1 /* Driver for USB Mass Storage compliant devices
3 * Current development and maintenance by:
4 * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
6 * Developed with the assistance of:
7 * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org)
8 * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov)
9 * (c) 2002 Alan Stern <stern@rowland.org>
12 * (c) 1999 Michael Gee (michael@linuxspecific.com)
14 * This driver is based on the 'USB Mass Storage Class' document. This
15 * describes in detail the protocol used to communicate with such
16 * devices. Clearly, the designers had SCSI and ATAPI commands in
17 * mind when they created this document. The commands are all very
18 * similar to commands in the SCSI-II and ATAPI specifications.
20 * It is important to note that in a number of cases this class
21 * exhibits class-specific exemptions from the USB specification.
22 * Notably the usage of NAK, STALL and ACK differs from the norm, in
23 * that they are used to communicate wait, failed and OK on commands.
25 * Also, for certain devices, the interrupt endpoint is used to convey
26 * status of a command.
28 * Please see http://www.one-eyed-alien.net/~mdharm/linux-usb for more
29 * information about this driver.
31 * This program is free software; you can redistribute it and/or modify it
32 * under the terms of the GNU General Public License as published by the
33 * Free Software Foundation; either version 2, or (at your option) any
36 * This program is distributed in the hope that it will be useful, but
37 * WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
39 * General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, write to the Free Software Foundation, Inc.,
43 * 675 Mass Ave, Cambridge, MA 02139, USA.
46 #include <linux/sched.h>
47 #include <linux/errno.h>
48 #include <linux/slab.h>
50 #include <scsi/scsi.h>
51 #include <scsi/scsi_eh.h>
52 #include <scsi/scsi_device.h>
55 #include "transport.h"
60 #include <linux/blkdev.h>
61 #include "../../scsi/sd.h"
64 /***********************************************************************
65 * Data transfer routines
66 ***********************************************************************/
69 * This is subtle, so pay attention:
70 * ---------------------------------
71 * We're very concerned about races with a command abort. Hanging this code
72 * is a sure fire way to hang the kernel. (Note that this discussion applies
73 * only to transactions resulting from a scsi queued-command, since only
74 * these transactions are subject to a scsi abort. Other transactions, such
75 * as those occurring during device-specific initialization, must be handled
76 * by a separate code path.)
78 * The abort function (usb_storage_command_abort() in scsiglue.c) first
79 * sets the machine state and the ABORTING bit in us->dflags to prevent
80 * new URBs from being submitted. It then calls usb_stor_stop_transport()
81 * below, which atomically tests-and-clears the URB_ACTIVE bit in us->dflags
82 * to see if the current_urb needs to be stopped. Likewise, the SG_ACTIVE
83 * bit is tested to see if the current_sg scatter-gather request needs to be
84 * stopped. The timeout callback routine does much the same thing.
86 * When a disconnect occurs, the DISCONNECTING bit in us->dflags is set to
87 * prevent new URBs from being submitted, and usb_stor_stop_transport() is
88 * called to stop any ongoing requests.
90 * The submit function first verifies that the submitting is allowed
91 * (neither ABORTING nor DISCONNECTING bits are set) and that the submit
92 * completes without errors, and only then sets the URB_ACTIVE bit. This
93 * prevents the stop_transport() function from trying to cancel the URB
94 * while the submit call is underway. Next, the submit function must test
95 * the flags to see if an abort or disconnect occurred during the submission
96 * or before the URB_ACTIVE bit was set. If so, it's essential to cancel
97 * the URB if it hasn't been cancelled already (i.e., if the URB_ACTIVE bit
98 * is still set). Either way, the function must then wait for the URB to
99 * finish. Note that the URB can still be in progress even after a call to
100 * usb_unlink_urb() returns.
102 * The idea is that (1) once the ABORTING or DISCONNECTING bit is set,
103 * either the stop_transport() function or the submitting function
104 * is guaranteed to call usb_unlink_urb() for an active URB,
105 * and (2) test_and_clear_bit() prevents usb_unlink_urb() from being
106 * called more than once or from being called during usb_submit_urb().
109 /* This is the completion handler which will wake us up when an URB
112 static void usb_stor_blocking_completion(struct urb *urb)
114 struct completion *urb_done_ptr = urb->context;
116 complete(urb_done_ptr);
119 /* This is the common part of the URB message submission code
121 * All URBs from the usb-storage driver involved in handling a queued scsi
122 * command _must_ pass through this function (or something like it) for the
123 * abort mechanisms to work properly.
125 static int usb_stor_msg_common(struct us_data *us, int timeout)
127 struct completion urb_done;
131 /* don't submit URBs during abort processing */
132 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
135 /* set up data structures for the wakeup system */
136 init_completion(&urb_done);
138 /* fill the common fields in the URB */
139 us->current_urb->context = &urb_done;
140 us->current_urb->actual_length = 0;
141 us->current_urb->error_count = 0;
142 us->current_urb->status = 0;
144 /* we assume that if transfer_buffer isn't us->iobuf then it
145 * hasn't been mapped for DMA. Yes, this is clunky, but it's
146 * easier than always having the caller tell us whether the
147 * transfer buffer has already been mapped. */
148 us->current_urb->transfer_flags = URB_NO_SETUP_DMA_MAP;
149 if (us->current_urb->transfer_buffer == us->iobuf)
150 us->current_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
151 us->current_urb->transfer_dma = us->iobuf_dma;
152 us->current_urb->setup_dma = us->cr_dma;
155 status = usb_submit_urb(us->current_urb, GFP_NOIO);
157 /* something went wrong */
161 /* since the URB has been submitted successfully, it's now okay
163 set_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
165 /* did an abort occur during the submission? */
166 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
168 /* cancel the URB, if it hasn't been cancelled already */
169 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
170 US_DEBUGP("-- cancelling URB\n");
171 usb_unlink_urb(us->current_urb);
175 /* wait for the completion of the URB */
176 timeleft = wait_for_completion_interruptible_timeout(
177 &urb_done, timeout ? : MAX_SCHEDULE_TIMEOUT);
179 clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags);
182 US_DEBUGP("%s -- cancelling URB\n",
183 timeleft == 0 ? "Timeout" : "Signal");
184 usb_kill_urb(us->current_urb);
187 /* return the URB status */
188 return us->current_urb->status;
192 * Transfer one control message, with timeouts, and allowing early
193 * termination. Return codes are usual -Exxx, *not* USB_STOR_XFER_xxx.
195 int usb_stor_control_msg(struct us_data *us, unsigned int pipe,
196 u8 request, u8 requesttype, u16 value, u16 index,
197 void *data, u16 size, int timeout)
201 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
202 __func__, request, requesttype,
205 /* fill in the devrequest structure */
206 us->cr->bRequestType = requesttype;
207 us->cr->bRequest = request;
208 us->cr->wValue = cpu_to_le16(value);
209 us->cr->wIndex = cpu_to_le16(index);
210 us->cr->wLength = cpu_to_le16(size);
212 /* fill and submit the URB */
213 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
214 (unsigned char*) us->cr, data, size,
215 usb_stor_blocking_completion, NULL);
216 status = usb_stor_msg_common(us, timeout);
218 /* return the actual length of the data transferred if no error */
220 status = us->current_urb->actual_length;
224 /* This is a version of usb_clear_halt() that allows early termination and
225 * doesn't read the status from the device -- this is because some devices
226 * crash their internal firmware when the status is requested after a halt.
228 * A definitive list of these 'bad' devices is too difficult to maintain or
229 * make complete enough to be useful. This problem was first observed on the
230 * Hagiwara FlashGate DUAL unit. However, bus traces reveal that neither
231 * MacOS nor Windows checks the status after clearing a halt.
233 * Since many vendors in this space limit their testing to interoperability
234 * with these two OSes, specification violations like this one are common.
236 int usb_stor_clear_halt(struct us_data *us, unsigned int pipe)
239 int endp = usb_pipeendpoint(pipe);
241 if (usb_pipein (pipe))
244 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
245 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
246 USB_ENDPOINT_HALT, endp,
249 /* reset the endpoint toggle */
251 usb_settoggle(us->pusb_dev, usb_pipeendpoint(pipe),
252 usb_pipeout(pipe), 0);
254 US_DEBUGP("%s: result = %d\n", __func__, result);
260 * Interpret the results of a URB transfer
262 * This function prints appropriate debugging messages, clears halts on
263 * non-control endpoints, and translates the status to the corresponding
264 * USB_STOR_XFER_xxx return code.
266 static int interpret_urb_result(struct us_data *us, unsigned int pipe,
267 unsigned int length, int result, unsigned int partial)
269 US_DEBUGP("Status code %d; transferred %u/%u\n",
270 result, partial, length);
273 /* no error code; did we send all the data? */
275 if (partial != length) {
276 US_DEBUGP("-- short transfer\n");
277 return USB_STOR_XFER_SHORT;
280 US_DEBUGP("-- transfer complete\n");
281 return USB_STOR_XFER_GOOD;
285 /* for control endpoints, (used by CB[I]) a stall indicates
286 * a failed command */
287 if (usb_pipecontrol(pipe)) {
288 US_DEBUGP("-- stall on control pipe\n");
289 return USB_STOR_XFER_STALLED;
292 /* for other sorts of endpoint, clear the stall */
293 US_DEBUGP("clearing endpoint halt for pipe 0x%x\n", pipe);
294 if (usb_stor_clear_halt(us, pipe) < 0)
295 return USB_STOR_XFER_ERROR;
296 return USB_STOR_XFER_STALLED;
298 /* babble - the device tried to send more than we wanted to read */
300 US_DEBUGP("-- babble\n");
301 return USB_STOR_XFER_LONG;
303 /* the transfer was cancelled by abort, disconnect, or timeout */
305 US_DEBUGP("-- transfer cancelled\n");
306 return USB_STOR_XFER_ERROR;
308 /* short scatter-gather read transfer */
310 US_DEBUGP("-- short read transfer\n");
311 return USB_STOR_XFER_SHORT;
313 /* abort or disconnect in progress */
315 US_DEBUGP("-- abort or disconnect in progress\n");
316 return USB_STOR_XFER_ERROR;
318 /* the catch-all error case */
320 US_DEBUGP("-- unknown error\n");
321 return USB_STOR_XFER_ERROR;
326 * Transfer one control message, without timeouts, but allowing early
327 * termination. Return codes are USB_STOR_XFER_xxx.
329 int usb_stor_ctrl_transfer(struct us_data *us, unsigned int pipe,
330 u8 request, u8 requesttype, u16 value, u16 index,
331 void *data, u16 size)
335 US_DEBUGP("%s: rq=%02x rqtype=%02x value=%04x index=%02x len=%u\n",
336 __func__, request, requesttype,
339 /* fill in the devrequest structure */
340 us->cr->bRequestType = requesttype;
341 us->cr->bRequest = request;
342 us->cr->wValue = cpu_to_le16(value);
343 us->cr->wIndex = cpu_to_le16(index);
344 us->cr->wLength = cpu_to_le16(size);
346 /* fill and submit the URB */
347 usb_fill_control_urb(us->current_urb, us->pusb_dev, pipe,
348 (unsigned char*) us->cr, data, size,
349 usb_stor_blocking_completion, NULL);
350 result = usb_stor_msg_common(us, 0);
352 return interpret_urb_result(us, pipe, size, result,
353 us->current_urb->actual_length);
357 * Receive one interrupt buffer, without timeouts, but allowing early
358 * termination. Return codes are USB_STOR_XFER_xxx.
360 * This routine always uses us->recv_intr_pipe as the pipe and
361 * us->ep_bInterval as the interrupt interval.
363 static int usb_stor_intr_transfer(struct us_data *us, void *buf,
367 unsigned int pipe = us->recv_intr_pipe;
370 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
372 /* calculate the max packet size */
373 maxp = usb_maxpacket(us->pusb_dev, pipe, usb_pipeout(pipe));
377 /* fill and submit the URB */
378 usb_fill_int_urb(us->current_urb, us->pusb_dev, pipe, buf,
379 maxp, usb_stor_blocking_completion, NULL,
381 result = usb_stor_msg_common(us, 0);
383 return interpret_urb_result(us, pipe, length, result,
384 us->current_urb->actual_length);
388 * Transfer one buffer via bulk pipe, without timeouts, but allowing early
389 * termination. Return codes are USB_STOR_XFER_xxx. If the bulk pipe
390 * stalls during the transfer, the halt is automatically cleared.
392 int usb_stor_bulk_transfer_buf(struct us_data *us, unsigned int pipe,
393 void *buf, unsigned int length, unsigned int *act_len)
397 US_DEBUGP("%s: xfer %u bytes\n", __func__, length);
399 /* fill and submit the URB */
400 usb_fill_bulk_urb(us->current_urb, us->pusb_dev, pipe, buf, length,
401 usb_stor_blocking_completion, NULL);
402 result = usb_stor_msg_common(us, 0);
404 /* store the actual length of the data transferred */
406 *act_len = us->current_urb->actual_length;
407 return interpret_urb_result(us, pipe, length, result,
408 us->current_urb->actual_length);
412 * Transfer a scatter-gather list via bulk transfer
414 * This function does basically the same thing as usb_stor_bulk_transfer_buf()
415 * above, but it uses the usbcore scatter-gather library.
417 static int usb_stor_bulk_transfer_sglist(struct us_data *us, unsigned int pipe,
418 struct scatterlist *sg, int num_sg, unsigned int length,
419 unsigned int *act_len)
423 /* don't submit s-g requests during abort processing */
424 if (test_bit(US_FLIDX_ABORTING, &us->dflags))
425 return USB_STOR_XFER_ERROR;
427 /* initialize the scatter-gather request block */
428 US_DEBUGP("%s: xfer %u bytes, %d entries\n", __func__,
430 result = usb_sg_init(&us->current_sg, us->pusb_dev, pipe, 0,
431 sg, num_sg, length, GFP_NOIO);
433 US_DEBUGP("usb_sg_init returned %d\n", result);
434 return USB_STOR_XFER_ERROR;
437 /* since the block has been initialized successfully, it's now
438 * okay to cancel it */
439 set_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
441 /* did an abort occur during the submission? */
442 if (test_bit(US_FLIDX_ABORTING, &us->dflags)) {
444 /* cancel the request, if it hasn't been cancelled already */
445 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
446 US_DEBUGP("-- cancelling sg request\n");
447 usb_sg_cancel(&us->current_sg);
451 /* wait for the completion of the transfer */
452 usb_sg_wait(&us->current_sg);
453 clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags);
455 result = us->current_sg.status;
457 *act_len = us->current_sg.bytes;
458 return interpret_urb_result(us, pipe, length, result,
459 us->current_sg.bytes);
463 * Common used function. Transfer a complete command
464 * via usb_stor_bulk_transfer_sglist() above. Set cmnd resid
466 int usb_stor_bulk_srb(struct us_data* us, unsigned int pipe,
467 struct scsi_cmnd* srb)
469 unsigned int partial;
470 int result = usb_stor_bulk_transfer_sglist(us, pipe, scsi_sglist(srb),
471 scsi_sg_count(srb), scsi_bufflen(srb),
474 scsi_set_resid(srb, scsi_bufflen(srb) - partial);
479 * Transfer an entire SCSI command's worth of data payload over the bulk
482 * Note that this uses usb_stor_bulk_transfer_buf() and
483 * usb_stor_bulk_transfer_sglist() to achieve its goals --
484 * this function simply determines whether we're going to use
485 * scatter-gather or not, and acts appropriately.
487 int usb_stor_bulk_transfer_sg(struct us_data* us, unsigned int pipe,
488 void *buf, unsigned int length_left, int use_sg, int *residual)
491 unsigned int partial;
493 /* are we scatter-gathering? */
495 /* use the usb core scatter-gather primitives */
496 result = usb_stor_bulk_transfer_sglist(us, pipe,
497 (struct scatterlist *) buf, use_sg,
498 length_left, &partial);
499 length_left -= partial;
501 /* no scatter-gather, just make the request */
502 result = usb_stor_bulk_transfer_buf(us, pipe, buf,
503 length_left, &partial);
504 length_left -= partial;
507 /* store the residual and return the error code */
509 *residual = length_left;
513 /***********************************************************************
515 ***********************************************************************/
517 /* There are so many devices that report the capacity incorrectly,
518 * this routine was written to counteract some of the resulting
521 static void last_sector_hacks(struct us_data *us, struct scsi_cmnd *srb)
523 struct gendisk *disk;
524 struct scsi_disk *sdkp;
527 /* To Report "Medium Error: Record Not Found */
528 static unsigned char record_not_found[18] = {
529 [0] = 0x70, /* current error */
530 [2] = MEDIUM_ERROR, /* = 0x03 */
531 [7] = 0x0a, /* additional length */
532 [12] = 0x14 /* Record Not Found */
535 /* If last-sector problems can't occur, whether because the
536 * capacity was already decremented or because the device is
537 * known to report the correct capacity, then we don't need
540 if (!us->use_last_sector_hacks)
543 /* Was this command a READ(10) or a WRITE(10)? */
544 if (srb->cmnd[0] != READ_10 && srb->cmnd[0] != WRITE_10)
547 /* Did this command access the last sector? */
548 sector = (srb->cmnd[2] << 24) | (srb->cmnd[3] << 16) |
549 (srb->cmnd[4] << 8) | (srb->cmnd[5]);
550 disk = srb->request->rq_disk;
553 sdkp = scsi_disk(disk);
556 if (sector + 1 != sdkp->capacity)
559 if (srb->result == SAM_STAT_GOOD && scsi_get_resid(srb) == 0) {
561 /* The command succeeded. If the capacity is odd
562 * (i.e., if the sector number is even) then the
563 * "always-even" heuristic would be wrong for this
564 * device. Issue a WARN() so that the kerneloops.org
565 * project will be notified and we will then know to
566 * mark the device with a CAPACITY_OK flag. Hopefully
567 * this will occur for only a few devices.
569 * Use the sign of us->last_sector_hacks to tell whether
570 * the warning has already been issued; we don't need
571 * more than one warning per device.
573 if (!(sector & 1) && us->use_last_sector_hacks > 0) {
574 unsigned vid = le16_to_cpu(
575 us->pusb_dev->descriptor.idVendor);
576 unsigned pid = le16_to_cpu(
577 us->pusb_dev->descriptor.idProduct);
578 unsigned rev = le16_to_cpu(
579 us->pusb_dev->descriptor.bcdDevice);
581 WARN(1, "%s: Successful last sector success at %u, "
582 "device %04x:%04x:%04x\n",
583 sdkp->disk->disk_name, sector,
585 us->use_last_sector_hacks = -1;
589 /* The command failed. Allow up to 3 retries in case this
590 * is some normal sort of failure. After that, assume the
591 * capacity is wrong and we're trying to access the sector
592 * beyond the end. Replace the result code and sense data
593 * with values that will cause the SCSI core to fail the
594 * command immediately, instead of going into an infinite
595 * (or even just a very long) retry loop.
597 if (++us->last_sector_retries < 3)
599 srb->result = SAM_STAT_CHECK_CONDITION;
600 memcpy(srb->sense_buffer, record_not_found,
601 sizeof(record_not_found));
603 /* In theory we might want to issue a WARN() here if the
604 * capacity is even, since it could indicate the device
605 * has the READ CAPACITY bug _and_ the real capacity is
606 * odd. But it could also indicate that the device
607 * simply can't access its last sector, a failure mode
608 * which is surprisingly common. So no warning.
613 /* Don't reset the retry counter for TEST UNIT READY commands,
614 * because they get issued after device resets which might be
615 * caused by a failed last-sector access.
617 if (srb->cmnd[0] != TEST_UNIT_READY)
618 us->last_sector_retries = 0;
621 /* Invoke the transport and basic error-handling/recovery methods
623 * This is used by the protocol layers to actually send the message to
624 * the device and receive the response.
626 void usb_stor_invoke_transport(struct scsi_cmnd *srb, struct us_data *us)
631 /* send the command to the transport layer */
632 scsi_set_resid(srb, 0);
633 result = us->transport(srb, us);
635 /* if the command gets aborted by the higher layers, we need to
636 * short-circuit all other processing
638 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
639 US_DEBUGP("-- command was aborted\n");
640 srb->result = DID_ABORT << 16;
644 /* if there is a transport error, reset and don't auto-sense */
645 if (result == USB_STOR_TRANSPORT_ERROR) {
646 US_DEBUGP("-- transport indicates error, resetting\n");
647 srb->result = DID_ERROR << 16;
651 /* if the transport provided its own sense data, don't auto-sense */
652 if (result == USB_STOR_TRANSPORT_NO_SENSE) {
653 srb->result = SAM_STAT_CHECK_CONDITION;
654 last_sector_hacks(us, srb);
658 srb->result = SAM_STAT_GOOD;
660 /* Determine if we need to auto-sense
662 * I normally don't use a flag like this, but it's almost impossible
663 * to understand what's going on here if I don't.
668 * If we're running the CB transport, which is incapable
669 * of determining status on its own, we will auto-sense
670 * unless the operation involved a data-in transfer. Devices
671 * can signal most data-in errors by stalling the bulk-in pipe.
673 if ((us->protocol == US_PR_CB || us->protocol == US_PR_DPCM_USB) &&
674 srb->sc_data_direction != DMA_FROM_DEVICE) {
675 US_DEBUGP("-- CB transport device requiring auto-sense\n");
680 * If we have a failure, we're going to do a REQUEST_SENSE
681 * automatically. Note that we differentiate between a command
682 * "failure" and an "error" in the transport mechanism.
684 if (result == USB_STOR_TRANSPORT_FAILED) {
685 US_DEBUGP("-- transport indicates command failure\n");
690 * Determine if this device is SAT by seeing if the
691 * command executed successfully. Otherwise we'll have
692 * to wait for at least one CHECK_CONDITION to determine
695 if ((srb->cmnd[0] == ATA_16 || srb->cmnd[0] == ATA_12) &&
696 result == USB_STOR_TRANSPORT_GOOD &&
697 !(us->fflags & US_FL_SANE_SENSE) &&
698 !(srb->cmnd[2] & 0x20)) {
699 US_DEBUGP("-- SAT supported, increasing auto-sense\n");
700 us->fflags |= US_FL_SANE_SENSE;
704 * A short transfer on a command where we don't expect it
705 * is unusual, but it doesn't mean we need to auto-sense.
707 if ((scsi_get_resid(srb) > 0) &&
708 !((srb->cmnd[0] == REQUEST_SENSE) ||
709 (srb->cmnd[0] == INQUIRY) ||
710 (srb->cmnd[0] == MODE_SENSE) ||
711 (srb->cmnd[0] == LOG_SENSE) ||
712 (srb->cmnd[0] == MODE_SENSE_10))) {
713 US_DEBUGP("-- unexpectedly short transfer\n");
716 /* Now, if we need to do the auto-sense, let's do it */
717 if (need_auto_sense) {
719 struct scsi_eh_save ses;
720 int sense_size = US_SENSE_SIZE;
722 /* device supports and needs bigger sense buffer */
723 if (us->fflags & US_FL_SANE_SENSE)
726 US_DEBUGP("Issuing auto-REQUEST_SENSE\n");
728 scsi_eh_prep_cmnd(srb, &ses, NULL, 0, sense_size);
730 /* FIXME: we must do the protocol translation here */
731 if (us->subclass == US_SC_RBC || us->subclass == US_SC_SCSI ||
732 us->subclass == US_SC_CYP_ATACB)
737 /* issue the auto-sense command */
738 scsi_set_resid(srb, 0);
739 temp_result = us->transport(us->srb, us);
741 /* let's clean up right away */
742 scsi_eh_restore_cmnd(srb, &ses);
744 if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) {
745 US_DEBUGP("-- auto-sense aborted\n");
746 srb->result = DID_ABORT << 16;
749 if (temp_result != USB_STOR_TRANSPORT_GOOD) {
750 US_DEBUGP("-- auto-sense failure\n");
752 /* we skip the reset if this happens to be a
753 * multi-target device, since failure of an
754 * auto-sense is perfectly valid
756 srb->result = DID_ERROR << 16;
757 if (!(us->fflags & US_FL_SCM_MULT_TARG))
762 /* If the sense data returned is larger than 18-bytes then we
763 * assume this device supports requesting more in the future.
764 * The response code must be 70h through 73h inclusive.
766 if (srb->sense_buffer[7] > (US_SENSE_SIZE - 8) &&
767 !(us->fflags & US_FL_SANE_SENSE) &&
768 (srb->sense_buffer[0] & 0x7C) == 0x70) {
769 US_DEBUGP("-- SANE_SENSE support enabled\n");
770 us->fflags |= US_FL_SANE_SENSE;
772 /* Indicate to the user that we truncated their sense
773 * because we didn't know it supported larger sense.
775 US_DEBUGP("-- Sense data truncated to %i from %i\n",
777 srb->sense_buffer[7] + 8);
778 srb->sense_buffer[7] = (US_SENSE_SIZE - 8);
781 US_DEBUGP("-- Result from auto-sense is %d\n", temp_result);
782 US_DEBUGP("-- code: 0x%x, key: 0x%x, ASC: 0x%x, ASCQ: 0x%x\n",
783 srb->sense_buffer[0],
784 srb->sense_buffer[2] & 0xf,
785 srb->sense_buffer[12],
786 srb->sense_buffer[13]);
787 #ifdef CONFIG_USB_STORAGE_DEBUG
789 srb->sense_buffer[2] & 0xf,
790 srb->sense_buffer[12],
791 srb->sense_buffer[13]);
794 /* set the result so the higher layers expect this data */
795 srb->result = SAM_STAT_CHECK_CONDITION;
797 /* If things are really okay, then let's show that. Zero
798 * out the sense buffer so the higher layers won't realize
799 * we did an unsolicited auto-sense. */
800 if (result == USB_STOR_TRANSPORT_GOOD &&
801 /* Filemark 0, ignore EOM, ILI 0, no sense */
802 (srb->sense_buffer[2] & 0xaf) == 0 &&
804 srb->sense_buffer[12] == 0 &&
805 srb->sense_buffer[13] == 0) {
806 srb->result = SAM_STAT_GOOD;
807 srb->sense_buffer[0] = 0x0;
811 /* Did we transfer less than the minimum amount required? */
812 if ((srb->result == SAM_STAT_GOOD || srb->sense_buffer[2] == 0) &&
813 scsi_bufflen(srb) - scsi_get_resid(srb) < srb->underflow)
814 srb->result = (DID_ERROR << 16) | (SUGGEST_RETRY << 24);
816 last_sector_hacks(us, srb);
819 /* Error and abort processing: try to resynchronize with the device
820 * by issuing a port reset. If that fails, try a class-specific
824 /* Set the RESETTING bit, and clear the ABORTING bit so that
825 * the reset may proceed. */
826 scsi_lock(us_to_host(us));
827 set_bit(US_FLIDX_RESETTING, &us->dflags);
828 clear_bit(US_FLIDX_ABORTING, &us->dflags);
829 scsi_unlock(us_to_host(us));
831 /* We must release the device lock because the pre_reset routine
832 * will want to acquire it. */
833 mutex_unlock(&us->dev_mutex);
834 result = usb_stor_port_reset(us);
835 mutex_lock(&us->dev_mutex);
838 scsi_lock(us_to_host(us));
839 usb_stor_report_device_reset(us);
840 scsi_unlock(us_to_host(us));
841 us->transport_reset(us);
843 clear_bit(US_FLIDX_RESETTING, &us->dflags);
844 last_sector_hacks(us, srb);
847 /* Stop the current URB transfer */
848 void usb_stor_stop_transport(struct us_data *us)
850 US_DEBUGP("%s called\n", __func__);
852 /* If the state machine is blocked waiting for an URB,
853 * let's wake it up. The test_and_clear_bit() call
854 * guarantees that if a URB has just been submitted,
855 * it won't be cancelled more than once. */
856 if (test_and_clear_bit(US_FLIDX_URB_ACTIVE, &us->dflags)) {
857 US_DEBUGP("-- cancelling URB\n");
858 usb_unlink_urb(us->current_urb);
861 /* If we are waiting for a scatter-gather operation, cancel it. */
862 if (test_and_clear_bit(US_FLIDX_SG_ACTIVE, &us->dflags)) {
863 US_DEBUGP("-- cancelling sg request\n");
864 usb_sg_cancel(&us->current_sg);
869 * Control/Bulk and Control/Bulk/Interrupt transport
872 int usb_stor_CB_transport(struct scsi_cmnd *srb, struct us_data *us)
874 unsigned int transfer_length = scsi_bufflen(srb);
875 unsigned int pipe = 0;
879 /* let's send the command via the control pipe */
880 result = usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
882 USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0,
883 us->ifnum, srb->cmnd, srb->cmd_len);
885 /* check the return code for the command */
886 US_DEBUGP("Call to usb_stor_ctrl_transfer() returned %d\n", result);
888 /* if we stalled the command, it means command failed */
889 if (result == USB_STOR_XFER_STALLED) {
890 return USB_STOR_TRANSPORT_FAILED;
893 /* Uh oh... serious problem here */
894 if (result != USB_STOR_XFER_GOOD) {
895 return USB_STOR_TRANSPORT_ERROR;
899 /* transfer the data payload for this command, if one exists*/
900 if (transfer_length) {
901 pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
902 us->recv_bulk_pipe : us->send_bulk_pipe;
903 result = usb_stor_bulk_srb(us, pipe, srb);
904 US_DEBUGP("CBI data stage result is 0x%x\n", result);
906 /* if we stalled the data transfer it means command failed */
907 if (result == USB_STOR_XFER_STALLED)
908 return USB_STOR_TRANSPORT_FAILED;
909 if (result > USB_STOR_XFER_STALLED)
910 return USB_STOR_TRANSPORT_ERROR;
915 /* NOTE: CB does not have a status stage. Silly, I know. So
916 * we have to catch this at a higher level.
918 if (us->protocol != US_PR_CBI)
919 return USB_STOR_TRANSPORT_GOOD;
921 result = usb_stor_intr_transfer(us, us->iobuf, 2);
922 US_DEBUGP("Got interrupt data (0x%x, 0x%x)\n",
923 us->iobuf[0], us->iobuf[1]);
924 if (result != USB_STOR_XFER_GOOD)
925 return USB_STOR_TRANSPORT_ERROR;
927 /* UFI gives us ASC and ASCQ, like a request sense
929 * REQUEST_SENSE and INQUIRY don't affect the sense data on UFI
930 * devices, so we ignore the information for those commands. Note
931 * that this means we could be ignoring a real error on these
932 * commands, but that can't be helped.
934 if (us->subclass == US_SC_UFI) {
935 if (srb->cmnd[0] == REQUEST_SENSE ||
936 srb->cmnd[0] == INQUIRY)
937 return USB_STOR_TRANSPORT_GOOD;
940 return USB_STOR_TRANSPORT_GOOD;
943 /* If not UFI, we interpret the data as a result code
944 * The first byte should always be a 0x0.
946 * Some bogus devices don't follow that rule. They stuff the ASC
947 * into the first byte -- so if it's non-zero, call it a failure.
950 US_DEBUGP("CBI IRQ data showed reserved bType 0x%x\n",
956 /* The second byte & 0x0F should be 0x0 for good, otherwise error */
957 switch (us->iobuf[1] & 0x0F) {
959 return USB_STOR_TRANSPORT_GOOD;
963 return USB_STOR_TRANSPORT_ERROR;
965 /* the CBI spec requires that the bulk pipe must be cleared
966 * following any data-in/out command failure (section 2.4.3.1.3)
970 usb_stor_clear_halt(us, pipe);
971 return USB_STOR_TRANSPORT_FAILED;
975 * Bulk only transport
978 /* Determine what the maximum LUN supported is */
979 int usb_stor_Bulk_max_lun(struct us_data *us)
983 /* issue the command */
985 result = usb_stor_control_msg(us, us->recv_ctrl_pipe,
987 USB_DIR_IN | USB_TYPE_CLASS |
989 0, us->ifnum, us->iobuf, 1, HZ);
991 US_DEBUGP("GetMaxLUN command result is %d, data is %d\n",
992 result, us->iobuf[0]);
994 /* if we have a successful request, return the result */
999 * Some devices don't like GetMaxLUN. They may STALL the control
1000 * pipe, they may return a zero-length result, they may do nothing at
1001 * all and timeout, or they may fail in even more bizarrely creative
1002 * ways. In these cases the best approach is to use the default
1003 * value: only one LUN.
1008 int usb_stor_Bulk_transport(struct scsi_cmnd *srb, struct us_data *us)
1010 struct bulk_cb_wrap *bcb = (struct bulk_cb_wrap *) us->iobuf;
1011 struct bulk_cs_wrap *bcs = (struct bulk_cs_wrap *) us->iobuf;
1012 unsigned int transfer_length = scsi_bufflen(srb);
1013 unsigned int residue;
1016 unsigned int cswlen;
1017 unsigned int cbwlen = US_BULK_CB_WRAP_LEN;
1019 /* Take care of BULK32 devices; set extra byte to 0 */
1020 if (unlikely(us->fflags & US_FL_BULK32)) {
1025 /* set up the command wrapper */
1026 bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
1027 bcb->DataTransferLength = cpu_to_le32(transfer_length);
1028 bcb->Flags = srb->sc_data_direction == DMA_FROM_DEVICE ? 1 << 7 : 0;
1029 bcb->Tag = ++us->tag;
1030 bcb->Lun = srb->device->lun;
1031 if (us->fflags & US_FL_SCM_MULT_TARG)
1032 bcb->Lun |= srb->device->id << 4;
1033 bcb->Length = srb->cmd_len;
1035 /* copy the command payload */
1036 memset(bcb->CDB, 0, sizeof(bcb->CDB));
1037 memcpy(bcb->CDB, srb->cmnd, bcb->Length);
1039 /* send it to out endpoint */
1040 US_DEBUGP("Bulk Command S 0x%x T 0x%x L %d F %d Trg %d LUN %d CL %d\n",
1041 le32_to_cpu(bcb->Signature), bcb->Tag,
1042 le32_to_cpu(bcb->DataTransferLength), bcb->Flags,
1043 (bcb->Lun >> 4), (bcb->Lun & 0x0F),
1045 result = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
1047 US_DEBUGP("Bulk command transfer result=%d\n", result);
1048 if (result != USB_STOR_XFER_GOOD)
1049 return USB_STOR_TRANSPORT_ERROR;
1052 /* send/receive data payload, if there is any */
1054 /* Some USB-IDE converter chips need a 100us delay between the
1055 * command phase and the data phase. Some devices need a little
1056 * more than that, probably because of clock rate inaccuracies. */
1057 if (unlikely(us->fflags & US_FL_GO_SLOW))
1060 if (transfer_length) {
1061 unsigned int pipe = srb->sc_data_direction == DMA_FROM_DEVICE ?
1062 us->recv_bulk_pipe : us->send_bulk_pipe;
1063 result = usb_stor_bulk_srb(us, pipe, srb);
1064 US_DEBUGP("Bulk data transfer result 0x%x\n", result);
1065 if (result == USB_STOR_XFER_ERROR)
1066 return USB_STOR_TRANSPORT_ERROR;
1068 /* If the device tried to send back more data than the
1069 * amount requested, the spec requires us to transfer
1070 * the CSW anyway. Since there's no point retrying the
1071 * the command, we'll return fake sense data indicating
1072 * Illegal Request, Invalid Field in CDB.
1074 if (result == USB_STOR_XFER_LONG)
1078 /* See flow chart on pg 15 of the Bulk Only Transport spec for
1079 * an explanation of how this code works.
1082 /* get CSW for device status */
1083 US_DEBUGP("Attempting to get CSW...\n");
1084 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1085 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1087 /* Some broken devices add unnecessary zero-length packets to the
1088 * end of their data transfers. Such packets show up as 0-length
1089 * CSWs. If we encounter such a thing, try to read the CSW again.
1091 if (result == USB_STOR_XFER_SHORT && cswlen == 0) {
1092 US_DEBUGP("Received 0-length CSW; retrying...\n");
1093 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1094 bcs, US_BULK_CS_WRAP_LEN, &cswlen);
1097 /* did the attempt to read the CSW fail? */
1098 if (result == USB_STOR_XFER_STALLED) {
1100 /* get the status again */
1101 US_DEBUGP("Attempting to get CSW (2nd try)...\n");
1102 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1103 bcs, US_BULK_CS_WRAP_LEN, NULL);
1106 /* if we still have a failure at this point, we're in trouble */
1107 US_DEBUGP("Bulk status result = %d\n", result);
1108 if (result != USB_STOR_XFER_GOOD)
1109 return USB_STOR_TRANSPORT_ERROR;
1111 /* check bulk status */
1112 residue = le32_to_cpu(bcs->Residue);
1113 US_DEBUGP("Bulk Status S 0x%x T 0x%x R %u Stat 0x%x\n",
1114 le32_to_cpu(bcs->Signature), bcs->Tag,
1115 residue, bcs->Status);
1116 if (!(bcs->Tag == us->tag || (us->fflags & US_FL_BULK_IGNORE_TAG)) ||
1117 bcs->Status > US_BULK_STAT_PHASE) {
1118 US_DEBUGP("Bulk logical error\n");
1119 return USB_STOR_TRANSPORT_ERROR;
1122 /* Some broken devices report odd signatures, so we do not check them
1123 * for validity against the spec. We store the first one we see,
1124 * and check subsequent transfers for validity against this signature.
1126 if (!us->bcs_signature) {
1127 us->bcs_signature = bcs->Signature;
1128 if (us->bcs_signature != cpu_to_le32(US_BULK_CS_SIGN))
1129 US_DEBUGP("Learnt BCS signature 0x%08X\n",
1130 le32_to_cpu(us->bcs_signature));
1131 } else if (bcs->Signature != us->bcs_signature) {
1132 US_DEBUGP("Signature mismatch: got %08X, expecting %08X\n",
1133 le32_to_cpu(bcs->Signature),
1134 le32_to_cpu(us->bcs_signature));
1135 return USB_STOR_TRANSPORT_ERROR;
1138 /* try to compute the actual residue, based on how much data
1139 * was really transferred and what the device tells us */
1140 if (residue && !(us->fflags & US_FL_IGNORE_RESIDUE)) {
1142 /* Heuristically detect devices that generate bogus residues
1143 * by seeing what happens with INQUIRY and READ CAPACITY
1146 if (bcs->Status == US_BULK_STAT_OK &&
1147 scsi_get_resid(srb) == 0 &&
1148 ((srb->cmnd[0] == INQUIRY &&
1149 transfer_length == 36) ||
1150 (srb->cmnd[0] == READ_CAPACITY &&
1151 transfer_length == 8))) {
1152 us->fflags |= US_FL_IGNORE_RESIDUE;
1155 residue = min(residue, transfer_length);
1156 scsi_set_resid(srb, max(scsi_get_resid(srb),
1161 /* based on the status code, we report good or bad */
1162 switch (bcs->Status) {
1163 case US_BULK_STAT_OK:
1164 /* device babbled -- return fake sense data */
1166 memcpy(srb->sense_buffer,
1167 usb_stor_sense_invalidCDB,
1168 sizeof(usb_stor_sense_invalidCDB));
1169 return USB_STOR_TRANSPORT_NO_SENSE;
1172 /* command good -- note that data could be short */
1173 return USB_STOR_TRANSPORT_GOOD;
1175 case US_BULK_STAT_FAIL:
1176 /* command failed */
1177 return USB_STOR_TRANSPORT_FAILED;
1179 case US_BULK_STAT_PHASE:
1180 /* phase error -- note that a transport reset will be
1181 * invoked by the invoke_transport() function
1183 return USB_STOR_TRANSPORT_ERROR;
1186 /* we should never get here, but if we do, we're in trouble */
1187 return USB_STOR_TRANSPORT_ERROR;
1190 /***********************************************************************
1192 ***********************************************************************/
1194 /* This is the common part of the device reset code.
1196 * It's handy that every transport mechanism uses the control endpoint for
1199 * Basically, we send a reset with a 5-second timeout, so we don't get
1200 * jammed attempting to do the reset.
1202 static int usb_stor_reset_common(struct us_data *us,
1203 u8 request, u8 requesttype,
1204 u16 value, u16 index, void *data, u16 size)
1209 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1210 US_DEBUGP("No reset during disconnect\n");
1214 result = usb_stor_control_msg(us, us->send_ctrl_pipe,
1215 request, requesttype, value, index, data, size,
1218 US_DEBUGP("Soft reset failed: %d\n", result);
1222 /* Give the device some time to recover from the reset,
1223 * but don't delay disconnect processing. */
1224 wait_event_interruptible_timeout(us->delay_wait,
1225 test_bit(US_FLIDX_DISCONNECTING, &us->dflags),
1227 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1228 US_DEBUGP("Reset interrupted by disconnect\n");
1232 US_DEBUGP("Soft reset: clearing bulk-in endpoint halt\n");
1233 result = usb_stor_clear_halt(us, us->recv_bulk_pipe);
1235 US_DEBUGP("Soft reset: clearing bulk-out endpoint halt\n");
1236 result2 = usb_stor_clear_halt(us, us->send_bulk_pipe);
1238 /* return a result code based on the result of the clear-halts */
1242 US_DEBUGP("Soft reset failed\n");
1244 US_DEBUGP("Soft reset done\n");
1248 /* This issues a CB[I] Reset to the device in question
1250 #define CB_RESET_CMD_SIZE 12
1252 int usb_stor_CB_reset(struct us_data *us)
1254 US_DEBUGP("%s called\n", __func__);
1256 memset(us->iobuf, 0xFF, CB_RESET_CMD_SIZE);
1257 us->iobuf[0] = SEND_DIAGNOSTIC;
1259 return usb_stor_reset_common(us, US_CBI_ADSC,
1260 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1261 0, us->ifnum, us->iobuf, CB_RESET_CMD_SIZE);
1264 /* This issues a Bulk-only Reset to the device in question, including
1265 * clearing the subsequent endpoint halts that may occur.
1267 int usb_stor_Bulk_reset(struct us_data *us)
1269 US_DEBUGP("%s called\n", __func__);
1271 return usb_stor_reset_common(us, US_BULK_RESET_REQUEST,
1272 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1273 0, us->ifnum, NULL, 0);
1276 /* Issue a USB port reset to the device. The caller must not hold
1279 int usb_stor_port_reset(struct us_data *us)
1283 result = usb_lock_device_for_reset(us->pusb_dev, us->pusb_intf);
1285 US_DEBUGP("unable to lock device for reset: %d\n", result);
1287 /* Were we disconnected while waiting for the lock? */
1288 if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) {
1290 US_DEBUGP("No reset during disconnect\n");
1292 result = usb_reset_device(us->pusb_dev);
1293 US_DEBUGP("usb_reset_device returns %d\n",
1296 usb_unlock_device(us->pusb_dev);