = 4;
509 ns->geom.secaddrbytes = 2;
511 ns->geom.pgaddrbytes = 5;
512 ns->geom.secaddrbytes = 3;
516 /* Fill the partition_info structure */
517 if (parts_num > ARRAY_SIZE(ns->partitions)) {
518 NS_ERR("too many partitions.\n");
522 remains = ns->geom.totsz;
524 for (i = 0; i < parts_num; ++i) {
525 unsigned long part = parts[i];
526 if (!part || part > remains / ns->geom.secsz) {
527 NS_ERR("bad partition size.\n");
531 ns->partitions[i].name = get_partition_name(i);
532 ns->partitions[i].offset = next_offset;
533 ns->partitions[i].size = part * ns->geom.secsz;
534 next_offset += ns->partitions[i].size;
535 remains -= ns->partitions[i].size;
537 ns->nbparts = parts_num;
539 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
540 NS_ERR("too many partitions.\n");
544 ns->partitions[i].name = get_partition_name(i);
545 ns->partitions[i].offset = next_offset;
546 ns->partitions[i].size = remains;
550 /* Detect how many ID bytes the NAND chip outputs */
551 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
552 if (second_id_byte != nand_flash_ids[i].id)
554 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
555 ns->options |= OPT_AUTOINCR;
559 NS_WARN("16-bit flashes support wasn't tested\n");
561 printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
562 printk("page size: %u bytes\n", ns->geom.pgsz);
563 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
564 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
565 printk("pages number: %u\n", ns->geom.pgnum);
566 printk("pages per sector: %u\n", ns->geom.pgsec);
567 printk("bus width: %u\n", ns->busw);
568 printk("bits in sector size: %u\n", ns->geom.secshift);
569 printk("bits in page size: %u\n", ns->geom.pgshift);
570 printk("bits in OOB size: %u\n", ns->geom.oobshift);
571 printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
572 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
573 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
574 printk("options: %#x\n", ns->options);
576 if ((ret = alloc_device(ns)) != 0)
579 /* Allocate / initialize the internal buffer */
580 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
582 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
587 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
598 * Free the nandsim structure.
600 static void free_nandsim(struct nandsim *ns)
608 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
612 unsigned int erase_block_no;
619 zero_ok = (*w == '0' ? 1 : 0);
620 erase_block_no = simple_strtoul(w, &w, 0);
621 if (!zero_ok && !erase_block_no) {
622 NS_ERR("invalid badblocks.\n");
625 offset = erase_block_no * ns->geom.secsz;
626 if (mtd->block_markbad(mtd, offset)) {
627 NS_ERR("invalid badblocks.\n");
636 static int parse_weakblocks(void)
640 unsigned int erase_block_no;
641 unsigned int max_erases;
642 struct weak_block *wb;
648 zero_ok = (*w == '0' ? 1 : 0);
649 erase_block_no = simple_strtoul(w, &w, 0);
650 if (!zero_ok && !erase_block_no) {
651 NS_ERR("invalid weakblocks.\n");
657 max_erases = simple_strtoul(w, &w, 0);
661 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
663 NS_ERR("unable to allocate memory.\n");
666 wb->erase_block_no = erase_block_no;
667 wb->max_erases = max_erases;
668 list_add(&wb->list, &weak_blocks);
673 static int erase_error(unsigned int erase_block_no)
675 struct weak_block *wb;
677 list_for_each_entry(wb, &weak_blocks, list)
678 if (wb->erase_block_no == erase_block_no) {
679 if (wb->erases_done >= wb->max_erases)
681 wb->erases_done += 1;
687 static int parse_weakpages(void)
691 unsigned int page_no;
692 unsigned int max_writes;
693 struct weak_page *wp;
699 zero_ok = (*w == '0' ? 1 : 0);
700 page_no = simple_strtoul(w, &w, 0);
701 if (!zero_ok && !page_no) {
702 NS_ERR("invalid weakpagess.\n");
708 max_writes = simple_strtoul(w, &w, 0);
712 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
714 NS_ERR("unable to allocate memory.\n");
717 wp->page_no = page_no;
718 wp->max_writes = max_writes;
719 list_add(&wp->list, &weak_pages);
724 static int write_error(unsigned int page_no)
726 struct weak_page *wp;
728 list_for_each_entry(wp, &weak_pages, list)
729 if (wp->page_no == page_no) {
730 if (wp->writes_done >= wp->max_writes)
732 wp->writes_done += 1;
738 static int parse_gravepages(void)
742 unsigned int page_no;
743 unsigned int max_reads;
744 struct grave_page *gp;
750 zero_ok = (*g == '0' ? 1 : 0);
751 page_no = simple_strtoul(g, &g, 0);
752 if (!zero_ok && !page_no) {
753 NS_ERR("invalid gravepagess.\n");
759 max_reads = simple_strtoul(g, &g, 0);
763 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
765 NS_ERR("unable to allocate memory.\n");
768 gp->page_no = page_no;
769 gp->max_reads = max_reads;
770 list_add(&gp->list, &grave_pages);
775 static int read_error(unsigned int page_no)
777 struct grave_page *gp;
779 list_for_each_entry(gp, &grave_pages, list)
780 if (gp->page_no == page_no) {
781 if (gp->reads_done >= gp->max_reads)
789 static void free_lists(void)
791 struct list_head *pos, *n;
792 list_for_each_safe(pos, n, &weak_blocks) {
794 kfree(list_entry(pos, struct weak_block, list));
796 list_for_each_safe(pos, n, &weak_pages) {
798 kfree(list_entry(pos, struct weak_page, list));
800 list_for_each_safe(pos, n, &grave_pages) {
802 kfree(list_entry(pos, struct grave_page, list));
807 * Returns the string representation of 'state' state.
809 static char *get_state_name(uint32_t state)
811 switch (NS_STATE(state)) {
812 case STATE_CMD_READ0:
813 return "STATE_CMD_READ0";
814 case STATE_CMD_READ1:
815 return "STATE_CMD_READ1";
816 case STATE_CMD_PAGEPROG:
817 return "STATE_CMD_PAGEPROG";
818 case STATE_CMD_READOOB:
819 return "STATE_CMD_READOOB";
820 case STATE_CMD_READSTART:
821 return "STATE_CMD_READSTART";
822 case STATE_CMD_ERASE1:
823 return "STATE_CMD_ERASE1";
824 case STATE_CMD_STATUS:
825 return "STATE_CMD_STATUS";
826 case STATE_CMD_STATUS_M:
827 return "STATE_CMD_STATUS_M";
828 case STATE_CMD_SEQIN:
829 return "STATE_CMD_SEQIN";
830 case STATE_CMD_READID:
831 return "STATE_CMD_READID";
832 case STATE_CMD_ERASE2:
833 return "STATE_CMD_ERASE2";
834 case STATE_CMD_RESET:
835 return "STATE_CMD_RESET";
836 case STATE_ADDR_PAGE:
837 return "STATE_ADDR_PAGE";
839 return "STATE_ADDR_SEC";
840 case STATE_ADDR_ZERO:
841 return "STATE_ADDR_ZERO";
843 return "STATE_DATAIN";
845 return "STATE_DATAOUT";
846 case STATE_DATAOUT_ID:
847 return "STATE_DATAOUT_ID";
848 case STATE_DATAOUT_STATUS:
849 return "STATE_DATAOUT_STATUS";
850 case STATE_DATAOUT_STATUS_M:
851 return "STATE_DATAOUT_STATUS_M";
853 return "STATE_READY";
855 return "STATE_UNKNOWN";
858 NS_ERR("get_state_name: unknown state, BUG\n");
863 * Check if command is valid.
865 * RETURNS: 1 if wrong command, 0 if right.
867 static int check_command(int cmd)
872 case NAND_CMD_READSTART:
873 case NAND_CMD_PAGEPROG:
874 case NAND_CMD_READOOB:
875 case NAND_CMD_ERASE1:
876 case NAND_CMD_STATUS:
878 case NAND_CMD_READID:
879 case NAND_CMD_ERASE2:
884 case NAND_CMD_STATUS_MULTI:
891 * Returns state after command is accepted by command number.
893 static uint32_t get_state_by_command(unsigned command)
897 return STATE_CMD_READ0;
899 return STATE_CMD_READ1;
900 case NAND_CMD_PAGEPROG:
901 return STATE_CMD_PAGEPROG;
902 case NAND_CMD_READSTART:
903 return STATE_CMD_READSTART;
904 case NAND_CMD_READOOB:
905 return STATE_CMD_READOOB;
906 case NAND_CMD_ERASE1:
907 return STATE_CMD_ERASE1;
908 case NAND_CMD_STATUS:
909 return STATE_CMD_STATUS;
910 case NAND_CMD_STATUS_MULTI:
911 return STATE_CMD_STATUS_M;
913 return STATE_CMD_SEQIN;
914 case NAND_CMD_READID:
915 return STATE_CMD_READID;
916 case NAND_CMD_ERASE2:
917 return STATE_CMD_ERASE2;
919 return STATE_CMD_RESET;
922 NS_ERR("get_state_by_command: unknown command, BUG\n");
927 * Move an address byte to the correspondent internal register.
929 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
931 uint byte = (uint)bt;
933 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
934 ns->regs.column |= (byte << 8 * ns->regs.count);
936 ns->regs.row |= (byte << 8 * (ns->regs.count -
937 ns->geom.pgaddrbytes +
938 ns->geom.secaddrbytes));
945 * Switch to STATE_READY state.
947 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
949 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
951 ns->state = STATE_READY;
952 ns->nxstate = STATE_UNKNOWN;
961 ns->regs.status = status;
965 * If the operation isn't known yet, try to find it in the global array
966 * of supported operations.
968 * Operation can be unknown because of the following.
969 * 1. New command was accepted and this is the firs call to find the
970 * correspondent states chain. In this case ns->npstates = 0;
971 * 2. There is several operations which begin with the same command(s)
972 * (for example program from the second half and read from the
973 * second half operations both begin with the READ1 command). In this
974 * case the ns->pstates[] array contains previous states.
976 * Thus, the function tries to find operation containing the following
977 * states (if the 'flag' parameter is 0):
978 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
980 * If (one and only one) matching operation is found, it is accepted (
981 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
984 * If there are several maches, the current state is pushed to the
987 * The operation can be unknown only while commands are input to the chip.
988 * As soon as address command is accepted, the operation must be known.
989 * In such situation the function is called with 'flag' != 0, and the
990 * operation is searched using the following pattern:
991 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
993 * It is supposed that this pattern must either match one operation on
994 * none. There can't be ambiguity in that case.
996 * If no matches found, the functions does the following:
997 * 1. if there are saved states present, try to ignore them and search
998 * again only using the last command. If nothing was found, switch
999 * to the STATE_READY state.
1000 * 2. if there are no saved states, switch to the STATE_READY state.
1002 * RETURNS: -2 - no matched operations found.
1003 * -1 - several matches.
1004 * 0 - operation is found.
1006 static int find_operation(struct nandsim *ns, uint32_t flag)
1011 for (i = 0; i < NS_OPER_NUM; i++) {
1015 if (!(ns->options & ops[i].reqopts))
1016 /* Ignore operations we can't perform */
1020 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1023 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1027 for (j = 0; j < ns->npstates; j++)
1028 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1029 && (ns->options & ops[idx].reqopts)) {
1040 if (opsfound == 1) {
1042 ns->op = &ops[idx].states[0];
1045 * In this case the find_operation function was
1046 * called when address has just began input. But it isn't
1047 * yet fully input and the current state must
1048 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1049 * state must be the next state (ns->nxstate).
1051 ns->stateidx = ns->npstates - 1;
1053 ns->stateidx = ns->npstates;
1056 ns->state = ns->op[ns->stateidx];
1057 ns->nxstate = ns->op[ns->stateidx + 1];
1058 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1059 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1063 if (opsfound == 0) {
1064 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1065 if (ns->npstates != 0) {
1066 NS_DBG("find_operation: no operation found, try again with state %s\n",
1067 get_state_name(ns->state));
1069 return find_operation(ns, 0);
1072 NS_DBG("find_operation: no operations found\n");
1073 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1078 /* This shouldn't happen */
1079 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1083 NS_DBG("find_operation: there is still ambiguity\n");
1085 ns->pstates[ns->npstates++] = ns->state;
1091 * Returns a pointer to the current page.
1093 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1095 return &(ns->pages[ns->regs.row]);
1099 * Retuns a pointer to the current byte, within the current page.
1101 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1103 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1107 * Fill the NAND buffer with data read from the specified page.
1109 static void read_page(struct nandsim *ns, int num)
1111 union ns_mem *mypage;
1113 mypage = NS_GET_PAGE(ns);
1114 if (mypage->byte == NULL) {
1115 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1116 memset(ns->buf.byte, 0xFF, num);
1118 unsigned int page_no = ns->regs.row;
1119 NS_DBG("read_page: page %d allocated, reading from %d\n",
1120 ns->regs.row, ns->regs.column + ns->regs.off);
1121 if (read_error(page_no)) {
1123 memset(ns->buf.byte, 0xFF, num);
1124 for (i = 0; i < num; ++i)
1125 ns->buf.byte[i] = random32();
1126 NS_WARN("simulating read error in page %u\n", page_no);
1129 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1130 if (bitflips && random32() < (1 << 22)) {
1133 flips = (random32() % (int) bitflips) + 1;
1135 int pos = random32() % (num * 8);
1136 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1137 NS_WARN("read_page: flipping bit %d in page %d "
1138 "reading from %d ecc: corrected=%u failed=%u\n",
1139 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1140 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1147 * Erase all pages in the specified sector.
1149 static void erase_sector(struct nandsim *ns)
1151 union ns_mem *mypage;
1154 mypage = NS_GET_PAGE(ns);
1155 for (i = 0; i < ns->geom.pgsec; i++) {
1156 if (mypage->byte != NULL) {
1157 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1158 kfree(mypage->byte);
1159 mypage->byte = NULL;
1166 * Program the specified page with the contents from the NAND buffer.
1168 static int prog_page(struct nandsim *ns, int num)
1171 union ns_mem *mypage;
1174 mypage = NS_GET_PAGE(ns);
1175 if (mypage->byte == NULL) {
1176 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1177 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
1178 if (mypage->byte == NULL) {
1179 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1182 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1185 pg_off = NS_PAGE_BYTE_OFF(ns);
1186 for (i = 0; i < num; i++)
1187 pg_off[i] &= ns->buf.byte[i];
1193 * If state has any action bit, perform this action.
1195 * RETURNS: 0 if success, -1 if error.
1197 static int do_state_action(struct nandsim *ns, uint32_t action)
1200 int busdiv = ns->busw == 8 ? 1 : 2;
1201 unsigned int erase_block_no, page_no;
1203 action &= ACTION_MASK;
1205 /* Check that page address input is correct */
1206 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1207 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1215 * Copy page data to the internal buffer.
1218 /* Column shouldn't be very large */
1219 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1220 NS_ERR("do_state_action: column number is too large\n");
1223 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1226 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1227 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1229 if (ns->regs.off == 0)
1230 NS_LOG("read page %d\n", ns->regs.row);
1231 else if (ns->regs.off < ns->geom.pgsz)
1232 NS_LOG("read page %d (second half)\n", ns->regs.row);
1234 NS_LOG("read OOB of page %d\n", ns->regs.row);
1236 NS_UDELAY(access_delay);
1237 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1241 case ACTION_SECERASE:
1247 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1251 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1252 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1253 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1257 ns->regs.row = (ns->regs.row <<
1258 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1259 ns->regs.column = 0;
1261 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1263 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1264 ns->regs.row, NS_RAW_OFFSET(ns));
1265 NS_LOG("erase sector %u\n", erase_block_no);
1269 NS_MDELAY(erase_delay);
1271 if (erase_error(erase_block_no)) {
1272 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1278 case ACTION_PRGPAGE:
1280 * Programm page - move internal buffer data to the page.
1284 NS_WARN("do_state_action: device is write-protected, programm\n");
1288 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1289 if (num != ns->regs.count) {
1290 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1291 ns->regs.count, num);
1295 if (prog_page(ns, num) == -1)
1298 page_no = ns->regs.row;
1300 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1301 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1302 NS_LOG("programm page %d\n", ns->regs.row);
1304 NS_UDELAY(programm_delay);
1305 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1307 if (write_error(page_no)) {
1308 NS_WARN("simulating write failure in page %u\n", page_no);
1314 case ACTION_ZEROOFF:
1315 NS_DBG("do_state_action: set internal offset to 0\n");
1319 case ACTION_HALFOFF:
1320 if (!(ns->options & OPT_PAGE512_8BIT)) {
1321 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1322 "byte page size 8x chips\n");
1325 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1326 ns->regs.off = ns->geom.pgsz/2;
1330 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1331 ns->regs.off = ns->geom.pgsz;
1335 NS_DBG("do_state_action: BUG! unknown action\n");
1342 * Switch simulator's state.
1344 static void switch_state(struct nandsim *ns)
1348 * The current operation have already been identified.
1349 * Just follow the states chain.
1353 ns->state = ns->nxstate;
1354 ns->nxstate = ns->op[ns->stateidx + 1];
1356 NS_DBG("switch_state: operation is known, switch to the next state, "
1357 "state: %s, nxstate: %s\n",
1358 get_state_name(ns->state), get_state_name(ns->nxstate));
1360 /* See, whether we need to do some action */
1361 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1362 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1368 * We don't yet know which operation we perform.
1369 * Try to identify it.
1373 * The only event causing the switch_state function to
1374 * be called with yet unknown operation is new command.
1376 ns->state = get_state_by_command(ns->regs.command);
1378 NS_DBG("switch_state: operation is unknown, try to find it\n");
1380 if (find_operation(ns, 0) != 0)
1383 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1384 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1389 /* For 16x devices column means the page offset in words */
1390 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1391 NS_DBG("switch_state: double the column number for 16x device\n");
1392 ns->regs.column <<= 1;
1395 if (NS_STATE(ns->nxstate) == STATE_READY) {
1397 * The current state is the last. Return to STATE_READY
1400 u_char status = NS_STATUS_OK(ns);
1402 /* In case of data states, see if all bytes were input/output */
1403 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1404 && ns->regs.count != ns->regs.num) {
1405 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1406 ns->regs.num - ns->regs.count);
1407 status = NS_STATUS_FAILED(ns);
1410 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1412 switch_to_ready_state(ns, status);
1415 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1417 * If the next state is data input/output, switch to it now
1420 ns->state = ns->nxstate;
1421 ns->nxstate = ns->op[++ns->stateidx + 1];
1422 ns->regs.num = ns->regs.count = 0;
1424 NS_DBG("switch_state: the next state is data I/O, switch, "
1425 "state: %s, nxstate: %s\n",
1426 get_state_name(ns->state), get_state_name(ns->nxstate));
1429 * Set the internal register to the count of bytes which
1430 * are expected to be input or output
1432 switch (NS_STATE(ns->state)) {
1435 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1438 case STATE_DATAOUT_ID:
1439 ns->regs.num = ns->geom.idbytes;
1442 case STATE_DATAOUT_STATUS:
1443 case STATE_DATAOUT_STATUS_M:
1444 ns->regs.count = ns->regs.num = 0;
1448 NS_ERR("switch_state: BUG! unknown data state\n");
1451 } else if (ns->nxstate & STATE_ADDR_MASK) {
1453 * If the next state is address input, set the internal
1454 * register to the number of expected address bytes
1459 switch (NS_STATE(ns->nxstate)) {
1460 case STATE_ADDR_PAGE:
1461 ns->regs.num = ns->geom.pgaddrbytes;
1464 case STATE_ADDR_SEC:
1465 ns->regs.num = ns->geom.secaddrbytes;
1468 case STATE_ADDR_ZERO:
1473 NS_ERR("switch_state: BUG! unknown address state\n");
1477 * Just reset internal counters.
1485 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1487 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1490 /* Sanity and correctness checks */
1491 if (!ns->lines.ce) {
1492 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1495 if (ns->lines.ale || ns->lines.cle) {
1496 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1499 if (!(ns->state & STATE_DATAOUT_MASK)) {
1500 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1501 "return %#x\n", get_state_name(ns->state), (uint)outb);
1505 /* Status register may be read as many times as it is wanted */
1506 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1507 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1508 return ns->regs.status;
1511 /* Check if there is any data in the internal buffer which may be read */
1512 if (ns->regs.count == ns->regs.num) {
1513 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1517 switch (NS_STATE(ns->state)) {
1519 if (ns->busw == 8) {
1520 outb = ns->buf.byte[ns->regs.count];
1521 ns->regs.count += 1;
1523 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1524 ns->regs.count += 2;
1527 case STATE_DATAOUT_ID:
1528 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1529 outb = ns->ids[ns->regs.count];
1530 ns->regs.count += 1;
1536 if (ns->regs.count == ns->regs.num) {
1537 NS_DBG("read_byte: all bytes were read\n");
1540 * The OPT_AUTOINCR allows to read next conseqitive pages without
1541 * new read operation cycle.
1543 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1545 if (ns->regs.row + 1 < ns->geom.pgnum)
1547 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1548 do_state_action(ns, ACTION_CPY);
1550 else if (NS_STATE(ns->nxstate) == STATE_READY)
1558 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1560 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1562 /* Sanity and correctness checks */
1563 if (!ns->lines.ce) {
1564 NS_ERR("write_byte: chip is disabled, ignore write\n");
1567 if (ns->lines.ale && ns->lines.cle) {
1568 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1572 if (ns->lines.cle == 1) {
1574 * The byte written is a command.
1577 if (byte == NAND_CMD_RESET) {
1578 NS_LOG("reset chip\n");
1579 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1584 * Chip might still be in STATE_DATAOUT
1585 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1586 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1588 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1589 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1590 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1593 /* Check if chip is expecting command */
1594 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1596 * We are in situation when something else (not command)
1597 * was expected but command was input. In this case ignore
1598 * previous command(s)/state(s) and accept the last one.
1600 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1601 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1602 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1605 /* Check that the command byte is correct */
1606 if (check_command(byte)) {
1607 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1611 NS_DBG("command byte corresponding to %s state accepted\n",
1612 get_state_name(get_state_by_command(byte)));
1613 ns->regs.command = byte;
1616 } else if (ns->lines.ale == 1) {
1618 * The byte written is an address.
1621 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1623 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1625 if (find_operation(ns, 1) < 0)
1628 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1629 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1634 switch (NS_STATE(ns->nxstate)) {
1635 case STATE_ADDR_PAGE:
1636 ns->regs.num = ns->geom.pgaddrbytes;
1638 case STATE_ADDR_SEC:
1639 ns->regs.num = ns->geom.secaddrbytes;
1641 case STATE_ADDR_ZERO:
1649 /* Check that chip is expecting address */
1650 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1651 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1652 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1653 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1657 /* Check if this is expected byte */
1658 if (ns->regs.count == ns->regs.num) {
1659 NS_ERR("write_byte: no more address bytes expected\n");
1660 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1664 accept_addr_byte(ns, byte);
1666 ns->regs.count += 1;
1668 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1669 (uint)byte, ns->regs.count, ns->regs.num);
1671 if (ns->regs.count == ns->regs.num) {
1672 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1678 * The byte written is an input data.
1681 /* Check that chip is expecting data input */
1682 if (!(ns->state & STATE_DATAIN_MASK)) {
1683 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1684 "switch to %s\n", (uint)byte,
1685 get_state_name(ns->state), get_state_name(STATE_READY));
1686 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1690 /* Check if this is expected byte */
1691 if (ns->regs.count == ns->regs.num) {
1692 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1697 if (ns->busw == 8) {
1698 ns->buf.byte[ns->regs.count] = byte;
1699 ns->regs.count += 1;
1701 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1702 ns->regs.count += 2;
1709 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1711 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1713 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1714 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1715 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1717 if (cmd != NAND_CMD_NONE)
1718 ns_nand_write_byte(mtd, cmd);
1721 static int ns_device_ready(struct mtd_info *mtd)
1723 NS_DBG("device_ready\n");
1727 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1729 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1731 NS_DBG("read_word\n");
1733 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1736 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1738 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1740 /* Check that chip is expecting data input */
1741 if (!(ns->state & STATE_DATAIN_MASK)) {
1742 NS_ERR("write_buf: data input isn't expected, state is %s, "
1743 "switch to STATE_READY\n", get_state_name(ns->state));
1744 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748 /* Check if these are expected bytes */
1749 if (ns->regs.count + len > ns->regs.num) {
1750 NS_ERR("write_buf: too many input bytes\n");
1751 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1755 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1756 ns->regs.count += len;
1758 if (ns->regs.count == ns->regs.num) {
1759 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1763 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1765 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1767 /* Sanity and correctness checks */
1768 if (!ns->lines.ce) {
1769 NS_ERR("read_buf: chip is disabled\n");
1772 if (ns->lines.ale || ns->lines.cle) {
1773 NS_ERR("read_buf: ALE or CLE pin is high\n");
1776 if (!(ns->state & STATE_DATAOUT_MASK)) {
1777 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1778 get_state_name(ns->state));
1782 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1785 for (i = 0; i < len; i++)
1786 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1791 /* Check if these are expected bytes */
1792 if (ns->regs.count + len > ns->regs.num) {
1793 NS_ERR("read_buf: too many bytes to read\n");
1794 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1798 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1799 ns->regs.count += len;
1801 if (ns->regs.count == ns->regs.num) {
1802 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1804 if (ns->regs.row + 1 < ns->geom.pgnum)
1806 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1807 do_state_action(ns, ACTION_CPY);
1809 else if (NS_STATE(ns->nxstate) == STATE_READY)
1816 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1818 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1820 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1821 NS_DBG("verify_buf: the buffer is OK\n");
1824 NS_DBG("verify_buf: the buffer is wrong\n");
1830 * Module initialization function
1832 static int __init ns_init_module(void)
1834 struct nand_chip *chip;
1835 struct nandsim *nand;
1836 int retval = -ENOMEM, i;
1838 if (bus_width != 8 && bus_width != 16) {
1839 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1843 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1844 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1845 + sizeof(struct nandsim), GFP_KERNEL);
1847 NS_ERR("unable to allocate core structures.\n");
1850 chip = (struct nand_chip *)(nsmtd + 1);
1851 nsmtd->priv = (void *)chip;
1852 nand = (struct nandsim *)(chip + 1);
1853 chip->priv = (void *)nand;
1856 * Register simulator's callbacks.
1858 chip->cmd_ctrl = ns_hwcontrol;
1859 chip->read_byte = ns_nand_read_byte;
1860 chip->dev_ready = ns_device_ready;
1861 chip->write_buf = ns_nand_write_buf;
1862 chip->read_buf = ns_nand_read_buf;
1863 chip->verify_buf = ns_nand_verify_buf;
1864 chip->read_word = ns_nand_read_word;
1865 chip->ecc.mode = NAND_ECC_SOFT;
1866 chip->options |= NAND_SKIP_BBTSCAN;
1869 * Perform minimum nandsim structure initialization to handle
1870 * the initial ID read command correctly
1872 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1873 nand->geom.idbytes = 4;
1875 nand->geom.idbytes = 2;
1876 nand->regs.status = NS_STATUS_OK(nand);
1877 nand->nxstate = STATE_UNKNOWN;
1878 nand->options |= OPT_PAGE256; /* temporary value */
1879 nand->ids[0] = first_id_byte;
1880 nand->ids[1] = second_id_byte;
1881 nand->ids[2] = third_id_byte;
1882 nand->ids[3] = fourth_id_byte;
1883 if (bus_width == 16) {
1885 chip->options |= NAND_BUSWIDTH_16;
1888 nsmtd->owner = THIS_MODULE;
1890 if ((retval = parse_weakblocks()) != 0)
1893 if ((retval = parse_weakpages()) != 0)
1896 if ((retval = parse_gravepages()) != 0)
1899 if ((retval = nand_scan(nsmtd, 1)) != 0) {
1900 NS_ERR("can't register NAND Simulator\n");
1906 if ((retval = init_nandsim(nsmtd)) != 0)
1909 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
1912 if ((retval = nand_default_bbt(nsmtd)) != 0)
1915 /* Register NAND partitions */
1916 if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
1923 nand_release(nsmtd);
1924 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
1925 kfree(nand->partitions[i].name);
1933 module_init(ns_init_module);
1936 * Module clean-up function
1938 static void __exit ns_cleanup_module(void)
1940 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1943 free_nandsim(ns); /* Free nandsim private resources */
1944 nand_release(nsmtd); /* Unregister driver */
1945 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
1946 kfree(ns->partitions[i].name);
1947 kfree(nsmtd); /* Free other structures */
1951 module_exit(ns_cleanup_module);
1953 MODULE_LICENSE ("GPL");
1954 MODULE_AUTHOR ("Artem B. Bityuckiy");
1955 MODULE_DESCRIPTION ("The NAND flash simulator");