mm: replace some BUG_ONs by VM_BUG_ONs
[linux-2.6] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 #include <linux/memcontrol.h>
31
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <linux/swapops.h>
35
36 static DEFINE_SPINLOCK(swap_lock);
37 static unsigned int nr_swapfiles;
38 long total_swap_pages;
39 static int swap_overflow;
40 static int least_priority;
41
42 static const char Bad_file[] = "Bad swap file entry ";
43 static const char Unused_file[] = "Unused swap file entry ";
44 static const char Bad_offset[] = "Bad swap offset entry ";
45 static const char Unused_offset[] = "Unused swap offset entry ";
46
47 static struct swap_list_t swap_list = {-1, -1};
48
49 static struct swap_info_struct swap_info[MAX_SWAPFILES];
50
51 static DEFINE_MUTEX(swapon_mutex);
52
53 /*
54  * We need this because the bdev->unplug_fn can sleep and we cannot
55  * hold swap_lock while calling the unplug_fn. And swap_lock
56  * cannot be turned into a mutex.
57  */
58 static DECLARE_RWSEM(swap_unplug_sem);
59
60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61 {
62         swp_entry_t entry;
63
64         down_read(&swap_unplug_sem);
65         entry.val = page_private(page);
66         if (PageSwapCache(page)) {
67                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68                 struct backing_dev_info *bdi;
69
70                 /*
71                  * If the page is removed from swapcache from under us (with a
72                  * racy try_to_unuse/swapoff) we need an additional reference
73                  * count to avoid reading garbage from page_private(page) above.
74                  * If the WARN_ON triggers during a swapoff it maybe the race
75                  * condition and it's harmless. However if it triggers without
76                  * swapoff it signals a problem.
77                  */
78                 WARN_ON(page_count(page) <= 1);
79
80                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
81                 blk_run_backing_dev(bdi, page);
82         }
83         up_read(&swap_unplug_sem);
84 }
85
86 #define SWAPFILE_CLUSTER        256
87 #define LATENCY_LIMIT           256
88
89 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
90 {
91         unsigned long offset, last_in_cluster;
92         int latency_ration = LATENCY_LIMIT;
93
94         /* 
95          * We try to cluster swap pages by allocating them sequentially
96          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
97          * way, however, we resort to first-free allocation, starting
98          * a new cluster.  This prevents us from scattering swap pages
99          * all over the entire swap partition, so that we reduce
100          * overall disk seek times between swap pages.  -- sct
101          * But we do now try to find an empty cluster.  -Andrea
102          */
103
104         si->flags += SWP_SCANNING;
105         if (unlikely(!si->cluster_nr)) {
106                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108                         goto lowest;
109                 spin_unlock(&swap_lock);
110
111                 offset = si->lowest_bit;
112                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114                 /* Locate the first empty (unaligned) cluster */
115                 for (; last_in_cluster <= si->highest_bit; offset++) {
116                         if (si->swap_map[offset])
117                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
118                         else if (offset == last_in_cluster) {
119                                 spin_lock(&swap_lock);
120                                 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
121                                 goto cluster;
122                         }
123                         if (unlikely(--latency_ration < 0)) {
124                                 cond_resched();
125                                 latency_ration = LATENCY_LIMIT;
126                         }
127                 }
128                 spin_lock(&swap_lock);
129                 goto lowest;
130         }
131
132         si->cluster_nr--;
133 cluster:
134         offset = si->cluster_next;
135         if (offset > si->highest_bit)
136 lowest:         offset = si->lowest_bit;
137 checks: if (!(si->flags & SWP_WRITEOK))
138                 goto no_page;
139         if (!si->highest_bit)
140                 goto no_page;
141         if (!si->swap_map[offset]) {
142                 if (offset == si->lowest_bit)
143                         si->lowest_bit++;
144                 if (offset == si->highest_bit)
145                         si->highest_bit--;
146                 si->inuse_pages++;
147                 if (si->inuse_pages == si->pages) {
148                         si->lowest_bit = si->max;
149                         si->highest_bit = 0;
150                 }
151                 si->swap_map[offset] = 1;
152                 si->cluster_next = offset + 1;
153                 si->flags -= SWP_SCANNING;
154                 return offset;
155         }
156
157         spin_unlock(&swap_lock);
158         while (++offset <= si->highest_bit) {
159                 if (!si->swap_map[offset]) {
160                         spin_lock(&swap_lock);
161                         goto checks;
162                 }
163                 if (unlikely(--latency_ration < 0)) {
164                         cond_resched();
165                         latency_ration = LATENCY_LIMIT;
166                 }
167         }
168         spin_lock(&swap_lock);
169         goto lowest;
170
171 no_page:
172         si->flags -= SWP_SCANNING;
173         return 0;
174 }
175
176 swp_entry_t get_swap_page(void)
177 {
178         struct swap_info_struct *si;
179         pgoff_t offset;
180         int type, next;
181         int wrapped = 0;
182
183         spin_lock(&swap_lock);
184         if (nr_swap_pages <= 0)
185                 goto noswap;
186         nr_swap_pages--;
187
188         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189                 si = swap_info + type;
190                 next = si->next;
191                 if (next < 0 ||
192                     (!wrapped && si->prio != swap_info[next].prio)) {
193                         next = swap_list.head;
194                         wrapped++;
195                 }
196
197                 if (!si->highest_bit)
198                         continue;
199                 if (!(si->flags & SWP_WRITEOK))
200                         continue;
201
202                 swap_list.next = next;
203                 offset = scan_swap_map(si);
204                 if (offset) {
205                         spin_unlock(&swap_lock);
206                         return swp_entry(type, offset);
207                 }
208                 next = swap_list.next;
209         }
210
211         nr_swap_pages++;
212 noswap:
213         spin_unlock(&swap_lock);
214         return (swp_entry_t) {0};
215 }
216
217 swp_entry_t get_swap_page_of_type(int type)
218 {
219         struct swap_info_struct *si;
220         pgoff_t offset;
221
222         spin_lock(&swap_lock);
223         si = swap_info + type;
224         if (si->flags & SWP_WRITEOK) {
225                 nr_swap_pages--;
226                 offset = scan_swap_map(si);
227                 if (offset) {
228                         spin_unlock(&swap_lock);
229                         return swp_entry(type, offset);
230                 }
231                 nr_swap_pages++;
232         }
233         spin_unlock(&swap_lock);
234         return (swp_entry_t) {0};
235 }
236
237 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238 {
239         struct swap_info_struct * p;
240         unsigned long offset, type;
241
242         if (!entry.val)
243                 goto out;
244         type = swp_type(entry);
245         if (type >= nr_swapfiles)
246                 goto bad_nofile;
247         p = & swap_info[type];
248         if (!(p->flags & SWP_USED))
249                 goto bad_device;
250         offset = swp_offset(entry);
251         if (offset >= p->max)
252                 goto bad_offset;
253         if (!p->swap_map[offset])
254                 goto bad_free;
255         spin_lock(&swap_lock);
256         return p;
257
258 bad_free:
259         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260         goto out;
261 bad_offset:
262         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263         goto out;
264 bad_device:
265         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266         goto out;
267 bad_nofile:
268         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269 out:
270         return NULL;
271 }       
272
273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274 {
275         int count = p->swap_map[offset];
276
277         if (count < SWAP_MAP_MAX) {
278                 count--;
279                 p->swap_map[offset] = count;
280                 if (!count) {
281                         if (offset < p->lowest_bit)
282                                 p->lowest_bit = offset;
283                         if (offset > p->highest_bit)
284                                 p->highest_bit = offset;
285                         if (p->prio > swap_info[swap_list.next].prio)
286                                 swap_list.next = p - swap_info;
287                         nr_swap_pages++;
288                         p->inuse_pages--;
289                 }
290         }
291         return count;
292 }
293
294 /*
295  * Caller has made sure that the swapdevice corresponding to entry
296  * is still around or has not been recycled.
297  */
298 void swap_free(swp_entry_t entry)
299 {
300         struct swap_info_struct * p;
301
302         p = swap_info_get(entry);
303         if (p) {
304                 swap_entry_free(p, swp_offset(entry));
305                 spin_unlock(&swap_lock);
306         }
307 }
308
309 /*
310  * How many references to page are currently swapped out?
311  */
312 static inline int page_swapcount(struct page *page)
313 {
314         int count = 0;
315         struct swap_info_struct *p;
316         swp_entry_t entry;
317
318         entry.val = page_private(page);
319         p = swap_info_get(entry);
320         if (p) {
321                 /* Subtract the 1 for the swap cache itself */
322                 count = p->swap_map[swp_offset(entry)] - 1;
323                 spin_unlock(&swap_lock);
324         }
325         return count;
326 }
327
328 /*
329  * We can use this swap cache entry directly
330  * if there are no other references to it.
331  */
332 int can_share_swap_page(struct page *page)
333 {
334         int count;
335
336         VM_BUG_ON(!PageLocked(page));
337         count = page_mapcount(page);
338         if (count <= 1 && PageSwapCache(page))
339                 count += page_swapcount(page);
340         return count == 1;
341 }
342
343 /*
344  * Work out if there are any other processes sharing this
345  * swap cache page. Free it if you can. Return success.
346  */
347 static int remove_exclusive_swap_page_count(struct page *page, int count)
348 {
349         int retval;
350         struct swap_info_struct * p;
351         swp_entry_t entry;
352
353         VM_BUG_ON(!PageLocked(page));
354
355         if (!PageSwapCache(page))
356                 return 0;
357         if (PageWriteback(page))
358                 return 0;
359         if (page_count(page) != count) /* us + cache + ptes */
360                 return 0;
361
362         entry.val = page_private(page);
363         p = swap_info_get(entry);
364         if (!p)
365                 return 0;
366
367         /* Is the only swap cache user the cache itself? */
368         retval = 0;
369         if (p->swap_map[swp_offset(entry)] == 1) {
370                 /* Recheck the page count with the swapcache lock held.. */
371                 spin_lock_irq(&swapper_space.tree_lock);
372                 if ((page_count(page) == count) && !PageWriteback(page)) {
373                         __delete_from_swap_cache(page);
374                         SetPageDirty(page);
375                         retval = 1;
376                 }
377                 spin_unlock_irq(&swapper_space.tree_lock);
378         }
379         spin_unlock(&swap_lock);
380
381         if (retval) {
382                 swap_free(entry);
383                 page_cache_release(page);
384         }
385
386         return retval;
387 }
388
389 /*
390  * Most of the time the page should have two references: one for the
391  * process and one for the swap cache.
392  */
393 int remove_exclusive_swap_page(struct page *page)
394 {
395         return remove_exclusive_swap_page_count(page, 2);
396 }
397
398 /*
399  * The pageout code holds an extra reference to the page.  That raises
400  * the reference count to test for to 2 for a page that is only in the
401  * swap cache plus 1 for each process that maps the page.
402  */
403 int remove_exclusive_swap_page_ref(struct page *page)
404 {
405         return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
406 }
407
408 /*
409  * Free the swap entry like above, but also try to
410  * free the page cache entry if it is the last user.
411  */
412 void free_swap_and_cache(swp_entry_t entry)
413 {
414         struct swap_info_struct * p;
415         struct page *page = NULL;
416
417         if (is_migration_entry(entry))
418                 return;
419
420         p = swap_info_get(entry);
421         if (p) {
422                 if (swap_entry_free(p, swp_offset(entry)) == 1) {
423                         page = find_get_page(&swapper_space, entry.val);
424                         if (page && !trylock_page(page)) {
425                                 page_cache_release(page);
426                                 page = NULL;
427                         }
428                 }
429                 spin_unlock(&swap_lock);
430         }
431         if (page) {
432                 int one_user;
433
434                 one_user = (page_count(page) == 2);
435                 /* Only cache user (+us), or swap space full? Free it! */
436                 /* Also recheck PageSwapCache after page is locked (above) */
437                 if (PageSwapCache(page) && !PageWriteback(page) &&
438                                         (one_user || vm_swap_full())) {
439                         delete_from_swap_cache(page);
440                         SetPageDirty(page);
441                 }
442                 unlock_page(page);
443                 page_cache_release(page);
444         }
445 }
446
447 #ifdef CONFIG_HIBERNATION
448 /*
449  * Find the swap type that corresponds to given device (if any).
450  *
451  * @offset - number of the PAGE_SIZE-sized block of the device, starting
452  * from 0, in which the swap header is expected to be located.
453  *
454  * This is needed for the suspend to disk (aka swsusp).
455  */
456 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
457 {
458         struct block_device *bdev = NULL;
459         int i;
460
461         if (device)
462                 bdev = bdget(device);
463
464         spin_lock(&swap_lock);
465         for (i = 0; i < nr_swapfiles; i++) {
466                 struct swap_info_struct *sis = swap_info + i;
467
468                 if (!(sis->flags & SWP_WRITEOK))
469                         continue;
470
471                 if (!bdev) {
472                         if (bdev_p)
473                                 *bdev_p = sis->bdev;
474
475                         spin_unlock(&swap_lock);
476                         return i;
477                 }
478                 if (bdev == sis->bdev) {
479                         struct swap_extent *se;
480
481                         se = list_entry(sis->extent_list.next,
482                                         struct swap_extent, list);
483                         if (se->start_block == offset) {
484                                 if (bdev_p)
485                                         *bdev_p = sis->bdev;
486
487                                 spin_unlock(&swap_lock);
488                                 bdput(bdev);
489                                 return i;
490                         }
491                 }
492         }
493         spin_unlock(&swap_lock);
494         if (bdev)
495                 bdput(bdev);
496
497         return -ENODEV;
498 }
499
500 /*
501  * Return either the total number of swap pages of given type, or the number
502  * of free pages of that type (depending on @free)
503  *
504  * This is needed for software suspend
505  */
506 unsigned int count_swap_pages(int type, int free)
507 {
508         unsigned int n = 0;
509
510         if (type < nr_swapfiles) {
511                 spin_lock(&swap_lock);
512                 if (swap_info[type].flags & SWP_WRITEOK) {
513                         n = swap_info[type].pages;
514                         if (free)
515                                 n -= swap_info[type].inuse_pages;
516                 }
517                 spin_unlock(&swap_lock);
518         }
519         return n;
520 }
521 #endif
522
523 /*
524  * No need to decide whether this PTE shares the swap entry with others,
525  * just let do_wp_page work it out if a write is requested later - to
526  * force COW, vm_page_prot omits write permission from any private vma.
527  */
528 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
529                 unsigned long addr, swp_entry_t entry, struct page *page)
530 {
531         spinlock_t *ptl;
532         pte_t *pte;
533         int ret = 1;
534
535         if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
536                 ret = -ENOMEM;
537
538         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
539         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
540                 if (ret > 0)
541                         mem_cgroup_uncharge_page(page);
542                 ret = 0;
543                 goto out;
544         }
545
546         inc_mm_counter(vma->vm_mm, anon_rss);
547         get_page(page);
548         set_pte_at(vma->vm_mm, addr, pte,
549                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
550         page_add_anon_rmap(page, vma, addr);
551         swap_free(entry);
552         /*
553          * Move the page to the active list so it is not
554          * immediately swapped out again after swapon.
555          */
556         activate_page(page);
557 out:
558         pte_unmap_unlock(pte, ptl);
559         return ret;
560 }
561
562 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
563                                 unsigned long addr, unsigned long end,
564                                 swp_entry_t entry, struct page *page)
565 {
566         pte_t swp_pte = swp_entry_to_pte(entry);
567         pte_t *pte;
568         int ret = 0;
569
570         /*
571          * We don't actually need pte lock while scanning for swp_pte: since
572          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
573          * page table while we're scanning; though it could get zapped, and on
574          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
575          * of unmatched parts which look like swp_pte, so unuse_pte must
576          * recheck under pte lock.  Scanning without pte lock lets it be
577          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
578          */
579         pte = pte_offset_map(pmd, addr);
580         do {
581                 /*
582                  * swapoff spends a _lot_ of time in this loop!
583                  * Test inline before going to call unuse_pte.
584                  */
585                 if (unlikely(pte_same(*pte, swp_pte))) {
586                         pte_unmap(pte);
587                         ret = unuse_pte(vma, pmd, addr, entry, page);
588                         if (ret)
589                                 goto out;
590                         pte = pte_offset_map(pmd, addr);
591                 }
592         } while (pte++, addr += PAGE_SIZE, addr != end);
593         pte_unmap(pte - 1);
594 out:
595         return ret;
596 }
597
598 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
599                                 unsigned long addr, unsigned long end,
600                                 swp_entry_t entry, struct page *page)
601 {
602         pmd_t *pmd;
603         unsigned long next;
604         int ret;
605
606         pmd = pmd_offset(pud, addr);
607         do {
608                 next = pmd_addr_end(addr, end);
609                 if (pmd_none_or_clear_bad(pmd))
610                         continue;
611                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
612                 if (ret)
613                         return ret;
614         } while (pmd++, addr = next, addr != end);
615         return 0;
616 }
617
618 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
619                                 unsigned long addr, unsigned long end,
620                                 swp_entry_t entry, struct page *page)
621 {
622         pud_t *pud;
623         unsigned long next;
624         int ret;
625
626         pud = pud_offset(pgd, addr);
627         do {
628                 next = pud_addr_end(addr, end);
629                 if (pud_none_or_clear_bad(pud))
630                         continue;
631                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
632                 if (ret)
633                         return ret;
634         } while (pud++, addr = next, addr != end);
635         return 0;
636 }
637
638 static int unuse_vma(struct vm_area_struct *vma,
639                                 swp_entry_t entry, struct page *page)
640 {
641         pgd_t *pgd;
642         unsigned long addr, end, next;
643         int ret;
644
645         if (page->mapping) {
646                 addr = page_address_in_vma(page, vma);
647                 if (addr == -EFAULT)
648                         return 0;
649                 else
650                         end = addr + PAGE_SIZE;
651         } else {
652                 addr = vma->vm_start;
653                 end = vma->vm_end;
654         }
655
656         pgd = pgd_offset(vma->vm_mm, addr);
657         do {
658                 next = pgd_addr_end(addr, end);
659                 if (pgd_none_or_clear_bad(pgd))
660                         continue;
661                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
662                 if (ret)
663                         return ret;
664         } while (pgd++, addr = next, addr != end);
665         return 0;
666 }
667
668 static int unuse_mm(struct mm_struct *mm,
669                                 swp_entry_t entry, struct page *page)
670 {
671         struct vm_area_struct *vma;
672         int ret = 0;
673
674         if (!down_read_trylock(&mm->mmap_sem)) {
675                 /*
676                  * Activate page so shrink_inactive_list is unlikely to unmap
677                  * its ptes while lock is dropped, so swapoff can make progress.
678                  */
679                 activate_page(page);
680                 unlock_page(page);
681                 down_read(&mm->mmap_sem);
682                 lock_page(page);
683         }
684         for (vma = mm->mmap; vma; vma = vma->vm_next) {
685                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
686                         break;
687         }
688         up_read(&mm->mmap_sem);
689         return (ret < 0)? ret: 0;
690 }
691
692 /*
693  * Scan swap_map from current position to next entry still in use.
694  * Recycle to start on reaching the end, returning 0 when empty.
695  */
696 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
697                                         unsigned int prev)
698 {
699         unsigned int max = si->max;
700         unsigned int i = prev;
701         int count;
702
703         /*
704          * No need for swap_lock here: we're just looking
705          * for whether an entry is in use, not modifying it; false
706          * hits are okay, and sys_swapoff() has already prevented new
707          * allocations from this area (while holding swap_lock).
708          */
709         for (;;) {
710                 if (++i >= max) {
711                         if (!prev) {
712                                 i = 0;
713                                 break;
714                         }
715                         /*
716                          * No entries in use at top of swap_map,
717                          * loop back to start and recheck there.
718                          */
719                         max = prev + 1;
720                         prev = 0;
721                         i = 1;
722                 }
723                 count = si->swap_map[i];
724                 if (count && count != SWAP_MAP_BAD)
725                         break;
726         }
727         return i;
728 }
729
730 /*
731  * We completely avoid races by reading each swap page in advance,
732  * and then search for the process using it.  All the necessary
733  * page table adjustments can then be made atomically.
734  */
735 static int try_to_unuse(unsigned int type)
736 {
737         struct swap_info_struct * si = &swap_info[type];
738         struct mm_struct *start_mm;
739         unsigned short *swap_map;
740         unsigned short swcount;
741         struct page *page;
742         swp_entry_t entry;
743         unsigned int i = 0;
744         int retval = 0;
745         int reset_overflow = 0;
746         int shmem;
747
748         /*
749          * When searching mms for an entry, a good strategy is to
750          * start at the first mm we freed the previous entry from
751          * (though actually we don't notice whether we or coincidence
752          * freed the entry).  Initialize this start_mm with a hold.
753          *
754          * A simpler strategy would be to start at the last mm we
755          * freed the previous entry from; but that would take less
756          * advantage of mmlist ordering, which clusters forked mms
757          * together, child after parent.  If we race with dup_mmap(), we
758          * prefer to resolve parent before child, lest we miss entries
759          * duplicated after we scanned child: using last mm would invert
760          * that.  Though it's only a serious concern when an overflowed
761          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
762          */
763         start_mm = &init_mm;
764         atomic_inc(&init_mm.mm_users);
765
766         /*
767          * Keep on scanning until all entries have gone.  Usually,
768          * one pass through swap_map is enough, but not necessarily:
769          * there are races when an instance of an entry might be missed.
770          */
771         while ((i = find_next_to_unuse(si, i)) != 0) {
772                 if (signal_pending(current)) {
773                         retval = -EINTR;
774                         break;
775                 }
776
777                 /* 
778                  * Get a page for the entry, using the existing swap
779                  * cache page if there is one.  Otherwise, get a clean
780                  * page and read the swap into it. 
781                  */
782                 swap_map = &si->swap_map[i];
783                 entry = swp_entry(type, i);
784                 page = read_swap_cache_async(entry,
785                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
786                 if (!page) {
787                         /*
788                          * Either swap_duplicate() failed because entry
789                          * has been freed independently, and will not be
790                          * reused since sys_swapoff() already disabled
791                          * allocation from here, or alloc_page() failed.
792                          */
793                         if (!*swap_map)
794                                 continue;
795                         retval = -ENOMEM;
796                         break;
797                 }
798
799                 /*
800                  * Don't hold on to start_mm if it looks like exiting.
801                  */
802                 if (atomic_read(&start_mm->mm_users) == 1) {
803                         mmput(start_mm);
804                         start_mm = &init_mm;
805                         atomic_inc(&init_mm.mm_users);
806                 }
807
808                 /*
809                  * Wait for and lock page.  When do_swap_page races with
810                  * try_to_unuse, do_swap_page can handle the fault much
811                  * faster than try_to_unuse can locate the entry.  This
812                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
813                  * defer to do_swap_page in such a case - in some tests,
814                  * do_swap_page and try_to_unuse repeatedly compete.
815                  */
816                 wait_on_page_locked(page);
817                 wait_on_page_writeback(page);
818                 lock_page(page);
819                 wait_on_page_writeback(page);
820
821                 /*
822                  * Remove all references to entry.
823                  * Whenever we reach init_mm, there's no address space
824                  * to search, but use it as a reminder to search shmem.
825                  */
826                 shmem = 0;
827                 swcount = *swap_map;
828                 if (swcount > 1) {
829                         if (start_mm == &init_mm)
830                                 shmem = shmem_unuse(entry, page);
831                         else
832                                 retval = unuse_mm(start_mm, entry, page);
833                 }
834                 if (*swap_map > 1) {
835                         int set_start_mm = (*swap_map >= swcount);
836                         struct list_head *p = &start_mm->mmlist;
837                         struct mm_struct *new_start_mm = start_mm;
838                         struct mm_struct *prev_mm = start_mm;
839                         struct mm_struct *mm;
840
841                         atomic_inc(&new_start_mm->mm_users);
842                         atomic_inc(&prev_mm->mm_users);
843                         spin_lock(&mmlist_lock);
844                         while (*swap_map > 1 && !retval && !shmem &&
845                                         (p = p->next) != &start_mm->mmlist) {
846                                 mm = list_entry(p, struct mm_struct, mmlist);
847                                 if (!atomic_inc_not_zero(&mm->mm_users))
848                                         continue;
849                                 spin_unlock(&mmlist_lock);
850                                 mmput(prev_mm);
851                                 prev_mm = mm;
852
853                                 cond_resched();
854
855                                 swcount = *swap_map;
856                                 if (swcount <= 1)
857                                         ;
858                                 else if (mm == &init_mm) {
859                                         set_start_mm = 1;
860                                         shmem = shmem_unuse(entry, page);
861                                 } else
862                                         retval = unuse_mm(mm, entry, page);
863                                 if (set_start_mm && *swap_map < swcount) {
864                                         mmput(new_start_mm);
865                                         atomic_inc(&mm->mm_users);
866                                         new_start_mm = mm;
867                                         set_start_mm = 0;
868                                 }
869                                 spin_lock(&mmlist_lock);
870                         }
871                         spin_unlock(&mmlist_lock);
872                         mmput(prev_mm);
873                         mmput(start_mm);
874                         start_mm = new_start_mm;
875                 }
876                 if (shmem) {
877                         /* page has already been unlocked and released */
878                         if (shmem > 0)
879                                 continue;
880                         retval = shmem;
881                         break;
882                 }
883                 if (retval) {
884                         unlock_page(page);
885                         page_cache_release(page);
886                         break;
887                 }
888
889                 /*
890                  * How could swap count reach 0x7fff when the maximum
891                  * pid is 0x7fff, and there's no way to repeat a swap
892                  * page within an mm (except in shmem, where it's the
893                  * shared object which takes the reference count)?
894                  * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
895                  *
896                  * If that's wrong, then we should worry more about
897                  * exit_mmap() and do_munmap() cases described above:
898                  * we might be resetting SWAP_MAP_MAX too early here.
899                  * We know "Undead"s can happen, they're okay, so don't
900                  * report them; but do report if we reset SWAP_MAP_MAX.
901                  */
902                 if (*swap_map == SWAP_MAP_MAX) {
903                         spin_lock(&swap_lock);
904                         *swap_map = 1;
905                         spin_unlock(&swap_lock);
906                         reset_overflow = 1;
907                 }
908
909                 /*
910                  * If a reference remains (rare), we would like to leave
911                  * the page in the swap cache; but try_to_unmap could
912                  * then re-duplicate the entry once we drop page lock,
913                  * so we might loop indefinitely; also, that page could
914                  * not be swapped out to other storage meanwhile.  So:
915                  * delete from cache even if there's another reference,
916                  * after ensuring that the data has been saved to disk -
917                  * since if the reference remains (rarer), it will be
918                  * read from disk into another page.  Splitting into two
919                  * pages would be incorrect if swap supported "shared
920                  * private" pages, but they are handled by tmpfs files.
921                  */
922                 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
923                         struct writeback_control wbc = {
924                                 .sync_mode = WB_SYNC_NONE,
925                         };
926
927                         swap_writepage(page, &wbc);
928                         lock_page(page);
929                         wait_on_page_writeback(page);
930                 }
931                 if (PageSwapCache(page))
932                         delete_from_swap_cache(page);
933
934                 /*
935                  * So we could skip searching mms once swap count went
936                  * to 1, we did not mark any present ptes as dirty: must
937                  * mark page dirty so shrink_page_list will preserve it.
938                  */
939                 SetPageDirty(page);
940                 unlock_page(page);
941                 page_cache_release(page);
942
943                 /*
944                  * Make sure that we aren't completely killing
945                  * interactive performance.
946                  */
947                 cond_resched();
948         }
949
950         mmput(start_mm);
951         if (reset_overflow) {
952                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
953                 swap_overflow = 0;
954         }
955         return retval;
956 }
957
958 /*
959  * After a successful try_to_unuse, if no swap is now in use, we know
960  * we can empty the mmlist.  swap_lock must be held on entry and exit.
961  * Note that mmlist_lock nests inside swap_lock, and an mm must be
962  * added to the mmlist just after page_duplicate - before would be racy.
963  */
964 static void drain_mmlist(void)
965 {
966         struct list_head *p, *next;
967         unsigned int i;
968
969         for (i = 0; i < nr_swapfiles; i++)
970                 if (swap_info[i].inuse_pages)
971                         return;
972         spin_lock(&mmlist_lock);
973         list_for_each_safe(p, next, &init_mm.mmlist)
974                 list_del_init(p);
975         spin_unlock(&mmlist_lock);
976 }
977
978 /*
979  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
980  * corresponds to page offset `offset'.
981  */
982 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
983 {
984         struct swap_extent *se = sis->curr_swap_extent;
985         struct swap_extent *start_se = se;
986
987         for ( ; ; ) {
988                 struct list_head *lh;
989
990                 if (se->start_page <= offset &&
991                                 offset < (se->start_page + se->nr_pages)) {
992                         return se->start_block + (offset - se->start_page);
993                 }
994                 lh = se->list.next;
995                 if (lh == &sis->extent_list)
996                         lh = lh->next;
997                 se = list_entry(lh, struct swap_extent, list);
998                 sis->curr_swap_extent = se;
999                 BUG_ON(se == start_se);         /* It *must* be present */
1000         }
1001 }
1002
1003 #ifdef CONFIG_HIBERNATION
1004 /*
1005  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1006  * corresponding to given index in swap_info (swap type).
1007  */
1008 sector_t swapdev_block(int swap_type, pgoff_t offset)
1009 {
1010         struct swap_info_struct *sis;
1011
1012         if (swap_type >= nr_swapfiles)
1013                 return 0;
1014
1015         sis = swap_info + swap_type;
1016         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1017 }
1018 #endif /* CONFIG_HIBERNATION */
1019
1020 /*
1021  * Free all of a swapdev's extent information
1022  */
1023 static void destroy_swap_extents(struct swap_info_struct *sis)
1024 {
1025         while (!list_empty(&sis->extent_list)) {
1026                 struct swap_extent *se;
1027
1028                 se = list_entry(sis->extent_list.next,
1029                                 struct swap_extent, list);
1030                 list_del(&se->list);
1031                 kfree(se);
1032         }
1033 }
1034
1035 /*
1036  * Add a block range (and the corresponding page range) into this swapdev's
1037  * extent list.  The extent list is kept sorted in page order.
1038  *
1039  * This function rather assumes that it is called in ascending page order.
1040  */
1041 static int
1042 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1043                 unsigned long nr_pages, sector_t start_block)
1044 {
1045         struct swap_extent *se;
1046         struct swap_extent *new_se;
1047         struct list_head *lh;
1048
1049         lh = sis->extent_list.prev;     /* The highest page extent */
1050         if (lh != &sis->extent_list) {
1051                 se = list_entry(lh, struct swap_extent, list);
1052                 BUG_ON(se->start_page + se->nr_pages != start_page);
1053                 if (se->start_block + se->nr_pages == start_block) {
1054                         /* Merge it */
1055                         se->nr_pages += nr_pages;
1056                         return 0;
1057                 }
1058         }
1059
1060         /*
1061          * No merge.  Insert a new extent, preserving ordering.
1062          */
1063         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1064         if (new_se == NULL)
1065                 return -ENOMEM;
1066         new_se->start_page = start_page;
1067         new_se->nr_pages = nr_pages;
1068         new_se->start_block = start_block;
1069
1070         list_add_tail(&new_se->list, &sis->extent_list);
1071         return 1;
1072 }
1073
1074 /*
1075  * A `swap extent' is a simple thing which maps a contiguous range of pages
1076  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1077  * is built at swapon time and is then used at swap_writepage/swap_readpage
1078  * time for locating where on disk a page belongs.
1079  *
1080  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1081  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1082  * swap files identically.
1083  *
1084  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1085  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1086  * swapfiles are handled *identically* after swapon time.
1087  *
1088  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1089  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1090  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1091  * requirements, they are simply tossed out - we will never use those blocks
1092  * for swapping.
1093  *
1094  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1095  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1096  * which will scribble on the fs.
1097  *
1098  * The amount of disk space which a single swap extent represents varies.
1099  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1100  * extents in the list.  To avoid much list walking, we cache the previous
1101  * search location in `curr_swap_extent', and start new searches from there.
1102  * This is extremely effective.  The average number of iterations in
1103  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1104  */
1105 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1106 {
1107         struct inode *inode;
1108         unsigned blocks_per_page;
1109         unsigned long page_no;
1110         unsigned blkbits;
1111         sector_t probe_block;
1112         sector_t last_block;
1113         sector_t lowest_block = -1;
1114         sector_t highest_block = 0;
1115         int nr_extents = 0;
1116         int ret;
1117
1118         inode = sis->swap_file->f_mapping->host;
1119         if (S_ISBLK(inode->i_mode)) {
1120                 ret = add_swap_extent(sis, 0, sis->max, 0);
1121                 *span = sis->pages;
1122                 goto done;
1123         }
1124
1125         blkbits = inode->i_blkbits;
1126         blocks_per_page = PAGE_SIZE >> blkbits;
1127
1128         /*
1129          * Map all the blocks into the extent list.  This code doesn't try
1130          * to be very smart.
1131          */
1132         probe_block = 0;
1133         page_no = 0;
1134         last_block = i_size_read(inode) >> blkbits;
1135         while ((probe_block + blocks_per_page) <= last_block &&
1136                         page_no < sis->max) {
1137                 unsigned block_in_page;
1138                 sector_t first_block;
1139
1140                 first_block = bmap(inode, probe_block);
1141                 if (first_block == 0)
1142                         goto bad_bmap;
1143
1144                 /*
1145                  * It must be PAGE_SIZE aligned on-disk
1146                  */
1147                 if (first_block & (blocks_per_page - 1)) {
1148                         probe_block++;
1149                         goto reprobe;
1150                 }
1151
1152                 for (block_in_page = 1; block_in_page < blocks_per_page;
1153                                         block_in_page++) {
1154                         sector_t block;
1155
1156                         block = bmap(inode, probe_block + block_in_page);
1157                         if (block == 0)
1158                                 goto bad_bmap;
1159                         if (block != first_block + block_in_page) {
1160                                 /* Discontiguity */
1161                                 probe_block++;
1162                                 goto reprobe;
1163                         }
1164                 }
1165
1166                 first_block >>= (PAGE_SHIFT - blkbits);
1167                 if (page_no) {  /* exclude the header page */
1168                         if (first_block < lowest_block)
1169                                 lowest_block = first_block;
1170                         if (first_block > highest_block)
1171                                 highest_block = first_block;
1172                 }
1173
1174                 /*
1175                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1176                  */
1177                 ret = add_swap_extent(sis, page_no, 1, first_block);
1178                 if (ret < 0)
1179                         goto out;
1180                 nr_extents += ret;
1181                 page_no++;
1182                 probe_block += blocks_per_page;
1183 reprobe:
1184                 continue;
1185         }
1186         ret = nr_extents;
1187         *span = 1 + highest_block - lowest_block;
1188         if (page_no == 0)
1189                 page_no = 1;    /* force Empty message */
1190         sis->max = page_no;
1191         sis->pages = page_no - 1;
1192         sis->highest_bit = page_no - 1;
1193 done:
1194         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1195                                         struct swap_extent, list);
1196         goto out;
1197 bad_bmap:
1198         printk(KERN_ERR "swapon: swapfile has holes\n");
1199         ret = -EINVAL;
1200 out:
1201         return ret;
1202 }
1203
1204 #if 0   /* We don't need this yet */
1205 #include <linux/backing-dev.h>
1206 int page_queue_congested(struct page *page)
1207 {
1208         struct backing_dev_info *bdi;
1209
1210         VM_BUG_ON(!PageLocked(page));   /* It pins the swap_info_struct */
1211
1212         if (PageSwapCache(page)) {
1213                 swp_entry_t entry = { .val = page_private(page) };
1214                 struct swap_info_struct *sis;
1215
1216                 sis = get_swap_info_struct(swp_type(entry));
1217                 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1218         } else
1219                 bdi = page->mapping->backing_dev_info;
1220         return bdi_write_congested(bdi);
1221 }
1222 #endif
1223
1224 asmlinkage long sys_swapoff(const char __user * specialfile)
1225 {
1226         struct swap_info_struct * p = NULL;
1227         unsigned short *swap_map;
1228         struct file *swap_file, *victim;
1229         struct address_space *mapping;
1230         struct inode *inode;
1231         char * pathname;
1232         int i, type, prev;
1233         int err;
1234         
1235         if (!capable(CAP_SYS_ADMIN))
1236                 return -EPERM;
1237
1238         pathname = getname(specialfile);
1239         err = PTR_ERR(pathname);
1240         if (IS_ERR(pathname))
1241                 goto out;
1242
1243         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1244         putname(pathname);
1245         err = PTR_ERR(victim);
1246         if (IS_ERR(victim))
1247                 goto out;
1248
1249         mapping = victim->f_mapping;
1250         prev = -1;
1251         spin_lock(&swap_lock);
1252         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1253                 p = swap_info + type;
1254                 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1255                         if (p->swap_file->f_mapping == mapping)
1256                                 break;
1257                 }
1258                 prev = type;
1259         }
1260         if (type < 0) {
1261                 err = -EINVAL;
1262                 spin_unlock(&swap_lock);
1263                 goto out_dput;
1264         }
1265         if (!security_vm_enough_memory(p->pages))
1266                 vm_unacct_memory(p->pages);
1267         else {
1268                 err = -ENOMEM;
1269                 spin_unlock(&swap_lock);
1270                 goto out_dput;
1271         }
1272         if (prev < 0) {
1273                 swap_list.head = p->next;
1274         } else {
1275                 swap_info[prev].next = p->next;
1276         }
1277         if (type == swap_list.next) {
1278                 /* just pick something that's safe... */
1279                 swap_list.next = swap_list.head;
1280         }
1281         if (p->prio < 0) {
1282                 for (i = p->next; i >= 0; i = swap_info[i].next)
1283                         swap_info[i].prio = p->prio--;
1284                 least_priority++;
1285         }
1286         nr_swap_pages -= p->pages;
1287         total_swap_pages -= p->pages;
1288         p->flags &= ~SWP_WRITEOK;
1289         spin_unlock(&swap_lock);
1290
1291         current->flags |= PF_SWAPOFF;
1292         err = try_to_unuse(type);
1293         current->flags &= ~PF_SWAPOFF;
1294
1295         if (err) {
1296                 /* re-insert swap space back into swap_list */
1297                 spin_lock(&swap_lock);
1298                 if (p->prio < 0)
1299                         p->prio = --least_priority;
1300                 prev = -1;
1301                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1302                         if (p->prio >= swap_info[i].prio)
1303                                 break;
1304                         prev = i;
1305                 }
1306                 p->next = i;
1307                 if (prev < 0)
1308                         swap_list.head = swap_list.next = p - swap_info;
1309                 else
1310                         swap_info[prev].next = p - swap_info;
1311                 nr_swap_pages += p->pages;
1312                 total_swap_pages += p->pages;
1313                 p->flags |= SWP_WRITEOK;
1314                 spin_unlock(&swap_lock);
1315                 goto out_dput;
1316         }
1317
1318         /* wait for any unplug function to finish */
1319         down_write(&swap_unplug_sem);
1320         up_write(&swap_unplug_sem);
1321
1322         destroy_swap_extents(p);
1323         mutex_lock(&swapon_mutex);
1324         spin_lock(&swap_lock);
1325         drain_mmlist();
1326
1327         /* wait for anyone still in scan_swap_map */
1328         p->highest_bit = 0;             /* cuts scans short */
1329         while (p->flags >= SWP_SCANNING) {
1330                 spin_unlock(&swap_lock);
1331                 schedule_timeout_uninterruptible(1);
1332                 spin_lock(&swap_lock);
1333         }
1334
1335         swap_file = p->swap_file;
1336         p->swap_file = NULL;
1337         p->max = 0;
1338         swap_map = p->swap_map;
1339         p->swap_map = NULL;
1340         p->flags = 0;
1341         spin_unlock(&swap_lock);
1342         mutex_unlock(&swapon_mutex);
1343         vfree(swap_map);
1344         inode = mapping->host;
1345         if (S_ISBLK(inode->i_mode)) {
1346                 struct block_device *bdev = I_BDEV(inode);
1347                 set_blocksize(bdev, p->old_block_size);
1348                 bd_release(bdev);
1349         } else {
1350                 mutex_lock(&inode->i_mutex);
1351                 inode->i_flags &= ~S_SWAPFILE;
1352                 mutex_unlock(&inode->i_mutex);
1353         }
1354         filp_close(swap_file, NULL);
1355         err = 0;
1356
1357 out_dput:
1358         filp_close(victim, NULL);
1359 out:
1360         return err;
1361 }
1362
1363 #ifdef CONFIG_PROC_FS
1364 /* iterator */
1365 static void *swap_start(struct seq_file *swap, loff_t *pos)
1366 {
1367         struct swap_info_struct *ptr = swap_info;
1368         int i;
1369         loff_t l = *pos;
1370
1371         mutex_lock(&swapon_mutex);
1372
1373         if (!l)
1374                 return SEQ_START_TOKEN;
1375
1376         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1377                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1378                         continue;
1379                 if (!--l)
1380                         return ptr;
1381         }
1382
1383         return NULL;
1384 }
1385
1386 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1387 {
1388         struct swap_info_struct *ptr;
1389         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1390
1391         if (v == SEQ_START_TOKEN)
1392                 ptr = swap_info;
1393         else {
1394                 ptr = v;
1395                 ptr++;
1396         }
1397
1398         for (; ptr < endptr; ptr++) {
1399                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1400                         continue;
1401                 ++*pos;
1402                 return ptr;
1403         }
1404
1405         return NULL;
1406 }
1407
1408 static void swap_stop(struct seq_file *swap, void *v)
1409 {
1410         mutex_unlock(&swapon_mutex);
1411 }
1412
1413 static int swap_show(struct seq_file *swap, void *v)
1414 {
1415         struct swap_info_struct *ptr = v;
1416         struct file *file;
1417         int len;
1418
1419         if (ptr == SEQ_START_TOKEN) {
1420                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1421                 return 0;
1422         }
1423
1424         file = ptr->swap_file;
1425         len = seq_path(swap, &file->f_path, " \t\n\\");
1426         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1427                        len < 40 ? 40 - len : 1, " ",
1428                        S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1429                                 "partition" : "file\t",
1430                        ptr->pages << (PAGE_SHIFT - 10),
1431                        ptr->inuse_pages << (PAGE_SHIFT - 10),
1432                        ptr->prio);
1433         return 0;
1434 }
1435
1436 static const struct seq_operations swaps_op = {
1437         .start =        swap_start,
1438         .next =         swap_next,
1439         .stop =         swap_stop,
1440         .show =         swap_show
1441 };
1442
1443 static int swaps_open(struct inode *inode, struct file *file)
1444 {
1445         return seq_open(file, &swaps_op);
1446 }
1447
1448 static const struct file_operations proc_swaps_operations = {
1449         .open           = swaps_open,
1450         .read           = seq_read,
1451         .llseek         = seq_lseek,
1452         .release        = seq_release,
1453 };
1454
1455 static int __init procswaps_init(void)
1456 {
1457         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1458         return 0;
1459 }
1460 __initcall(procswaps_init);
1461 #endif /* CONFIG_PROC_FS */
1462
1463 #ifdef MAX_SWAPFILES_CHECK
1464 static int __init max_swapfiles_check(void)
1465 {
1466         MAX_SWAPFILES_CHECK();
1467         return 0;
1468 }
1469 late_initcall(max_swapfiles_check);
1470 #endif
1471
1472 /*
1473  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1474  *
1475  * The swapon system call
1476  */
1477 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1478 {
1479         struct swap_info_struct * p;
1480         char *name = NULL;
1481         struct block_device *bdev = NULL;
1482         struct file *swap_file = NULL;
1483         struct address_space *mapping;
1484         unsigned int type;
1485         int i, prev;
1486         int error;
1487         union swap_header *swap_header = NULL;
1488         int swap_header_version;
1489         unsigned int nr_good_pages = 0;
1490         int nr_extents = 0;
1491         sector_t span;
1492         unsigned long maxpages = 1;
1493         int swapfilesize;
1494         unsigned short *swap_map = NULL;
1495         struct page *page = NULL;
1496         struct inode *inode = NULL;
1497         int did_down = 0;
1498
1499         if (!capable(CAP_SYS_ADMIN))
1500                 return -EPERM;
1501         spin_lock(&swap_lock);
1502         p = swap_info;
1503         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1504                 if (!(p->flags & SWP_USED))
1505                         break;
1506         error = -EPERM;
1507         if (type >= MAX_SWAPFILES) {
1508                 spin_unlock(&swap_lock);
1509                 goto out;
1510         }
1511         if (type >= nr_swapfiles)
1512                 nr_swapfiles = type+1;
1513         memset(p, 0, sizeof(*p));
1514         INIT_LIST_HEAD(&p->extent_list);
1515         p->flags = SWP_USED;
1516         p->next = -1;
1517         spin_unlock(&swap_lock);
1518         name = getname(specialfile);
1519         error = PTR_ERR(name);
1520         if (IS_ERR(name)) {
1521                 name = NULL;
1522                 goto bad_swap_2;
1523         }
1524         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1525         error = PTR_ERR(swap_file);
1526         if (IS_ERR(swap_file)) {
1527                 swap_file = NULL;
1528                 goto bad_swap_2;
1529         }
1530
1531         p->swap_file = swap_file;
1532         mapping = swap_file->f_mapping;
1533         inode = mapping->host;
1534
1535         error = -EBUSY;
1536         for (i = 0; i < nr_swapfiles; i++) {
1537                 struct swap_info_struct *q = &swap_info[i];
1538
1539                 if (i == type || !q->swap_file)
1540                         continue;
1541                 if (mapping == q->swap_file->f_mapping)
1542                         goto bad_swap;
1543         }
1544
1545         error = -EINVAL;
1546         if (S_ISBLK(inode->i_mode)) {
1547                 bdev = I_BDEV(inode);
1548                 error = bd_claim(bdev, sys_swapon);
1549                 if (error < 0) {
1550                         bdev = NULL;
1551                         error = -EINVAL;
1552                         goto bad_swap;
1553                 }
1554                 p->old_block_size = block_size(bdev);
1555                 error = set_blocksize(bdev, PAGE_SIZE);
1556                 if (error < 0)
1557                         goto bad_swap;
1558                 p->bdev = bdev;
1559         } else if (S_ISREG(inode->i_mode)) {
1560                 p->bdev = inode->i_sb->s_bdev;
1561                 mutex_lock(&inode->i_mutex);
1562                 did_down = 1;
1563                 if (IS_SWAPFILE(inode)) {
1564                         error = -EBUSY;
1565                         goto bad_swap;
1566                 }
1567         } else {
1568                 goto bad_swap;
1569         }
1570
1571         swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1572
1573         /*
1574          * Read the swap header.
1575          */
1576         if (!mapping->a_ops->readpage) {
1577                 error = -EINVAL;
1578                 goto bad_swap;
1579         }
1580         page = read_mapping_page(mapping, 0, swap_file);
1581         if (IS_ERR(page)) {
1582                 error = PTR_ERR(page);
1583                 goto bad_swap;
1584         }
1585         kmap(page);
1586         swap_header = page_address(page);
1587
1588         if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1589                 swap_header_version = 1;
1590         else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1591                 swap_header_version = 2;
1592         else {
1593                 printk(KERN_ERR "Unable to find swap-space signature\n");
1594                 error = -EINVAL;
1595                 goto bad_swap;
1596         }
1597         
1598         switch (swap_header_version) {
1599         case 1:
1600                 printk(KERN_ERR "version 0 swap is no longer supported. "
1601                         "Use mkswap -v1 %s\n", name);
1602                 error = -EINVAL;
1603                 goto bad_swap;
1604         case 2:
1605                 /* swap partition endianess hack... */
1606                 if (swab32(swap_header->info.version) == 1) {
1607                         swab32s(&swap_header->info.version);
1608                         swab32s(&swap_header->info.last_page);
1609                         swab32s(&swap_header->info.nr_badpages);
1610                         for (i = 0; i < swap_header->info.nr_badpages; i++)
1611                                 swab32s(&swap_header->info.badpages[i]);
1612                 }
1613                 /* Check the swap header's sub-version and the size of
1614                    the swap file and bad block lists */
1615                 if (swap_header->info.version != 1) {
1616                         printk(KERN_WARNING
1617                                "Unable to handle swap header version %d\n",
1618                                swap_header->info.version);
1619                         error = -EINVAL;
1620                         goto bad_swap;
1621                 }
1622
1623                 p->lowest_bit  = 1;
1624                 p->cluster_next = 1;
1625
1626                 /*
1627                  * Find out how many pages are allowed for a single swap
1628                  * device. There are two limiting factors: 1) the number of
1629                  * bits for the swap offset in the swp_entry_t type and
1630                  * 2) the number of bits in the a swap pte as defined by
1631                  * the different architectures. In order to find the
1632                  * largest possible bit mask a swap entry with swap type 0
1633                  * and swap offset ~0UL is created, encoded to a swap pte,
1634                  * decoded to a swp_entry_t again and finally the swap
1635                  * offset is extracted. This will mask all the bits from
1636                  * the initial ~0UL mask that can't be encoded in either
1637                  * the swp_entry_t or the architecture definition of a
1638                  * swap pte.
1639                  */
1640                 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1641                 if (maxpages > swap_header->info.last_page)
1642                         maxpages = swap_header->info.last_page;
1643                 p->highest_bit = maxpages - 1;
1644
1645                 error = -EINVAL;
1646                 if (!maxpages)
1647                         goto bad_swap;
1648                 if (swapfilesize && maxpages > swapfilesize) {
1649                         printk(KERN_WARNING
1650                                "Swap area shorter than signature indicates\n");
1651                         goto bad_swap;
1652                 }
1653                 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1654                         goto bad_swap;
1655                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1656                         goto bad_swap;
1657
1658                 /* OK, set up the swap map and apply the bad block list */
1659                 swap_map = vmalloc(maxpages * sizeof(short));
1660                 if (!swap_map) {
1661                         error = -ENOMEM;
1662                         goto bad_swap;
1663                 }
1664
1665                 error = 0;
1666                 memset(swap_map, 0, maxpages * sizeof(short));
1667                 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1668                         int page_nr = swap_header->info.badpages[i];
1669                         if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1670                                 error = -EINVAL;
1671                         else
1672                                 swap_map[page_nr] = SWAP_MAP_BAD;
1673                 }
1674                 nr_good_pages = swap_header->info.last_page -
1675                                 swap_header->info.nr_badpages -
1676                                 1 /* header page */;
1677                 if (error)
1678                         goto bad_swap;
1679         }
1680
1681         if (nr_good_pages) {
1682                 swap_map[0] = SWAP_MAP_BAD;
1683                 p->max = maxpages;
1684                 p->pages = nr_good_pages;
1685                 nr_extents = setup_swap_extents(p, &span);
1686                 if (nr_extents < 0) {
1687                         error = nr_extents;
1688                         goto bad_swap;
1689                 }
1690                 nr_good_pages = p->pages;
1691         }
1692         if (!nr_good_pages) {
1693                 printk(KERN_WARNING "Empty swap-file\n");
1694                 error = -EINVAL;
1695                 goto bad_swap;
1696         }
1697
1698         mutex_lock(&swapon_mutex);
1699         spin_lock(&swap_lock);
1700         if (swap_flags & SWAP_FLAG_PREFER)
1701                 p->prio =
1702                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1703         else
1704                 p->prio = --least_priority;
1705         p->swap_map = swap_map;
1706         p->flags = SWP_ACTIVE;
1707         nr_swap_pages += nr_good_pages;
1708         total_swap_pages += nr_good_pages;
1709
1710         printk(KERN_INFO "Adding %uk swap on %s.  "
1711                         "Priority:%d extents:%d across:%lluk\n",
1712                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1713                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1714
1715         /* insert swap space into swap_list: */
1716         prev = -1;
1717         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1718                 if (p->prio >= swap_info[i].prio) {
1719                         break;
1720                 }
1721                 prev = i;
1722         }
1723         p->next = i;
1724         if (prev < 0) {
1725                 swap_list.head = swap_list.next = p - swap_info;
1726         } else {
1727                 swap_info[prev].next = p - swap_info;
1728         }
1729         spin_unlock(&swap_lock);
1730         mutex_unlock(&swapon_mutex);
1731         error = 0;
1732         goto out;
1733 bad_swap:
1734         if (bdev) {
1735                 set_blocksize(bdev, p->old_block_size);
1736                 bd_release(bdev);
1737         }
1738         destroy_swap_extents(p);
1739 bad_swap_2:
1740         spin_lock(&swap_lock);
1741         p->swap_file = NULL;
1742         p->flags = 0;
1743         spin_unlock(&swap_lock);
1744         vfree(swap_map);
1745         if (swap_file)
1746                 filp_close(swap_file, NULL);
1747 out:
1748         if (page && !IS_ERR(page)) {
1749                 kunmap(page);
1750                 page_cache_release(page);
1751         }
1752         if (name)
1753                 putname(name);
1754         if (did_down) {
1755                 if (!error)
1756                         inode->i_flags |= S_SWAPFILE;
1757                 mutex_unlock(&inode->i_mutex);
1758         }
1759         return error;
1760 }
1761
1762 void si_swapinfo(struct sysinfo *val)
1763 {
1764         unsigned int i;
1765         unsigned long nr_to_be_unused = 0;
1766
1767         spin_lock(&swap_lock);
1768         for (i = 0; i < nr_swapfiles; i++) {
1769                 if (!(swap_info[i].flags & SWP_USED) ||
1770                      (swap_info[i].flags & SWP_WRITEOK))
1771                         continue;
1772                 nr_to_be_unused += swap_info[i].inuse_pages;
1773         }
1774         val->freeswap = nr_swap_pages + nr_to_be_unused;
1775         val->totalswap = total_swap_pages + nr_to_be_unused;
1776         spin_unlock(&swap_lock);
1777 }
1778
1779 /*
1780  * Verify that a swap entry is valid and increment its swap map count.
1781  *
1782  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1783  * "permanent", but will be reclaimed by the next swapoff.
1784  */
1785 int swap_duplicate(swp_entry_t entry)
1786 {
1787         struct swap_info_struct * p;
1788         unsigned long offset, type;
1789         int result = 0;
1790
1791         if (is_migration_entry(entry))
1792                 return 1;
1793
1794         type = swp_type(entry);
1795         if (type >= nr_swapfiles)
1796                 goto bad_file;
1797         p = type + swap_info;
1798         offset = swp_offset(entry);
1799
1800         spin_lock(&swap_lock);
1801         if (offset < p->max && p->swap_map[offset]) {
1802                 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1803                         p->swap_map[offset]++;
1804                         result = 1;
1805                 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1806                         if (swap_overflow++ < 5)
1807                                 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1808                         p->swap_map[offset] = SWAP_MAP_MAX;
1809                         result = 1;
1810                 }
1811         }
1812         spin_unlock(&swap_lock);
1813 out:
1814         return result;
1815
1816 bad_file:
1817         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1818         goto out;
1819 }
1820
1821 struct swap_info_struct *
1822 get_swap_info_struct(unsigned type)
1823 {
1824         return &swap_info[type];
1825 }
1826
1827 /*
1828  * swap_lock prevents swap_map being freed. Don't grab an extra
1829  * reference on the swaphandle, it doesn't matter if it becomes unused.
1830  */
1831 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1832 {
1833         struct swap_info_struct *si;
1834         int our_page_cluster = page_cluster;
1835         pgoff_t target, toff;
1836         pgoff_t base, end;
1837         int nr_pages = 0;
1838
1839         if (!our_page_cluster)  /* no readahead */
1840                 return 0;
1841
1842         si = &swap_info[swp_type(entry)];
1843         target = swp_offset(entry);
1844         base = (target >> our_page_cluster) << our_page_cluster;
1845         end = base + (1 << our_page_cluster);
1846         if (!base)              /* first page is swap header */
1847                 base++;
1848
1849         spin_lock(&swap_lock);
1850         if (end > si->max)      /* don't go beyond end of map */
1851                 end = si->max;
1852
1853         /* Count contiguous allocated slots above our target */
1854         for (toff = target; ++toff < end; nr_pages++) {
1855                 /* Don't read in free or bad pages */
1856                 if (!si->swap_map[toff])
1857                         break;
1858                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1859                         break;
1860         }
1861         /* Count contiguous allocated slots below our target */
1862         for (toff = target; --toff >= base; nr_pages++) {
1863                 /* Don't read in free or bad pages */
1864                 if (!si->swap_map[toff])
1865                         break;
1866                 if (si->swap_map[toff] == SWAP_MAP_BAD)
1867                         break;
1868         }
1869         spin_unlock(&swap_lock);
1870
1871         /*
1872          * Indicate starting offset, and return number of pages to get:
1873          * if only 1, say 0, since there's then no readahead to be done.
1874          */
1875         *offset = ++toff;
1876         return nr_pages? ++nr_pages: 0;
1877 }