2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
59 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
86 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
87 * erroneous - e.g., there was a read error;
88 * o the WL movement is temporarily prohibited (@wl->pq queue);
89 * o scrubbing is needed (@wl->scrub tree).
91 * Depending on the sub-state, wear-leveling entries of the used physical
92 * eraseblocks may be kept in one of those structures.
94 * Note, in this implementation, we keep a small in-RAM object for each physical
95 * eraseblock. This is surely not a scalable solution. But it appears to be good
96 * enough for moderately large flashes and it is simple. In future, one may
97 * re-work this sub-system and make it more scalable.
99 * At the moment this sub-system does not utilize the sequence number, which
100 * was introduced relatively recently. But it would be wise to do this because
101 * the sequence number of a logical eraseblock characterizes how old is it. For
102 * example, when we move a PEB with low erase counter, and we need to pick the
103 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
104 * pick target PEB with an average EC if our PEB is not very "old". This is a
105 * room for future re-works of the WL sub-system.
108 #include <linux/slab.h>
109 #include <linux/crc32.h>
110 #include <linux/freezer.h>
111 #include <linux/kthread.h>
114 /* Number of physical eraseblocks reserved for wear-leveling purposes */
115 #define WL_RESERVED_PEBS 1
118 * Maximum difference between two erase counters. If this threshold is
119 * exceeded, the WL sub-system starts moving data from used physical
120 * eraseblocks with low erase counter to free physical eraseblocks with high
123 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
126 * When a physical eraseblock is moved, the WL sub-system has to pick the target
127 * physical eraseblock to move to. The simplest way would be just to pick the
128 * one with the highest erase counter. But in certain workloads this could lead
129 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
130 * situation when the picked physical eraseblock is constantly erased after the
131 * data is written to it. So, we have a constant which limits the highest erase
132 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
133 * does not pick eraseblocks with erase counter greater than the lowest erase
134 * counter plus %WL_FREE_MAX_DIFF.
136 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
139 * Maximum number of consecutive background thread failures which is enough to
140 * switch to read-only mode.
142 #define WL_MAX_FAILURES 32
145 * struct ubi_work - UBI work description data structure.
146 * @list: a link in the list of pending works
147 * @func: worker function
148 * @e: physical eraseblock to erase
149 * @torture: if the physical eraseblock has to be tortured
151 * The @func pointer points to the worker function. If the @cancel argument is
152 * not zero, the worker has to free the resources and exit immediately. The
153 * worker has to return zero in case of success and a negative error code in
157 struct list_head list;
158 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
159 /* The below fields are only relevant to erasure works */
160 struct ubi_wl_entry *e;
164 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
165 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
166 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
167 struct rb_root *root);
168 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e);
170 #define paranoid_check_ec(ubi, pnum, ec) 0
171 #define paranoid_check_in_wl_tree(e, root)
172 #define paranoid_check_in_pq(ubi, e) 0
176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177 * @e: the wear-leveling entry to add
178 * @root: the root of the tree
180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181 * the @ubi->used and @ubi->free RB-trees.
183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
185 struct rb_node **p, *parent = NULL;
189 struct ubi_wl_entry *e1;
192 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196 else if (e->ec > e1->ec)
199 ubi_assert(e->pnum != e1->pnum);
200 if (e->pnum < e1->pnum)
207 rb_link_node(&e->u.rb, parent, p);
208 rb_insert_color(&e->u.rb, root);
212 * do_work - do one pending work.
213 * @ubi: UBI device description object
215 * This function returns zero in case of success and a negative error code in
218 static int do_work(struct ubi_device *ubi)
221 struct ubi_work *wrk;
226 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 * it in read mode, so many of them may be doing works at a time. But
228 * the queue flush code has to be sure the whole queue of works is
229 * done, and it takes the mutex in write mode.
231 down_read(&ubi->work_sem);
232 spin_lock(&ubi->wl_lock);
233 if (list_empty(&ubi->works)) {
234 spin_unlock(&ubi->wl_lock);
235 up_read(&ubi->work_sem);
239 wrk = list_entry(ubi->works.next, struct ubi_work, list);
240 list_del(&wrk->list);
241 ubi->works_count -= 1;
242 ubi_assert(ubi->works_count >= 0);
243 spin_unlock(&ubi->wl_lock);
246 * Call the worker function. Do not touch the work structure
247 * after this call as it will have been freed or reused by that
248 * time by the worker function.
250 err = wrk->func(ubi, wrk, 0);
252 ubi_err("work failed with error code %d", err);
253 up_read(&ubi->work_sem);
259 * produce_free_peb - produce a free physical eraseblock.
260 * @ubi: UBI device description object
262 * This function tries to make a free PEB by means of synchronous execution of
263 * pending works. This may be needed if, for example the background thread is
264 * disabled. Returns zero in case of success and a negative error code in case
267 static int produce_free_peb(struct ubi_device *ubi)
271 spin_lock(&ubi->wl_lock);
272 while (!ubi->free.rb_node) {
273 spin_unlock(&ubi->wl_lock);
275 dbg_wl("do one work synchronously");
280 spin_lock(&ubi->wl_lock);
282 spin_unlock(&ubi->wl_lock);
288 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
289 * @e: the wear-leveling entry to check
290 * @root: the root of the tree
292 * This function returns non-zero if @e is in the @root RB-tree and zero if it
295 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
301 struct ubi_wl_entry *e1;
303 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
305 if (e->pnum == e1->pnum) {
312 else if (e->ec > e1->ec)
315 ubi_assert(e->pnum != e1->pnum);
316 if (e->pnum < e1->pnum)
327 * prot_queue_add - add physical eraseblock to the protection queue.
328 * @ubi: UBI device description object
329 * @e: the physical eraseblock to add
331 * This function adds @e to the tail of the protection queue @ubi->pq, where
332 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
333 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
338 int pq_tail = ubi->pq_head - 1;
341 pq_tail = UBI_PROT_QUEUE_LEN - 1;
342 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
343 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
344 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
349 * @root: the RB-tree where to look for
350 * @max: highest possible erase counter
352 * This function looks for a wear leveling entry with erase counter closest to
353 * @max and less then @max.
355 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max)
358 struct ubi_wl_entry *e;
360 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
365 struct ubi_wl_entry *e1;
367 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
380 * ubi_wl_get_peb - get a physical eraseblock.
381 * @ubi: UBI device description object
382 * @dtype: type of data which will be stored in this physical eraseblock
384 * This function returns a physical eraseblock in case of success and a
385 * negative error code in case of failure. Might sleep.
387 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
390 struct ubi_wl_entry *e, *first, *last;
392 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
393 dtype == UBI_UNKNOWN);
396 spin_lock(&ubi->wl_lock);
397 if (!ubi->free.rb_node) {
398 if (ubi->works_count == 0) {
399 ubi_assert(list_empty(&ubi->works));
400 ubi_err("no free eraseblocks");
401 spin_unlock(&ubi->wl_lock);
404 spin_unlock(&ubi->wl_lock);
406 err = produce_free_peb(ubi);
415 * For long term data we pick a physical eraseblock with high
416 * erase counter. But the highest erase counter we can pick is
417 * bounded by the the lowest erase counter plus
420 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
424 * For unknown data we pick a physical eraseblock with medium
425 * erase counter. But we by no means can pick a physical
426 * eraseblock with erase counter greater or equivalent than the
427 * lowest erase counter plus %WL_FREE_MAX_DIFF.
429 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
431 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
433 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
434 e = rb_entry(ubi->free.rb_node,
435 struct ubi_wl_entry, u.rb);
437 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2;
438 e = find_wl_entry(&ubi->free, medium_ec);
443 * For short term data we pick a physical eraseblock with the
444 * lowest erase counter as we expect it will be erased soon.
446 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
452 paranoid_check_in_wl_tree(e, &ubi->free);
455 * Move the physical eraseblock to the protection queue where it will
456 * be protected from being moved for some time.
458 rb_erase(&e->u.rb, &ubi->free);
459 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
460 prot_queue_add(ubi, e);
461 spin_unlock(&ubi->wl_lock);
466 * prot_queue_del - remove a physical eraseblock from the protection queue.
467 * @ubi: UBI device description object
468 * @pnum: the physical eraseblock to remove
470 * This function deletes PEB @pnum from the protection queue and returns zero
471 * in case of success and %-ENODEV if the PEB was not found.
473 static int prot_queue_del(struct ubi_device *ubi, int pnum)
475 struct ubi_wl_entry *e;
477 e = ubi->lookuptbl[pnum];
481 if (paranoid_check_in_pq(ubi, e))
484 list_del(&e->u.list);
485 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
490 * sync_erase - synchronously erase a physical eraseblock.
491 * @ubi: UBI device description object
492 * @e: the the physical eraseblock to erase
493 * @torture: if the physical eraseblock has to be tortured
495 * This function returns zero in case of success and a negative error code in
498 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
502 struct ubi_ec_hdr *ec_hdr;
503 unsigned long long ec = e->ec;
505 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
507 err = paranoid_check_ec(ubi, e->pnum, e->ec);
511 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
515 err = ubi_io_sync_erase(ubi, e->pnum, torture);
520 if (ec > UBI_MAX_ERASECOUNTER) {
522 * Erase counter overflow. Upgrade UBI and use 64-bit
523 * erase counters internally.
525 ubi_err("erase counter overflow at PEB %d, EC %llu",
531 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
533 ec_hdr->ec = cpu_to_be64(ec);
535 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
540 spin_lock(&ubi->wl_lock);
541 if (e->ec > ubi->max_ec)
543 spin_unlock(&ubi->wl_lock);
551 * serve_prot_queue - check if it is time to stop protecting PEBs.
552 * @ubi: UBI device description object
554 * This function is called after each erase operation and removes PEBs from the
555 * tail of the protection queue. These PEBs have been protected for long enough
556 * and should be moved to the used tree.
558 static void serve_prot_queue(struct ubi_device *ubi)
560 struct ubi_wl_entry *e, *tmp;
564 * There may be several protected physical eraseblock to remove,
569 spin_lock(&ubi->wl_lock);
570 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
571 dbg_wl("PEB %d EC %d protection over, move to used tree",
574 list_del(&e->u.list);
575 wl_tree_add(e, &ubi->used);
578 * Let's be nice and avoid holding the spinlock for
581 spin_unlock(&ubi->wl_lock);
588 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
590 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
591 spin_unlock(&ubi->wl_lock);
595 * schedule_ubi_work - schedule a work.
596 * @ubi: UBI device description object
597 * @wrk: the work to schedule
599 * This function adds a work defined by @wrk to the tail of the pending works
602 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
604 spin_lock(&ubi->wl_lock);
605 list_add_tail(&wrk->list, &ubi->works);
606 ubi_assert(ubi->works_count >= 0);
607 ubi->works_count += 1;
608 if (ubi->thread_enabled)
609 wake_up_process(ubi->bgt_thread);
610 spin_unlock(&ubi->wl_lock);
613 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
617 * schedule_erase - schedule an erase work.
618 * @ubi: UBI device description object
619 * @e: the WL entry of the physical eraseblock to erase
620 * @torture: if the physical eraseblock has to be tortured
622 * This function returns zero in case of success and a %-ENOMEM in case of
625 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
628 struct ubi_work *wl_wrk;
630 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
631 e->pnum, e->ec, torture);
633 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
637 wl_wrk->func = &erase_worker;
639 wl_wrk->torture = torture;
641 schedule_ubi_work(ubi, wl_wrk);
646 * wear_leveling_worker - wear-leveling worker function.
647 * @ubi: UBI device description object
648 * @wrk: the work object
649 * @cancel: non-zero if the worker has to free memory and exit
651 * This function copies a more worn out physical eraseblock to a less worn out
652 * one. Returns zero in case of success and a negative error code in case of
655 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
658 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
659 int vol_id = -1, uninitialized_var(lnum);
660 struct ubi_wl_entry *e1, *e2;
661 struct ubi_vid_hdr *vid_hdr;
667 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
671 mutex_lock(&ubi->move_mutex);
672 spin_lock(&ubi->wl_lock);
673 ubi_assert(!ubi->move_from && !ubi->move_to);
674 ubi_assert(!ubi->move_to_put);
676 if (!ubi->free.rb_node ||
677 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679 * No free physical eraseblocks? Well, they must be waiting in
680 * the queue to be erased. Cancel movement - it will be
681 * triggered again when a free physical eraseblock appears.
683 * No used physical eraseblocks? They must be temporarily
684 * protected from being moved. They will be moved to the
685 * @ubi->used tree later and the wear-leveling will be
688 dbg_wl("cancel WL, a list is empty: free %d, used %d",
689 !ubi->free.rb_node, !ubi->used.rb_node);
693 if (!ubi->scrub.rb_node) {
695 * Now pick the least worn-out used physical eraseblock and a
696 * highly worn-out free physical eraseblock. If the erase
697 * counters differ much enough, start wear-leveling.
699 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
700 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
702 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
703 dbg_wl("no WL needed: min used EC %d, max free EC %d",
707 paranoid_check_in_wl_tree(e1, &ubi->used);
708 rb_erase(&e1->u.rb, &ubi->used);
709 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
710 e1->pnum, e1->ec, e2->pnum, e2->ec);
712 /* Perform scrubbing */
714 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
715 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
716 paranoid_check_in_wl_tree(e1, &ubi->scrub);
717 rb_erase(&e1->u.rb, &ubi->scrub);
718 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
721 paranoid_check_in_wl_tree(e2, &ubi->free);
722 rb_erase(&e2->u.rb, &ubi->free);
725 spin_unlock(&ubi->wl_lock);
728 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
729 * We so far do not know which logical eraseblock our physical
730 * eraseblock (@e1) belongs to. We have to read the volume identifier
733 * Note, we are protected from this PEB being unmapped and erased. The
734 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
735 * which is being moved was unmapped.
738 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
739 if (err && err != UBI_IO_BITFLIPS) {
740 if (err == UBI_IO_PEB_FREE) {
742 * We are trying to move PEB without a VID header. UBI
743 * always write VID headers shortly after the PEB was
744 * given, so we have a situation when it has not yet
745 * had a chance to write it, because it was preempted.
746 * So add this PEB to the protection queue so far,
747 * because presumably more data will be written there
748 * (including the missing VID header), and then we'll
751 dbg_wl("PEB %d has no VID header", e1->pnum);
756 ubi_err("error %d while reading VID header from PEB %d",
761 vol_id = be32_to_cpu(vid_hdr->vol_id);
762 lnum = be32_to_cpu(vid_hdr->lnum);
764 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
766 if (err == MOVE_CANCEL_RACE) {
768 * The LEB has not been moved because the volume is
769 * being deleted or the PEB has been put meanwhile. We
770 * should prevent this PEB from being selected for
771 * wear-leveling movement again, so put it to the
778 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
779 err == MOVE_TARGET_RD_ERR) {
781 * Target PEB had bit-flips or write error - torture it.
787 if (err == MOVE_SOURCE_RD_ERR) {
789 * An error happened while reading the source PEB. Do
790 * not switch to R/O mode in this case, and give the
791 * upper layers a possibility to recover from this,
792 * e.g. by unmapping corresponding LEB. Instead, just
793 * put this PEB to the @ubi->erroneous list to prevent
794 * UBI from trying to move it over and over again.
796 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
797 ubi_err("too many erroneous eraseblocks (%d)",
798 ubi->erroneous_peb_count);
811 /* The PEB has been successfully moved */
813 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
814 e1->pnum, vol_id, lnum, e2->pnum);
815 ubi_free_vid_hdr(ubi, vid_hdr);
817 spin_lock(&ubi->wl_lock);
818 if (!ubi->move_to_put) {
819 wl_tree_add(e2, &ubi->used);
822 ubi->move_from = ubi->move_to = NULL;
823 ubi->move_to_put = ubi->wl_scheduled = 0;
824 spin_unlock(&ubi->wl_lock);
826 err = schedule_erase(ubi, e1, 0);
828 kmem_cache_free(ubi_wl_entry_slab, e1);
830 kmem_cache_free(ubi_wl_entry_slab, e2);
836 * Well, the target PEB was put meanwhile, schedule it for
839 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
840 e2->pnum, vol_id, lnum);
841 err = schedule_erase(ubi, e2, 0);
843 kmem_cache_free(ubi_wl_entry_slab, e2);
849 mutex_unlock(&ubi->move_mutex);
853 * For some reasons the LEB was not moved, might be an error, might be
854 * something else. @e1 was not changed, so return it back. @e2 might
855 * have been changed, schedule it for erasure.
859 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
860 e1->pnum, vol_id, lnum, e2->pnum, err);
862 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
863 e1->pnum, e2->pnum, err);
864 spin_lock(&ubi->wl_lock);
866 prot_queue_add(ubi, e1);
867 else if (erroneous) {
868 wl_tree_add(e1, &ubi->erroneous);
869 ubi->erroneous_peb_count += 1;
870 } else if (scrubbing)
871 wl_tree_add(e1, &ubi->scrub);
873 wl_tree_add(e1, &ubi->used);
874 ubi_assert(!ubi->move_to_put);
875 ubi->move_from = ubi->move_to = NULL;
876 ubi->wl_scheduled = 0;
877 spin_unlock(&ubi->wl_lock);
879 ubi_free_vid_hdr(ubi, vid_hdr);
880 err = schedule_erase(ubi, e2, torture);
882 kmem_cache_free(ubi_wl_entry_slab, e2);
885 mutex_unlock(&ubi->move_mutex);
890 ubi_err("error %d while moving PEB %d to PEB %d",
891 err, e1->pnum, e2->pnum);
893 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
894 err, e1->pnum, vol_id, lnum, e2->pnum);
895 spin_lock(&ubi->wl_lock);
896 ubi->move_from = ubi->move_to = NULL;
897 ubi->move_to_put = ubi->wl_scheduled = 0;
898 spin_unlock(&ubi->wl_lock);
900 ubi_free_vid_hdr(ubi, vid_hdr);
901 kmem_cache_free(ubi_wl_entry_slab, e1);
902 kmem_cache_free(ubi_wl_entry_slab, e2);
906 mutex_unlock(&ubi->move_mutex);
907 ubi_assert(err != 0);
908 return err < 0 ? err : -EIO;
911 ubi->wl_scheduled = 0;
912 spin_unlock(&ubi->wl_lock);
913 mutex_unlock(&ubi->move_mutex);
914 ubi_free_vid_hdr(ubi, vid_hdr);
919 * ensure_wear_leveling - schedule wear-leveling if it is needed.
920 * @ubi: UBI device description object
922 * This function checks if it is time to start wear-leveling and schedules it
923 * if yes. This function returns zero in case of success and a negative error
924 * code in case of failure.
926 static int ensure_wear_leveling(struct ubi_device *ubi)
929 struct ubi_wl_entry *e1;
930 struct ubi_wl_entry *e2;
931 struct ubi_work *wrk;
933 spin_lock(&ubi->wl_lock);
934 if (ubi->wl_scheduled)
935 /* Wear-leveling is already in the work queue */
939 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
940 * the WL worker has to be scheduled anyway.
942 if (!ubi->scrub.rb_node) {
943 if (!ubi->used.rb_node || !ubi->free.rb_node)
944 /* No physical eraseblocks - no deal */
948 * We schedule wear-leveling only if the difference between the
949 * lowest erase counter of used physical eraseblocks and a high
950 * erase counter of free physical eraseblocks is greater than
953 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
954 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
956 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
958 dbg_wl("schedule wear-leveling");
960 dbg_wl("schedule scrubbing");
962 ubi->wl_scheduled = 1;
963 spin_unlock(&ubi->wl_lock);
965 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
971 wrk->func = &wear_leveling_worker;
972 schedule_ubi_work(ubi, wrk);
976 spin_lock(&ubi->wl_lock);
977 ubi->wl_scheduled = 0;
979 spin_unlock(&ubi->wl_lock);
984 * erase_worker - physical eraseblock erase worker function.
985 * @ubi: UBI device description object
986 * @wl_wrk: the work object
987 * @cancel: non-zero if the worker has to free memory and exit
989 * This function erases a physical eraseblock and perform torture testing if
990 * needed. It also takes care about marking the physical eraseblock bad if
991 * needed. Returns zero in case of success and a negative error code in case of
994 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
997 struct ubi_wl_entry *e = wl_wrk->e;
998 int pnum = e->pnum, err, need;
1001 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1003 kmem_cache_free(ubi_wl_entry_slab, e);
1007 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1009 err = sync_erase(ubi, e, wl_wrk->torture);
1011 /* Fine, we've erased it successfully */
1014 spin_lock(&ubi->wl_lock);
1015 wl_tree_add(e, &ubi->free);
1016 spin_unlock(&ubi->wl_lock);
1019 * One more erase operation has happened, take care about
1020 * protected physical eraseblocks.
1022 serve_prot_queue(ubi);
1024 /* And take care about wear-leveling */
1025 err = ensure_wear_leveling(ubi);
1029 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1031 kmem_cache_free(ubi_wl_entry_slab, e);
1033 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1037 /* Re-schedule the LEB for erasure */
1038 err1 = schedule_erase(ubi, e, 0);
1044 } else if (err != -EIO) {
1046 * If this is not %-EIO, we have no idea what to do. Scheduling
1047 * this physical eraseblock for erasure again would cause
1048 * errors again and again. Well, lets switch to R/O mode.
1053 /* It is %-EIO, the PEB went bad */
1055 if (!ubi->bad_allowed) {
1056 ubi_err("bad physical eraseblock %d detected", pnum);
1060 spin_lock(&ubi->volumes_lock);
1061 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1063 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1064 ubi->avail_pebs -= need;
1065 ubi->rsvd_pebs += need;
1066 ubi->beb_rsvd_pebs += need;
1068 ubi_msg("reserve more %d PEBs", need);
1071 if (ubi->beb_rsvd_pebs == 0) {
1072 spin_unlock(&ubi->volumes_lock);
1073 ubi_err("no reserved physical eraseblocks");
1076 spin_unlock(&ubi->volumes_lock);
1078 ubi_msg("mark PEB %d as bad", pnum);
1079 err = ubi_io_mark_bad(ubi, pnum);
1083 spin_lock(&ubi->volumes_lock);
1084 ubi->beb_rsvd_pebs -= 1;
1085 ubi->bad_peb_count += 1;
1086 ubi->good_peb_count -= 1;
1087 ubi_calculate_reserved(ubi);
1088 if (ubi->beb_rsvd_pebs)
1089 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1091 ubi_warn("last PEB from the reserved pool was used");
1092 spin_unlock(&ubi->volumes_lock);
1102 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1103 * @ubi: UBI device description object
1104 * @pnum: physical eraseblock to return
1105 * @torture: if this physical eraseblock has to be tortured
1107 * This function is called to return physical eraseblock @pnum to the pool of
1108 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1109 * occurred to this @pnum and it has to be tested. This function returns zero
1110 * in case of success, and a negative error code in case of failure.
1112 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1115 struct ubi_wl_entry *e;
1117 dbg_wl("PEB %d", pnum);
1118 ubi_assert(pnum >= 0);
1119 ubi_assert(pnum < ubi->peb_count);
1122 spin_lock(&ubi->wl_lock);
1123 e = ubi->lookuptbl[pnum];
1124 if (e == ubi->move_from) {
1126 * User is putting the physical eraseblock which was selected to
1127 * be moved. It will be scheduled for erasure in the
1128 * wear-leveling worker.
1130 dbg_wl("PEB %d is being moved, wait", pnum);
1131 spin_unlock(&ubi->wl_lock);
1133 /* Wait for the WL worker by taking the @ubi->move_mutex */
1134 mutex_lock(&ubi->move_mutex);
1135 mutex_unlock(&ubi->move_mutex);
1137 } else if (e == ubi->move_to) {
1139 * User is putting the physical eraseblock which was selected
1140 * as the target the data is moved to. It may happen if the EBA
1141 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1142 * but the WL sub-system has not put the PEB to the "used" tree
1143 * yet, but it is about to do this. So we just set a flag which
1144 * will tell the WL worker that the PEB is not needed anymore
1145 * and should be scheduled for erasure.
1147 dbg_wl("PEB %d is the target of data moving", pnum);
1148 ubi_assert(!ubi->move_to_put);
1149 ubi->move_to_put = 1;
1150 spin_unlock(&ubi->wl_lock);
1153 if (in_wl_tree(e, &ubi->used)) {
1154 paranoid_check_in_wl_tree(e, &ubi->used);
1155 rb_erase(&e->u.rb, &ubi->used);
1156 } else if (in_wl_tree(e, &ubi->scrub)) {
1157 paranoid_check_in_wl_tree(e, &ubi->scrub);
1158 rb_erase(&e->u.rb, &ubi->scrub);
1159 } else if (in_wl_tree(e, &ubi->erroneous)) {
1160 paranoid_check_in_wl_tree(e, &ubi->erroneous);
1161 rb_erase(&e->u.rb, &ubi->erroneous);
1162 ubi->erroneous_peb_count -= 1;
1163 ubi_assert(ubi->erroneous_peb_count >= 0);
1164 /* Erroneous PEBs should be tortured */
1167 err = prot_queue_del(ubi, e->pnum);
1169 ubi_err("PEB %d not found", pnum);
1171 spin_unlock(&ubi->wl_lock);
1176 spin_unlock(&ubi->wl_lock);
1178 err = schedule_erase(ubi, e, torture);
1180 spin_lock(&ubi->wl_lock);
1181 wl_tree_add(e, &ubi->used);
1182 spin_unlock(&ubi->wl_lock);
1189 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1190 * @ubi: UBI device description object
1191 * @pnum: the physical eraseblock to schedule
1193 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1194 * needs scrubbing. This function schedules a physical eraseblock for
1195 * scrubbing which is done in background. This function returns zero in case of
1196 * success and a negative error code in case of failure.
1198 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1200 struct ubi_wl_entry *e;
1202 dbg_msg("schedule PEB %d for scrubbing", pnum);
1205 spin_lock(&ubi->wl_lock);
1206 e = ubi->lookuptbl[pnum];
1207 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) {
1208 spin_unlock(&ubi->wl_lock);
1212 if (e == ubi->move_to) {
1214 * This physical eraseblock was used to move data to. The data
1215 * was moved but the PEB was not yet inserted to the proper
1216 * tree. We should just wait a little and let the WL worker
1219 spin_unlock(&ubi->wl_lock);
1220 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1225 if (in_wl_tree(e, &ubi->used)) {
1226 paranoid_check_in_wl_tree(e, &ubi->used);
1227 rb_erase(&e->u.rb, &ubi->used);
1231 err = prot_queue_del(ubi, e->pnum);
1233 ubi_err("PEB %d not found", pnum);
1235 spin_unlock(&ubi->wl_lock);
1240 wl_tree_add(e, &ubi->scrub);
1241 spin_unlock(&ubi->wl_lock);
1244 * Technically scrubbing is the same as wear-leveling, so it is done
1247 return ensure_wear_leveling(ubi);
1251 * ubi_wl_flush - flush all pending works.
1252 * @ubi: UBI device description object
1254 * This function returns zero in case of success and a negative error code in
1257 int ubi_wl_flush(struct ubi_device *ubi)
1262 * Erase while the pending works queue is not empty, but not more than
1263 * the number of currently pending works.
1265 dbg_wl("flush (%d pending works)", ubi->works_count);
1266 while (ubi->works_count) {
1273 * Make sure all the works which have been done in parallel are
1276 down_write(&ubi->work_sem);
1277 up_write(&ubi->work_sem);
1280 * And in case last was the WL worker and it canceled the LEB
1281 * movement, flush again.
1283 while (ubi->works_count) {
1284 dbg_wl("flush more (%d pending works)", ubi->works_count);
1294 * tree_destroy - destroy an RB-tree.
1295 * @root: the root of the tree to destroy
1297 static void tree_destroy(struct rb_root *root)
1300 struct ubi_wl_entry *e;
1306 else if (rb->rb_right)
1309 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1313 if (rb->rb_left == &e->u.rb)
1316 rb->rb_right = NULL;
1319 kmem_cache_free(ubi_wl_entry_slab, e);
1325 * ubi_thread - UBI background thread.
1326 * @u: the UBI device description object pointer
1328 int ubi_thread(void *u)
1331 struct ubi_device *ubi = u;
1333 ubi_msg("background thread \"%s\" started, PID %d",
1334 ubi->bgt_name, task_pid_nr(current));
1340 if (kthread_should_stop())
1343 if (try_to_freeze())
1346 spin_lock(&ubi->wl_lock);
1347 if (list_empty(&ubi->works) || ubi->ro_mode ||
1348 !ubi->thread_enabled) {
1349 set_current_state(TASK_INTERRUPTIBLE);
1350 spin_unlock(&ubi->wl_lock);
1354 spin_unlock(&ubi->wl_lock);
1358 ubi_err("%s: work failed with error code %d",
1359 ubi->bgt_name, err);
1360 if (failures++ > WL_MAX_FAILURES) {
1362 * Too many failures, disable the thread and
1363 * switch to read-only mode.
1365 ubi_msg("%s: %d consecutive failures",
1366 ubi->bgt_name, WL_MAX_FAILURES);
1368 ubi->thread_enabled = 0;
1377 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1382 * cancel_pending - cancel all pending works.
1383 * @ubi: UBI device description object
1385 static void cancel_pending(struct ubi_device *ubi)
1387 while (!list_empty(&ubi->works)) {
1388 struct ubi_work *wrk;
1390 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1391 list_del(&wrk->list);
1392 wrk->func(ubi, wrk, 1);
1393 ubi->works_count -= 1;
1394 ubi_assert(ubi->works_count >= 0);
1399 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1400 * @ubi: UBI device description object
1401 * @si: scanning information
1403 * This function returns zero in case of success, and a negative error code in
1406 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1409 struct rb_node *rb1, *rb2;
1410 struct ubi_scan_volume *sv;
1411 struct ubi_scan_leb *seb, *tmp;
1412 struct ubi_wl_entry *e;
1414 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1415 spin_lock_init(&ubi->wl_lock);
1416 mutex_init(&ubi->move_mutex);
1417 init_rwsem(&ubi->work_sem);
1418 ubi->max_ec = si->max_ec;
1419 INIT_LIST_HEAD(&ubi->works);
1421 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1424 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1425 if (!ubi->lookuptbl)
1428 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1429 INIT_LIST_HEAD(&ubi->pq[i]);
1432 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1435 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1439 e->pnum = seb->pnum;
1441 ubi->lookuptbl[e->pnum] = e;
1442 if (schedule_erase(ubi, e, 0)) {
1443 kmem_cache_free(ubi_wl_entry_slab, e);
1448 list_for_each_entry(seb, &si->free, u.list) {
1451 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1455 e->pnum = seb->pnum;
1457 ubi_assert(e->ec >= 0);
1458 wl_tree_add(e, &ubi->free);
1459 ubi->lookuptbl[e->pnum] = e;
1462 list_for_each_entry(seb, &si->corr, u.list) {
1465 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1469 e->pnum = seb->pnum;
1471 ubi->lookuptbl[e->pnum] = e;
1472 if (schedule_erase(ubi, e, 0)) {
1473 kmem_cache_free(ubi_wl_entry_slab, e);
1478 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1479 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1482 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1486 e->pnum = seb->pnum;
1488 ubi->lookuptbl[e->pnum] = e;
1490 dbg_wl("add PEB %d EC %d to the used tree",
1492 wl_tree_add(e, &ubi->used);
1494 dbg_wl("add PEB %d EC %d to the scrub tree",
1496 wl_tree_add(e, &ubi->scrub);
1501 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1502 ubi_err("no enough physical eraseblocks (%d, need %d)",
1503 ubi->avail_pebs, WL_RESERVED_PEBS);
1506 ubi->avail_pebs -= WL_RESERVED_PEBS;
1507 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1509 /* Schedule wear-leveling if needed */
1510 err = ensure_wear_leveling(ubi);
1517 cancel_pending(ubi);
1518 tree_destroy(&ubi->used);
1519 tree_destroy(&ubi->free);
1520 tree_destroy(&ubi->scrub);
1521 kfree(ubi->lookuptbl);
1526 * protection_queue_destroy - destroy the protection queue.
1527 * @ubi: UBI device description object
1529 static void protection_queue_destroy(struct ubi_device *ubi)
1532 struct ubi_wl_entry *e, *tmp;
1534 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1535 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1536 list_del(&e->u.list);
1537 kmem_cache_free(ubi_wl_entry_slab, e);
1543 * ubi_wl_close - close the wear-leveling sub-system.
1544 * @ubi: UBI device description object
1546 void ubi_wl_close(struct ubi_device *ubi)
1548 dbg_wl("close the WL sub-system");
1549 cancel_pending(ubi);
1550 protection_queue_destroy(ubi);
1551 tree_destroy(&ubi->used);
1552 tree_destroy(&ubi->erroneous);
1553 tree_destroy(&ubi->free);
1554 tree_destroy(&ubi->scrub);
1555 kfree(ubi->lookuptbl);
1558 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1561 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1562 * @ubi: UBI device description object
1563 * @pnum: the physical eraseblock number to check
1564 * @ec: the erase counter to check
1566 * This function returns zero if the erase counter of physical eraseblock @pnum
1567 * is equivalent to @ec, %1 if not, and a negative error code if an error
1570 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1574 struct ubi_ec_hdr *ec_hdr;
1576 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1580 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1581 if (err && err != UBI_IO_BITFLIPS) {
1582 /* The header does not have to exist */
1587 read_ec = be64_to_cpu(ec_hdr->ec);
1588 if (ec != read_ec) {
1589 ubi_err("paranoid check failed for PEB %d", pnum);
1590 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1591 ubi_dbg_dump_stack();
1602 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1603 * @e: the wear-leveling entry to check
1604 * @root: the root of the tree
1606 * This function returns zero if @e is in the @root RB-tree and %1 if it is
1609 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e,
1610 struct rb_root *root)
1612 if (in_wl_tree(e, root))
1615 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1616 e->pnum, e->ec, root);
1617 ubi_dbg_dump_stack();
1622 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1624 * @ubi: UBI device description object
1625 * @e: the wear-leveling entry to check
1627 * This function returns zero if @e is in @ubi->pq and %1 if it is not.
1629 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e)
1631 struct ubi_wl_entry *p;
1634 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1635 list_for_each_entry(p, &ubi->pq[i], u.list)
1639 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1641 ubi_dbg_dump_stack();
1644 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */