Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[linux-2.6] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40
41 #define TTM_ASSERT_LOCKED(param)
42 #define TTM_DEBUG(fmt, arg...)
43 #define TTM_BO_HASH_ORDER 13
44
45 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
46 static void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48
49 static inline uint32_t ttm_bo_type_flags(unsigned type)
50 {
51         return 1 << (type);
52 }
53
54 static void ttm_bo_release_list(struct kref *list_kref)
55 {
56         struct ttm_buffer_object *bo =
57             container_of(list_kref, struct ttm_buffer_object, list_kref);
58         struct ttm_bo_device *bdev = bo->bdev;
59
60         BUG_ON(atomic_read(&bo->list_kref.refcount));
61         BUG_ON(atomic_read(&bo->kref.refcount));
62         BUG_ON(atomic_read(&bo->cpu_writers));
63         BUG_ON(bo->sync_obj != NULL);
64         BUG_ON(bo->mem.mm_node != NULL);
65         BUG_ON(!list_empty(&bo->lru));
66         BUG_ON(!list_empty(&bo->ddestroy));
67
68         if (bo->ttm)
69                 ttm_tt_destroy(bo->ttm);
70         if (bo->destroy)
71                 bo->destroy(bo);
72         else {
73                 ttm_mem_global_free(bdev->mem_glob, bo->acc_size, false);
74                 kfree(bo);
75         }
76 }
77
78 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
79 {
80
81         if (interruptible) {
82                 int ret = 0;
83
84                 ret = wait_event_interruptible(bo->event_queue,
85                                                atomic_read(&bo->reserved) == 0);
86                 if (unlikely(ret != 0))
87                         return -ERESTART;
88         } else {
89                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
90         }
91         return 0;
92 }
93
94 static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
95 {
96         struct ttm_bo_device *bdev = bo->bdev;
97         struct ttm_mem_type_manager *man;
98
99         BUG_ON(!atomic_read(&bo->reserved));
100
101         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
102
103                 BUG_ON(!list_empty(&bo->lru));
104
105                 man = &bdev->man[bo->mem.mem_type];
106                 list_add_tail(&bo->lru, &man->lru);
107                 kref_get(&bo->list_kref);
108
109                 if (bo->ttm != NULL) {
110                         list_add_tail(&bo->swap, &bdev->swap_lru);
111                         kref_get(&bo->list_kref);
112                 }
113         }
114 }
115
116 /**
117  * Call with the lru_lock held.
118  */
119
120 static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
121 {
122         int put_count = 0;
123
124         if (!list_empty(&bo->swap)) {
125                 list_del_init(&bo->swap);
126                 ++put_count;
127         }
128         if (!list_empty(&bo->lru)) {
129                 list_del_init(&bo->lru);
130                 ++put_count;
131         }
132
133         /*
134          * TODO: Add a driver hook to delete from
135          * driver-specific LRU's here.
136          */
137
138         return put_count;
139 }
140
141 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
142                           bool interruptible,
143                           bool no_wait, bool use_sequence, uint32_t sequence)
144 {
145         struct ttm_bo_device *bdev = bo->bdev;
146         int ret;
147
148         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
149                 if (use_sequence && bo->seq_valid &&
150                         (sequence - bo->val_seq < (1 << 31))) {
151                         return -EAGAIN;
152                 }
153
154                 if (no_wait)
155                         return -EBUSY;
156
157                 spin_unlock(&bdev->lru_lock);
158                 ret = ttm_bo_wait_unreserved(bo, interruptible);
159                 spin_lock(&bdev->lru_lock);
160
161                 if (unlikely(ret))
162                         return ret;
163         }
164
165         if (use_sequence) {
166                 bo->val_seq = sequence;
167                 bo->seq_valid = true;
168         } else {
169                 bo->seq_valid = false;
170         }
171
172         return 0;
173 }
174 EXPORT_SYMBOL(ttm_bo_reserve);
175
176 static void ttm_bo_ref_bug(struct kref *list_kref)
177 {
178         BUG();
179 }
180
181 int ttm_bo_reserve(struct ttm_buffer_object *bo,
182                    bool interruptible,
183                    bool no_wait, bool use_sequence, uint32_t sequence)
184 {
185         struct ttm_bo_device *bdev = bo->bdev;
186         int put_count = 0;
187         int ret;
188
189         spin_lock(&bdev->lru_lock);
190         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
191                                     sequence);
192         if (likely(ret == 0))
193                 put_count = ttm_bo_del_from_lru(bo);
194         spin_unlock(&bdev->lru_lock);
195
196         while (put_count--)
197                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
198
199         return ret;
200 }
201
202 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
203 {
204         struct ttm_bo_device *bdev = bo->bdev;
205
206         spin_lock(&bdev->lru_lock);
207         ttm_bo_add_to_lru(bo);
208         atomic_set(&bo->reserved, 0);
209         wake_up_all(&bo->event_queue);
210         spin_unlock(&bdev->lru_lock);
211 }
212 EXPORT_SYMBOL(ttm_bo_unreserve);
213
214 /*
215  * Call bo->mutex locked.
216  */
217
218 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
219 {
220         struct ttm_bo_device *bdev = bo->bdev;
221         int ret = 0;
222         uint32_t page_flags = 0;
223
224         TTM_ASSERT_LOCKED(&bo->mutex);
225         bo->ttm = NULL;
226
227         switch (bo->type) {
228         case ttm_bo_type_device:
229                 if (zero_alloc)
230                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
231         case ttm_bo_type_kernel:
232                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
233                                         page_flags, bdev->dummy_read_page);
234                 if (unlikely(bo->ttm == NULL))
235                         ret = -ENOMEM;
236                 break;
237         case ttm_bo_type_user:
238                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
239                                         page_flags | TTM_PAGE_FLAG_USER,
240                                         bdev->dummy_read_page);
241                 if (unlikely(bo->ttm == NULL))
242                         ret = -ENOMEM;
243                 break;
244
245                 ret = ttm_tt_set_user(bo->ttm, current,
246                                       bo->buffer_start, bo->num_pages);
247                 if (unlikely(ret != 0))
248                         ttm_tt_destroy(bo->ttm);
249                 break;
250         default:
251                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
252                 ret = -EINVAL;
253                 break;
254         }
255
256         return ret;
257 }
258
259 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
260                                   struct ttm_mem_reg *mem,
261                                   bool evict, bool interruptible, bool no_wait)
262 {
263         struct ttm_bo_device *bdev = bo->bdev;
264         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
265         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
266         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
267         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
268         int ret = 0;
269
270         if (old_is_pci || new_is_pci ||
271             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
272                 ttm_bo_unmap_virtual(bo);
273
274         /*
275          * Create and bind a ttm if required.
276          */
277
278         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
279                 ret = ttm_bo_add_ttm(bo, false);
280                 if (ret)
281                         goto out_err;
282
283                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
284                 if (ret)
285                         goto out_err;
286
287                 if (mem->mem_type != TTM_PL_SYSTEM) {
288                         ret = ttm_tt_bind(bo->ttm, mem);
289                         if (ret)
290                                 goto out_err;
291                 }
292
293                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
294
295                         struct ttm_mem_reg *old_mem = &bo->mem;
296                         uint32_t save_flags = old_mem->placement;
297
298                         *old_mem = *mem;
299                         mem->mm_node = NULL;
300                         ttm_flag_masked(&save_flags, mem->placement,
301                                         TTM_PL_MASK_MEMTYPE);
302                         goto moved;
303                 }
304
305         }
306
307         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
308             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
309                 ret = ttm_bo_move_ttm(bo, evict, no_wait, mem);
310         else if (bdev->driver->move)
311                 ret = bdev->driver->move(bo, evict, interruptible,
312                                          no_wait, mem);
313         else
314                 ret = ttm_bo_move_memcpy(bo, evict, no_wait, mem);
315
316         if (ret)
317                 goto out_err;
318
319 moved:
320         if (bo->evicted) {
321                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
322                 if (ret)
323                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
324                 bo->evicted = false;
325         }
326
327         if (bo->mem.mm_node) {
328                 spin_lock(&bo->lock);
329                 bo->offset = (bo->mem.mm_node->start << PAGE_SHIFT) +
330                     bdev->man[bo->mem.mem_type].gpu_offset;
331                 bo->cur_placement = bo->mem.placement;
332                 spin_unlock(&bo->lock);
333         }
334
335         return 0;
336
337 out_err:
338         new_man = &bdev->man[bo->mem.mem_type];
339         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
340                 ttm_tt_unbind(bo->ttm);
341                 ttm_tt_destroy(bo->ttm);
342                 bo->ttm = NULL;
343         }
344
345         return ret;
346 }
347
348 /**
349  * If bo idle, remove from delayed- and lru lists, and unref.
350  * If not idle, and already on delayed list, do nothing.
351  * If not idle, and not on delayed list, put on delayed list,
352  *   up the list_kref and schedule a delayed list check.
353  */
354
355 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool remove_all)
356 {
357         struct ttm_bo_device *bdev = bo->bdev;
358         struct ttm_bo_driver *driver = bdev->driver;
359         int ret;
360
361         spin_lock(&bo->lock);
362         (void) ttm_bo_wait(bo, false, false, !remove_all);
363
364         if (!bo->sync_obj) {
365                 int put_count;
366
367                 spin_unlock(&bo->lock);
368
369                 spin_lock(&bdev->lru_lock);
370                 ret = ttm_bo_reserve_locked(bo, false, false, false, 0);
371                 BUG_ON(ret);
372                 if (bo->ttm)
373                         ttm_tt_unbind(bo->ttm);
374
375                 if (!list_empty(&bo->ddestroy)) {
376                         list_del_init(&bo->ddestroy);
377                         kref_put(&bo->list_kref, ttm_bo_ref_bug);
378                 }
379                 if (bo->mem.mm_node) {
380                         drm_mm_put_block(bo->mem.mm_node);
381                         bo->mem.mm_node = NULL;
382                 }
383                 put_count = ttm_bo_del_from_lru(bo);
384                 spin_unlock(&bdev->lru_lock);
385
386                 atomic_set(&bo->reserved, 0);
387
388                 while (put_count--)
389                         kref_put(&bo->list_kref, ttm_bo_release_list);
390
391                 return 0;
392         }
393
394         spin_lock(&bdev->lru_lock);
395         if (list_empty(&bo->ddestroy)) {
396                 void *sync_obj = bo->sync_obj;
397                 void *sync_obj_arg = bo->sync_obj_arg;
398
399                 kref_get(&bo->list_kref);
400                 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
401                 spin_unlock(&bdev->lru_lock);
402                 spin_unlock(&bo->lock);
403
404                 if (sync_obj)
405                         driver->sync_obj_flush(sync_obj, sync_obj_arg);
406                 schedule_delayed_work(&bdev->wq,
407                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
408                 ret = 0;
409
410         } else {
411                 spin_unlock(&bdev->lru_lock);
412                 spin_unlock(&bo->lock);
413                 ret = -EBUSY;
414         }
415
416         return ret;
417 }
418
419 /**
420  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
421  * encountered buffers.
422  */
423
424 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
425 {
426         struct ttm_buffer_object *entry, *nentry;
427         struct list_head *list, *next;
428         int ret;
429
430         spin_lock(&bdev->lru_lock);
431         list_for_each_safe(list, next, &bdev->ddestroy) {
432                 entry = list_entry(list, struct ttm_buffer_object, ddestroy);
433                 nentry = NULL;
434
435                 /*
436                  * Protect the next list entry from destruction while we
437                  * unlock the lru_lock.
438                  */
439
440                 if (next != &bdev->ddestroy) {
441                         nentry = list_entry(next, struct ttm_buffer_object,
442                                             ddestroy);
443                         kref_get(&nentry->list_kref);
444                 }
445                 kref_get(&entry->list_kref);
446
447                 spin_unlock(&bdev->lru_lock);
448                 ret = ttm_bo_cleanup_refs(entry, remove_all);
449                 kref_put(&entry->list_kref, ttm_bo_release_list);
450
451                 spin_lock(&bdev->lru_lock);
452                 if (nentry) {
453                         bool next_onlist = !list_empty(next);
454                         spin_unlock(&bdev->lru_lock);
455                         kref_put(&nentry->list_kref, ttm_bo_release_list);
456                         spin_lock(&bdev->lru_lock);
457                         /*
458                          * Someone might have raced us and removed the
459                          * next entry from the list. We don't bother restarting
460                          * list traversal.
461                          */
462
463                         if (!next_onlist)
464                                 break;
465                 }
466                 if (ret)
467                         break;
468         }
469         ret = !list_empty(&bdev->ddestroy);
470         spin_unlock(&bdev->lru_lock);
471
472         return ret;
473 }
474
475 static void ttm_bo_delayed_workqueue(struct work_struct *work)
476 {
477         struct ttm_bo_device *bdev =
478             container_of(work, struct ttm_bo_device, wq.work);
479
480         if (ttm_bo_delayed_delete(bdev, false)) {
481                 schedule_delayed_work(&bdev->wq,
482                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
483         }
484 }
485
486 static void ttm_bo_release(struct kref *kref)
487 {
488         struct ttm_buffer_object *bo =
489             container_of(kref, struct ttm_buffer_object, kref);
490         struct ttm_bo_device *bdev = bo->bdev;
491
492         if (likely(bo->vm_node != NULL)) {
493                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
494                 drm_mm_put_block(bo->vm_node);
495                 bo->vm_node = NULL;
496         }
497         write_unlock(&bdev->vm_lock);
498         ttm_bo_cleanup_refs(bo, false);
499         kref_put(&bo->list_kref, ttm_bo_release_list);
500         write_lock(&bdev->vm_lock);
501 }
502
503 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
504 {
505         struct ttm_buffer_object *bo = *p_bo;
506         struct ttm_bo_device *bdev = bo->bdev;
507
508         *p_bo = NULL;
509         write_lock(&bdev->vm_lock);
510         kref_put(&bo->kref, ttm_bo_release);
511         write_unlock(&bdev->vm_lock);
512 }
513 EXPORT_SYMBOL(ttm_bo_unref);
514
515 static int ttm_bo_evict(struct ttm_buffer_object *bo, unsigned mem_type,
516                         bool interruptible, bool no_wait)
517 {
518         int ret = 0;
519         struct ttm_bo_device *bdev = bo->bdev;
520         struct ttm_mem_reg evict_mem;
521         uint32_t proposed_placement;
522
523         if (bo->mem.mem_type != mem_type)
524                 goto out;
525
526         spin_lock(&bo->lock);
527         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
528         spin_unlock(&bo->lock);
529
530         if (unlikely(ret != 0)) {
531                 if (ret != -ERESTART) {
532                         printk(KERN_ERR TTM_PFX
533                                "Failed to expire sync object before "
534                                "buffer eviction.\n");
535                 }
536                 goto out;
537         }
538
539         BUG_ON(!atomic_read(&bo->reserved));
540
541         evict_mem = bo->mem;
542         evict_mem.mm_node = NULL;
543
544         proposed_placement = bdev->driver->evict_flags(bo);
545
546         ret = ttm_bo_mem_space(bo, proposed_placement,
547                                &evict_mem, interruptible, no_wait);
548         if (unlikely(ret != 0 && ret != -ERESTART))
549                 ret = ttm_bo_mem_space(bo, TTM_PL_FLAG_SYSTEM,
550                                        &evict_mem, interruptible, no_wait);
551
552         if (ret) {
553                 if (ret != -ERESTART)
554                         printk(KERN_ERR TTM_PFX
555                                "Failed to find memory space for "
556                                "buffer 0x%p eviction.\n", bo);
557                 goto out;
558         }
559
560         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
561                                      no_wait);
562         if (ret) {
563                 if (ret != -ERESTART)
564                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
565                 goto out;
566         }
567
568         spin_lock(&bdev->lru_lock);
569         if (evict_mem.mm_node) {
570                 drm_mm_put_block(evict_mem.mm_node);
571                 evict_mem.mm_node = NULL;
572         }
573         spin_unlock(&bdev->lru_lock);
574         bo->evicted = true;
575 out:
576         return ret;
577 }
578
579 /**
580  * Repeatedly evict memory from the LRU for @mem_type until we create enough
581  * space, or we've evicted everything and there isn't enough space.
582  */
583 static int ttm_bo_mem_force_space(struct ttm_bo_device *bdev,
584                                   struct ttm_mem_reg *mem,
585                                   uint32_t mem_type,
586                                   bool interruptible, bool no_wait)
587 {
588         struct drm_mm_node *node;
589         struct ttm_buffer_object *entry;
590         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
591         struct list_head *lru;
592         unsigned long num_pages = mem->num_pages;
593         int put_count = 0;
594         int ret;
595
596 retry_pre_get:
597         ret = drm_mm_pre_get(&man->manager);
598         if (unlikely(ret != 0))
599                 return ret;
600
601         spin_lock(&bdev->lru_lock);
602         do {
603                 node = drm_mm_search_free(&man->manager, num_pages,
604                                           mem->page_alignment, 1);
605                 if (node)
606                         break;
607
608                 lru = &man->lru;
609                 if (list_empty(lru))
610                         break;
611
612                 entry = list_first_entry(lru, struct ttm_buffer_object, lru);
613                 kref_get(&entry->list_kref);
614
615                 ret =
616                     ttm_bo_reserve_locked(entry, interruptible, no_wait,
617                                           false, 0);
618
619                 if (likely(ret == 0))
620                         put_count = ttm_bo_del_from_lru(entry);
621
622                 spin_unlock(&bdev->lru_lock);
623
624                 if (unlikely(ret != 0))
625                         return ret;
626
627                 while (put_count--)
628                         kref_put(&entry->list_kref, ttm_bo_ref_bug);
629
630                 ret = ttm_bo_evict(entry, mem_type, interruptible, no_wait);
631
632                 ttm_bo_unreserve(entry);
633
634                 kref_put(&entry->list_kref, ttm_bo_release_list);
635                 if (ret)
636                         return ret;
637
638                 spin_lock(&bdev->lru_lock);
639         } while (1);
640
641         if (!node) {
642                 spin_unlock(&bdev->lru_lock);
643                 return -ENOMEM;
644         }
645
646         node = drm_mm_get_block_atomic(node, num_pages, mem->page_alignment);
647         if (unlikely(!node)) {
648                 spin_unlock(&bdev->lru_lock);
649                 goto retry_pre_get;
650         }
651
652         spin_unlock(&bdev->lru_lock);
653         mem->mm_node = node;
654         mem->mem_type = mem_type;
655         return 0;
656 }
657
658 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
659                                  bool disallow_fixed,
660                                  uint32_t mem_type,
661                                  uint32_t mask, uint32_t *res_mask)
662 {
663         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
664
665         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
666                 return false;
667
668         if ((cur_flags & mask & TTM_PL_MASK_MEM) == 0)
669                 return false;
670
671         if ((mask & man->available_caching) == 0)
672                 return false;
673         if (mask & man->default_caching)
674                 cur_flags |= man->default_caching;
675         else if (mask & TTM_PL_FLAG_CACHED)
676                 cur_flags |= TTM_PL_FLAG_CACHED;
677         else if (mask & TTM_PL_FLAG_WC)
678                 cur_flags |= TTM_PL_FLAG_WC;
679         else
680                 cur_flags |= TTM_PL_FLAG_UNCACHED;
681
682         *res_mask = cur_flags;
683         return true;
684 }
685
686 /**
687  * Creates space for memory region @mem according to its type.
688  *
689  * This function first searches for free space in compatible memory types in
690  * the priority order defined by the driver.  If free space isn't found, then
691  * ttm_bo_mem_force_space is attempted in priority order to evict and find
692  * space.
693  */
694 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
695                      uint32_t proposed_placement,
696                      struct ttm_mem_reg *mem,
697                      bool interruptible, bool no_wait)
698 {
699         struct ttm_bo_device *bdev = bo->bdev;
700         struct ttm_mem_type_manager *man;
701
702         uint32_t num_prios = bdev->driver->num_mem_type_prio;
703         const uint32_t *prios = bdev->driver->mem_type_prio;
704         uint32_t i;
705         uint32_t mem_type = TTM_PL_SYSTEM;
706         uint32_t cur_flags = 0;
707         bool type_found = false;
708         bool type_ok = false;
709         bool has_eagain = false;
710         struct drm_mm_node *node = NULL;
711         int ret;
712
713         mem->mm_node = NULL;
714         for (i = 0; i < num_prios; ++i) {
715                 mem_type = prios[i];
716                 man = &bdev->man[mem_type];
717
718                 type_ok = ttm_bo_mt_compatible(man,
719                                                bo->type == ttm_bo_type_user,
720                                                mem_type, proposed_placement,
721                                                &cur_flags);
722
723                 if (!type_ok)
724                         continue;
725
726                 if (mem_type == TTM_PL_SYSTEM)
727                         break;
728
729                 if (man->has_type && man->use_type) {
730                         type_found = true;
731                         do {
732                                 ret = drm_mm_pre_get(&man->manager);
733                                 if (unlikely(ret))
734                                         return ret;
735
736                                 spin_lock(&bdev->lru_lock);
737                                 node = drm_mm_search_free(&man->manager,
738                                                           mem->num_pages,
739                                                           mem->page_alignment,
740                                                           1);
741                                 if (unlikely(!node)) {
742                                         spin_unlock(&bdev->lru_lock);
743                                         break;
744                                 }
745                                 node = drm_mm_get_block_atomic(node,
746                                                                mem->num_pages,
747                                                                mem->
748                                                                page_alignment);
749                                 spin_unlock(&bdev->lru_lock);
750                         } while (!node);
751                 }
752                 if (node)
753                         break;
754         }
755
756         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || node) {
757                 mem->mm_node = node;
758                 mem->mem_type = mem_type;
759                 mem->placement = cur_flags;
760                 return 0;
761         }
762
763         if (!type_found)
764                 return -EINVAL;
765
766         num_prios = bdev->driver->num_mem_busy_prio;
767         prios = bdev->driver->mem_busy_prio;
768
769         for (i = 0; i < num_prios; ++i) {
770                 mem_type = prios[i];
771                 man = &bdev->man[mem_type];
772
773                 if (!man->has_type)
774                         continue;
775
776                 if (!ttm_bo_mt_compatible(man,
777                                           bo->type == ttm_bo_type_user,
778                                           mem_type,
779                                           proposed_placement, &cur_flags))
780                         continue;
781
782                 ret = ttm_bo_mem_force_space(bdev, mem, mem_type,
783                                              interruptible, no_wait);
784
785                 if (ret == 0 && mem->mm_node) {
786                         mem->placement = cur_flags;
787                         return 0;
788                 }
789
790                 if (ret == -ERESTART)
791                         has_eagain = true;
792         }
793
794         ret = (has_eagain) ? -ERESTART : -ENOMEM;
795         return ret;
796 }
797 EXPORT_SYMBOL(ttm_bo_mem_space);
798
799 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
800 {
801         int ret = 0;
802
803         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
804                 return -EBUSY;
805
806         ret = wait_event_interruptible(bo->event_queue,
807                                        atomic_read(&bo->cpu_writers) == 0);
808
809         if (ret == -ERESTARTSYS)
810                 ret = -ERESTART;
811
812         return ret;
813 }
814
815 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
816                        uint32_t proposed_placement,
817                        bool interruptible, bool no_wait)
818 {
819         struct ttm_bo_device *bdev = bo->bdev;
820         int ret = 0;
821         struct ttm_mem_reg mem;
822
823         BUG_ON(!atomic_read(&bo->reserved));
824
825         /*
826          * FIXME: It's possible to pipeline buffer moves.
827          * Have the driver move function wait for idle when necessary,
828          * instead of doing it here.
829          */
830
831         spin_lock(&bo->lock);
832         ret = ttm_bo_wait(bo, false, interruptible, no_wait);
833         spin_unlock(&bo->lock);
834
835         if (ret)
836                 return ret;
837
838         mem.num_pages = bo->num_pages;
839         mem.size = mem.num_pages << PAGE_SHIFT;
840         mem.page_alignment = bo->mem.page_alignment;
841
842         /*
843          * Determine where to move the buffer.
844          */
845
846         ret = ttm_bo_mem_space(bo, proposed_placement, &mem,
847                                interruptible, no_wait);
848         if (ret)
849                 goto out_unlock;
850
851         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait);
852
853 out_unlock:
854         if (ret && mem.mm_node) {
855                 spin_lock(&bdev->lru_lock);
856                 drm_mm_put_block(mem.mm_node);
857                 spin_unlock(&bdev->lru_lock);
858         }
859         return ret;
860 }
861
862 static int ttm_bo_mem_compat(uint32_t proposed_placement,
863                              struct ttm_mem_reg *mem)
864 {
865         if ((proposed_placement & mem->placement & TTM_PL_MASK_MEM) == 0)
866                 return 0;
867         if ((proposed_placement & mem->placement & TTM_PL_MASK_CACHING) == 0)
868                 return 0;
869
870         return 1;
871 }
872
873 int ttm_buffer_object_validate(struct ttm_buffer_object *bo,
874                                uint32_t proposed_placement,
875                                bool interruptible, bool no_wait)
876 {
877         int ret;
878
879         BUG_ON(!atomic_read(&bo->reserved));
880         bo->proposed_placement = proposed_placement;
881
882         TTM_DEBUG("Proposed placement 0x%08lx, Old flags 0x%08lx\n",
883                   (unsigned long)proposed_placement,
884                   (unsigned long)bo->mem.placement);
885
886         /*
887          * Check whether we need to move buffer.
888          */
889
890         if (!ttm_bo_mem_compat(bo->proposed_placement, &bo->mem)) {
891                 ret = ttm_bo_move_buffer(bo, bo->proposed_placement,
892                                          interruptible, no_wait);
893                 if (ret) {
894                         if (ret != -ERESTART)
895                                 printk(KERN_ERR TTM_PFX
896                                        "Failed moving buffer. "
897                                        "Proposed placement 0x%08x\n",
898                                        bo->proposed_placement);
899                         if (ret == -ENOMEM)
900                                 printk(KERN_ERR TTM_PFX
901                                        "Out of aperture space or "
902                                        "DRM memory quota.\n");
903                         return ret;
904                 }
905         }
906
907         /*
908          * We might need to add a TTM.
909          */
910
911         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
912                 ret = ttm_bo_add_ttm(bo, true);
913                 if (ret)
914                         return ret;
915         }
916         /*
917          * Validation has succeeded, move the access and other
918          * non-mapping-related flag bits from the proposed flags to
919          * the active flags
920          */
921
922         ttm_flag_masked(&bo->mem.placement, bo->proposed_placement,
923                         ~TTM_PL_MASK_MEMTYPE);
924
925         return 0;
926 }
927 EXPORT_SYMBOL(ttm_buffer_object_validate);
928
929 int
930 ttm_bo_check_placement(struct ttm_buffer_object *bo,
931                        uint32_t set_flags, uint32_t clr_flags)
932 {
933         uint32_t new_mask = set_flags | clr_flags;
934
935         if ((bo->type == ttm_bo_type_user) &&
936             (clr_flags & TTM_PL_FLAG_CACHED)) {
937                 printk(KERN_ERR TTM_PFX
938                        "User buffers require cache-coherent memory.\n");
939                 return -EINVAL;
940         }
941
942         if (!capable(CAP_SYS_ADMIN)) {
943                 if (new_mask & TTM_PL_FLAG_NO_EVICT) {
944                         printk(KERN_ERR TTM_PFX "Need to be root to modify"
945                                " NO_EVICT status.\n");
946                         return -EINVAL;
947                 }
948
949                 if ((clr_flags & bo->mem.placement & TTM_PL_MASK_MEMTYPE) &&
950                     (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
951                         printk(KERN_ERR TTM_PFX
952                                "Incompatible memory specification"
953                                " for NO_EVICT buffer.\n");
954                         return -EINVAL;
955                 }
956         }
957         return 0;
958 }
959
960 int ttm_buffer_object_init(struct ttm_bo_device *bdev,
961                            struct ttm_buffer_object *bo,
962                            unsigned long size,
963                            enum ttm_bo_type type,
964                            uint32_t flags,
965                            uint32_t page_alignment,
966                            unsigned long buffer_start,
967                            bool interruptible,
968                            struct file *persistant_swap_storage,
969                            size_t acc_size,
970                            void (*destroy) (struct ttm_buffer_object *))
971 {
972         int ret = 0;
973         unsigned long num_pages;
974
975         size += buffer_start & ~PAGE_MASK;
976         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
977         if (num_pages == 0) {
978                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
979                 return -EINVAL;
980         }
981         bo->destroy = destroy;
982
983         spin_lock_init(&bo->lock);
984         kref_init(&bo->kref);
985         kref_init(&bo->list_kref);
986         atomic_set(&bo->cpu_writers, 0);
987         atomic_set(&bo->reserved, 1);
988         init_waitqueue_head(&bo->event_queue);
989         INIT_LIST_HEAD(&bo->lru);
990         INIT_LIST_HEAD(&bo->ddestroy);
991         INIT_LIST_HEAD(&bo->swap);
992         bo->bdev = bdev;
993         bo->type = type;
994         bo->num_pages = num_pages;
995         bo->mem.mem_type = TTM_PL_SYSTEM;
996         bo->mem.num_pages = bo->num_pages;
997         bo->mem.mm_node = NULL;
998         bo->mem.page_alignment = page_alignment;
999         bo->buffer_start = buffer_start & PAGE_MASK;
1000         bo->priv_flags = 0;
1001         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1002         bo->seq_valid = false;
1003         bo->persistant_swap_storage = persistant_swap_storage;
1004         bo->acc_size = acc_size;
1005
1006         ret = ttm_bo_check_placement(bo, flags, 0ULL);
1007         if (unlikely(ret != 0))
1008                 goto out_err;
1009
1010         /*
1011          * If no caching attributes are set, accept any form of caching.
1012          */
1013
1014         if ((flags & TTM_PL_MASK_CACHING) == 0)
1015                 flags |= TTM_PL_MASK_CACHING;
1016
1017         /*
1018          * For ttm_bo_type_device buffers, allocate
1019          * address space from the device.
1020          */
1021
1022         if (bo->type == ttm_bo_type_device) {
1023                 ret = ttm_bo_setup_vm(bo);
1024                 if (ret)
1025                         goto out_err;
1026         }
1027
1028         ret = ttm_buffer_object_validate(bo, flags, interruptible, false);
1029         if (ret)
1030                 goto out_err;
1031
1032         ttm_bo_unreserve(bo);
1033         return 0;
1034
1035 out_err:
1036         ttm_bo_unreserve(bo);
1037         ttm_bo_unref(&bo);
1038
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(ttm_buffer_object_init);
1042
1043 static inline size_t ttm_bo_size(struct ttm_bo_device *bdev,
1044                                  unsigned long num_pages)
1045 {
1046         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1047             PAGE_MASK;
1048
1049         return bdev->ttm_bo_size + 2 * page_array_size;
1050 }
1051
1052 int ttm_buffer_object_create(struct ttm_bo_device *bdev,
1053                              unsigned long size,
1054                              enum ttm_bo_type type,
1055                              uint32_t flags,
1056                              uint32_t page_alignment,
1057                              unsigned long buffer_start,
1058                              bool interruptible,
1059                              struct file *persistant_swap_storage,
1060                              struct ttm_buffer_object **p_bo)
1061 {
1062         struct ttm_buffer_object *bo;
1063         int ret;
1064         struct ttm_mem_global *mem_glob = bdev->mem_glob;
1065
1066         size_t acc_size =
1067             ttm_bo_size(bdev, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1068         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false, false);
1069         if (unlikely(ret != 0))
1070                 return ret;
1071
1072         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1073
1074         if (unlikely(bo == NULL)) {
1075                 ttm_mem_global_free(mem_glob, acc_size, false);
1076                 return -ENOMEM;
1077         }
1078
1079         ret = ttm_buffer_object_init(bdev, bo, size, type, flags,
1080                                      page_alignment, buffer_start,
1081                                      interruptible,
1082                                      persistant_swap_storage, acc_size, NULL);
1083         if (likely(ret == 0))
1084                 *p_bo = bo;
1085
1086         return ret;
1087 }
1088
1089 static int ttm_bo_leave_list(struct ttm_buffer_object *bo,
1090                              uint32_t mem_type, bool allow_errors)
1091 {
1092         int ret;
1093
1094         spin_lock(&bo->lock);
1095         ret = ttm_bo_wait(bo, false, false, false);
1096         spin_unlock(&bo->lock);
1097
1098         if (ret && allow_errors)
1099                 goto out;
1100
1101         if (bo->mem.mem_type == mem_type)
1102                 ret = ttm_bo_evict(bo, mem_type, false, false);
1103
1104         if (ret) {
1105                 if (allow_errors) {
1106                         goto out;
1107                 } else {
1108                         ret = 0;
1109                         printk(KERN_ERR TTM_PFX "Cleanup eviction failed\n");
1110                 }
1111         }
1112
1113 out:
1114         return ret;
1115 }
1116
1117 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1118                                    struct list_head *head,
1119                                    unsigned mem_type, bool allow_errors)
1120 {
1121         struct ttm_buffer_object *entry;
1122         int ret;
1123         int put_count;
1124
1125         /*
1126          * Can't use standard list traversal since we're unlocking.
1127          */
1128
1129         spin_lock(&bdev->lru_lock);
1130
1131         while (!list_empty(head)) {
1132                 entry = list_first_entry(head, struct ttm_buffer_object, lru);
1133                 kref_get(&entry->list_kref);
1134                 ret = ttm_bo_reserve_locked(entry, false, false, false, 0);
1135                 put_count = ttm_bo_del_from_lru(entry);
1136                 spin_unlock(&bdev->lru_lock);
1137                 while (put_count--)
1138                         kref_put(&entry->list_kref, ttm_bo_ref_bug);
1139                 BUG_ON(ret);
1140                 ret = ttm_bo_leave_list(entry, mem_type, allow_errors);
1141                 ttm_bo_unreserve(entry);
1142                 kref_put(&entry->list_kref, ttm_bo_release_list);
1143                 spin_lock(&bdev->lru_lock);
1144         }
1145
1146         spin_unlock(&bdev->lru_lock);
1147
1148         return 0;
1149 }
1150
1151 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1152 {
1153         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1154         int ret = -EINVAL;
1155
1156         if (mem_type >= TTM_NUM_MEM_TYPES) {
1157                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1158                 return ret;
1159         }
1160
1161         if (!man->has_type) {
1162                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1163                        "memory manager type %u\n", mem_type);
1164                 return ret;
1165         }
1166
1167         man->use_type = false;
1168         man->has_type = false;
1169
1170         ret = 0;
1171         if (mem_type > 0) {
1172                 ttm_bo_force_list_clean(bdev, &man->lru, mem_type, false);
1173
1174                 spin_lock(&bdev->lru_lock);
1175                 if (drm_mm_clean(&man->manager))
1176                         drm_mm_takedown(&man->manager);
1177                 else
1178                         ret = -EBUSY;
1179
1180                 spin_unlock(&bdev->lru_lock);
1181         }
1182
1183         return ret;
1184 }
1185 EXPORT_SYMBOL(ttm_bo_clean_mm);
1186
1187 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1188 {
1189         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1190
1191         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1192                 printk(KERN_ERR TTM_PFX
1193                        "Illegal memory manager memory type %u.\n",
1194                        mem_type);
1195                 return -EINVAL;
1196         }
1197
1198         if (!man->has_type) {
1199                 printk(KERN_ERR TTM_PFX
1200                        "Memory type %u has not been initialized.\n",
1201                        mem_type);
1202                 return 0;
1203         }
1204
1205         return ttm_bo_force_list_clean(bdev, &man->lru, mem_type, true);
1206 }
1207 EXPORT_SYMBOL(ttm_bo_evict_mm);
1208
1209 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1210                    unsigned long p_offset, unsigned long p_size)
1211 {
1212         int ret = -EINVAL;
1213         struct ttm_mem_type_manager *man;
1214
1215         if (type >= TTM_NUM_MEM_TYPES) {
1216                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", type);
1217                 return ret;
1218         }
1219
1220         man = &bdev->man[type];
1221         if (man->has_type) {
1222                 printk(KERN_ERR TTM_PFX
1223                        "Memory manager already initialized for type %d\n",
1224                        type);
1225                 return ret;
1226         }
1227
1228         ret = bdev->driver->init_mem_type(bdev, type, man);
1229         if (ret)
1230                 return ret;
1231
1232         ret = 0;
1233         if (type != TTM_PL_SYSTEM) {
1234                 if (!p_size) {
1235                         printk(KERN_ERR TTM_PFX
1236                                "Zero size memory manager type %d\n",
1237                                type);
1238                         return ret;
1239                 }
1240                 ret = drm_mm_init(&man->manager, p_offset, p_size);
1241                 if (ret)
1242                         return ret;
1243         }
1244         man->has_type = true;
1245         man->use_type = true;
1246         man->size = p_size;
1247
1248         INIT_LIST_HEAD(&man->lru);
1249
1250         return 0;
1251 }
1252 EXPORT_SYMBOL(ttm_bo_init_mm);
1253
1254 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1255 {
1256         int ret = 0;
1257         unsigned i = TTM_NUM_MEM_TYPES;
1258         struct ttm_mem_type_manager *man;
1259
1260         while (i--) {
1261                 man = &bdev->man[i];
1262                 if (man->has_type) {
1263                         man->use_type = false;
1264                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1265                                 ret = -EBUSY;
1266                                 printk(KERN_ERR TTM_PFX
1267                                        "DRM memory manager type %d "
1268                                        "is not clean.\n", i);
1269                         }
1270                         man->has_type = false;
1271                 }
1272         }
1273
1274         if (!cancel_delayed_work(&bdev->wq))
1275                 flush_scheduled_work();
1276
1277         while (ttm_bo_delayed_delete(bdev, true))
1278                 ;
1279
1280         spin_lock(&bdev->lru_lock);
1281         if (list_empty(&bdev->ddestroy))
1282                 TTM_DEBUG("Delayed destroy list was clean\n");
1283
1284         if (list_empty(&bdev->man[0].lru))
1285                 TTM_DEBUG("Swap list was clean\n");
1286         spin_unlock(&bdev->lru_lock);
1287
1288         ttm_mem_unregister_shrink(bdev->mem_glob, &bdev->shrink);
1289         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1290         write_lock(&bdev->vm_lock);
1291         drm_mm_takedown(&bdev->addr_space_mm);
1292         write_unlock(&bdev->vm_lock);
1293
1294         __free_page(bdev->dummy_read_page);
1295         return ret;
1296 }
1297 EXPORT_SYMBOL(ttm_bo_device_release);
1298
1299 /*
1300  * This function is intended to be called on drm driver load.
1301  * If you decide to call it from firstopen, you must protect the call
1302  * from a potentially racing ttm_bo_driver_finish in lastclose.
1303  * (This may happen on X server restart).
1304  */
1305
1306 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1307                        struct ttm_mem_global *mem_glob,
1308                        struct ttm_bo_driver *driver, uint64_t file_page_offset)
1309 {
1310         int ret = -EINVAL;
1311
1312         bdev->dummy_read_page = NULL;
1313         rwlock_init(&bdev->vm_lock);
1314         spin_lock_init(&bdev->lru_lock);
1315
1316         bdev->driver = driver;
1317         bdev->mem_glob = mem_glob;
1318
1319         memset(bdev->man, 0, sizeof(bdev->man));
1320
1321         bdev->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1322         if (unlikely(bdev->dummy_read_page == NULL)) {
1323                 ret = -ENOMEM;
1324                 goto out_err0;
1325         }
1326
1327         /*
1328          * Initialize the system memory buffer type.
1329          * Other types need to be driver / IOCTL initialized.
1330          */
1331         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0, 0);
1332         if (unlikely(ret != 0))
1333                 goto out_err1;
1334
1335         bdev->addr_space_rb = RB_ROOT;
1336         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1337         if (unlikely(ret != 0))
1338                 goto out_err2;
1339
1340         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1341         bdev->nice_mode = true;
1342         INIT_LIST_HEAD(&bdev->ddestroy);
1343         INIT_LIST_HEAD(&bdev->swap_lru);
1344         bdev->dev_mapping = NULL;
1345         ttm_mem_init_shrink(&bdev->shrink, ttm_bo_swapout);
1346         ret = ttm_mem_register_shrink(mem_glob, &bdev->shrink);
1347         if (unlikely(ret != 0)) {
1348                 printk(KERN_ERR TTM_PFX
1349                        "Could not register buffer object swapout.\n");
1350                 goto out_err2;
1351         }
1352
1353         bdev->ttm_bo_extra_size =
1354                 ttm_round_pot(sizeof(struct ttm_tt)) +
1355                 ttm_round_pot(sizeof(struct ttm_backend));
1356
1357         bdev->ttm_bo_size = bdev->ttm_bo_extra_size +
1358                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1359
1360         return 0;
1361 out_err2:
1362         ttm_bo_clean_mm(bdev, 0);
1363 out_err1:
1364         __free_page(bdev->dummy_read_page);
1365 out_err0:
1366         return ret;
1367 }
1368 EXPORT_SYMBOL(ttm_bo_device_init);
1369
1370 /*
1371  * buffer object vm functions.
1372  */
1373
1374 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1375 {
1376         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1377
1378         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1379                 if (mem->mem_type == TTM_PL_SYSTEM)
1380                         return false;
1381
1382                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1383                         return false;
1384
1385                 if (mem->placement & TTM_PL_FLAG_CACHED)
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 int ttm_bo_pci_offset(struct ttm_bo_device *bdev,
1392                       struct ttm_mem_reg *mem,
1393                       unsigned long *bus_base,
1394                       unsigned long *bus_offset, unsigned long *bus_size)
1395 {
1396         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1397
1398         *bus_size = 0;
1399         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
1400                 return -EINVAL;
1401
1402         if (ttm_mem_reg_is_pci(bdev, mem)) {
1403                 *bus_offset = mem->mm_node->start << PAGE_SHIFT;
1404                 *bus_size = mem->num_pages << PAGE_SHIFT;
1405                 *bus_base = man->io_offset;
1406         }
1407
1408         return 0;
1409 }
1410
1411 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1412 {
1413         struct ttm_bo_device *bdev = bo->bdev;
1414         loff_t offset = (loff_t) bo->addr_space_offset;
1415         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1416
1417         if (!bdev->dev_mapping)
1418                 return;
1419
1420         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1421 }
1422
1423 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1424 {
1425         struct ttm_bo_device *bdev = bo->bdev;
1426         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1427         struct rb_node *parent = NULL;
1428         struct ttm_buffer_object *cur_bo;
1429         unsigned long offset = bo->vm_node->start;
1430         unsigned long cur_offset;
1431
1432         while (*cur) {
1433                 parent = *cur;
1434                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1435                 cur_offset = cur_bo->vm_node->start;
1436                 if (offset < cur_offset)
1437                         cur = &parent->rb_left;
1438                 else if (offset > cur_offset)
1439                         cur = &parent->rb_right;
1440                 else
1441                         BUG();
1442         }
1443
1444         rb_link_node(&bo->vm_rb, parent, cur);
1445         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1446 }
1447
1448 /**
1449  * ttm_bo_setup_vm:
1450  *
1451  * @bo: the buffer to allocate address space for
1452  *
1453  * Allocate address space in the drm device so that applications
1454  * can mmap the buffer and access the contents. This only
1455  * applies to ttm_bo_type_device objects as others are not
1456  * placed in the drm device address space.
1457  */
1458
1459 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1460 {
1461         struct ttm_bo_device *bdev = bo->bdev;
1462         int ret;
1463
1464 retry_pre_get:
1465         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1466         if (unlikely(ret != 0))
1467                 return ret;
1468
1469         write_lock(&bdev->vm_lock);
1470         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1471                                          bo->mem.num_pages, 0, 0);
1472
1473         if (unlikely(bo->vm_node == NULL)) {
1474                 ret = -ENOMEM;
1475                 goto out_unlock;
1476         }
1477
1478         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1479                                               bo->mem.num_pages, 0);
1480
1481         if (unlikely(bo->vm_node == NULL)) {
1482                 write_unlock(&bdev->vm_lock);
1483                 goto retry_pre_get;
1484         }
1485
1486         ttm_bo_vm_insert_rb(bo);
1487         write_unlock(&bdev->vm_lock);
1488         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1489
1490         return 0;
1491 out_unlock:
1492         write_unlock(&bdev->vm_lock);
1493         return ret;
1494 }
1495
1496 int ttm_bo_wait(struct ttm_buffer_object *bo,
1497                 bool lazy, bool interruptible, bool no_wait)
1498 {
1499         struct ttm_bo_driver *driver = bo->bdev->driver;
1500         void *sync_obj;
1501         void *sync_obj_arg;
1502         int ret = 0;
1503
1504         if (likely(bo->sync_obj == NULL))
1505                 return 0;
1506
1507         while (bo->sync_obj) {
1508
1509                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1510                         void *tmp_obj = bo->sync_obj;
1511                         bo->sync_obj = NULL;
1512                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1513                         spin_unlock(&bo->lock);
1514                         driver->sync_obj_unref(&tmp_obj);
1515                         spin_lock(&bo->lock);
1516                         continue;
1517                 }
1518
1519                 if (no_wait)
1520                         return -EBUSY;
1521
1522                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1523                 sync_obj_arg = bo->sync_obj_arg;
1524                 spin_unlock(&bo->lock);
1525                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1526                                             lazy, interruptible);
1527                 if (unlikely(ret != 0)) {
1528                         driver->sync_obj_unref(&sync_obj);
1529                         spin_lock(&bo->lock);
1530                         return ret;
1531                 }
1532                 spin_lock(&bo->lock);
1533                 if (likely(bo->sync_obj == sync_obj &&
1534                            bo->sync_obj_arg == sync_obj_arg)) {
1535                         void *tmp_obj = bo->sync_obj;
1536                         bo->sync_obj = NULL;
1537                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1538                                   &bo->priv_flags);
1539                         spin_unlock(&bo->lock);
1540                         driver->sync_obj_unref(&sync_obj);
1541                         driver->sync_obj_unref(&tmp_obj);
1542                         spin_lock(&bo->lock);
1543                 }
1544         }
1545         return 0;
1546 }
1547 EXPORT_SYMBOL(ttm_bo_wait);
1548
1549 void ttm_bo_unblock_reservation(struct ttm_buffer_object *bo)
1550 {
1551         atomic_set(&bo->reserved, 0);
1552         wake_up_all(&bo->event_queue);
1553 }
1554
1555 int ttm_bo_block_reservation(struct ttm_buffer_object *bo, bool interruptible,
1556                              bool no_wait)
1557 {
1558         int ret;
1559
1560         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
1561                 if (no_wait)
1562                         return -EBUSY;
1563                 else if (interruptible) {
1564                         ret = wait_event_interruptible
1565                             (bo->event_queue, atomic_read(&bo->reserved) == 0);
1566                         if (unlikely(ret != 0))
1567                                 return -ERESTART;
1568                 } else {
1569                         wait_event(bo->event_queue,
1570                                    atomic_read(&bo->reserved) == 0);
1571                 }
1572         }
1573         return 0;
1574 }
1575
1576 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1577 {
1578         int ret = 0;
1579
1580         /*
1581          * Using ttm_bo_reserve instead of ttm_bo_block_reservation
1582          * makes sure the lru lists are updated.
1583          */
1584
1585         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1586         if (unlikely(ret != 0))
1587                 return ret;
1588         spin_lock(&bo->lock);
1589         ret = ttm_bo_wait(bo, false, true, no_wait);
1590         spin_unlock(&bo->lock);
1591         if (likely(ret == 0))
1592                 atomic_inc(&bo->cpu_writers);
1593         ttm_bo_unreserve(bo);
1594         return ret;
1595 }
1596
1597 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1598 {
1599         if (atomic_dec_and_test(&bo->cpu_writers))
1600                 wake_up_all(&bo->event_queue);
1601 }
1602
1603 /**
1604  * A buffer object shrink method that tries to swap out the first
1605  * buffer object on the bo_global::swap_lru list.
1606  */
1607
1608 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1609 {
1610         struct ttm_bo_device *bdev =
1611             container_of(shrink, struct ttm_bo_device, shrink);
1612         struct ttm_buffer_object *bo;
1613         int ret = -EBUSY;
1614         int put_count;
1615         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1616
1617         spin_lock(&bdev->lru_lock);
1618         while (ret == -EBUSY) {
1619                 if (unlikely(list_empty(&bdev->swap_lru))) {
1620                         spin_unlock(&bdev->lru_lock);
1621                         return -EBUSY;
1622                 }
1623
1624                 bo = list_first_entry(&bdev->swap_lru,
1625                                       struct ttm_buffer_object, swap);
1626                 kref_get(&bo->list_kref);
1627
1628                 /**
1629                  * Reserve buffer. Since we unlock while sleeping, we need
1630                  * to re-check that nobody removed us from the swap-list while
1631                  * we slept.
1632                  */
1633
1634                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1635                 if (unlikely(ret == -EBUSY)) {
1636                         spin_unlock(&bdev->lru_lock);
1637                         ttm_bo_wait_unreserved(bo, false);
1638                         kref_put(&bo->list_kref, ttm_bo_release_list);
1639                         spin_lock(&bdev->lru_lock);
1640                 }
1641         }
1642
1643         BUG_ON(ret != 0);
1644         put_count = ttm_bo_del_from_lru(bo);
1645         spin_unlock(&bdev->lru_lock);
1646
1647         while (put_count--)
1648                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
1649
1650         /**
1651          * Wait for GPU, then move to system cached.
1652          */
1653
1654         spin_lock(&bo->lock);
1655         ret = ttm_bo_wait(bo, false, false, false);
1656         spin_unlock(&bo->lock);
1657
1658         if (unlikely(ret != 0))
1659                 goto out;
1660
1661         if ((bo->mem.placement & swap_placement) != swap_placement) {
1662                 struct ttm_mem_reg evict_mem;
1663
1664                 evict_mem = bo->mem;
1665                 evict_mem.mm_node = NULL;
1666                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1667                 evict_mem.mem_type = TTM_PL_SYSTEM;
1668
1669                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1670                                              false, false);
1671                 if (unlikely(ret != 0))
1672                         goto out;
1673         }
1674
1675         ttm_bo_unmap_virtual(bo);
1676
1677         /**
1678          * Swap out. Buffer will be swapped in again as soon as
1679          * anyone tries to access a ttm page.
1680          */
1681
1682         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1683 out:
1684
1685         /**
1686          *
1687          * Unreserve without putting on LRU to avoid swapping out an
1688          * already swapped buffer.
1689          */
1690
1691         atomic_set(&bo->reserved, 0);
1692         wake_up_all(&bo->event_queue);
1693         kref_put(&bo->list_kref, ttm_bo_release_list);
1694         return ret;
1695 }
1696
1697 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1698 {
1699         while (ttm_bo_swapout(&bdev->shrink) == 0)
1700                 ;
1701 }