2 * Philips UCB1400 touchscreen driver
4 * Author: Nicolas Pitre
5 * Created: September 25, 2006
6 * Copyright: MontaVista Software, Inc.
8 * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
9 * If something doesnt work and it worked before spliting, e-mail me,
10 * dont bother Nicolas please ;-)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
17 * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
18 * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/input.h>
26 #include <linux/device.h>
27 #include <linux/interrupt.h>
28 #include <linux/suspend.h>
29 #include <linux/slab.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <linux/ucb1400.h>
35 static int ts_delay = 55; /* us */
36 static int ts_delay_pressure; /* us */
38 /* Switch to interrupt mode. */
39 static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
41 ucb1400_reg_write(ac97, UCB_TS_CR,
42 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
43 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
48 * Switch to pressure mode, and read pressure. We don't need to wait
49 * here, since both plates are being driven.
51 static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
53 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
54 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
55 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
56 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
57 udelay(ts_delay_pressure);
58 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
62 * Switch to X position mode and measure Y plate. We switch the plate
63 * configuration in pressure mode, then switch to position mode. This
64 * gives a faster response time. Even so, we need to wait about 55us
65 * for things to stabilise.
67 static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
69 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
70 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
71 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
72 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
73 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
74 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
75 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
76 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
77 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
81 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
85 * Switch to Y position mode and measure X plate. We switch the plate
86 * configuration in pressure mode, then switch to position mode. This
87 * gives a faster response time. Even so, we need to wait about 55us
88 * for things to stabilise.
90 static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
92 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
93 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
94 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
95 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
96 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
97 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
98 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
99 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
100 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
104 return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
108 * Switch to X plate resistance mode. Set MX to ground, PX to
109 * supply. Measure current.
111 static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
113 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
114 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
115 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
116 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
120 * Switch to Y plate resistance mode. Set MY to ground, PY to
121 * supply. Measure current.
123 static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
125 ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
126 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
127 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
128 return ucb1400_adc_read(ucb->ac97, 0, adcsync);
131 static inline int ucb1400_ts_pen_down(struct snd_ac97 *ac97)
133 unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
134 return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
137 static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
139 ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
140 ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
141 ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
144 static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
146 ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
149 static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
151 input_report_abs(idev, ABS_X, x);
152 input_report_abs(idev, ABS_Y, y);
153 input_report_abs(idev, ABS_PRESSURE, pressure);
157 static void ucb1400_ts_event_release(struct input_dev *idev)
159 input_report_abs(idev, ABS_PRESSURE, 0);
163 static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
167 isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
168 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
169 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
171 if (isr & UCB_IE_TSPX) {
172 ucb1400_ts_irq_disable(ucb->ac97);
173 enable_irq(ucb->irq);
175 printk(KERN_ERR "ucb1400: unexpected IE_STATUS = %#x\n", isr);
178 static int ucb1400_ts_thread(void *_ucb)
180 struct ucb1400_ts *ucb = _ucb;
181 struct task_struct *tsk = current;
183 struct sched_param param = { .sched_priority = 1 };
185 sched_setscheduler(tsk, SCHED_FIFO, ¶m);
188 while (!kthread_should_stop()) {
189 unsigned int x, y, p;
194 if (ucb->irq_pending) {
195 ucb->irq_pending = 0;
196 ucb1400_handle_pending_irq(ucb);
199 ucb1400_adc_enable(ucb->ac97);
200 x = ucb1400_ts_read_xpos(ucb);
201 y = ucb1400_ts_read_ypos(ucb);
202 p = ucb1400_ts_read_pressure(ucb);
203 ucb1400_adc_disable(ucb->ac97);
205 /* Switch back to interrupt mode. */
206 ucb1400_ts_mode_int(ucb->ac97);
210 if (ucb1400_ts_pen_down(ucb->ac97)) {
211 ucb1400_ts_irq_enable(ucb->ac97);
214 * If we spat out a valid sample set last time,
215 * spit out a "pen off" sample here.
218 ucb1400_ts_event_release(ucb->ts_idev);
222 timeout = MAX_SCHEDULE_TIMEOUT;
225 ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
226 timeout = msecs_to_jiffies(10);
229 wait_event_freezable_timeout(ucb->ts_wait,
230 ucb->irq_pending || ucb->ts_restart ||
231 kthread_should_stop(), timeout);
234 /* Send the "pen off" if we are stopping with the pen still active */
236 ucb1400_ts_event_release(ucb->ts_idev);
243 * A restriction with interrupts exists when using the ucb1400, as
244 * the codec read/write routines may sleep while waiting for codec
245 * access completion and uses semaphores for access control to the
246 * AC97 bus. A complete codec read cycle could take anywhere from
247 * 60 to 100uSec so we *definitely* don't want to spin inside the
248 * interrupt handler waiting for codec access. So, we handle the
249 * interrupt by scheduling a RT kernel thread to run in process
250 * context instead of interrupt context.
252 static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
254 struct ucb1400_ts *ucb = devid;
256 if (irqnr == ucb->irq) {
257 disable_irq(ucb->irq);
258 ucb->irq_pending = 1;
259 wake_up(&ucb->ts_wait);
265 static int ucb1400_ts_open(struct input_dev *idev)
267 struct ucb1400_ts *ucb = input_get_drvdata(idev);
270 BUG_ON(ucb->ts_task);
272 ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
273 if (IS_ERR(ucb->ts_task)) {
274 ret = PTR_ERR(ucb->ts_task);
281 static void ucb1400_ts_close(struct input_dev *idev)
283 struct ucb1400_ts *ucb = input_get_drvdata(idev);
286 kthread_stop(ucb->ts_task);
288 ucb1400_ts_irq_disable(ucb->ac97);
289 ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
297 * Try to probe our interrupt, rather than relying on lots of
298 * hard-coded machine dependencies.
300 static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
302 unsigned long mask, timeout;
304 mask = probe_irq_on();
306 /* Enable the ADC interrupt. */
307 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
308 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
309 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
310 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
312 /* Cause an ADC interrupt. */
313 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
314 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
316 /* Wait for the conversion to complete. */
317 timeout = jiffies + HZ/2;
318 while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
319 UCB_ADC_DAT_VALID)) {
321 if (time_after(jiffies, timeout)) {
322 printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
327 ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
329 /* Disable and clear interrupt. */
330 ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
331 ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
332 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
333 ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
335 /* Read triggered interrupt. */
336 ucb->irq = probe_irq_off(mask);
337 if (ucb->irq < 0 || ucb->irq == NO_IRQ)
343 static int ucb1400_ts_probe(struct platform_device *dev)
345 int error, x_res, y_res;
346 struct ucb1400_ts *ucb = dev->dev.platform_data;
348 ucb->ts_idev = input_allocate_device();
354 error = ucb1400_ts_detect_irq(ucb);
356 printk(KERN_ERR "UCB1400: IRQ probe failed\n");
360 init_waitqueue_head(&ucb->ts_wait);
362 error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
365 printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
369 printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
371 input_set_drvdata(ucb->ts_idev, ucb);
373 ucb->ts_idev->dev.parent = &dev->dev;
374 ucb->ts_idev->name = "UCB1400 touchscreen interface";
375 ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
377 ucb->ts_idev->id.product = ucb->id;
378 ucb->ts_idev->open = ucb1400_ts_open;
379 ucb->ts_idev->close = ucb1400_ts_close;
380 ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS);
382 ucb1400_adc_enable(ucb->ac97);
383 x_res = ucb1400_ts_read_xres(ucb);
384 y_res = ucb1400_ts_read_yres(ucb);
385 ucb1400_adc_disable(ucb->ac97);
386 printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
388 input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
389 input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
390 input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
392 error = input_register_device(ucb->ts_idev);
399 free_irq(ucb->irq, ucb);
401 input_free_device(ucb->ts_idev);
407 static int ucb1400_ts_remove(struct platform_device *dev)
409 struct ucb1400_ts *ucb = dev->dev.platform_data;
411 free_irq(ucb->irq, ucb);
412 input_unregister_device(ucb->ts_idev);
417 static int ucb1400_ts_resume(struct platform_device *dev)
419 struct ucb1400_ts *ucb = platform_get_drvdata(dev);
423 * Restart the TS thread to ensure the
424 * TS interrupt mode is set up again
428 wake_up(&ucb->ts_wait);
433 #define ucb1400_ts_resume NULL
436 static struct platform_driver ucb1400_ts_driver = {
437 .probe = ucb1400_ts_probe,
438 .remove = ucb1400_ts_remove,
439 .resume = ucb1400_ts_resume,
441 .name = "ucb1400_ts",
445 static int __init ucb1400_ts_init(void)
447 return platform_driver_register(&ucb1400_ts_driver);
450 static void __exit ucb1400_ts_exit(void)
452 platform_driver_unregister(&ucb1400_ts_driver);
455 module_param(adcsync, bool, 0444);
456 MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
458 module_param(ts_delay, int, 0444);
459 MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
460 " position read. Default = 55us.");
462 module_param(ts_delay_pressure, int, 0444);
463 MODULE_PARM_DESC(ts_delay_pressure,
464 "delay between panel setup and pressure read."
467 module_init(ucb1400_ts_init);
468 module_exit(ucb1400_ts_exit);
470 MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
471 MODULE_LICENSE("GPL");