2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
37 //#define DEBUG /* uncomment if you want debugging info (pr_debug) */
39 #include <linux/bio.h>
40 #include <linux/kernel.h>
42 #include <linux/mman.h>
43 #include <linux/ioctl.h>
44 #include <linux/module.h>
45 #include <linux/init.h>
46 #include <linux/interrupt.h>
47 #include <linux/timer.h>
48 #include <linux/pci.h>
49 #include <linux/slab.h>
50 #include <linux/dma-mapping.h>
52 #include <linux/fcntl.h> /* O_ACCMODE */
53 #include <linux/hdreg.h> /* HDIO_GETGEO */
55 #include <linux/umem.h>
57 #include <asm/uaccess.h>
61 #define MM_RAHEAD 2 /* two sectors */
62 #define MM_BLKSIZE 1024 /* 1k blocks */
63 #define MM_HARDSECT 512 /* 512-byte hardware sectors */
64 #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
70 #define DRIVER_VERSION "v2.3"
71 #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
72 #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75 /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
78 #define DEBUG_LED_ON_TRANSFER 0x01
79 #define DEBUG_BATTERY_POLLING 0x02
81 module_param(debug, int, 0644);
82 MODULE_PARM_DESC(debug, "Debug bitmask");
84 static int pci_read_cmd = 0x0C; /* Read Multiple */
85 module_param(pci_read_cmd, int, 0);
86 MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
88 static int pci_write_cmd = 0x0F; /* Write and Invalidate */
89 module_param(pci_write_cmd, int, 0);
90 MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
96 #include <linux/blkdev.h>
97 #include <linux/blkpg.h>
105 unsigned long csr_base;
106 unsigned char __iomem *csr_remap;
107 unsigned long csr_len;
108 unsigned int win_size; /* PCI window size */
109 unsigned int mm_size; /* size in kbytes */
111 unsigned int init_size; /* initial segment, in sectors,
115 struct bio *bio, *currentbio, **biotail;
117 request_queue_t *queue;
121 struct mm_dma_desc *desc;
123 struct bio *bio, **biotail;
125 #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
129 struct tasklet_struct tasklet;
130 unsigned int dma_status;
135 unsigned long last_change;
144 static struct cardinfo cards[MM_MAXCARDS];
145 static struct block_device_operations mm_fops;
146 static struct timer_list battery_timer;
148 static int num_cards = 0;
150 static struct gendisk *mm_gendisk[MM_MAXCARDS];
152 static void check_batteries(struct cardinfo *card);
155 -----------------------------------------------------------------------------------
157 -----------------------------------------------------------------------------------
159 static int get_userbit(struct cardinfo *card, int bit)
163 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
167 -----------------------------------------------------------------------------------
169 -----------------------------------------------------------------------------------
171 static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
175 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
180 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
185 -----------------------------------------------------------------------------------
187 -----------------------------------------------------------------------------------
190 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
192 static void set_led(struct cardinfo *card, int shift, unsigned char state)
196 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
197 if (state == LED_FLIP)
200 led &= ~(0x03 << shift);
201 led |= (state << shift);
203 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
209 -----------------------------------------------------------------------------------
211 -----------------------------------------------------------------------------------
213 static void dump_regs(struct cardinfo *card)
219 for (i = 0; i < 8; i++) {
220 printk(KERN_DEBUG "%p ", p);
222 for (i1 = 0; i1 < 16; i1++)
223 printk("%02x ", *p++);
230 -----------------------------------------------------------------------------------
232 -----------------------------------------------------------------------------------
234 static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
236 printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
237 if (dmastat & DMASCR_ANY_ERR)
239 if (dmastat & DMASCR_MBE_ERR)
241 if (dmastat & DMASCR_PARITY_ERR_REP)
242 printk("PARITY_ERR_REP ");
243 if (dmastat & DMASCR_PARITY_ERR_DET)
244 printk("PARITY_ERR_DET ");
245 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
246 printk("SYSTEM_ERR_SIG ");
247 if (dmastat & DMASCR_TARGET_ABT)
248 printk("TARGET_ABT ");
249 if (dmastat & DMASCR_MASTER_ABT)
250 printk("MASTER_ABT ");
251 if (dmastat & DMASCR_CHAIN_COMPLETE)
252 printk("CHAIN_COMPLETE ");
253 if (dmastat & DMASCR_DMA_COMPLETE)
254 printk("DMA_COMPLETE ");
259 * Theory of request handling
261 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
262 * We have two pages of mm_dma_desc, holding about 64 descriptors
263 * each. These are allocated at init time.
264 * One page is "Ready" and is either full, or can have request added.
265 * The other page might be "Active", which DMA is happening on it.
267 * Whenever IO on the active page completes, the Ready page is activated
268 * and the ex-Active page is clean out and made Ready.
269 * Otherwise the Ready page is only activated when it becomes full, or
270 * when mm_unplug_device is called via the unplug_io_fn.
272 * If a request arrives while both pages a full, it is queued, and b_rdev is
273 * overloaded to record whether it was a read or a write.
275 * The interrupt handler only polls the device to clear the interrupt.
276 * The processing of the result is done in a tasklet.
279 static void mm_start_io(struct cardinfo *card)
281 /* we have the lock, we know there is
282 * no IO active, and we know that card->Active
285 struct mm_dma_desc *desc;
286 struct mm_page *page;
289 /* make the last descriptor end the chain */
290 page = &card->mm_pages[card->Active];
291 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
292 desc = &page->desc[page->cnt-1];
294 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
295 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
296 desc->sem_control_bits = desc->control_bits;
299 if (debug & DEBUG_LED_ON_TRANSFER)
300 set_led(card, LED_REMOVE, LED_ON);
302 desc = &page->desc[page->headcnt];
303 writel(0, card->csr_remap + DMA_PCI_ADDR);
304 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
306 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
307 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
309 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
310 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
312 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
313 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
315 offset = ((char*)desc) - ((char*)page->desc);
316 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
317 card->csr_remap + DMA_DESCRIPTOR_ADDR);
318 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
319 * and on some ports will do nothing ! */
320 writel(cpu_to_le32(((u64)page->page_dma)>>32),
321 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
324 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
325 card->csr_remap + DMA_STATUS_CTRL);
328 static int add_bio(struct cardinfo *card);
330 static void activate(struct cardinfo *card)
332 /* if No page is Active, and Ready is
333 * not empty, then switch Ready page
334 * to active and start IO.
335 * Then add any bh's that are available to Ready
339 while (add_bio(card))
342 if (card->Active == -1 &&
343 card->mm_pages[card->Ready].cnt > 0) {
344 card->Active = card->Ready;
345 card->Ready = 1-card->Ready;
349 } while (card->Active == -1 && add_bio(card));
352 static inline void reset_page(struct mm_page *page)
357 page->biotail = & page->bio;
360 static void mm_unplug_device(request_queue_t *q)
362 struct cardinfo *card = q->queuedata;
365 spin_lock_irqsave(&card->lock, flags);
366 if (blk_remove_plug(q))
368 spin_unlock_irqrestore(&card->lock, flags);
372 * If there is room on Ready page, take
373 * one bh off list and add it.
374 * return 1 if there was room, else 0.
376 static int add_bio(struct cardinfo *card)
379 struct mm_dma_desc *desc;
380 dma_addr_t dma_handle;
386 bio = card->currentbio;
387 if (!bio && card->bio) {
388 card->currentbio = card->bio;
389 card->bio = card->bio->bi_next;
390 if (card->bio == NULL)
391 card->biotail = &card->bio;
392 card->currentbio->bi_next = NULL;
399 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
402 len = bio_iovec(bio)->bv_len;
403 dma_handle = pci_map_page(card->dev,
408 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
410 p = &card->mm_pages[card->Ready];
411 desc = &p->desc[p->cnt];
413 if ((p->biotail) != &bio->bi_next) {
415 p->biotail = &(bio->bi_next);
419 desc->data_dma_handle = dma_handle;
421 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
422 desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
423 desc->transfer_size = cpu_to_le32(len);
424 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
425 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
426 desc->zero1 = desc->zero2 = 0;
427 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
428 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
429 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
430 DMASCR_PARITY_INT_EN|
435 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
436 desc->sem_control_bits = desc->control_bits;
438 bio->bi_sector += (len>>9);
441 if (bio->bi_idx >= bio->bi_vcnt)
442 card->currentbio = NULL;
447 static void process_page(unsigned long data)
449 /* check if any of the requests in the page are DMA_COMPLETE,
450 * and deal with them appropriately.
451 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
452 * dma must have hit an error on that descriptor, so use dma_status instead
453 * and assume that all following descriptors must be re-tried.
455 struct mm_page *page;
456 struct bio *return_bio=NULL;
457 struct cardinfo *card = (struct cardinfo *)data;
458 unsigned int dma_status = card->dma_status;
460 spin_lock_bh(&card->lock);
461 if (card->Active < 0)
463 page = &card->mm_pages[card->Active];
465 while (page->headcnt < page->cnt) {
466 struct bio *bio = page->bio;
467 struct mm_dma_desc *desc = &page->desc[page->headcnt];
468 int control = le32_to_cpu(desc->sem_control_bits);
472 if (!(control & DMASCR_DMA_COMPLETE)) {
473 control = dma_status;
477 idx = bio->bi_phys_segments;
478 bio->bi_phys_segments++;
479 if (bio->bi_phys_segments >= bio->bi_vcnt)
480 page->bio = bio->bi_next;
482 pci_unmap_page(card->dev, desc->data_dma_handle,
483 bio_iovec_idx(bio,idx)->bv_len,
484 (control& DMASCR_TRANSFER_READ) ?
485 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
486 if (control & DMASCR_HARD_ERROR) {
488 clear_bit(BIO_UPTODATE, &bio->bi_flags);
489 printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
491 le32_to_cpu(desc->local_addr)>>9,
492 le32_to_cpu(desc->transfer_size));
493 dump_dmastat(card, control);
494 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
495 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
496 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
497 if (card->init_size>>1 >= card->mm_size) {
498 printk(KERN_INFO "MM%d: memory now initialised\n",
500 set_userbit(card, MEMORY_INITIALIZED, 1);
503 if (bio != page->bio) {
504 bio->bi_next = return_bio;
511 if (debug & DEBUG_LED_ON_TRANSFER)
512 set_led(card, LED_REMOVE, LED_OFF);
514 if (card->check_batteries) {
515 card->check_batteries = 0;
516 check_batteries(card);
518 if (page->headcnt >= page->cnt) {
523 /* haven't finished with this one yet */
524 pr_debug("do some more\n");
528 spin_unlock_bh(&card->lock);
531 struct bio *bio = return_bio;
533 return_bio = bio->bi_next;
535 bio_endio(bio, bio->bi_size, 0);
540 -----------------------------------------------------------------------------------
542 -----------------------------------------------------------------------------------
544 static int mm_make_request(request_queue_t *q, struct bio *bio)
546 struct cardinfo *card = q->queuedata;
547 pr_debug("mm_make_request %llu %u\n",
548 (unsigned long long)bio->bi_sector, bio->bi_size);
550 bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
551 spin_lock_irq(&card->lock);
552 *card->biotail = bio;
554 card->biotail = &bio->bi_next;
556 spin_unlock_irq(&card->lock);
562 -----------------------------------------------------------------------------------
564 -----------------------------------------------------------------------------------
566 static irqreturn_t mm_interrupt(int irq, void *__card)
568 struct cardinfo *card = (struct cardinfo *) __card;
569 unsigned int dma_status;
570 unsigned short cfg_status;
574 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
576 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
577 /* interrupt wasn't for me ... */
581 /* clear COMPLETION interrupts */
582 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
583 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
584 card->csr_remap+ DMA_STATUS_CTRL);
586 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
587 card->csr_remap+ DMA_STATUS_CTRL + 2);
589 /* log errors and clear interrupt status */
590 if (dma_status & DMASCR_ANY_ERR) {
591 unsigned int data_log1, data_log2;
592 unsigned int addr_log1, addr_log2;
593 unsigned char stat, count, syndrome, check;
595 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
597 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
598 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
599 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
600 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
602 count = readb(card->csr_remap + ERROR_COUNT);
603 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
604 check = readb(card->csr_remap + ERROR_CHECK);
606 dump_dmastat(card, dma_status);
609 printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
610 card->card_number, count);
612 printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
615 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
616 card->card_number, addr_log2, addr_log1, data_log2, data_log1);
617 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
618 card->card_number, check, syndrome);
620 writeb(0, card->csr_remap + ERROR_COUNT);
623 if (dma_status & DMASCR_PARITY_ERR_REP) {
624 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
625 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
626 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
629 if (dma_status & DMASCR_PARITY_ERR_DET) {
630 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
631 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
632 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
635 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
636 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
637 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
638 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
641 if (dma_status & DMASCR_TARGET_ABT) {
642 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
643 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
644 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
647 if (dma_status & DMASCR_MASTER_ABT) {
648 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
649 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
650 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
653 /* and process the DMA descriptors */
654 card->dma_status = dma_status;
655 tasklet_schedule(&card->tasklet);
662 -----------------------------------------------------------------------------------
663 -- set_fault_to_battery_status
664 -----------------------------------------------------------------------------------
667 * If both batteries are good, no LED
668 * If either battery has been warned, solid LED
669 * If both batteries are bad, flash the LED quickly
670 * If either battery is bad, flash the LED semi quickly
672 static void set_fault_to_battery_status(struct cardinfo *card)
674 if (card->battery[0].good && card->battery[1].good)
675 set_led(card, LED_FAULT, LED_OFF);
676 else if (card->battery[0].warned || card->battery[1].warned)
677 set_led(card, LED_FAULT, LED_ON);
678 else if (!card->battery[0].good && !card->battery[1].good)
679 set_led(card, LED_FAULT, LED_FLASH_7_0);
681 set_led(card, LED_FAULT, LED_FLASH_3_5);
684 static void init_battery_timer(void);
688 -----------------------------------------------------------------------------------
690 -----------------------------------------------------------------------------------
692 static int check_battery(struct cardinfo *card, int battery, int status)
694 if (status != card->battery[battery].good) {
695 card->battery[battery].good = !card->battery[battery].good;
696 card->battery[battery].last_change = jiffies;
698 if (card->battery[battery].good) {
699 printk(KERN_ERR "MM%d: Battery %d now good\n",
700 card->card_number, battery + 1);
701 card->battery[battery].warned = 0;
703 printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
704 card->card_number, battery + 1);
707 } else if (!card->battery[battery].good &&
708 !card->battery[battery].warned &&
709 time_after_eq(jiffies, card->battery[battery].last_change +
710 (HZ * 60 * 60 * 5))) {
711 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
712 card->card_number, battery + 1);
713 card->battery[battery].warned = 1;
721 -----------------------------------------------------------------------------------
723 -----------------------------------------------------------------------------------
725 static void check_batteries(struct cardinfo *card)
727 /* NOTE: this must *never* be called while the card
728 * is doing (bus-to-card) DMA, or you will need the
731 unsigned char status;
734 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
735 if (debug & DEBUG_BATTERY_POLLING)
736 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
738 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
739 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
741 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
742 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
745 set_fault_to_battery_status(card);
748 static void check_all_batteries(unsigned long ptr)
752 for (i = 0; i < num_cards; i++)
753 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
754 struct cardinfo *card = &cards[i];
755 spin_lock_bh(&card->lock);
756 if (card->Active >= 0)
757 card->check_batteries = 1;
759 check_batteries(card);
760 spin_unlock_bh(&card->lock);
763 init_battery_timer();
766 -----------------------------------------------------------------------------------
767 -- init_battery_timer
768 -----------------------------------------------------------------------------------
770 static void init_battery_timer(void)
772 init_timer(&battery_timer);
773 battery_timer.function = check_all_batteries;
774 battery_timer.expires = jiffies + (HZ * 60);
775 add_timer(&battery_timer);
778 -----------------------------------------------------------------------------------
780 -----------------------------------------------------------------------------------
782 static void del_battery_timer(void)
784 del_timer(&battery_timer);
787 -----------------------------------------------------------------------------------
789 -----------------------------------------------------------------------------------
792 * Note no locks taken out here. In a worst case scenario, we could drop
793 * a chunk of system memory. But that should never happen, since validation
794 * happens at open or mount time, when locks are held.
796 * That's crap, since doing that while some partitions are opened
797 * or mounted will give you really nasty results.
799 static int mm_revalidate(struct gendisk *disk)
801 struct cardinfo *card = disk->private_data;
802 set_capacity(disk, card->mm_size << 1);
806 static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
808 struct cardinfo *card = bdev->bd_disk->private_data;
809 int size = card->mm_size * (1024 / MM_HARDSECT);
812 * get geometry: we have to fake one... trim the size to a
813 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
814 * whatever cylinders.
818 geo->cylinders = size / (geo->heads * geo->sectors);
823 -----------------------------------------------------------------------------------
825 -----------------------------------------------------------------------------------
826 Future support for removable devices
828 static int mm_check_change(struct gendisk *disk)
830 /* struct cardinfo *dev = disk->private_data; */
834 -----------------------------------------------------------------------------------
836 -----------------------------------------------------------------------------------
838 static struct block_device_operations mm_fops = {
839 .owner = THIS_MODULE,
841 .revalidate_disk= mm_revalidate,
842 .media_changed = mm_check_change,
845 -----------------------------------------------------------------------------------
847 -----------------------------------------------------------------------------------
849 static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
852 struct cardinfo *card = &cards[num_cards];
853 unsigned char mem_present;
854 unsigned char batt_status;
855 unsigned int saved_bar, data;
858 if (pci_enable_device(dev) < 0)
861 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
865 card->card_number = num_cards;
867 card->csr_base = pci_resource_start(dev, 0);
868 card->csr_len = pci_resource_len(dev, 0);
870 printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
871 card->card_number, dev->bus->number, dev->devfn);
873 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
874 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
875 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
878 if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
879 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
885 card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
886 if (!card->csr_remap) {
887 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
890 goto failed_remap_csr;
893 printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
894 card->csr_base, card->csr_remap, card->csr_len);
896 switch(card->dev->device) {
898 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
903 card->flags |= UM_FLAG_NO_BYTE_STATUS;
908 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
913 magic_number = 0x100;
917 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
918 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
923 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
925 &card->mm_pages[0].page_dma);
926 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
928 &card->mm_pages[1].page_dma);
929 if (card->mm_pages[0].desc == NULL ||
930 card->mm_pages[1].desc == NULL) {
931 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
934 reset_page(&card->mm_pages[0]);
935 reset_page(&card->mm_pages[1]);
936 card->Ready = 0; /* page 0 is ready */
937 card->Active = -1; /* no page is active */
939 card->biotail = &card->bio;
941 card->queue = blk_alloc_queue(GFP_KERNEL);
945 blk_queue_make_request(card->queue, mm_make_request);
946 card->queue->queuedata = card;
947 card->queue->unplug_fn = mm_unplug_device;
949 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
951 card->check_batteries = 0;
953 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
954 switch (mem_present) {
956 card->mm_size = 1024 * 128;
959 card->mm_size = 1024 * 256;
962 card->mm_size = 1024 * 512;
965 card->mm_size = 1024 * 1024;
968 card->mm_size = 1024 * 2048;
975 /* Clear the LED's we control */
976 set_led(card, LED_REMOVE, LED_OFF);
977 set_led(card, LED_FAULT, LED_OFF);
979 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
981 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
982 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
983 card->battery[0].last_change = card->battery[1].last_change = jiffies;
985 if (card->flags & UM_FLAG_NO_BATT)
986 printk(KERN_INFO "MM%d: Size %d KB\n",
987 card->card_number, card->mm_size);
989 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
990 card->card_number, card->mm_size,
991 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
992 card->battery[0].good ? "OK" : "FAILURE",
993 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
994 card->battery[1].good ? "OK" : "FAILURE");
996 set_fault_to_battery_status(card);
999 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1001 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1002 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1003 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1008 card->win_size = data;
1011 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1012 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1015 goto failed_req_irq;
1018 card->irq = dev->irq;
1019 printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1020 card->win_size, card->irq);
1022 spin_lock_init(&card->lock);
1024 pci_set_drvdata(dev, card);
1026 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1027 pci_write_cmd = 0x07; /* then Memory Write command */
1029 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1030 unsigned short cfg_command;
1031 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1032 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1033 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1035 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1039 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1040 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1041 card->init_size = 0;
1043 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1044 card->init_size = card->mm_size;
1048 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1054 if (card->mm_pages[0].desc)
1055 pci_free_consistent(card->dev, PAGE_SIZE*2,
1056 card->mm_pages[0].desc,
1057 card->mm_pages[0].page_dma);
1058 if (card->mm_pages[1].desc)
1059 pci_free_consistent(card->dev, PAGE_SIZE*2,
1060 card->mm_pages[1].desc,
1061 card->mm_pages[1].page_dma);
1063 iounmap(card->csr_remap);
1065 release_mem_region(card->csr_base, card->csr_len);
1071 -----------------------------------------------------------------------------------
1073 -----------------------------------------------------------------------------------
1075 static void mm_pci_remove(struct pci_dev *dev)
1077 struct cardinfo *card = pci_get_drvdata(dev);
1079 tasklet_kill(&card->tasklet);
1080 iounmap(card->csr_remap);
1081 release_mem_region(card->csr_base, card->csr_len);
1082 free_irq(card->irq, card);
1084 if (card->mm_pages[0].desc)
1085 pci_free_consistent(card->dev, PAGE_SIZE*2,
1086 card->mm_pages[0].desc,
1087 card->mm_pages[0].page_dma);
1088 if (card->mm_pages[1].desc)
1089 pci_free_consistent(card->dev, PAGE_SIZE*2,
1090 card->mm_pages[1].desc,
1091 card->mm_pages[1].page_dma);
1092 blk_cleanup_queue(card->queue);
1095 static const struct pci_device_id mm_pci_ids[] = { {
1096 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1097 .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1099 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1100 .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1102 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1103 .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
1111 }, { /* end: all zeroes */ }
1114 MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1116 static struct pci_driver mm_pci_driver = {
1118 .id_table = mm_pci_ids,
1119 .probe = mm_pci_probe,
1120 .remove = mm_pci_remove,
1123 -----------------------------------------------------------------------------------
1125 -----------------------------------------------------------------------------------
1128 static int __init mm_init(void)
1133 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1135 retval = pci_register_driver(&mm_pci_driver);
1139 err = major_nr = register_blkdev(0, "umem");
1141 pci_unregister_driver(&mm_pci_driver);
1145 for (i = 0; i < num_cards; i++) {
1146 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1151 for (i = 0; i < num_cards; i++) {
1152 struct gendisk *disk = mm_gendisk[i];
1153 sprintf(disk->disk_name, "umem%c", 'a'+i);
1154 spin_lock_init(&cards[i].lock);
1155 disk->major = major_nr;
1156 disk->first_minor = i << MM_SHIFT;
1157 disk->fops = &mm_fops;
1158 disk->private_data = &cards[i];
1159 disk->queue = cards[i].queue;
1160 set_capacity(disk, cards[i].mm_size << 1);
1164 init_battery_timer();
1165 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1166 /* printk("mm_init: Done. 10-19-01 9:00\n"); */
1170 pci_unregister_driver(&mm_pci_driver);
1171 unregister_blkdev(major_nr, "umem");
1173 put_disk(mm_gendisk[i]);
1177 -----------------------------------------------------------------------------------
1179 -----------------------------------------------------------------------------------
1181 static void __exit mm_cleanup(void)
1185 del_battery_timer();
1187 for (i=0; i < num_cards ; i++) {
1188 del_gendisk(mm_gendisk[i]);
1189 put_disk(mm_gendisk[i]);
1192 pci_unregister_driver(&mm_pci_driver);
1194 unregister_blkdev(major_nr, "umem");
1197 module_init(mm_init);
1198 module_exit(mm_cleanup);
1200 MODULE_AUTHOR(DRIVER_AUTHOR);
1201 MODULE_DESCRIPTION(DRIVER_DESC);
1202 MODULE_LICENSE("GPL");